
InterNetNews: Usenet
transport for Internet sites

Rich Salz – Open Software Foundation

ABSTRACT

NNTP, the Network News Transfer Protocol, has been labelled the most widely
implemented elective protocol in the Internet. The growth of the Internet has meant more
sites exchanging NNTP data. While the explosive growth in Usenet traffic places demands
on all sites, the goal of fast network access puts particular demands on NNTP hosts.

InterNetNews is an implementation of the Usenet transport layer designed to address
this situation. It replaces the standard UNIX server architecture with a single long-running
server that handles all incoming connections. It has proven to be quite successful, providing
quick and efficient news transfer.

Introduction

Usenet is a distributed bulletin board system,
built as a logical network on top of other networks
and connections. By design, messages resemble
standard Internet electronic mail messages as defined
in RFC822 [Crocker82]. The Usenet message for-
mat is described in RFC1036 [Adams87]. This
defines some additional headers. It also limits the
values of some of the standard headers as well as
giving some of them special semantics.

Newsgroups are the classification system of
Usenet. The required Newsgroups header specifies
where a message, or article, should be filed upon
reception. Sites are free to carry whatever groups
they want. Most sites carry the core set of so-called
‘‘mainstream’’ groups. There are currently about
730 of these groups, and one or two new ones is
created every week.

Messages generated at a site are sent to the
site’s ‘‘neighbors’’ who process them and relay them
to their neighbors, and so on. Sites can be intercon-
nected – indeed, on the Internet, this is quite com-
mon. See Figure 1.

B

D

C

A

Figure 1: Small Usenet topology (all links are
two-way).

The Path header is used to prevent message
loops. For example, an article written at A could get
sent to B, D, C, and then back to A. Before pro-
pagating an article, a site prepends its own name to
the Path header. Before propagating an article to a
site, the receiving host checks to make sure that the
site that would receive the article does not appear in
the Path line. For example, when the article arrived
at site C, the Path would contain A!B!D, so site C
would know not to send the article to A.

Sites also keep a record of the Message-ID’s of
all articles they currently have. If D receives an
article from B, it will reject the article if C offers it
later. For self-protection, most sites keep a record
of recent articles that they no longer have. This is
very useful when another site dumps a (usually quite
large) batch of old news back out to Usenet.

For the past few years, the amount of data gen-
erated by Usenet sites has been doubling every year.
A site that receives all the mainstream groups is
receiving over 17 megabytes a day spread out over
11,000 articles [Adams92]. About 20% of the data
is article headers, and while all of them must be
scanned only half of it is must be processed by the
Usenet software.1

The number of sites participating in Usenet has
been growing almost as quickly. Based on articles
his site receives and survey data sent in by partici-
pating sites, Brian Reid estimates that there are
36,000 sites with 1.4 million participants [Reid91].
A ‘‘sendsys’’ message to the ‘‘inet’’ distribution in
June of 1989 received about 200 replies in the first
twenty-four hours. A year later, nearly 700 replies
were received. (Sendsys is a special article that asks
all receiving sites to send back an email message,
usually without human intervention; by convention,
inet is primarily the set of sites on the Internet.)

1Yes, this means that, as far as the software is
concerned, Usenet is over 90% noise.

Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX 93

InterNetNews ... Salz

The NNTP protocol is defined in Internet RFC
977 [Kantor86] published in February, 1986. This
was accompanied by the general public release of a
reference implementation, also called ‘‘nntp.’’ This
has been the only NNTP implementation that is gen-
erally available to UNIX sites.

Usenet Software

In addition to InterNetNews, there are two
major Usenet packages available for UNIX sites. All
three share several common implementation details.
A newsgroup name such as comp.foo is mapped to a
directory comp/foo within a global spool directory.
An article posted to a group is assigned a unique
increasing number based on a file called the active
file. If an article is posted to multiple groups, links
are used so that only one copy of the data is kept.
A sys file contains patterns describing what news-
groups the site wishes to receive, and how articles
should be propagated. In most cases, this means that
a record of the article is written to a ‘‘batchfile’’ that
is processed off-line to do the actual sending.

The first Usenet package is called B News, also
known as B2.11. The B news model is very simple:
the program rnews is run to process each incoming
article. Locking is used to make sure that only one
rnews process tries to update the active file and his-
tory database. At one site that received over 15,000
articles per day, the locking would often fail so that
10 to 100 duplicates were not uncommon. Because
each article is handled by a separate process, it is
impossible to pre-calcuate or cache any useful data.

