The mftinc package*

Scott Pakin
scott+mft@pakin.org

January 31, 2005

Abstract
The MFT program pretty-prints METAFONT source code into a TEX file.
The mftinc package facilitates incorporating such files into a ITEX 2¢ docu-
ment. In addition, mftinc provides routines for improved comment format-

ting and for typesetting font tables.

1 Introduction

METAFONT [1] is Donald Knuth’s system for creating fonts—and entire families of
fonts—by describing the characters mathematically in a specialized programming
language. As with any programming language, it is important for a programmer
to document his code, to make it easier to extend and modify in the future.
MFT is a stand-alone utility that makes METAFONT programs more readable by
typesetting different language constructs (keywords, variables, etc.) in different
fonts and styles. For example, the following is the font program for Computer
Modern Roman’s plus-sign character (taken from punct.mf):

cmchar "Plus sign";

beginarithchar("+"); pickup rule.nib;

x1=x2=good.x .5w; top yl=h+eps; .5[yl,y2]=math_axis;
1ft x3=hround u-eps; x4=w-x3; y3=y4=math_axis;

draw z1--z2; % stem

draw z3--z4; % crossbar

labels(1,2,3,4); endchar;

and this is how MFT formats it:

cmchar "Plus sign";

beginarithchar("+"); pickup rule.nib;

x1 = x9 = good.x S5w; topy1 = h+ eps; .Bly1, y2] = math_axis;

Ift v3 = hround u — eps; x4 = w — x3; Y3 = ys = math_axis;

draw z; -- 29; % stem
draw z3 -- 24 % crossbar

labels(1, 2, 3, 4); endchar;
*This document corresponds to mftinc v1.0a, dated 2005/01/31.

The formatted version draws attention to language features. It shows keywords
in bold, variables in italics, subscripts as subscripts, and comments right-justified.
The problem, though, is that MFT produces Plain TEX documents, which can’t
readily be included into a BTEX 2¢ document. What’s the advantage of including
formatted font programs in IATEX? The answer is that it lets you take advantage
of ITEX’s formatting and structuring capabilities to produce clear font documen-
tation with comparatively little effort. Because a METAFONT program is like any
other program, good documentation is important, as it makes it easier to extend
and modify the font in the future. Using I#TEX, you can, for instance, put majus-
cules in one chapter, miniscules in another, and punctuation in a third; you can
include graphics produced by METAFONT’s smoke or proof modes to show what
the resulting glyphs should look like; and you could add hyperlinks, a table of
contents, a bibliography, font samples, and anything else that can clarify how the
various character programs operate.

The mftinc packages’s initial purpose was somewhat unambitious: simply in-
clude an MFT-produced .tex file within a ITEX 2¢ document. But it evolved from
that to support the following additional features:

e Comments describing large, top-level blocks of code, such as the character
programs themselves

e Stanza-level comments within a block of code
e Font tables, a la Knuth’s textfont.tex utility

Figure 1 shows an example of how one might format Computer Modern Ro-
man’s plus-sign program, using mftinc’s comment environments. Notice how mftinc
makes the introductory paragraph stand out from the character program by plac-
ing it between a pair of horizontal rules and the final paragraph stand out from
the surrounding code by prefixing each line with a percent sign (METAFONT’s
comment character).

2 Usage

I hope the previous section and Figure 1 piqued your interest in mftinc. We’ll
now look at how to use all of mftinc’s features. Remember, the idea is that
you use mftinc’s commands and environments within a .mf file (generally on lines
beginning with %%, as MFT passes such lines unmodified to the resulting . tex file).
You then format the .mf file using MFT. And finally, you include the resulting
.tex file into your main I¥TEX document (which contains a \usepackage{mftinc}
in its prologue to enable mftinc’s features).

.tex
.mf—— mft latex |—
(with mftinc
macros and
environments) mftinc.sty

The following is the definition of the plus sign character (“+”). Admit-
tedly, the glyph is so simple that it doesn’t really need the depth of com-
mentary that’s I'm providing here. I mainly wanted to show how mftinc
formats comments. Speaking of which, this is a block-level comment,
created with mftinc’s explaincode environment.

cmchar"Plus sign';
beginarithchar("+");

% This is an ordinary MFT comment, entered with %. Notice
how only the first line starts with a percent sign, and the text isn’t even
properly indented. Yuck!

pickup rulep;p;

% This is another ordinary MFT, %-prefixed comment. I had to
% break the lines manually and end each line with a \]. While
% that’s okay for one-liners, it’s an immense bother for longer
% comments (like this one).

r1 = Ty = good.x .Hw;

top y1 = h+ eps;

5ly1, y2] = math_azis;

Ift x3 = hround u — eps;

Ty = W — T3;

Y3 = yq4 = math_axis;

% Ah, much better! This comment was entered within one of mftinc’s
% wrapcomment environments. Notice how it’s indented the correct
% amount, every line starts with a %, and the lines are fully justified—
% and none of this required any manual formatting. mftinc did all
% the work for us.

draw z; -- 29; % stem
draw z3 -- 24; % crossbar
labels(1, 2, 3, 4);

endchar;

Figure 1: Computer Modern Roman’s “+”, formatted with mftinc

Note that mftinc’s macros and environments do, in fact, work in the main KTEX
document. It’s just that some of them aren’t particularly interesting outside of a
METAFONT file.

2.1 File inclusion

[\mftinput {{filename)} |

\mftinput

\mftinput is used within the main TEX document to incorporate an MFT-
produced .tex file. If a file extension is not supplied, .tex is assumed.

