The optparams package*

Jonathan Sauer
jonathan.sauer@gmx.de

2004,/08/14

Abstract

This file describes the optparams package that provides a small macro for
creating macros with multiple optional parameters.

Contents

1 Introduction 1

2 Examples 1
2.1 Exampleone 1
2.2 Exampletwo 2

3 Description of the macros 2

4 Notes 3

5 Implementation 4
5.1 Main macros e e e e 4
5.2 Internal macros 4

1 Introduction

The BTEX macro \newcommand is used to define macros that may have one optional
parameter (the first one). However, there is no easy way of defining macros having
several optional parameters. This package provides the macro \optparams to
simplify the creation of macros with multiple optional parameters (or optional
parameters only).

*This document corresponds to optparams.sty v0.9, dated 2004/08/14. The package is based
on David Kastrup’s macros for ‘Around the Bend 21°.

2 Examples

2.1

Example one

\long\def\test@[#1] [#2] [#3] [#4]1{%
(#1) (#2) (#3) (#4)

}

\newcommand{\test}{%
\optparams{\test@}{ [one] [two] [three] [four]}}

}

You have now defined a macro \test that takes up to four optional parameters
(#1 to #4). You can call this macro as:

\test [this], resulting in (this) (two) (three) (four).
\test [this] [is], resulting in (this) (is) (three) (four).
\test [this] [is] [a], resulting in (this) (is) (a) (four).

\test [this] [is] [a] [test], resulting in (this) (is) (a) (test).

You see that the default parameters defined in \test are replaced one by one by
the parameters given when \test is called.

2.2

Example two

\long\def\test@[#1] [#2] [#3] [#4]#5{%
(#1) (#2) (#3) (#4) !'#5!

}

\newcommand{\test}{%
\optparams{\test@}{ [one] [two] [three] [four]}}

}

You have now defined a macro \test that takes up to four optional parameters
(#1 to #4) and one mandatory parameter (#5). You can call this macro as:

\test [this]{foo}, resulting in (this) (two) (three) (four) !foo!.
\test [this] [is]{foo}, resulting in (this) (is) (three) (four) !foo!.
\test [this] [is] [a]{foo}, resulting in (this) (is) (a) (four) !foo!.

\test [this] [is] [a] [test]{foo}, resultingin (this) (is) (a) (test) !foo!.

\optparams

3 Description of the macros

Usage: \optparams {(macro)} {(default parameters)}.

This macro reads any optional parameters from the input and finally calls your
macro with the optional parameters as well as the remaining default parameters.

Each default parameter must have the form [{(value)]. As all default parame-
ters are passed as one parameter to \optparams, they must be enclosed in braces
({(default parameters)}).

The macro that is finally called must have as many optional parameters as
have been defined in the call of \optparams; their form must be [(parameter)],
where (parameter) is a number beginning with one and ending with nine.! The
parameter numbers must be numbered consecutively, i.e. [#1] [#2] [#3] instead
of [#1]1[#2] [#4].

Because of this special way of declaring macro parameters, you cannot use
\newcommand but have to use the TEX primitiv \def. As \def, contrary to
\newcommand, does not warn you when you overwrite an already existing macro,
you first should define the macro as a dummy using \newcommand and then cor-
rectly using \def, i.e.:

\newcommand{\test@}{}
\long\def\test@[#1] [#2] [#3] [#4]{%
<macro>

}

This way you do not accidentally overwrite an existing macro.

What does the \long do? In TEX, in order to quicker capture errors such as
missing right braces }, parameters of macros defined using \def cannot contain a
\par, or TEX will complain (‘runaway argument?’). This makes it easier for the
user to spot mistakes, as in that case TEX will stop processing immediately at the
end of the current paragraph and not continue until i.e. the end of the file before
realizing that a macro parameter has not been closed via }.

But there is a way to make the usage of \par as a macro parameter possible:
Using \long in front of the \def. In ITEX, \newcommand defines macros as \long
by default, and its variant \newcommand* defines macros restricted to ‘short’ pa-
rameters. So as demonstrated in the examples, you should either use \newcommand
and \long\def together or \newcommand* and \def in order to make your macros
behave correctly.

4 Notes

e If you use the notation used in the examples above, (macroname) for the
main macro and (macroname)@ for the macro finally called by \optparams,

IThis is a general restriction of TEX: A macro cannot have more than nine parameters.

and if you define these macros not in a package or class, but in your doc-
ument preamble, you have to enclose the definitions in \makeatletter ...
\makeatother, otherwise you cannot use @ in macro names.

e If you define a macro having only optional parameters (as in the first ex-
ample above), you have to make sure the macro is not called in a context
where a [follows not as a parameter, but simply as an opening bracket,
i.e. \test[foo] [as a side note ..., where the call of \test should have
only [foo] as its only parameter. In this case \optparams will think that
another optional parameter follows, resulting in chaos.

To prevent this from happening, insert a \relax after the last optional
parameter of the macro call, i.e. \test[foo]l\relax [as a side note ...
Then \optparams will stop looking for more optional parameters.

5 Implementation

5.1 Main macros

\optparams Calls #1 using a variable number of parameters. Default parameters are provided
in #2 in the form [{(param one)] [{param two)] ...

1 \newcommand{\optparams} [2]{%
2 \optparams@{#1}{}{#2}/
37

5.2 Internal macros

\optparams@ Checks if the next character from the input is a [. If true calls \optparams@@, as
there are still optional parameters left. Otherwise calls (macro) with (parameters
read) and (remaining default parameters).
Usage: \optparams@ {(macro)} {{parameters read)} {(remaining default parameters)}.

4 \def\optparams@#1#2#3{/,
\@ifnextchar [{
\optparams@o{#1}{#2}#3\@nil%
H
#14#2#3Y
Y

S O W N w

10 }

\optparams@@ Reads the next optional parameter from the input (as #5 or (new parameter)).
Then gobbles up the corresponding default parameter (as #3 or (default for
parameter read), appends the parameter read to (parameters read) and calls
\optparams@ again to check for more optional parameters.
Usage: \optparams@@ {(macro)} {(parameters read)} {({default for parameter read)}
{{remaining default parameters)} {(new parameter)?}.

11 \def\optparams@@#1#2 [#3]#4\@nil [#5]{%
12 \optparams@{#1}{#2[#5] }{#4})

13 }

Now this is quite a coincidence: Thirteen lines of code, and this package was
begun on Friday, 13th ...

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed, the ones underlined to the code line of the definition, the rest to the code
lines where the entry is used.

O \optparams@ 2,4, 12
\optparams 1, 2 \optparams@@ 6, 11