More importantly, file I/O had become a major
bottleneck. A site that feeds 10 other sites does over
150,000 open/append/close operations on its
batchfiles. It is generally agreed that B news cannot
keep up with current Usenet volume; it is no longer
being maintained, and its author has said more then
once that the software should be considered ‘‘dead.’’

C News gets much better performance then B
news by processing articles in batches [Collyer87].
The relaynews program is run several times a day to
process all the articles that have been received since
the last run. Since only one relaynews program is
running, it is not necessary to do fine-grain locking
of any of the supporting data files. More impor-
tantly, it can keep the entire active and sys file in
memory. It can also use buffered I/O on its
batchfiles, reducing the amount of system calls by
one or two orders of magnitude.

An alpha version of C News was released in
October, 1987. Within four years it surpassed B
news in popularity, and there are now more sites
running C News then ever ran B news.

From the beginning, the NNTP reference
implementation was layered on top of the existing
Usenet software: an article received from a remote
NNTP peer was written to a temporary file and the

appropriate rnews or relaynews program processed it.
In order to avoid processing an article the system
already has, it first does a lookup on the history
database to see if the article exists. It soon became
apparent that invoking relaynews for every article
lost all of C News’s speed gain, so the NNTP pack-
age was changed to write a set of articles into a
batch, and offer the batch to relaynews.

When articles arrive faster then relaynews can
process them, they must be spooled. If two sites (B
and C in the previous examples) both offer a third
site (D) the same article at the ‘‘same time’’ then an
extra copy will be spooled, only to be rejected when
it is processed, wasting disk space; this problem
multiplies as the number of incoming sites
increases.2 To alleviate this problem, most sites run
Paul Vixie’s msgidd, a daemon that keeps a
memory-resident list of article Message-ID’s offered
within the last 24 hours. The NNTP server is
modified so that it tells this daemon all of the arti-
cles that it is handing to Usenet and queries the dae-
mon before telling the remote site that it needs the
article. This is not a perfect solution – if the first,
spooled, copy of the article is lost or corrupted, the
site will likely never be offered the article after the
msgidd cache entry has expired. Going further,
msgidd is work-around for a problem inherent in the
current software architecture.

Other problems, while not as severe, lead to the
conclusion that a new implementation of Usenet is
needed for Internet sites. For example:

� Since all articles are spooled, relaynews can-
not tell the NNTP server the ultimate disposi-
tion of the article, and the server cannot tell
its peer at the other end of the wire. This
hides transmission problems. For example, a
site tracing the communication has no way of
finding out an article was rejected because the
remote site does not receive that particular set
of newsgroups.

� The NNTP reference implementation is show-
ing signs of age. Maintaining the server is
becoming a maintenance nightmare; over
one-tenth of its 6,800 lines are #ifdef-related.

� All articles are written to disk at extra time.
Disks are getting bigger, but not faster, while
CPU’s, memory, and networks are.

InterNetNews architecture

There are four key programs in the InterNet-
News package (see Figure 2):
Innd is the principal news server for incoming

newsfeeds;

2This is quite common for Internet sites, where
redundant fast newsfeeds are common and where many
Usenet administrators seem to be avid players of the
‘‘exchange news with as many other people as possible’’
game.

94 Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX

Salz InterNetNews ...

innxmit reads a file identifying articles and offers
them to another site;

ctlinnd sends control commands to innd;
nnrpd is an NNTP server oriented for newsreaders.

Of these programs, the most important is innd.
We first mention enough of its architecture to give a
context for the other programs, and then discuss its
design and features in more detail at the end of this
section.

ctlinnd

innd daemon

Local newsreaders

Remote Feeds

Figure 2: Innd architecture

Innd is a single daemon that receives all
incoming articles, files them, and queues them up for
propagation. It waits for connections on the NNTP
port. When a connection is received, a getpeer-
name (2) is done. If the host is not in an access file,
then an nnrpd process is spawned with the connec-
tion tied to its standard input and output.3 It is worth
noting that nnrpd is only about 3,500 lines of code,
and 20% of them are for the ‘‘POST’’ command,
used to verify the headers in a user’s article. Nnrpd
provides all NNTP commands except for ‘‘IHAVE’’
and an incomplete version of ‘‘NEWNEWS’’. On
the other hand, it does provide extensions for
pattern-matching on an article header and listing
exactly what articles are in a group. The NNTP pro-
tocol seems to be a good example of the UNIX philo-
sophy: it is small, general, and powerful and can be
implemented in a very small program.