2.2 Improved comment handling

\begin{explaincode} [(options)]
(comment text)
\end{explaincode}

explaincode

METAFONT programs define one character program for each glyph in the font.
It’s good style to start each of these—and other top-level blocks of code—with a
comment describing the code and its particular nuances. The explaincode envi-
ronment typesets such comments between horizontal rules, so that the comments
are more easily distinguishable from the code they describe. explaincode also
adds a little stretchable space above the first rule to separate the comment from
whatever precedes it. For example, the following lines in a .mf file:

%% \begin{explaincode}

%% This text is set within an \texttt{explaincode} environment.
%% \texttt{explaincode} is intended to be used before a character
%% program or other large block of code.

%% \end{explaincode}

will look like this when run through latex:

This text is set within an explaincode environment. explaincode is
intended to be used before a character program or other large block
of code.

The optional argument to \begin{explaincode} provides control over the
thickness of the two rules. This is discussed in Section 2.4.

\begin{wrapcomment}
(comment text)
\end{wrapcomment}

wrapcomment

The wrapcomment environment is used for comments that describe a stanza—

a logical chunk of code—within a character program or macro. The important
features of comments that are typeset with wrapcomment are the following:

e They can be multiple lines long.
e They wrap text like any other piece of ITEX code.
e Each line of output begins with a percent line.

e The comments use the same indentation as the block of METAFONT code
they describe.

Here’s an example of a wrapcomment that’s indented within a METAFONT for
loop and the way that mftinc tells BTEX to format it:

for i = 0 upto length cpath:
%% \begin{wrapcomment}
%% See how comments typeset within a \texttt{wrapcomment}
%% environment are indented? They line up with the first
%% \verb+/)+ within the environment. Just remember to use two
%ot percent signs instead of one, or bad things will happen.
%% \end{wrapcomment}
draw z[i]l--z.c;
endfor;

for i = 0 upto length cpath:

% See how comments typeset within a wrapcomment environment
% are indented? They line up with the first %% within the envi-
% ronment. Just remember to use two percent signs instead of
% one, or bad things will happen.
draw z[i] -- z¢;

endfor;

\mfcomment One advantage that MFT’s % comments have over %% comments is that they for-
mat anything that’s set between vertical bars as it if it were METAFONT code.
For example, |draw z1--z2| is typeset as “draw z; -- z3”. The problem is that
the explaincode and wrapcomment environments need to be typeset with %%,
so their contents gets passed directly to ITEX. To embed METAFONT code
within explaincode or wrapcomment, one need only end the previous line with
\mfcomment and put the METAFONT code on the next line, preceded by a %:

%% \begin{wrapcomment}
%% The reason we set \mfcomment

A |x4 = w - x3|
%% below is to ensure that when we later \mfcomment
% do a ‘‘|draw x4{upl}..x1..{down}x3|’’, the character

\fonttable

%% will have equal left and right sidebearings.
%% \end{wrapcomment}

% The reason we set 4 = w — x3 below is to ensure that when we
% later do a “draw z4{up} .. 1 .. {down}xs”, the character will have
% equal left and right sidebearings.

2.3 Font tables

Most TEX distributions come with a program of Knuth’s called testfont.tex,
which can produce a variety of font samples. One of testfont’s more useful
features is the ability to produce a table of all the characters in a given font:

% tex testfont
This is TeX, Version 3.14159 (Web2C 7.3.2)
(/usr/share/texmf/tex/plain/base/testfont.tex

Name of the font to test = cmrlO.mf
Now type a test command (\help for help):)
*\table

*\bye

[1]

Output written on testfont.dvi (1 page, 5812 bytes).
Transcript written on testfont.log.

Table 1 depicts the table that this produces. Characters are numbered in both
octal ("000-"177) and hexadecimal ("00-"7F). Empty rows—of which there aren’t
any in this example—are automatically omitted.

The problem is that testfont.tex was designed to be used interactively and
stand-alone. But wouldn’t it be nice to be able to include a font table in the
same document that contains the annotated font source code? With mftinc, you
can do just that. mftinc includes a \fonttable command, based on the one
in testfont.tex—in fact, much of \fonttable’s code was taken verbatim from
testfont.tex—but extended to provide more features and to interact better with

IXTEX.

| \fonttable [(options)] {(font name)} |

The mandatory argument, {font name), is the name of the font to chart. Note that
this must be the TEX, as opposed to KTEX 2¢, font name. For example, to draw a
font table of 11 pt. Computer Modern Typewriter Text, one would have to write
“\fonttable{cmttl10 at 11pt}”’, because there is no 11 pt. version of the font,
only a 10pt. version scaled up to 11 pt. The optional argument to \fonttable,
(options), provides control over the width of the table and the range of characters
included within it. This is discussed in Section 2.4.

Table 1: Complete cmr10 character set

0 ‘1 2 3 4 5 ‘6 Wi
‘00z r A C] A = IT by T "
01z | @ | ¢ | Q | & fi fl | M *
02z 1] 7 - N ° .
1x
03z N B ® e @ & E (0]
04z - ! ” # $ % & ’ .
- 2x
05$ () * + 9 - /
‘06z 0 1 2 3 4 5 6 7 .
; 3x
07x 8 9 : ; i = i ?
‘10z (@) A B C D E F G "
11z | H I R L | M | N 0 *
‘12z P Q R S T U A% W -
X
19 | X | Y Z [«] : :
‘14z ‘ a b ¢ d e f g .
- : 6x
‘15x h i j k 1 m n o
‘16z p q T S t u v w .
= - 7x
‘17 X y Z - — "
8) A B “C D E F

2.4 Options

The explaincode environment and the \fonttable macro each take an optional
argument containing zero or more comma-separated, (key)=(value) pairs. These
allow for finer control over mftinc’s behavior.

toprule={dimen)
bottomrule=(dimen)

The horizontal rules drawn above and below an explaincode comment are nor-
mally 1 pt. thick. The toprule and bottomrule options enable you to change this
default. For example:

%% \begin{explaincode} [toprule=3mm,bottomrule=5pt]

%% The rule above this sentence is 3\,mm.\ thick, and the rule
%% below this sentence is 5\,pt.\ thick.

%% \end{explaincode}

|
The rule above this sentence is 3 mm. thick, and the rule below this
sentence is 5 pt. thick.

'

| tablewidth=(dimen)

The tables drawn by \fonttable normally expand to fill the width of the text.
The tablewidth option lets you choose an arbitrary table width. For example:

\fonttable[tablewidth=0.5\1inewidth] {logo103}

‘10z A E |F .

- 4x
11z M |N |O

12z | P S|T .

- 5x
13x

| charrange=(range)

Knuth’s original table code shows every character in a given font, and that’s what
\fonttable does by default. However, the charrange option lets you limit the
range of characters that are output to a subset of the characters available in the
font. (range) is the range of character codes to output, specified as “(first)-(last)”.
(first) and (last) are both inclusive and can be specified in any number format
that TEX accepts—decimal (123), hexadecimal ("7B), or octal (*173). If (first) is
omitted (-123), it defaults to the first character in the font. If (last) is omitted
(123-), it defaults to the last character in the font. Single numbers (123) are
acceptable, as are comma-separated ranges of numbers (65-96,123-127). In the
last case, the ranges must be specified within curly braces so that mftinc knows
they are all part of charrange’s argument, and not the argument to a subsequent
option.

charrange is useful when typesetting font documentation, because a section
can begin by showing a table of all the glyphs that will be defined in that section.
For example punct.mf defines the following subset of the Computer Modern fonts,
according to Knuth’s comments at the top of that file:

\fonttable[tablewidth=0.75\1inewidth,
charrange={’41,°43,°45,°47-°54,°56-°57,°72-°73,°75,
’100,°133,°135,°140}]1{cmss10 at 1ipt}

Table 2 shows the result of that \fonttable invocation. Note how only the spec-
ified characters are shown, and empty rows (more precisely, empty double-rows)
are omitted from the table. Hence, the table ranges from hexadecimal “20-"6F
instead of from "00-"7F.

Table 2: cmss10 characters defined in punct.mf

‘0 o 9 3 g 5 ‘G o

04z ! # % ' ;
2x

05 | () |+ |, /

06z .

p 3x

07I) —

‘10z | @ "
4x

11x

‘12x .
5x

‘15 []

/1]

- i "6x

15z

8 9 A "B “C "D E "F

[\setmftdefaults {(options)}

\setmftdefaults

It can be cumbersome to repeatedly pass the same arguments to charexplain or
\fonttable. Hence, mftinc exports a \setmftdefaults macro. \setmftdefaults
takes the same (key)=(value) pairs as charexplain and \fonttable, but uses
them to change the default value of each option for all future invocations of
charexplain and \fonttable:

\setmftdefaults{charrange=65-67,toprule=3pt,bottomrule=3pt}
\begin{explaincode}
\textsf{mftinc}’s default parameters have been altered.
However, it’s still possible to override those defaults
on a case-by-case basis.
\begin{center}
\fonttable{cmsyl10 at 17pt}
\fonttable [charrange=68-70]{cmsy10 at 17pt}
\fonttable{cmsy10 at 17pt}
\end{center}
\end{explaincode}

The result is shown in Figure 2.

mftinc’s default parameters have been altered. However, it’s still pos-
sible to override those defaults on a case-by-case basis.

0 ‘1 2 3 4 5 4] 7
‘10z ./4 B C "
4x
11x
8 9 A B “C D E F
0 1 2 3 4 5 6 7
‘10z D E | F .
P 4x
11x
8 9 A B "C D E F
0 1 2 3 4 5 6 7
‘10x A B C "
4x
11x
8 9 A B “C D E F

Figure 2: Example of changing and overriding mftinc’s defaults

3 Other information

This section contains miscellaneous commentary on mftinc, MFT, and other things
that don’t fit into any of the other sections.
3.1 mftinc copyright and license

Copyright (© 2005 Scott Pakin <scott+mft@pakin.org>.

This package may be distributed and/or modified under the conditions of the
KTEX Project Public License, either version 1.2 of this license or (at your option)
any later version. The latest version of this license is in

http://www.latex-project.org/lppl.txt

and version 1.2 or later is part of all distributions of I¥TEX version 1999/12/01 or
later.

10

3.2 Package dependencies

mftinc requires the rawfonts and keyval packages, both of which are included with
virtually every IMTEX 2¢ distribution. The wrapcomment environment addition-
ally requires chngpage and lineno, which are nonstandard but freely available
from CTAN (http://www.ctan.org/). If mftinc can’t find chngpage or lineno,
it will issue a warning message, which turns into an error message at the first
\begin{wrapcomment}. Hence, if you merely want to include MFT output, font
tables, and character-level comments and are willing to sacrifice stanza-level com-
ments, you can avoid the bother of downloading and installing two additional
packages.

3.3 Including proof and smoke images

Knuth’s Computer Modern Typefaces [2] shows proof-mode versions of each char-
acter next to the corresponding character program. One way to do this yourself for
your own fonts is to use MetaPost, which can produce an Encapsulated PostScript
(EPS) image of each character in a font. The exact details may differ slightly from
system to system, but here’s the basic approach: First, assuming you don’t al-
ready have it, you have to produce a mfplain.mem file. The command to do this
on a Unix-based system is usually:

mpost -ini ’\input mfplain; dump’

On Windows, you’ll probably need to use double quotes instead of single quotes.
On other systems, you're on your own.

The mfplain.mem files enables MetaPost to accept (most) METAFONT com-
mands. The next step is to use MetaPost plus mfplain.mem to produce a proof-
mode version of your font:

mpost -mem mfplain ’\mode:=proof; prologues:=2; input (filename)’
...or a smoke-mode version:
mpost -mem mfplain ’\mode:=smoke; prologues:=2; input (filename)’

In either case, MetaPost will produce a separate EPS file for each character
in the font. These will be named (filename) . (character code). For example, the
EPS file for cmr10.mf’s letter “A” will be called cmr10.65, because “A” is at
position 65 in that font. You may want to give these files a .eps extension, so
that IATEX and other programs realize that the files are EPS. The good news is
that even pdfIATEX, which can’t read arbitrary EPS files, can read MetaPost’s
EPS output. (By default, pdfIATEX expects the files to have a .mps extension,
however.)

11

3.4 Known bugs

The first %% after a \begin{wrapcomment} must be indented at least one space.
Otherwise, BTEX will abort with “! LaTeX Error: \begin{wrapcomment} on
input line (line) ended by \end{linenumbers}”.

3.5 A brief MFT reference

MFT processes comments beginning with one to four percent signs in different
ways, as shown in Table 3. The MFT documentation says that comments starting
with more than four percent signs are verboten. mftinc is normally used within
double-percent comments, because those are passed directly to KTEX with no
additional processing on MFT’s part.

Table 3: MFT comment types

Type Description

% Format a comment using TEX (or with mftinc, BTEX),
with the addition that text within vertical bars is format-
ted as if it were outside of the comment (i.e., as if it were
METAFONT code). Single-% comments are output right-
justified with a leading percent sign. Ending a line with
\] makes it left-justified, though.

YAA Format a comment using TEX (or with mftinc, WTEX),
with none of single-%’s bells and whistles—no leading
percent sign, no right-justification, and no support for
embedded METAFONT code. mftinc’s explaincode and
wrapcomment environments belong within double-% com-
ments.

YANA Given a list of space-separated METAFONT tokens, make
MFT format all of them like the first one in the list. Hence
“%%% addto mymacro” says to format the token mymacro
just like METAFONT’s addto primitive.

%hhh MFT discards lines beginning with quadruple-% com-
ments.

mftmac.tex, which is \input by every .tex file that MFT produces, defines a
number of macros for typesetting METAFONT (Table 4). These may be used within
a %% comment when doing so is more convenient than mftinc’s \mf comment macro
(e.g., if only a single symbol need be typeset). The following are the important
things to note about these macros:

12

e They’re defined to be used in math mode, so be sure to use them within

$...8.

e The different boldfaced operators have different surrounding spacing (not
always obvious from Table 4). To select the right operator, I usually look at
the .tex file to see how it formats the operator in the font program listing.

e \\ doesn’t mean “line break”, as it normally does in IATEX; use \newline
instead.

Table 4: Additional MFT macros

Macro Example

\\{(identifier)} i, eps
\1{{operator)} length, hround
\2{(operator)} beginchar, for
\3{{closing operator)} fi, endgroup
\4{(binary operator)} step, at
(
(
(
(
(

\5{(constant)} true, nullpicture
\6{(binary operator)} ++, scaled
\7"(string)" "Hello, world!"
\8{(relation)} ..

\7{(relation)} FIIF

\PS +—+

\SH #
\frac{(num)}/{(den)} 17/3

4 Implementation

Most users can stop reading at this point. The Implementation section contains
the annotated source code for the mftinc package itself, which is useful only to
people who want a detailed and precise explanation of how mftinc works. If you’re
planning on extending or customizing (or debugging!) the package, this is the
section for you. (Note that mftinc is released under the TEX Project Public
License, which gives your the right to make whatever modifications you want,
provided you don’t call the result “mftinc”.)

4.1 Including MFT-formatted files

The following code provides the minimal amount of functionality that mftinc needs
to be useful: the ability to include an MFT-produced TEX file in a ITEX 2¢ doc-
ument. Because mftmac uses TEX (and KTEX 2.09) font names, such as \tenbf,
we have to load the rawfonts compatibility package to make it work. In addition,

13

\mftinput

mftmac assumes that the \bffam and \itfam font families are predefined, which
they aren’t in ITEX 2¢, so we have to define those, too.

1 \RequirePackage{rawfonts}
2 \newfam\bffam
3 \newfam\itfam

Fortunately, most of mftmac’s screwy macro definitions are defined in the local
scope (i.e., with \def instead of \gdef). Hence, we can simply \input an MFT-
formatted file within a group, and most things will go back to normal at the
\endgroup.

4 \DeclareRobustCommand{\mftinput}[1]{\begingroup\input #1\endgroup}

4.2 Argument processing

The explainchar environment and the \fonttable command each take a few
optional arguments. We use the keyval package to help process these arguments.
Table 5 lists the arguments that are currently supported.

Table 5: Options supported by mftinc’s macros and environments

Key Applies to Affects Meaning

toprule explainchar \mft@top@rule Width of the rule
above explainchar
comments

bottomrule explainchar \mft@bot@rule Width of the rule
below explainchar
comments

tablewidth \fonttable \mft@table@width Width of the font
table

charrange \fonttable \mft@ranges and Comma-delimited,

\mft@expanded@ranges hyphenated ranges

of characters to
include in the font
table

5 \RequirePackage{keyval}

6 \define@key{mft}{toprule}{\setlength{\mft@top@rule}{#1}}

7 \define@key{mft}{bottomrule}{\setlength{\mft@bot@rule}{#1}}

8 \define@key{mft}{tablewidth}{\setlength{\mft@table@uwidth}{#1}}%
9 \define@key{mft}{charrange}{%
10 \def\mft@ranges{}/
11 \def\mftQ@expanded@ranges{}%

14

\setmftdefaults

\mft@topQ@rule

\mft@bot@rule

12 \mft@parse@ranges#1,,%
13 {\let\@elt=\mft@expand@range\mft@ranges}
14 }

Rather than repeatedly specify the same optional arguments, one can use
\setmftdefaults to specify default values for all mftinc macros and environments
that take optional arguments. \setmftdefaults takes one mandatory argument,
which has the same effect globally as the various macros’ and environments’ op-
tional arguments have locally.

15 \DeclareRobustCommand{\setmftdefaults}[1]{\setkeys{mft}{#1}}

4.3 Improved comment formatting

There are three main places a font designer might want to insert code comments:

1. Before a character program or macro,
2. Before a stanza of a code within a character program or macro, and

3. On the same line as some METAFONT code.

MFT has weak support for the first two of those. While MFT passes lines
starting with “%%” directly to TEX (or, when mftinc is used, BTEX), text formatted
this way doesn’t sufficiently stand stand out from the formatted METAFONT code,
in my opinion. Comments starting with % are normally right-justified and work
well when used for brief phrases that share a line with METAFONT code, but they
are cumbersome to use for longer, non-right-justified, stanza-level comments. In
order to make each output line start with a % (to make it clear that the text is a
comment and not code), the author must manually break lines and, in addition,
end each line with \] to inhibit right-justification.

The macros that will be introduced in this section solve all of these problems.

4.3.1 Character-level comments

To clearly separate commentary from the program text that follows, we define a
simple, explaincode environment that draws a horizontal rule above and below
the contained text.

Specify the thickness of the rule above the explaincode text.

16 \newlength{\mft@top@rule}
17 \setlength{\mft@top@rule}{ipt}

Specify the thickness of the rule below the explaincode text.

18 \newlength{\mft@bot@rule}
19 \setlength{\mft@bot@rule}{1ipt}

15

explaincode

\mft@wc@indent

\mft@eat@quads

Draw a rule above and below any text contained within \begin{explaincode}l...
\end{explaincode}. For aesethetics, we add a little stretchable glue above the
first rule and a little shrinkable glue below the bottom rule. We also prohibit page
breaks between the rules and the text.

20 \newenvironment{explaincode}[1] [1{%

21 \setkeys{mft}{#1}%

22 \par\vskip 4ex \@plus 2ex

23 \hrule\@height\mft@topQ@rule

24 \nobreak\medskip\nobreak\noindent\ignorespaces

25 %

26 \nobreak\medskip\nobreak

27 \hrule\@height\mft@bot@rule

28 \vskip 2ex \@minus lex

29 }

4.3.2 Stanza-level comments

We define a new environment for formatting stanza-level comments that honors
the following properties:

e The comments can be multiple lines long.
e They wrap text like an ordinary block of BTEX code.
e Each line of output begins with a percent line.

e The comments use the same indentation as the block of METAFONT code
they describe.

This (dimen) stores the indentation of a wrapcomment environment, excluding the
space occupied by the initial percent signs.

30 \newlength{\mftO@wc@indent}

To figure out the correct indentation for the entire comment block, we (tail-
recursively) count the number of \quads in the first line, adding lem of space
to \mft@wc@indent for each one encountered and discarding the \quad as we
go. At the end, we make \quad a no-op, to prevent \quads on subsequent lines
from contributing unwanted space, indent by \mft@wc@indent plus the width of
a percent sign, and use lineno to “number” the lines using percent signs.

31 \def\mftQeat@quads#1{/,

32 \ifx#1\quad

33 \global\addtolength{\mft@wc@indent}{lem}’,
34 \expandafter\mft@eat@quads
35 \else

36 \def\quad{}%

37 \settowidth{\@tempdima}{\%~}%

38 \advance\@tempdima by \mft@wc@indent
39 \vspace{-2ex}%

40 \begin{adjustwidth}{\@tempdimal}{}/,

16

41 \begin{linenumbers}y

42 \internallinenumbers

43 \renewcommand{\makeLineNumber}{

44 \rlap{\hspace*{\mft@wc@indent}\%}}%
45 \expandafter#1/,

46 \fi

47 }

wrapcomment Display a block of text that is indented to the same position as the first
text after the \begin{wrapcomment}. \mft@eat@quads does most of the work.
wrapcomment merely resets the indentation counter and makes the first \quad
consume the rest (via \mft@eat@quads). The \end{wrapcomment} closes the
linenumbers and adjustwidth environments opened by \mft@eat@quads.
48 \newenvironment{wrapcomment}{’
49 \global\setlength{\mft@wc@indent}{Optl}’
50 \def\quad{%

51 \global\addtolength{\mft@wc@indent}{lem}
52 \mft@eat@quads

53}

54 3%

55 \end{linenumbers}y,

56 \end{adjustwidth}/

57 F

\mftemissing If we can’t load one or both of the chngpage and lineno packages, disable the
wrapcomment environment and issue a warning message. This is a little more
user-friendly than forcing the user to download and install two packages if all he
wants is to include an MFT-formatted file in a ITEX document and has no interest
in ever using the wrapcomment environment.

58 \def\mftOmissing#1{/
59 \PackageWarning{mftinc}{J

60 Disabling the wrapcomment environment\MessageBreak

61 (can’t find #1.sty)%

62 }

63 \renewenvironment{wrapcomment}{’,

64 \PackageError{mftinc}{The wrapcomment environment is disabled}{’
65 Your LaTeX installation is lacking #1.sty.\space\space

66 The\MessageBreak mftinc package relies on both the chngpage

67 package and\MessageBreak the lineno package in order to

68 implement the wrapcomment \MessageBreak environment.\space\space
69 Either install those packages, or refrain\MessageBreak from

70 using wrapcomment in code that is formatted with

71 mft\MessageBreak and included into LaTeX.

72 Y

73 HYh

74 \def\mft@missing##1{}/

75 }

76 \IfFileExists{chngpage.sty}{\RequirePackage{chngpage}}{\mft@missing{chngpage}}
77 \IfFileExists{lineno.sty}{\RequirePackage{lineno}}{\mft@missing{lineno}}

17

\mf comment

\mf tQ@ranges
\mft@parse@ranges

4.3.3 Other comment-related macros

One advantage that MFT’s % comments have over %% comments is that they format
anything that’s set between vertical bars as it if it were METAFONT code. For
example, |draw z1--z2| is typeset as “draw z; -- 25”. The problem is that the
explaincode and wrapcomment environments need to be typeset with %%, so their
contents gets passed directly to BTEX. To embed METAFONT code within one
of those environments, one need only end the previous line with \mfcomment and
put the METAFONT code alone on the next line, preceded by a %.

78 \long\def\mf comment#1\9#2\par{\unskip#2 }

4.4 Font tables

TEX comes with a testfont.tex file that, among other things, outputs a ta-
ble of all the characters in a given font. This table can be a useful addition to
pretty-printed font documentation. However, testfont.tex is intended to be
run stand-alone. The code in this section produces an identical-looking table to
testfont.tex’s, but it can be included easily in a N TEX document. The core of
\fontable was taken almost verbatim from testfont.tex. I made the following
key changes, however:

e [put everything within a minipage, to make it easy to move the table around
and scale its width.

e [renamed all the global variables, so as to avoid potential conflicts with
other packages or the main document;

e [added argument parsing to set the table width and to limit the character
ranges.

4.4.1 Range processing

\fonttable normally shows only nonempty rows of characters. The macros in
this section impose an additional limit: Only characters within certain ranges are
output; the rest are treated as if they don’t exist.

\mft@parse@ranges is the top-level range-parsing function. It splits its argu-
ment into comma-separated ranges and uses \@cons to store these ranges in
\mft@ranges in the form “\@elt (range;)-!-'-!! \@elt (rangeg)-!-1-11 ...7.
(The exclamation marks are needed by \mft@expand@range to parse the range
into its components.)

79 \def\mft@ranges{}

80 \def\mft@parse@ranges#1,{/

81 \def\mft@arg@i{#1}V

82 \ifx\mft@argQ@i\empty

83 \else
84 \@cons\mft@ranges{#1-!-!-113}}
85 \expandafter\mft@parse@ranges

18

\mft@expanded@ranges
\mf t@gobble@range
\mft@expand@range

\mft@check@char

86 \fi
87 }

Once \mft@parse@ranges has split comma-separated ranges into elements in
\mft@ranges, the next step is to canonicalize each range, to simplify later range
processing. That’s what \mft@expand@range does. It converts each range in
\mft@ranges to the form “\@elt (first)|{last)|”, in which neither (first) nor
(last) is empty. Canonicalization works in the following manner:

(first)-(last) + (first)|{last) |
(first)- — (first) 65535 |
~(last) — -11{last) |
{only) — (only)|{only) |

The resulting canonicalized list is stored in \mft@expanded@ranges. The
\mft@expand@range macro expects the input range to terminate with “-t-1-117,
This is how it distinguishes missing components from the end of the range.
\mft@gobble@range discards any exclamation marks that remain after processing.

88 \def\mft@expanded@ranges{}

89 \def\mft@gobble@range#1!!{}
90 \def\mft@expand@range#1-#2-{/
91 \def\mftQargQ@i{#1}%

92 \def\mftQ@arg@ii{#2}/,

93 \ifx\mftQ@argQ@i\empty

94 \def\mft@arg@i{-1}%

95 \fi

96 \ifx\mft@arg@iil\empty

97 \def\mft@arg@ii{65535}Y

98 \fi
99 \if\mft@arg@ii!y,
100 \def\mftQarg@ii{#1}%
101 \fi
102 \if\mft@arg@i!y
103 \else
104 \@cons\mft@expanded@ranges{\mftQargQ@i|\mft@arg@ii|}%
105 \fi
106 \mft@gobble@range
107 }

4.4.2 Range checking

Once we know the set of ranges to output, we need to determine whether any
characters in the current row lie within any of the ranges (\mft@check@char) and
whether a character in a nonempty row lies within any of the ranges (\mft@char).
These macros actually belong within \fonttable, but the macro nesting depth
was starting to get too large—I was getting lost amid long sequences of #s.

Given an octal digit, form a number by appending it to a sequence \mft@h of octal
digits. If the number lies within any of the ranges listed in \mft@expanded@ranges,

19

output the corresponding character. Otherwise, output nothing.
108 \def\mft@check@char#1{/

109 \begingroup

110 \def\@elt##1|##2|{/

111 \ifnum"\mftOh#1<##1
112 \else

113 \ifnum"\mftC@h#1>##2
114 \else

115 \char"\mft@h#1
116 \fi

117 \fi

118 Y%

119 \mft@expanded@ranges
120 \endgroup
121 }

\mftechar If a given number lies within any of the ranges listed in \mft@expanded@ranges,
output the corresponding character. Otherwise, output nothing.
122 \def\mftQchar#1{/,
123 \begingroup
124 \def\Qelt##1|##2|{/

125 \ifnum#1<##1
126 \else

127 \ifnum#1>##2
128 \else

129 \char#1l
130 \fi

131 \fi

132 %

133 \mft@expanded@ranges
134 \endgroup
135 }

4.4.3 Table composition

Now that we’ve defined macros to parse \fonttable’s optional argument, to pro-
cess ranges of character codes, and to check for numbers within ranges, we can
finally proceed with defining \fonttable, the macro that actually composes the
font table.

\mft@table@width \mft@table@width stores the width of the font table. Columns will expand au-
tomatically to fill that width. If the specified width is negative, \fonttable will
instead use whatever column width is in effect when \fonttable is invoked.

136 \newlength{\mft@table@width}
137 \setlength{\mft@table@width}{-1pt}

\mft@expanded@ranges \mft@expanded@ranges stores a comma-separated list of hyphenated ranges. The
default is a single range, 0-65535, which encompasses all character positions.

138 \def\mft@expanded@ranges{\@elt 0/65535|}

20

\fonttable
\mft@old@ranges
\mftQ@old@expanded@ranges

\mftOm
\mft@n
\mft@p

\dim

\oct

\hex

\setdigs
\mftGh
\mft@zero
\mft@one

\testrow

\oddline

Display all the characters in a given font. The first (optional) argument is a set of
(key)=(value) pairs to specify the table width and range of characters to output.
The second (mandatory) argument is the “raw” name of the font to use, e.g.,
cmri0.

139 \DeclareRobustCommand{\fonttable}[2] [1{%
140 \begingroup

141 \let\mft@old@ranges=\mft@ranges

142 \let\mftQ@old@expanded@ranges=\mftQ@expanded@ranges
143 \setkeys{mft}{#1}/,

144 \ifdim\mft@table@width<Opt

145 \begin{minipage}{\linewidthl}%

146 \else

147 \begin{minipage}{\mft@table@widthl}’
148 \fi

149 \font\testfont=#2\testfont

The first three of these were called m, n, and p in Knuth’s code.
150 \newcount\mft@Om

151 \newcount\mft@n

152 \newcount\mft@p

153 \newdimen\dim

Format an octal constant.
154 \def\oct##1{\hbox{\rm\’{}\kern-.2em\it##1\/\kern.05em}}

Format a hexadecimal constant.
155 \def\hex##1{\hbox{\rm\H{}\tt##1}}/,

\mft@h is the hex prefix. \mft@zero\mft@one is the corresponding octal prefix.
These were called \h, \0, and \1 in Knuth’s code.

156 \def\setdigs##1"##2{\gdef\mftCh{##2}7,

157 \mft@m=\mft@n \divide\mftOm by 64 \xdef\mft@zero{\the\mft@ml}Y,

158 \multiply\mft@m by-64

159 \advance\mft@m by\mftOn

160 \divide\mft@m by 8

161 \xdef\mft@one{\the\mft@m}}/,

Determine if a row is empty. \mft@p=1 if none of the characters exist. Note that
I modified the definition of \\ to make use of \mft@check@char.
162 \def\testrow{\setbox0O=\hbox{\penalty 1\let\\=\mft@check@char

iGN VARVAREARVARTARTAR VAREARTAR VAARV:ARYARVIARVARY 34
164 \global\mft@p=\lastpenalty}} % \mft@p=1 if none of the characters exist

Draw an odd-numbered line.

165 \def\oddline{\cr

166 \noalign{\nointerlineskip}%

167 \multispan{19}\hrulefill&

168 \setbox0=\hbox{\lower 2.3pt\hbox{\hex{\mft@h x}}}\smash{\boxO}\cr
169 \noalign{\nointerlineskip}}/,

21

\ifskipping Are we skipping empty rows?

\evenline

\morechart
\chartline
\chartstrut

\table

\endchart

\reposition
\centerlargechars

170

\newif\ifskipping

Draw an even-numbered line.

171
172
173
174
175
176
177

\def\evenline{\loop\skippingfalse

\ifnum\mft@n<256 \mft@m=\mftOn \divide\mft@m 16 \chardef\next=\mftOm
\expandafter\setdigs\meaning\next \testrow

\ifnum\mft@p=1 \skippingtrue \fi\fi

\ifskipping \globall\advance\mft@n 16 \repeat

\ifnum\mft@n=256 \let\next=\endchart\else\let\next=\morechart\fi
\next}/

Define a few more helper routines.

178
179
180
181
182
183
184

\def\morechart{\cr\noalign{\hrule\penalty5000}%
\chartline \oddline \mft@m=\mft@one \advance\mft@m 1
\xdef\mft@one{\the\mft@m}

\chartline \evenlinel},

\def\chartline{&\oct{\mft@zero\mft@one x1}%

&N\ &&\ L&\ &&\ &\ &&\ &\ L&\ && I

\def\chartstrut{\lower4.5pt\vbox toldpt{}1}/

Draw the entire table. In testfont.tex, this was one of the commands that a
user would invoke at the TEX prompt.

185
186
187
188
189
190

\def\table{$$\global\mft@n=0
\halign to\hsize\bgroup
\chartstrut####\tabskipOpt pluslOpt&
&\hfil##H#H#\hfi1&\vrule###\cr
\lower6.5pt\null
&&&\octO&&\oct1&&\oct2&&\oct3&&\oct4&&\octb&&\oct6&&\oct7&\evenline}y,

Draw the last line of the table.

191
192
193
194
195
196
197

\def\endchart{\cr\noalign{\hrule}j,
\raisell.5pt\null&&&\hex 8&&\hex 9&&\hex A&&\hex B&
&\hex C&&\hex D&&\hex E&&\hex F&\cr\egroup$$\par}y

\def\:{\setbox0O=\hbox{\mft@char\mft@nl}y,
\ifdim\ht0>7.5pt\reposition
\else\ifdim\dp0>2.5pt\reposition\fi\fi
\box0O\global\advance\mft@n 1 1}

Define a few more helper routines.

198
199
200
201

\def\reposition{\setbox0=\vbox{\kern2pt\box0}\dim=\dpO
\advance\dim 2pt \dpO=\dim}%

\def\centerlargechars{
\def\reposition{\setbox0=\hbox{$\vcenter{\kern2pt\box0\kern2pt}$}}1}7

Finally, we compose the table, finish off our minipage, and restore the previous
values of \mft@ranges and \mft@expanded@ranges (which we had to save at
the top of \fonttable, because \@cons contains an \xdef). This concludes the
definition of \fonttable.

22

202 \table

203 \end{minipage}’

204 \global\let\mft@ranges=\mft@old@ranges

205 \global\let\mft@expanded@ranges=\mftQ@old@expanded@ranges
206 \endgroup

207 }

References

[1] Donald E. Knuth. The METAFONTbook, volume C of Computers and Typeset-
ting. Addison-Wesley, Reading, Massachusetts, 1986.

[2] Donald E. Knuth. Computer Modern Typefaces, volume E of Computers and
Typesetting. Addison-Wesley, Reading, Massachusetts, 1986.

Change History

v1.0 v1.0a
General: Initial version 1 General: Restructured the .dtx file 1
Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols environments: \itfam 3
N 37, 44 explaincode ... 4, 20
\@cons 84, 104 wrapcomment ... 4, 48 M
\@elt .. 13,110, 124, 138 \evini!.:med . % 181,190 \pakeLineNumber ... 43
B exPp all:;gnte) env1r0n; 2 \mfcomment 5, 718
9 ' T \mft@arg@i .. 81,82,
\bffam - 91, 93, 94, 102, 104
C \font 149 \mft@arg@ii 92,
1 104
\centerlargechars . 198 \fonttable 6, 139 96, 97, 99, 100, 10
\chartline 178 \mft@bot@rule . 7, 18, 27
"""" T H \mft@char 122, 194
\chartstrut ... 178, 187 \H 155 T =2
\h e 155 168 192 103 \mft@check@char 108, 162
D R ’ ’ \mft@eat@quads .. 31, 52
\define@key 6-9 1 \mft@expand@range 13, 88
\dim 150, 198, 199 \IfFileExists ... 76, 77 \mft@expanded@ranges
\ifskipping ... 170, 175 ... 11, 88, 119,
E \input 4 133, 138, 142, 205
\endchart 176, 191 \internallinenumbers 42 \mft@gobble@range . 88

23

\mf t@h 111,
113, 115, 156, 168

\mft@m 150, 157—
161, 172, 179, 180

...... 58

\mft@missing
\mft@n 150, 157,
159, 172, 175,
176, 185, 194, 197
\mftQ@old@expanded@ranges
139, 205
139, 204

\mftQ@oldQ@ranges
\mft@one

. 156, 179, 180, 182
\mft@p 150, 164, 174
\mft@parse@ranges 12, 79

\mft@ranges
10, 13, 79, 141, 204

\mft@table@width
8, 136, 144, 147
\mft@top@rule 6, 16, 23
\mft@wc@indent 30,
33, 38, 44, 49, 51
\mft@zero 156, 182
\mftinput 4, 4
\morechart 176, 178

o
154, 182, 190
165, 179

\oct
\oddline

\PackageError 64
\PackageWarning ... 59

R
\reposition 195, 196, 198

24

\RequirePackage

...... 1, 5,76, 77
S
\setdigs 156, 173
\setkeys 15, 21, 143
\setmftdefaults .. 9, 15
\skippingfalse . 171
\skippingtrue 174
T
\table 185, 202
\testfont 149
\testrow 162, 173
A%
wrapcomment (environ-
ment) 4, 48