Articles are usually forwarded by having innd
record the article in a ‘‘batchfile’’ which is pro-
cessed by another program. For Internet sites, the
innxmit program is used to offer articles to the host
specified on its command line.4 The input to innxmit
is a set of lines containing a pathname to the article
and its Message-ID. Since the Message-ID is in the
batchfile, innxmit does not have to open the article
and scan it before offering the article to the remote
site. This can give significant savings if the remote
site already has a percentage of the articles.

3Unlike other implementations, no single INN program
implements the entire NNTP protocol.

4Other programs, like nntplink, are supported but not
part of the INN distribution.

Until recently, innxmit used writev to send its
data to the remote host. At start-up it filled a three-
element struct iovec array with the following ele-
ments:

[0] { ".", 1 };
[1] { placeholder };
[2] { "\r\n" }

To write a line, the placeholder was filled in with a
pointer to the buffer, and its length, and a single wri-
tev was done, starting from either element zero or
one. While this implementation was clever, and
simpler then what was done elsewhere, it was not
very fast. Innxmit now uses a 16k buffer and only
does a write when the next line would not fit. This
is also consistent with ideas used throughout the rest
of INN: use the read and write system calls,
referencing the data out of large buffers while avoid-
ing the copying commonly done by the standard I/O
library.

The ctlinnd program is used to tell the innd
server to perform special tasks. It does this by com-
municating over a UNIX-domain datagram socket.
The socket is behind a firewall directory that is
mode 770, so that only members of the news
administration group can send messages to it. It is a
very small program that parses the first parameter in
its command line and converts it to an internal com-
mand identifier. This identifier and the remaining
parameters are sent to innd which processes the
command, and sends back a formatted reply. For
example, the following commands stops the server
from accepting any new connections, adds a news-
group, and then tells it to recompute the list of hosts
that are authorized newsfeeds:

ctlinnd pause "Clearing out log files"
ctlinnd newgroup comp.sources.unix m \

vixie@pa.dec.com
ctlinnd reload newsfeeds "Added OSF feed"
ctlinnd go ""

The text arguments are sent to syslog (8) for audit
purposes.

The most commonly-used ctlinnd command is
‘‘flush.’’ This directs the server to close the
batchfile that is open for a site, and is typically used
as follows:

mv batchfile batchfile.work
ctlinnd flush sitename
innxmit sitename batchfile.work

The flush command points out another differ-
ence between INN and other Usenet software. The
B News inews program needed no external locking –
files were opened and closed for a very short win-
dow, the time needed to process one article. The C
News relaynews could be running for a longer period
of time. The only way to get access to a batchfile is
to either lock the entire news system, which is over-
kill for the desired task, or to rename the file and

Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX 95

InterNetNews ... Salz

wait until the original name shows up again. The
INN approach is more efficient and conceptually
cleaner.

Innd Structure

When innd starts up it reads the active file into
memory. An array of NEWSGROUP structures is
created, one for each newsgroup, that contains the
following elements:
char *Name; /* "comp.sources.unix */
char *Dir; /* "comp/sources/unix/" */
long Last; /* 0211 */
int LastWidth; /* 5 */
char *LastString; /* "00211..." */
char *Rest; /* "m\n..." */
int SiteCount; /* 1 */
SITE **Sites; /* defined below */

The C comments above show the data that would
generated for the following line in the active file:

comp.sources.unix 00211 00202 m

The Last field specifies the name to be given to the
next article in the group. The LastString element
points into the in-memory copy of the file. This
number is carefully formatted so that the file can be
memory-mapped, or updated with a single write.

A hash table into the structure array is built,
using a function provided by Chris Torek [Torek91].
The hash calculation is very simple, yet empirically
it gives near-uniform distribution. The secondary
key is the highest article number, so groups with the
most traffic tend to be at the top of the bucket.

The INN equivalent of the sys file read next.
An array of SITE structures is created, one for each
site, that contains the following elements:

BOOL Sendit;
char FileFlags[10];

The FileFlags array specifies what information
should be written to the site’s data stream when it
receives an article. The subscription list for the site
is then parsed, and for all the newsgroup that it
recives, the matching NEWSGROUP structure will
contain a pointer to the SITE structure.

Using these two structures it is easy to step
through how an article is propagated:

extern ARTDATA *art;
extern SITE *Sites, *LastSite;
extern int nSites;
char **pp;
SITE *sp;
NEWSGROUP *ng;
int i;

while (*pp) {
ng = HashNewsgroup(*pp++);
if (ng == NULL)

continue;
AssignName(ng);
for (i = 0; i < ng->nSites; i++) {

if (MeetsSiteCritera(ng->Sites[i], art))

ng->Sites[i]->Sendit = TRUE;
}

}

for (sp = Sites; sp < LastSite; sp++) {
if (!sp->Sendit)

continue;
for (p = sp->FileFlags; *p; p++)
switch (*p) {
case ’m’:
/* Write Message-ID */

case ’n’:
/* Write filename */

...
}

}

The ARTDATA structure contains information about
the current article such as its size, the host that sent
it, and so on. The MeetsSiteCriteria function is an
abstraction for the in-line tests that are done to see if
an article really should be propagated to a site (e.g.,
checking the Path header as described above).
AssignName is described below.

At its core, innd is an I/O scheduler that makes
callbacks when select (2) has determined that there is
activity on a descriptor. This is encapsulated in the
CHANNEL structure, which has the following ele-
ments:

enum TYPE Type;
enum STATE State;
int fd;
FUNCPTR Reader;
FUNCPTR WriteDone;
BUFFER In;
BUFFER Out;

The Type field is used for internal consistency
checks. There four different types of channels –
local-accept, remote-accept, local-control (used by
ctlinnd) and NNTP connection. Each type is imple-
mented in anywhere from 100 to 1200 lines of code.
The Reader and WriteDone function pointers, and
the State enumeration are used for protocol-specific
data. For example, State field is used by the NNTP
channel code to determine whether the site is send-
ing an NNTP command or an article. The BUFFER
datatype contains sized reusable I/O buffers that
grow as needed.

At start time innd calls getdtablesize (2) to
create an array of channels that can be directly
indexed by descriptor.

The code to listen on the NNTP port is show in
Figure 3. When a host connects to the NNTP port,
select (2) will report activity on the descriptor and
call RemoteReader which will accept the connection
and possibly create fill in a new CHANNEL out of
the resultant descriptor.

It took a bit of effort to write the callback loop
so that it was fair – i.e., so that the lowest descrip-
tors did not get priority treatment. The problem was

96 Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX

Salz InterNetNews ...

complicated because other parts of the server can
add and remove themselves from the select (2) read
and write mask, as needed.

int
RemoteReader(cp)

CHANNEL *cp;
{

int newfd;
struct sockadr_in remote;
int remsize;

newfd = accept(cp->fd, &remote, &remsize);
if (InAccessFile(remsocket))

CHANcreate(newfd, TYPEnntp, STATEgetcmd, NCreader, NCwritedone);
else {

ForkAndExec("nnrpd", newfd);
close(newfd);

}
}

int
RemoteSetup()
{

int fd;

fd = GetSocketBoundToNNTPPort();
CHANcreate(fd, TYPEremote, STATElisten, RemoteReader, NULL);

}

Figure 3: Listening on an NNTP port

Once the NNTP channel has been created for a
site, the server is ready to accept articles from that
site. The reader function for NNTP channels reads
as much data as is available from the descriptor. If
it is in ‘‘get a command’’ state, it looks for a simple
\r\n terminator; if it is in ‘‘reading an article’’ state,
it looks for a ‘‘\r\n.\r\n’’ terminator. If not found, it
just returns; the data will become available at some
point. If the terminator is found, it processes the
data in the buffer. For filing an article, this means
cleaning up the NNTP text escapes, and calling the
article abstraction to process the article.

Processing the article is the largest single rou-
tine in the server. The AssignName shown above
increments the high-water mark for the newsgroup.
If the article has already been written to disk, a link
is made under the new name. (Symbolic links, if
available, can be used if the spool area spans parti-
tions.) If the article has not been written, a
struct iovec array is set up as shown below, where
vertical bars separate each iovec element:

First headers...
Path: |LOCAL_PATH_PREFIX|rest of path...
Second headers...
|XREF_HEADER|

|Article body.

This is a very fast way of writing the article to disk;
it avoids extra memory copies, and is only possible
because the entire article is kept in memory until the
last moment.

Future work

RFC 977 follows the SMTP protocol for send-
ing text: line are terminated with \r\n, a period is
placed before all lines starting with a period, and
data is terminated with a line consisting of a single
period [Postel82]. Innd must scan the text of all
articles it receives and convert them to standard
UNIX format. On the transmission side, innxmit must
read the articles a line at a time in order to add the
extra data. If all newsreading is done via NNTP,
then articles could be stored directly in NNTP for-
mat, and innxmit could read and write the article in
two system calls. The innd gains would not be as
dramatic, but tests show it would still be somewhat
measurable.

There is no NNTP ‘‘TURN’’ command, so that
a single connection cannot be used for bidirectional
article transfer. Turn-around is very successful on
UUCP over conventional phone lines, but seems of
limited use on higher-performance network links.
The SMTP protocol has had a ‘‘TURN’’ command
since its inception, but it has received no practical
use. Several people find the idea of adding outgoing
transfer to innd attractive, since it is already struc-
tured for multi-host I/O and the idea of caching

Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX 97

InterNetNews ... Salz

recent articles in memory has its appeal. Adding
outgoing transfer to innd would take a moderate
effort.

Conclusions and Comparisons

The InterNetNews architecture works. Profiling
a production installation for 24 hours showed that
open (2) accounted for 10% of the run time. Since
the server only does one open (2) per article, it is not
clear if any other performance tuning is needed.
The profiling overhead accounted for 5% of the run-
time.

Several optimizations are available because
there is only one process, and because it is always
running. For example, avoiding duplicates is an
integral part of the server. If a second site offers an
article while a first site is sending it, the NNTP code
will put the channel to ‘‘sleep’’ for a short while
before replying to the second offer. This is usually
enough time to have the first site finish sending the
article, reducing the number of duplicates from hun-
dreds to nearly none, with no external programs.

Since the server is always running, the system
has a much smoother performance curve. As a
result, it ‘‘feels’’ much faster to users.

Another unexpected benefit is that articles are
accepted or rejected synchronously. A user can post
an article, and by the time their posting agent has
returned, it has been written to the spool directory
and queued for remote transfer. If there is a prob-
lem such as having an illegal newsgroup specified,
the user founds out immediately.

The design of the server seems to be very
good, split into abstractions that are very indepen-
dant. For example, sites have no knowledge of
incomming NNTP connections. Using callbacks lets
each portion of the server safely do I/O without wor-
rying that it might affect other parts. Much of the
Usenet processing becomes trivial when serialized,
such as access to the history file.

The design has also led to a fairly small pro-
gram: it is under 13,000 lines, and about 20% of
them are comments. This compares favorable to the
7,400 lines in the equivalent C News program and
the 7,600 lines in the NNTP reference implementa-
tion.

Availability

The INN package is freely redistributable, and
is available for anonymous FTP from ftp.uu.net as
~ftp/news/inn.tar.Z. It is discussed in the Usenet
newsgroups news.software.nntp and news.software.b.

References

[Adams87] Rick Adams, Mark Horton, Standard for
Interchange of USENET Messages, Request For
Comments 1036, Marina del Rey, CA: Infor-
mation Sciences Institute, 1987.

[Adams92] Rick Adams, Total traffic through uunet
for the last 2 weeks, Usenet message
<<1992Apr8.193050.8963@uunet.uu.net> in
news.lists, April, 1992.

[Collyer87] Geoff Collyer and Henry Spencer, News
Need not be Slow, Usenix Winter Conference,
1987.

[Crocker82] David H. Crocker, Standard for the For-
mat of ARPA Internet Text Messages, Request
For Comments 822, Marina del Rey, CA:
Information Sciences Institute, 1982.

[Kantor86] Brian Kantor, Phil Lapsley, Network
News Transfer Protocol: A Proposed Standard
for the Stream-Based Transmission of News,
Request for Comments 977, Marina del Rey,
CA: Information Sciences Institute, 1986.

[Postel82] Jonathan B. Postel, Simple Mail Transfer
Protocol, Request For Comments 821, Marina
del Rey, CA: Information Sciences Institute,
1982.

[Reid91] Brian Reid, Usenet Readership Summary
Report for May 91, Usenet message
<1991Jun2.141124.12753@pa.dec.com> in
news.lists, June, 1991.

[Torek91] Chris Torek, Hash function for text in C,
Usenet message <27038@mimsy.umd.edu> in
comp.lang.c, October, 1990.

Author Information

Rich Salz is a Senior Software Engineer at the
Open Software Foundation, where is a member of
the DCE group. His current areas of concentration
are RPC and the distributed time service. He joined
OSF after working at BBN for nearly five years,
working on the Cronus Distributed Programming
Environment. Rich attended MIT. He can be
reached via U.S. Mail at Open Software Foundation;
11 Cambridge Center; Cambridge, MA 02142.
Reach him electronically at rsalz@osf.org.

98 Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX

