
FO
LL

O
W
IN
G
U
P

ConTEXt
lmtx

1

Table of contents

1 Introduction 3

2 Evolution 5

3 Stripping 13

4 Bitmap images 21

5 Logging 25

6 Directions 27

7 Performance 51

8 Cleanup 53

9 Rejected 59

10 Whatsits 61

11 Feedback 63

12 LUA 69

13 Compilation 73

14 Stubs 77

15 METAPOST 83

16 TEX 87

17 Retrospect 91

18 Scaled fonts 95

19 Memory 107

2

Introduction 3

1 Introduction

This document, the fifth in a series, describes the follow up project on ConTEXt MkIV &
LuaTEX which carries the working title ConTEXt LMTX. This four letter acronym repre­
sents Lua,MetaPost andTEX, and if youwant you can see the last character representing
xml, as that has been an integral part of ConTEXt for a long time. But the ‘x’ can also be
found in ‘experimental’, ‘extreme’, ‘experience’ and ‘extravagant’, so take your choice.

Of course ConTEXt is and will be a typesetting system using the TEX language and type­
setting core, but a rather substantial amount of the functionality is a hybrid of TEX
macros and Lua code. The built-in graphic support is driven by MetaPost, but there we
also use Lua as an extension language. The Luamachinery is used for alternative input
and handling data too. The same is true for xml, sql, csv, json, etc.

The output from ConTEXt is normally pdf andMkIV doesn't even enable dvi output. Mid
2018 I started experimenting with a backend that no longer used the one provided by
the engine. After all, we only usedpage streambuilding, font embedding andbitmap in­
clusion andall other featureswere alwaysdone inLua. The experiments also concerned
aMetaPost and Lua backend. Those familiar with ConTEXt know that there is already an
export feature which till now runs in parallel with the ConTEXt pdf backend (it started
as a kind of joke but in the end was seen as relevant and kept andmaybe so some point
I will rewrite that code).

The ideabehindConTEXtLMTX is thatwewill use aminimalist engine. Beingminimalist
alsomeans that probably only ConTEXtwill use it and therefore no other packagewill be
affected by further experiments, although at some point a sort of general low level layer
might be provided. The frontend is mostly the same as LuaTEX 1.1 but the backend and
related code is gone and/or different. Libraries have (and are) being cleaned up and
reorganized too. At least for a while, ConTEXt will work on LuaTEX 1.1 (stable) as well
as its (experimental) follow up, where the follow up will evolve over a few years and be
tested in the usual ConTEXt (garden) beta setting. The next chapters will explain this in
more detail.

Just to be clear I repeat: LuaTEX 1.1 will be supported by ConTEXt and maintained as
usual, including binaries generated on the ConTEXt garden. We've investedmany years
in it and it serves its purpose well, but our experiments will happen in its follow up, so
that it doesn't affect stableworkflows. Of course therehavebeen (andprobably are) bugs
in LuaTEXbut the engine could beusedprettywell right from the startwithConTEXt. The
same will be true for the follow up.

One of the ideas of the follow up is to provide a combination of a stable engine indepen­
dent of libraries with a relative simple compilation setup and amacro package that has

4 Introduction

proven to exploit a mix of TEX, MetaPost and Lua. As a side effect I can explore some
postponed ideas. Of course there can be valid reasons to move to the successor sooner.
In that casewemight create a stable snapshot ofMkIV aswasdonewithMkII. As to be ex­
pected in ConTEXt, the user interfaces won't change nor will the functionality, but there
will be two code paths, one for MkIV and one for LMTX. There will also be new func­
tionality in ConTEXt that is only available in LMTX. So, eventually we expect all users to
migrate.

In the beginning of december 2018 most of the work was done and users involved in
development could start testing. By the end of the year a reasonable stable state was
reached. In 2019 the code base was further overhauled and libraries got upgraded. The
code base became smaller and compilation easier, smoother and much faster. Eventu­
ally the source code (now some 11MB uncompressed and 3MB compressed) will be part
of the ConTEXt distribution, so that we have a complete package (also in the archival
sense).

The next chapters discuss the process and choices that were made. The chapters were
written in order so later chapters can amend earlier ones. Consider it a history, and
one cannot cheat by patching history. In some cases footnotes were added to earlier
chapters when writing later ones. It's not a manual! Reported typos (for sure there are
many) will be fixed but changes in later versions of the follow discussed here will not
end up in this document.

This document is dedicated to Wolfgang Schuster, who has been instrumental in the
transition from MkII to MkIV, and often baffles me with his knowledge of the (even ob­
scure bits) of the ConTEXt internals. Without him checking the code base, fundamental
changes like those that are andmight get introduced in this follow up are impossible.

I want to thank Alan Braslau who accompanies me on this journey and patiently com­
piles the lot for some platforms. He, Thomas Schmitz and AdityaMahajan are examples
of power users who also are early adopters of something new like this and are willing
to take the risks. And of course there is Mojca Miklavec without whose enthusiasm and
optimism developments like this would never take place. In themeantime Luigi Scarso
made sure that the (frozen) LuaTEX code base served existing users. It is hard to tell how
users experience the transition: there are no that many issues reported which can be a
good or bad sign. We will see.

Hans Hagen
PRAGMA ADE, Hasselt NL
August 2018 – May 2019

Evolution 5

2 Evolution

2.1 Introduction

The original idea behind TEX is that of a relatively small kernel with (either or not sys­
tem dependent) extensions. One such extension is the dvi backend, and later pdfTEX
added a pdf backend. Other extensions are ‘writing to files’ and ‘writing to the output
medium’ using so called specials. This extension mechanism permits TEX to support,
for instance, color and image inclusion.

The LuaTEX project started from pdfTEX, including its extensions like font expansion,
and combined that with (bi)directional typesetting from the, at that moment, stable
Omega variant Aleph. During the more than a decade development we integrated ex­
pansion in amore efficient way and limited directions to the four that made sense. The
assumption that Unicode has the future lead to utf8 being used all over the place.

The LuaTEX variant opens up the internals using the Lua extension language. The idea
was (and still is) that instead if adding more and more hard coded solutions, one can
use Lua to do it on demand. So, for instance OpenType fonts are supported by provid­
ing a font file reader but the implementation of features is up to Lua. From pdfTEX the
graphic inclusions were inherited but an image and pdf reading library provided a few
more possibilities, for instance for querying properties. An important integral part of
LuaTEX is the MetaPost library, but apart from that one, the amount of libraries is kept
at a minimum. That way we're free of dependencies and compilation hassles.

With version 1.0 the functionality became official and with version 1.1 the functionality
became more of less frozen. The main reason for this is that further extensions would
violate the principle of using Lua instead of hard coding solutions. Another reason is
that at some point you have to provide a stable machinery for macro packages so that
backwardaswell as forwardcompatibility overa longerperiod ispossible. Also, because
one can use TEX in (unattended) workflows sudden changes become undesirable.

2.2 What next?

Does it stophere? Wehave reached a reasonable stable statewithConTEXtMkIV and can
basically do what we want to do. However, during the more than a decade development
of this MkII follow up, the idea surfaced that we can gomoreminimal in the engine. Ba­
sically we can go back to where TEX started: a core plus extension mechanism. What
does that mean? First of all, there is the very efficient frontend: scanning macros, ex­
panding them and constructing node lists, all within a powerful grouping mechanism.
There is no reason to reconsider that. The core of the interface is also well documented,

6 Evolution

for instance in the TEX book. We added some primitives to LuaTEX, butmost of them are
of no real importance to users; they makemore sense to macro package writers.

Original TEX has a dvi backend which is a simple representation of a page: characters
and rules positioned on some grid. A separate program has to convert that into some­
thing for a printer. There is a basic extension mechanism that permits injection of so
called specials that get passed to the external program so that for instance an image can
be included. Given that LuaTEX ismostly used to generate pdf, using so calledwide fonts
in a Unicode universe, a dvi backend is not that useful. In fact, one can then better use
the faster pdfTEX program or just 𝜀-TEX or TEX: use the best tool available for the job.

The backend however can be left out and can be implemented in Lua instead. In fact,
most of the backend related code in ConTEXt doesn't really use the LuaTEX backend fea­
tures at all. The backend is only used to convert the page stream to apdf content stream,
include images, include fonts and manage low level objects. Everything specific to pdf
is already done in Lua. Of course this has a performance penalty but given the overhead
already present in ConTEXt it is bearable.

Alongside the frontend the MetaPost library plays an important role in ConTEXt: inte­
gration between TEX,MetaPost and Lua is pretty tight and a unique property of ConTEXt.
But, for instance the font reader library is no longer used. Also the interfacing to the TEX
Directory Structure was done in Lua, originally for performance reasons as it reduced
startup time by more that a second. For some of the frontend code (like hyphenation
and par building) we can kick in Lua variants too but there is not much to gain there. (I
know that some users use themwith success.)

So, traditional TEX can be summarized as:

tex core + dvi backend + tex extensions

where the extension interface provide a few goodies. If we would have to summarize
LuaTEX we could say:

tex core + dvi & pdf backend + tex extensions + lua callbacks

The core interprets the input and does the typesetting. In order to be able to typeset
TEX only needs the dimensions of characters and information about spacing (which in
principle are sort of independent) inmathmode a fewmore properties are needed, like
snippets that make large symbols. In text mode ligature and kerning information can
be used too. However, in LuaTEX, where normally OpenType fonts are used, that infor­
mation is provided from Lua. This means that one can also think of:

tex core + basic font data + tex extensions + lua callbacks

Evolution 7

Compared to regular TEX this is not that different, and it's what ConTEXt can do with.
So, it will be no surprise that when I wondered what LuaTEX 2.0 could be that a more
minimalistic approach was considered: back to the basics.

2.3 Roadmap

Before I continue it is good to mention the following. One of the burdens that ConTEXt
users (and developers) carry is that the outside world likes putting labels on ConTEXt,
like “A macro package depending on pdfTEX” in a time that we supported dvi at the
same level using a more of less generic driver model. The same is true for MkIV, e.g.
“ConTEXt uses a lot of Lua and moves away from TEX” while in fact we provide a hybrid
tool: you can use TEX input (which most users do) but also Lua (which can be handy) or
xml (which some publishers demand and definitely seems to be used by some ConTEXt
power users). A special one is “ConTEXt is kind of plain TEX, so you have to program all
yourself.” Reality is that ConTEXt is an integrated system, where TEX andMetaPost work
together toprovide a lot of integrated functionality. Becauseof LuaTEXdevelopment and
the relation between anupdated engine and the beta version of ConTEXt, the impression
can be that we have an unstable system. This strategy of parallel adaptation is the only
way to really test of things work as expected. Becausewe have a rather fast update cycle
normally users don't suffer that much from it.

The core of whatever we follow up with is and remains TEX, just because I like it. So,
when I talk about a small core, I actually still talk about TEX. The main reason is that
it's way easier (and readable) to code some solutions in this hybrid fashion. A pure Lua
solution is no fun, maybe even a pain, and I have no use for it, but a pure TEX solution
can be cumbersome too. And TEX input is just very convenient and for that one needs a
TEX interpreter. I would already have dropped out when TEX was not part of the game:
an intriguing, puzzling and powerful toy. And MetaPost and Lua add even more fun.
So, I settle for a mix between three interesting languages. And, because I seldom run
into professional demand for LuaTEX related support (or high end, high performance
rendering), the fun factor has always been the driving force.

All that said, for practical reasons, when we explore a follow up in the perspective of
ConTEXt, we will use the working title LuaMetaTEX instead. LuaMetaTEX has the current
LuaTEX frontend, some Lua libraries, but no backend. Gone are the font reader, image
inclusion, dvi and pdf backend (including font inclusion) and the interface to the tds.
Can that work? Asmentioned, the font reader was already not used in ConTEXt for quite
a while. An alternative page stream builder was also in good working condition in Con­
TEXt when LuaTEX 1.08 was released and around LuaTEX 1.09 image inclusion was re­
placed (pdf inclusion was already accompanied for a while by a Lua variant). Currently
(fall 2018) ConTEXt is able to completely construct the pdf file which alsomeant font in­
clusion. However, it didn't make much sense to release that code yet because after all,

8 Evolution

there was minimal gain when using it with a full blown LuaTEX. Also, switching to this
variant involved some runtime adaption of code which might confuse users. But above
all, it needed more testing, and releasing something before an upcoming TEXLive code
freeze is a bad idea.

During LuaTEX development a few times we got suggestions for additional features but
merely looking at them alreadymade clear that what works for someone in a particular
case, can introduce side effects that make (for instance) ConTEXt fail. And, how many
folks keep ConTEXt in mind? So, when LuaTEX goes into maintenance mode, specific
distributions could accept patches outside our control, which has the danger that a bi­
nary (suggesting to be LuaTEX) doesn't work with ConTEXt. Of course we cannot change
something ourselves eitherwithout looking around. And I'mnot even bringing possible
negative side effects on performance into the discussion here.

Whendeveloping LuaTEX some ideaswere dropped or delayed and these cannowbe ex­
ploredwithout the danger ofmessing up the stable version. It has always been relatively
easy to adapt ConTEXt to changes so an (at least for now) experimental follow up can be
dealt with too, but this time the concept of ‘experimental’ is really bound to ConTEXt.
When something is found useful (or can be improved) it can always (after testing it for a
while) be fed back into LuaTEX, as long as it doesn't break something. I'll decide on that
later.

In the documentation of TEX, when discussing the extensionmechanism, Donald Knuth
says:

“The goal of a TEXextender should be tominimize alterations to the standard parts
of the program, and to avoid them completely if possible. He or she should also
be quite sure that there's no easy way to accomplish the desired goals with the
standard features that TEX already has. “Think thrice before extending”, because
that may save a lot of work, and it will also keep incompatible extensions of TEX
from proliferating.””

With the in the next chapters discussed reduction of backend and some frontend code,
combined with hooks that can trigger callbacks, we try to come close to this objective.
Now, the last sentence of this quote relates to stability and this is also a reason why we
enter this new thread: the smaller the core is, the less subjectedwe are to change. Think
of this: I haven't usedConTEXtMkII inoveradecade. ApdfTEX format still gets generated
but I have no clue if the engine has been changed in ways that make some code behave
differently (it could also be the ecosystem related to that engine), but I assume it's still
behaving the same. The same has to become true for stock LuaTEX and MkIV and for
ConTEXt it can even becomemore true with LuaMetaTEX. We'll see.

Evolution 9

2.4 Experiments

This (still sort of) prototype of what LuaMetaTEX could be boils down to amuch smaller
binary, and not that muchmore Lua code on top of what we already have. There are no
longer dependencies on third party code, apart fromLua (pplib is tuned for LuaTEXand
permanent part of the code base). Performance wise the backend of the experimental
version makes a run upto 5% slower than when using a native backend (on processing
the LuaTEX manual) but history has learned that we can gain some of that back in due
time. Performance also depends a bit on the properties of the document. Interesting is
that better control over the output showed that pdf output of thementionedmanual was
a bit smaller (but that might change).1

The experiments actually started already years agowith no longer using the font loader.
It sort of went this way:

• Stepwise ConTEXt functionality started using a combination of TEX and Lua code and
we got an idea of what was needed. Themost demanding part was support for fonts.

• Font handling was done in Lua because it's flexible which is what TEXies are accus­
tomed to. The OpenType and pdf standards would not be called standards if some
implementation was impossible and so far we're ok. (Somemore script support will
be provided in future versions.)

• We stopped using the fontforge font loader but use one written in Lua instead. One
reason for this was that when variable fonts showed up we wanted to support it in
ConTEXt right from the start (not that there has been much demand). The same is
true for fonts using color (like emoji). Also, fighting the built-in FontForge heuristics
was hard.

• The (large and dependent on C++) poppler library used for pdf embedding has been
replaced by a small lightweight library in pure C. This was triggered at a chat during
a bachoTEXmeeting.

• Thehard codedpdf inclusion canbe swappedwith a Lua based one so thatwe can for
instance filter the page stream. We already had a hybrid solution in ConTEXt anyway
for other reasons (merging annotations, layers, bookmarks, etc.).

• The page stream constructor got a (shipout and xforms) by a Lua variant, but I de­
cided not to make that an independent option in stock LuaTEX with ConTEXt MkIV,
although for a while I had the option --lmtx for activating that experimental code.

1 In themeantime the experimental version can process the LuaTEXmanual 5–10% faster and the result is
still smaller.

10 Evolution

• Then of course bitmap image inclusion had to be done by Lua code, in order to see if
we can get rid of another external dependency as someof these libraries get frequent
updateswhile inpracticeweonlyuse a very small subset of functionality. Indeed this
was possible.2

• With some effort (deciphering specs and such) the font inclusion could also be done
by a Lua. This wasmade possible by the fact that we already had support for variable
fonts. More tricks are possible and will be explored.

• Finally the pdf file construction and pdf objectmanagement had to be implemented.
This was actually the easiest part.

Performancewise the Lua font loader is faster than the built in one. The same is true for
pdf inclusion but in practice that is unnoticeable. Bitmap inclusion is currently slower
for interlaced images (seldom used in print) and just as efficient for other types. The
page stream constructor is definitely slower but this is compensated by the faster font
inclusion and pdf file construction. Of course it all depends on the kind of content, but
these are the observation as of fall 2018. Anyway, they were enough reason to continue
this experiment.

One thing to keep inmind is that the smaller the binary and the less code pathswe have,
the better future performance might be. Computers are not becoming much faster for
single thread processes like TEX, so the less we jump around code space (memory) the
better it probably is for cpu caching (as caches are not growing much either).

2.5 Conclusion

Normally whenwriting this kind of code Imake sure that I can enable such newmecha­
nisms on top of others but at some point one has to decide how to really integrate them.
For instance, we can do font inclusion independent of pdf generation or page stream
construction independent of pdf generation and/or font inclusion but in the end that
doesn't make sense andmakes the code base a bit of a mess. So, this is how it will go.

Stock LuaTEX with MkIV will use the normal backend but probably there might be an
option to overload the built-in image inclusion so that one can avoid the abortion of
a run in case of problematic images. Complete pdf file construction, which then also
includes page stream construction, font embedding and object management might be
available as option for MkIV with LuaTEX 1.10 (for a while) but will be default when us­
ing LuaMetaTEX. When we move on LMTX support might evolve in more sophisticated
trickery.3

2 I have a pure Lua parser for pdf too, so at some point that might get included in the ConTEXt code base.
3 A few months later I decided that this made no sense, and that it was cleaner to just leave that approach

Evolution 11

Once tested a bit in real documents experimental code will end up in the distribution.
That code can then be turned into production code (read: cleaned up and reshuffled a
bit). We can streamline the engine code base: strip the components that are not needed
anymore, remove some obsolete features, optimize the code, strip some functions from
Lua libraries, rename some helpers, and finally add some documentation. There are
some plans to extend MetaPost so also things can get added. Concerning the Lua inter­
face it means that slunicode is removed, the embedded socket related Lua code goes
external (but the library stays), the font loader gets removed, the img library goes away,
no longer png libraries are embedded, synctex is stripped out (but the fields in nodes
stayorget extended).4 The resultingbinarywill bemuchsmaller and thecodebasemore
independent and smaller too. In the process LuaJIT support might be dropped as well,
simply because it no longer is in syncwith stock Lua, but that also depends onhow com­
plex long termmaintenance becomes.5

Because such a stripped down binary is no longer what got presented as LuaTEX ver­
sion 1, it will basically become LuaTEX version 2, but then we have the problem that its
binary name clashes with the original. This is why it will be run as luametatex. For
ConTEXt it's not that relevant as it will run on both LuaTEX 1.10 and its lean and mean
successor. I might also provide a plain TEX (read: generic) version but that is to be de­
cided because it probably doesn'tmakemuch sense to spend time on it. As usualwewill
test this within the ConTEXt beta program. The good thing is that it doesn't interact with
LuaTEX, so that other macro packages are not affected. Another side effect can be that
we uncover issues with LuaTEX 1.10 and that we can experiment with some improve­
ments that we feed back into the parent.

At the ConTEXt end of this there are some plans to extend the export, maybe improve al­
ready present pdf tagging (if found useful), add some more input (xml) manipulations,
and maybe extend (virtual) font handling a bit, now that we no longer are bound to the
currently used packet model. Contrary to what one might expect this is not really de­
pendent on the engine.

How do we proceed? As with the transition from MkII to MkIV, it will all happen step­
wise. This means that for a while the code base will be a bit hybrid but at some point it
might be partially split to make things cleaner, not that I expect many fundamental dif­
ferences (certainly not in the front-end). This dualistic approachmeansmore work but
alsomakes that we keep aworking ConTEXt. We also need to keep an eye on for instance
generic commands as used in tikz: we can't drop them so we emulate them (so far with
success). As the time of this writing, begin November 2018, the ConTEXt test suite can

for LMTX only. So, now both engines use different code exclusively.
4 Much later I also decided to remove the zip file reader library.
5 As wewill see in following chapters, indeed support for LuaJIT has been droppedwhile Lua got upgraded
to 5.4.

12 Evolution

be processed in LMTXmode without problems so I'm confident that it will work out ok.
The next chapter describes the results of how we did the above in more detail.

Stripping 13

3 Stripping

3.1 Introduction

Normally I needa couple of iterations to reach the implementation that I like (anaverage
of three rewrites is rather normal). So, I sat down and started stripping the engine and
did soa few times inorder to get an ideaofhow toproceed. Onedrawbackof goingpublic
too soon (and we ran into that with LuaTEX) is that as soon as there are more users, one
gets stuck into the situation that a different approach is not really possible. This is why
fromnowonexperimental is really experimental, even if thatmeans: itworksok inCon­
TEXt (even for production) but we can change interfaces be better, e.g. more consistent
(although we're also stuck with existing TEX terminology). Anyway, let's proceed.

3.2 The binary

In 2014 the LuaTEX binary was some 10.9 MB large. The version 1.09 binary of October
2018 was about 6.8MB, and the reduction was due to removing the bitmap generation
from mplib as well as replacing poppler by pplib. As an exercise I decided to see how
easy it was to make a small version suitable for ConTEXt LMTX, and as expected the bi­
nary shrunk to below 3MB (plus a Lua and kpse dll). This is a reasonable size givenwhat
is still present.

There is hardly any file related code left because in practice the backend used themost
different file types. That also meant that we could remove kpse related code and keep
all that in the library part. In principle one can load that library and hook it into the
few callbacks that relate to loading files. Once we're stable I'll probably write some code
for that.6 Launching the binary with a startup script can deal with all matters needed,
because the command line arguments are available.

We could actually go even smaller by removing the built-in tfm and vf readers. For in­
stance itmade notmuch sense to read and store information that is never used anyway,
like virtual font data: as long as the backend has access to what it needs it's fine. By
removing unused code and stripping no longer used fields in the internal font tables
(which is also good for memory consumption), and cleaning up a bit here and there the
experimental binary ended up at a bit above 2.5MB (plus a Lua dll).7

6 In the meantime I think it makes not much sense to do that.
7 Mid January we were just below 2.7 MBwith a static, all inclusive, binary. In March the static ended up at
2.9 MB on MSWindows and 2.6 MB in Unix.

14 Stripping

3.3 Functionality

There is no real reason to change much in the functionality of the frontend but as we
have no backend now, some primitives are gone. These have to be implemented as part
of creating a backend.

\dviextension \dvivariable \dvifeedback
\pdfextension \pdfvariable \pdffeedback

The already obsolete related dimensions are also removed:

\pageleftoffset \pagerightoffset
\pagetopoffset \pagebottomoffset

And we no longer need the page dimensions because they are just registers that are
normally used in the backend. So, we got rid of:

\pageheight
\pagewidth

Some font related inheritances from pdfTEX have also been dropped:

\letterspacefont
\copyfont
\expandglyphsinfont
\ignoreligaturesinfont
\tagcode

Internally all backend whatsits are gone, but generic literal, save, restore and
setmatrix nodes can still be created. Under consideration is to let them be so called
user nodes but for testing it made sense to keep them around for a while.8

The resource relates primitives are backend dependent so the primitives have been re­
moved. As with other backend related primitives, their arguments depend on the im­
plementation. So, no more:

\saveboxresource
\useboxresource
\lastsavedboxresourceindex

and:

8 Don't take this as a reference: later we will see that more was changed.

Stripping 15

\saveimageresource
\useimageresource
\lastsavedimageresourceindex
\lastsavedimageresourcepages

Of course the rule nodes subtypes are still there, so the typesettingmachinery will han­
dle them fine. It is no big deal to define a pseudo-primitive that provides the function­
ality at the TEX level.

The position related primitives are also backend dependent so again they were re­
moved.9

\savepos
\lastxpos
\lastypos

We could have kept \savepos but better is to be consistent. We no longer need these:

\outputmode
\draftmode
\synctex

These could go because we no longer have a backend and if one needs it it's easy to
define ameaningful variable and listen to that.

The \shipout primitive does no ship out but just flushes the content of the box, if that
hasn't happened already.

Because we have Lua on board, and because we can now use the token scanners to im­
plement features, we no longer need the hard coded randomizer extensions. In fact,
also the MetaPost should now use the Lua randomizer, so that we are consistent. Any­
way, removed are:

\randomseed
\setrandomseed
\normaldeviate
\uniformdeviate

9 There was some sentimental element in this. Long ago, even before pdfTEX showed up, ConTEXt already
had a positional mechanism. It worked by using specials in combination with a program that calculated
the positions from the dvi file. At some point that functionality was integrated into pdfTEX. For me it
always was a nice example of demonstrating that complaints like “TEX is limited because we don't know
the position of an element in the text.” make no sense: TEX can do more than one thinks, given that one
thinks the right way.

16 Stripping

plus the helpers in the tex library.

3.4 Fonts

Fonts are sort of special. We need the data at the Lua end in order to process OpenType
fonts and the backend code needs the virtual commands. The par builder also needs
to access font properties, as does the math renderer, but here is no real reason to carry
virtual font information around (which involves packing and unpacking virtual pack­
ets). So, in the end it mademuch sense to also delegate the tfm and vf loading to Lua as
well. And, as a consequence dumping and undumping font information could go away
too, which is okay, as we didn't preload fonts in ConTEXt anyway. The saving in binary
bytes is not impressive but keeping unused code around neither. In principle we can
get rid of the internal representation if we fetch relevant data from the Lua tables but
that might be unwise from the perspective of performance. By removing the no longer
needed fields the memory footprint became somewhat smaller and font loading (pass­
ing from Lua to TEX) more efficient.

3.5 File IO

What came next? A program like LuaTEX interacts with its environment and one of the
nice things about TEX is that it has a standard ecosystem, organized as the “TEX Direc­
tory Structure”. There is library that interfaceswith this structure: kpse, but in ConTEXt
MkIV we implement its functionality in Lua. The primary reason for this was perfor­
mance. When we started with LuaTEX the startup on my machine (MS Windows) and
a few servers (linux) of a TEX engine took seconds and most fo that was due to loading
the rather large file databases, because a TEX Live installationwas a gigabyte adventure.
With the Lua variant I could bring that down to milliseconds, because I could pre-hash
the database and limit it to files relevant for ConTEXt (still a lot, as fonts made upmost).
Nowadays we have ssd disks and plenty of memory for caching, so these things are less
urgent, but on network shares it still matters.

So, as we don't use kpse, we can remove that library. By doing that we simplify compi­
lation a lot as then all dependencies are in the engine's source tree, and we're no longer
dependent on updates. One can argue that we then sacrifice too much, but already for
a decade we don't use it and the Lua variant does the job well within the tds ecosystem.
Also, in our by now stripped down engine, there is not that much lookup going on any­
way: we're already in Lua when we do fonts. But on the other hand, some generic usage
could benefit from the library to be present, so we face a choice. The choice is made
even more difficult by the fact that we can remove all kind of tweaks once we delegate
for instance control over command execution to Lua completely. But, wemight provide
kpse as loadable Lua module so that when needed one can use a stub to start the pro­

Stripping 17

gram with a Lua script that as first action loads this library that then can take care of
further file management. As command line arguments are available in Lua, one can
also implement the relevant extra switches (and evenmore if needed).

Now, the interesting thing is that becausewehaveaLua interface to kpsewecanactually
drop some hard coded solutions. Thismeans that we can have a binary without kpse, in
which case one has to cook up callbacks that do what this library does. But in a version
with kpse embeddedone also has to define somefile related callbacks although they can
be rather simple. By keeping a handful of file related callbacks the code base could be
simplified a lot. In the process the recorder option went away (not that we ever used it).
It is relatively easy to support this in the ‘find’ related callbacks and one has to deal with
other files (like images and fonts) also, so keeping this feature was a cheat anyway.

At this point it is important to notice that while we're dropping some command line op­
tions, they can still be passed and intercepted at the Lua end. So, providing compatible
(or alternative solution) is no big deal. For instance, execution of (shell) programs is a
Lua activity and can bemanaged from there.

3.6 Callbacks

Callbacks can be organized in groups. First there are those related to io. We only have to
deal with a few types: all kind of TEX files (data files), format files and Lua modules (but
these to are on the list of potentially dropped files as this can be programmed in Lua).

find_write_file
find_data_file open_data_file read_data_file
find_format_file find_lua_file find_clua_file

The callbacks related to errors stay:10

show_error_hook show_lua_error_hook,
show_error_message show_warning_message

Themanagement hooks were kept (but the edit one might go):11

process_jobname
call_edit
start_run stop_run wrapup_run
pre_dump
start_file stop_file

10 Somemore error handling was added later, as was intercepting user input related to it.
11 And indeed, that one went away.

18 Stripping

Of course the typesetting callbacks remain too as they are the backbone of the opening
up:

buildpage_filter hpack_filter vpack_filter
hyphenate ligaturing kerning
pre_output_filter contribute_filter build_page_insert
pre_linebreak_filter linebreak_filter post_linebreak_filter
insert_local_par append_to_vlist_filter new_graf
hpack_quality vpack_quality
mlist_to_hlist make_extensible

Finally wemention one of the important callbacks:

define_font

Without that one defined not much will happen with respect to typesetting. I could ac­
tually remove the \font primitive but that would be a bit weird as other font related
commands stay. Also, it's one of the fundamental frontend primitives, so removal was
never really considered.

3.7 Bits and pieces

In the process some helpers and status queries were removed. From the summary
above you can deduce that this concerns images, backend, and file management.
Also not used variables (some inherited from the past and predecessors) were re­
moved. These and other changes are the reason why there is a separate manual for
LuaMetaTEX.12

One of my objectives was to see how lean and mean the code base could be. But even
if we don't use that many files, the rather complex build system makes that we need to
have (makeandconfigure) files in the tree that arenot really usedbut even thenomitting
them aborts a build. I played a bit with that but the problem is that it needs to be dealt
with upstream in order to prevent repetitivework. So, this is something to sort out later.
Eventually it would be nice to be able to compile with a minimal set of source files, also
because other programs (all kind of TEX variants) that are checked for but not compiled
dependon libraries thatwedon't need (and thereforewant) to have in the strippeddown
source tree.13

For now we also brought down the number of catcode tables (to 256)14, and the number

12 Relatively late in the project I decided to be more selective in what got initialized in Lua only mode.
13 In the end, the source tree was redesigned completely.
14 As with math families, and if more tables are needed one should wonder about the TEX code used.

Stripping 19

of languages (to 8192)15 as that saves some initially allocated memory.

3.8 What's next

Basically the experiment ends here. A next step is to create a stable code base, make
compilation easy and consider the way the code is packages. Then some cleanup can
take place. Also, as it's a window to the outside world, ffi support will move to the code
base and be integral to LuaMetaTEX. And of course the decision about LuaJIT support
has to bemade some day soon. The same is true for Lua 5.4: in LuaTEX for nowwe stick
to 5.3 but experimenting with 5.4 in LuaMetaTEX can't harm us.16

To what extend the ConTEXt code base will have a special files for LMTX is yet to be de­
cided, but we have some ideas about new features that might make that desirable from
the perspective of maintenance. The main question is: do I want to have hybrid files or
clean files for each variant (stock MkIV and LMTX).

For the record: at the time of wrapping this up, processing the LuaTEX manual of 294
pages took 13.5 seconds using stock LuaTEX while using the stripped down binary,
where Lua takes over some tasks, took 13.9 seconds.17 The LuajitTEX variant needed
10.9 and 10.8 seconds. So, there is no real reason to not explore this route, although
. . . the pdf file size shrinks from 1.48MB to 1.18MB (and optionally we can squeeze out
more) but one canwonder if I didn't make bigmistakes. It is good to realize that there is
notmuch performance to gain in the engine simply becausemost code is already pretty
well optimized. Thesame is true for theConTEXt code: theremightbea fewplaceswhere
we can squeeze out a fewmilliseconds but probably it will go unnoticed.

On the todo listwent removal of\primitivewhichweneveruse (need) and thepossible
introduction of a way to protect primitives and macros against redefinition, but on the
other hand, it might impact performance and be not worth the trouble. In the end it is a
macro package issue anyway andwe never really ran into users redefining primitives.18

15 This is already a lot and because languages are loaded run time, we can gomuch lower than this.
16 The choice has beenmade: LuaMetaTEX will not have a LuaJIT based companion.
17 In themeantimewe're down to around 11.6MB. These are all rough numbers andmostly indicate relative

speeds at some point.
18 Indeed this primitive has been removed.

20 Stripping

Bitmap images 21

4 Bitmap images

4.1 Introduction

In TEX image inclusion is traditionally handled by specials. Think of a signal added
someplace in the page stream that says:

\special{image: foo.png 2000 3000}

Here the number for instance indicate a scale factor to be divided by 1000. Because TEX
has no floating point numbers, normally one uses an integer and the magic multiplier
1000 representing 1.000. Such a special is called a ‘whatsit’ and is one reason why TEX
is so flexible and adaptive.

In pdfTEX instead of a \special the command \pdfximage and its companions are
used. In LuaTEX this concept has been generalized to \useimageresource which in­
ternally is not a so called whatsit (an extension node) but a special kind of rule. This
makes for nicer code as now we don't need to check if a certain whatsit node is actually
one with dimensions, while rules already are part of calculating box dimensions, so no
extra overhead in checking for whatsits is added. In retrospect this was one of themore
interesting conceptual changes in LuaTEX.

In LuaMetaTEX we don't have such primitives but we do have these special rule nodes;
we're talking of subtypes and the frontend doesn't look at those details. Depending on
what the backend needs one can easily define a scanner that implements a primitive.
We already did that in ConTEXt. More important is that inclusion is not handled by the
engine simply because there is no backend. Thismeans that we need to do it ourselves.
There are two steps involved in this that we will discuss below.

4.2 Identifying

There is only a handful of image formats that makes sense in a typesetting workflow.
Because pdf inclusion is supported (but not discussed here) one can actually take any
format as long as it converts to pdf, and tools like graphicmagic doadecent jobon that.19

Themain bitmap formats that we care about are jpeg, jpeg2000, and png. We could deal
with jbig files but I never encountered them so let's forget about them for now.

19 Although one really need to check a converted image. When we moved to pplib, I found out that lots of
converted images in a project had invalid pdf objects, but apart fromawarningnothing bad resulted from
this because those objects were not used.

22 Bitmap images

One of the problems with a built-in analyzer (and embedder) is that it can crash or just
abort the engine. The main reason is that when the used libraries run into some issue,
the engine isnot alwaysable to recover from it: a converter just abortswhich thencleans
up (potentially messed up) memory. In LuaTEX we also abort, simply because we have
no clue to what extend further on the libraries are still working as expected. We play
safe. For the average user this is quite ok as it signals that an image has to be fixed.

In a workflow that runs unattended on a server and where users push images to a re­
source tree, there is a good change that a TEX job fails because of some problem with
images. A crash is not really an option then. This is one reasonwhy converting bitmaps
topdfmakesmuchsense. Another reason is that somecolorprofilingmightbe involved.
Runtimemanipulations make no sense, unless there is only one typesetting run.

Because inLMTXwedo the analyzing ourselves20we can recovermucheasier. Themain
reason is of course that because we use Lua, memorymanagement and garbage collec­
tion happens pretty well controlled. And crashing Lua code can easily be intercepted by
a pcall.

Most (extensible) file formats are based on tables that gets accessed from an index of
names and offsets into the file. This means that filtering for instance metadata like di­
mensions and resolutions is no big deal (we always did that). I can extend analyzing
when needed without a substantial change in the engine that can affect other macro
packages. And Lua is fast enough (and often faster) for such tasks.

4.3 Embeding

Once identified the frontend can use that information for scaling and (if needed) reuse
of the same image. Embedding of the image resource happens when a page is shipped
out. For jpeg images this is actually quite simple: we only need to create a dictionary
with the right information and push the bitmap itself into the associated stream.

For png images it's a bit different. Unfortunately pdf only supports certain formats, for
instance masks are separated and transparency needs to be resolved. This means that
there are two routes: either pass the bitmapblob to the stream, or convert it to a suitable
format supported by pdf. In LuaTEX that is normally done by the backend code, which
uses a library for this. It is a typical example of a dependency of somethingmuch larger
than actually needed. In LuaTEX the original poppler library used for filtering objects
from a pdf file as well as the png library also have tons of code on board that relates
to manipulating (writing) data. But we don't need those features. As a side note: this is

20 Actually, in MkIV this was also possible but not widely advertised, but we now exclusively keep this for
LMTX.

Bitmap images 23

something rather general. You decide to use a small library for a simple task only to find
out after adecade that it hasgrowna lot offering featuresandhavingextradependencies
that you really don't want. Even worse: you end up with constant updates due to fixed
security (read: bug) fixes.

Passing the png blob unchanged in itself to the pdf file is trivial, butmassaging it into an
acceptable formwhen it doesn't suit the pdf specification takes a bit more code. In fact,
pdf does not really support png as format, but it supports png compression (aka filters).

Trying to support more complex png files is a nice way to test if you can transform a
public specification into a program as for instance happens with pdf, OpenType, and
font embedding in ConTEXt. So this again was a nice exercise in coding. After a while
I was able to process the png test suite using Lua. Optimizing the code came with un­
derstanding the specification. However, for large images, especially interlaced ones,
runtime was definitely not to be ignored. It all depended on the tasks at hand:

• Apngblob is compressedwith zip compression, sofirst it needs to bedecompressed.
This takes a bit of time (and in the process we found out that the zlib library used in
LuaTEX had a bug that surfaced when a mostly zero byte image was uncompressed
and we can then hit a filled up buffer condition.

• The resulting uncompressed stream is itself compressed with a so called filter. Each
row starts with a filter byte that indicates how to convert bytes into other bytes. The
most commonly used methods are deltas with preceding pixels and/or pixels on a
previous row. When done the filter bytes can go away.

• Sometimes an image uses 1, 2 or 4 bits per pixel, in which case the rows needs to be
expanded. This can involve a multiplication factor per pixel (it can also be an index
in a palette).

• An image can be interlacedwhichmeans that there are seven parts of the image that
stepwise build up the whole. In professional workflows with high res images inter­
lacingmakes no sense as transfer over the internet is not an issue and the overhead
due to reassembling the imageand thepotentially largerfile size (due to independent
compression of the seven parts) are not what we want either.

• There can be an imagemask that needs to be separated from themain blob. A single
byte gray scale image then has two bytes per pixel, and a double byte pixel has four
bytes of information. An rgb image has three bytes per pixel plus an alpha byte, and
in the case of double byte pixels we get eight bytes per pixel.

• Finally the resulting blob has to be compressed again. The current amount of time
involved in that suggests that there is room for improvement.

24 Bitmap images

Theprocess is controlled bynumber of rows and columns, thenumber of bytes per pixel
(one or two) and the color spacewhich effectivelymeans one or three bytes. These num­
bers get fed into the filter, deinterlacer, expander and/or mask separator. In order to
speed up the embedding these basic operations can be assisted by a helpers written in
C. Because Lua is quite good with strings, we pass strings and get back strings. So, most
of the logic stays at the Lua end.

4.4 Conclusion

Going for a library-less solution for bitmap inclusion is quite doable and in most cases
as efficient. Because we have a pure Lua implementation for testing and an optimized
variant for production, we can experiment as we like. A positive side effect is that we
canmore robustly intercept bad images and inject a placeholder instead.

Logging 25

5 Logging

5.1 Introduction

In ConTEXt we have quite some logging enabled by default and even more when you
enable trackers. Most logging is done with Lua, which is quite efficient. Information
from the TEX machinery follows a different path and one reason for that is that it often
happens on a character (or small strings) basis.

The runtime of a job is, in spite of what onemay expect, also dependent on the speed of
the console: what fonts are used (there can be font features being applied), is the output
buffered, and with what delays, how large is the history, etc. Whenmore complex fonts
arrived I found out that on os-x generating a format was impacted by seconds. When on
MSWindows the normal console was used its character-by-character flushing made it
sluggish, and on linux it depended on the font, kind of console, delays, etc. Lucky me,
the SciTE editors log pane beats them all.21

At the TEX end a few decades of coding hasmade the system also complex.22 Each string
goes through a mechanism that checks with line ending to apply and where to cut off
lines exceeding a preset maximum length, where LuaTEX also needs to take utf into ac­
count. Some characters can (optionally) be escaped with ^^ and occasionally the line
length gets reset by explicit newline commands.

In ConTEXt already for a long time we always used an (at least) 10K line length and dis­
abled output escaping. We have consoles that can handle long lines and live in an utf
world so escaping makes no sense. And, when OpenType features get applied random
line breaks can interfere badly. Just in case one wonders what happens with so called
null characters: as all goes throughCanyway, such a character just terminates a string.
Therefore the line length limitations have been removed and the line-ending substitu­
tion be optimized. In principle this gives simpler codes and less overhead.

The log is not always compatiblewith LuaTEX. For instanceweoutputmoredetails about
node lists. This is natural because we have more subtypes and these can provide addi­
tional information (clues) when debugging TEX code.

In LuaTEX the errorhandling is already such that somecanbedelegated to Lua, and later
I will look into more isolation. But, error handling is quite interwoven in the code and I
don't want to mess up the original concept too much.23

21 I use the linux subsystem on MS Windows for cross compiling LuaTEX, and with the advent of that sub­
system the regular console was also rewritten so most of the delays are gone now.

22 Interfaces like that are only partly defined by TEX and left to the implementation.
23 Indeed the error handling was redone in such a way that we now have an even better isolation.

26 Logging

Directions 27

6 Directions

6.1 Introduction

In LuaTEX the directional model taken from Omega has been upgraded a bit. For in­
stance in addition to the *dir commands we have *direction commands that take
a number instead of a keyword. This is a bitmore efficient and consistent as using these
keywordswas kind of un-TEX. Internally direction relatednodes (text directions) are not
whatsits but first class nodes. We also use a subtype that indicates the push or pop state.

The LuaTEX directional model provides four directions which is a subset of the many
that Omega provided, indicated by three letters, like TRT and LTT. In the beginning we
had themall fixed24 and thereby implemented but being in doubt about their usefulness
we dropped most of them, just four were kept. However, in practice only right-to-left
makes sense. Going from top to bottom in Japanese orMongolian can also involve glyph
rotation, which actually is not implemented in the engine at all. Spacing and inter-char­
acter breaks have to be implemented and in the end one has to combine the results into
a page body. So, in practice you end up with juggling node list and macro magic in the
page builder. The LTL (number 2) and RTT (number 3) directions are not used for seri­
ous work. Therefore, in LuaMetaTEX themodel has been adapted. In the end, it was not
entirely clear anyway what the three letters were indicating in each direction property
(page, body, par, text, math) as most had no real meaning.

As a side note: if you leave the (not really working well) vertical directions out of the
picture, directional typesetting is not that hard to deal with and has hardly any conse­
quences for the code. This is because horizontal dimensions are not affected by direc­
tion, only the final ship out is: when a run (wrapped in an hbox) goes the other way, the
backend effectively has to skip the width and thenwith each component goes back. Not
much more is involved. This means that a bidirectional engine is rather simple. The
complications are more in the way a macro package deals with it, in relation to the in­
put as well as the layout. The backend has to do the real work.25

6.2 Two directions

Wenowhave only two directions left: the default left-to-right (l2r) and right-to-left (r2l).
Theywork the same as before and in the backendwe can get rid of the fuzzy parallel and
rotation (which actually was just stacking nodes) heuristics.

24 This was doen by Hartmut by rigorously checking all possible combinations
25 Of course when one hooks in Lua code taking care of direction can be needed!

28 Directions

Reducing the lot to two directions simplifies some code in the engine. This is because
when calculating dimensions a change in horizontal direction doesn't influence the
width, height and depth in an orthogonal way. Because there are no longer top-down
itemswedon't need to swap theheight andordepthwith thewidth. This alsomeans that
we don't need to keep much track of direction changes. Technically an hpack doesn't
need to know its own direction and we can set it to any value afterwards if we want be­
cause the calculation are not influenced by it; so that also simplifiedmatters.

The \bodydir and \pagedir already didn't make much sense, and in ConTEXt we ac­
tually intercepted them, so now they are removed. The body direction is always left-to-
right and the page directionwas only consulted in the backend codewhichwe no longer
have. Another side effect of goingwith only two directions is that rules no longer need to
carry the direction property: there is no flipping ofwidthwith height and depth needed.

6.3 Four orientations

Instead of the top-bottom variants we now have four orientations plus a bunch of an­
choring options. Of course one could use the backend save, restore andmatrix whatsits
but a natural feature makes more sense. Let's start with what happens normally:

This is a LuaMetaTEX goodie.

This line has height and depth. We can rotate this sentence by 180 degrees around the
baseline in which case the depth and height are flipped.

ThisisaLuaMetaTEXgoodie.

or we flip part:

This is a LuaMetaTEX goodie.

or flip nested:

ThisisaLuaMetaTEXgoodie.

but we're talking boxes, so the above examples are defined as:

This is a \LUAMETATEX\ goodie.

\hbox orientation 2{This is a \LUAMETATEX\ goodie.}

This is a \hbox orientation 2{\LUAMETATEX} goodie.

\hbox orientation 2{This is a \hbox orientation 002{\LUAMETATEX} goodie.}

Directions 29

The orientation keyword does the magic here. There are four such orientations with
zero being the default. We saw that two rotates over 180 degrees, so one and three are
left for up and down.

TEX and

TE X and TEX and T E
X

This is codes as:

\hbox orientation 0 {\TEX} and
\hbox orientation 1 {\TEX} and
\hbox orientation 2 {\TEX} and
\hbox orientation 3 {\TEX}

The landscape and seascape variants both sit on top of the baseline while the flipped
variant has its depth swappedwith theheight. Although thiswouldbe enoughabitmore
control is possible. The number is actually a three byte hex number:

0x<X><Y><O>

or in TEX syntax

"<X><Y><O>

We saw that the last byte regulates the orientation. The first and second one deal with
anchoring horizontally and vertically. The vertical options of the horizontal variants
anchor on the baseline, lower corner, upper corner or center.

\hbox orientation "002 {\TEX} and
\hbox orientation "012 {\TEX} and
\hbox orientation "022 {\TEX} and
\hbox orientation "032 {\TEX}

TEX and

TEX

and TEX and TEX

Thehorizontal options of thehorizontal variants anchor in the center, left, right, halfway
left and halfway right.

\hbox orientation "002 {\TEX} and
\hbox orientation "102 {\TEX} and
\hbox orientation "202 {\TEX} and
\hbox orientation "302 {\TEX} and
\hbox orientation "402 {\TEX}

TEX and TEX and TEXand TEX and TEX

30 Directions

All combinations will be shown on the next pages, so we suffice with telling that for the
vertical variants we can vertically anchor on the baseline, top, bottom or center, while
horizontally we center, hang left or right, halfway left or right, and in addition align on
the (rotated) baseline left or right.

The orientation has consequences for the dimensions so they are dealt with in the ex­
pected way in constructing lines, paragraphs and pages, but the anchoring is virtual.
As a bonus, we have two extra variants for orientation zero: on top of baseline or below,
with dimensions taken into account.

\hbox orientation "000 {\TEX} and
\hbox orientation "004 {\TEX} and
\hbox orientation "005 {\TEX}

TEX and TEX and
TEX

The anchoring can look somewhat confusing but you need to keep in mind that it is
normally only used in very controlled circumstances and not in running text. Wrapped
in macros users don't see the details. We're talking boxes here, so or instance:

test\quad
\hbox orientation 3 \bgroup

\strut test\hbox orientation "002 \bgroup\strut test\egroup test%
\egroup \quad
\hbox orientation 3 \bgroup

\strut test\hbox orientation "002 \bgroup\strut test\egroup test%
\egroup \quad
\hbox orientation 3 \bgroup

\strut test\hbox orientation "012 \bgroup\strut test\egroup test%
\egroup \quad
\hbox orientation 3 \bgroup

\strut test\hbox orientation "022 \bgroup\strut test\egroup test%
\egroup \quad
\hbox orientation 3 \bgroup

\strut test\hbox orientation "032 \bgroup\strut test\egroup test%
\egroup \quad
\hbox orientation 3 \bgroup

\strut test\hbox orientation "042 \bgroup\strut test\egroup test%
\egroup
\quad test

gives:

Directions 31

0x000 0x010 0x020 0x030

0x100 0x110 0x120 0x130

0x200 0x210 0x220 0x230

0x300 0x310 0x320 0x330

0x400 0x410 0x420 0x430

0x500 0x510 0x520 0x530

0x600 0x610 0x620 0x630

Figure 6.1 orientation 0

32 Directions

0x001 0x011 0x021 0x031

0x101 0x111 0x121 0x131

0x201 0x211 0x221 0x231

0x301 0x311 0x321 0x331

0x401 0x411 0x421 0x431

0x501 0x511 0x521 0x531

0x601 0x611 0x621 0x631

Figure 6.2 orientation 1

Directions 33

0x002 0x012 0x022 0x032

0x102 0x112 0x122 0x132

0x202 0x212 0x222 0x232

0x302 0x312 0x322 0x332

0x402 0x412 0x422 0x432

0x502 0x512 0x522 0x532

0x602 0x612 0x622 0x632

Figure 6.3 orientation 2

34 Directions

0x003 0x013 0x023 0x033

0x103 0x113 0x123 0x133

0x203 0x213 0x223 0x233

0x303 0x313 0x323 0x333

0x403 0x413 0x423 0x433

0x503 0x513 0x523 0x533

0x603 0x613 0x623 0x633

Figure 6.4 orientation 3

Directions 35

TEX TEX
TEX

TEX
0x000 0x010 0x020 0x030

TEX TEX
TEX

TEX
0x100 0x110 0x120 0x130

TEX TEX
TEX

TEX
0x200 0x210 0x220 0x230

TEX TEX
TEX

TEX
0x300 0x310 0x320 0x330

TEX TEX
TEX

TEX
0x400 0x410 0x420 0x430

TEX TEX
TEX

TEX
0x500 0x510 0x520 0x530

TEX TEX
TEX

TEX
0x600 0x610 0x620 0x630

Figure 6.5 orientation 0

test te
st

test

H_
_

te
st

H__ te
st

test

H_
_

te
st

H__ te
st

test

H_
_

te
st

H__ te
st

test

H_
_

te
st

H__ te
st

test

H_
_

te
st

H__ te
st

test

H_
_

te
st

H__ test

36 Directions

TE X

TE X

TE X

TE X

0x001 0x011 0x021 0x031

TE X

TE X

TE X

TE X

0x101 0x111 0x121 0x131

TE X

TE X

TE X

TE X

0x201 0x211 0x221 0x231

TE X

TE X

TE X

TE X

0x301 0x311 0x321 0x331

TE X

TE X

TE X

TE X

0x401 0x411 0x421 0x431
TE X

TE X

TE X

TE X

0x501 0x511 0x521 0x531

TE X

TE X

TE X

TE X

0x601 0x611 0x621 0x631

Figure 6.6 orientation 1

Directions 37

TEX
TEX

TEX TEX

0x002 0x012 0x022 0x032

TEX
TEX

TEX TEX

0x102 0x112 0x122 0x132

TEX
TEX

TEX TEX

0x202 0x212 0x222 0x232

TEX
TEX

TEX TEX

0x302 0x312 0x322 0x332

TEX
TEX

TEX TEX

0x402 0x412 0x422 0x432

TEX
TEX

TEX TEX

0x502 0x512 0x522 0x532

TEX
TEX

TEX TEX

0x602 0x612 0x622 0x632

Figure 6.7 orientation 2

6.4 Right-to-left typesetting

Another aspect to keep in mind when we transform is the already mentioned right-to-
left direction. We show some examples where we do things like this:

\hbox{\hbox
orientation #1

38 Directions

T E
X T E

X

T E
X

T E
X

0x003 0x013 0x023 0x033

T E
X T E

X

T E
X

T E
X

0x103 0x113 0x123 0x133

T E
X T E

X

T E
X

T E
X

0x203 0x213 0x223 0x233

T E
X T E

X

T E
X

T E
X

0x303 0x313 0x323 0x333

T E
X T E

X

T E
X

T E
X

0x403 0x413 0x423 0x433

T E
X T E

X

T E
X

T E
X

0x503 0x513 0x523 0x533

T E
X T E

X

T E
X

T E
X

0x603 0x613 0x623 0x633

Figure 6.8 orientation 3

Directions 39

{\strut abcd}}
\hbox{\hbox

orientation #1
to 15mm
{\strut abcd}}

\hbox{\hbox
orientation #1
direction 1
{\righttoleft\strut abcd}}

\hbox{\hbox
orientation #1
direction 1
to 15mm {\righttoleft\strut abcd}}

xabcdx xabcd x x abcd x x abcd x x abcd x x abcd x x abcdx x abcd x

orientation 0 orientation 2

x

abcd x x

abcd

x x ab
cd

x x ab
cd

x x ab
cd

x x ab
cd

x x

abcd x x

abcd

x
orientation 1 orientation 3

Figure 6.9 Horizontal boxes.

xabcdx xabcd x x abcd x x abcd x x abcd x x abcd x x abcdx x abcd x

orientation 0 orientation 2

x

abcd x x

abcd

x x ab
cd

x x ab
cd

x x ab
cd

x x ab
cd

x x

abcd x x

abcd

x
orientation 1 orientation 3

Figure 6.10 Vertical boxes.

6.5 Vertical typesetting

I'm no expert on vertical typesetting and have no application for it either. But fromwhat
I've seen vertically positioned glyphs are normally used in rather straightforward situa­
tions. Here Iwill just give someexamples of how transformations canbeused to achieve
certain effects. It is no big deal to make macros or use Lua to apply magic to node lists
but it is beyond this description to discuss that.

40 Directions

Before we fine tune this example we have to discuss another feature. When a orien­
tation keyword is given optionally xoffset and yoffset can be specified. These off­
sets are not taken into account when calculating dimensions. This is different from the
offsets (at the Lua end) used in glyphs because there the vertical offset is taken into ac­
count. Here are some examples of offsets in packaged lists:

\hbox
{test 1}

\hbox
orientation 0
yoffset 15pt
xoffset 150pt
{test}

\vbox
orientation 0
{\hbox{test}}

\vbox
orientation 0
yoffset -5pt
xoffset 130pt
{\hbox{test}}

\vbox
orientation 0
yoffset 2pt
{\hbox{test}}

test 1H__ test
H__testH____V

testH__
__VtestH____V

In order to demonstrate some hacking, we first define a font that supports chinese
glyphs:

\definefont[NotoCJK][NotoSansCJKtc-Regular*default @ 24pt]

Weput some text in a horizontal box; it doesn't show up in verbatim but you get the idea
nevertheless:

\hbox{\NotoCJK }

Directions 41

通用规范汉字表H__

Let's now rotate this line of text:

\hbox orientation 1 {\NotoCJK }

The result is shown in awhile. Becausewe also need to rotate the glyphswe deconstruct
the box.

\hbox orientation 1 \bgroup \NotoCJK %
\vbox {\hbox {}}%
\vbox {\hbox {}}%
\vbox {\hbox {}}%
\vbox {\hbox {test}}%
\vbox {\hbox {}}%
\vbox {\hbox {}}%
\vbox {\hbox {}}%
\vbox {\hbox {}}%

\egroup

Next we rotate the glyphs.

\hbox orientation 1 \bgroup \NotoCJK %
\vbox orientation 3 {\hbox {}}%
\vbox orientation 3 {\hbox {}}%
\vbox orientation 3 {\hbox {}}%
\vbox orientation 0 {\hbox {test}}%
\vbox orientation 3 {\hbox {}}%
\vbox orientation 3 {\hbox {}}%
\vbox orientation 3 {\hbox {}}%
\vbox orientation 3 {\hbox {}}%

\egroup

This still looks bad so we kick in some offsets and glue:

\dontleavehmode\hbox orientation 1 \bgroup \NotoCJK
\vbox

orientation 0 yoffset -.1ex
{\hbox orientation 3 {}}\hskip.2ex

\vbox
orientation 0 yoffset -.1ex
{\hbox orientation 3 {}}\hskip.2ex

\vbox

42 Directions

orientation 0 yoffset -.1ex
{\hbox orientation 3 {}}\hskip.6ex

\vbox
{\hbox {test}}\hskip.2ex

\vbox
orientation 0 yoffset -.1ex
{\hbox orientation 3 {}}\hskip.2ex

\vbox
orientation 0 yoffset -.1ex
{\hbox orientation 3 {}}\hskip.2ex

\vbox
orientation 0 yoffset -.1ex
{\hbox orientation 3 {}}\hskip.2ex

\vbox
orientation 0 yoffset -.1ex
{\hbox orientation 3 {}}\hskip.2ex

\egroup

Now we're ready to compare the results

通
用

规
范

汉
字

表

H__

通H____V
用H____V
规H____V
test

H__
__V

范H____V
汉H____V
字H____V
表H____V

H__

通H__
__V

用H__
__V

规H__
__V

test
H__
__V

范H__

__V

汉H__

__V

字H__

__V

表H__

__V

H__

通
H__
__V

用
H__
__V

规
H__
__V

test
H__
__V

范

H__
__V

汉

H__
__V

字

H__
__V

表

H__
__V

H__

通
用

规
范

汉
字

表
通

用
规

test范
汉

字
表

通
用
规test

范
汉
字
表

通
用
规test

范
汉
字
表

1 2 3 4 1 2 3 4

This could of course also be done with traditional kerns, raising and/or lowering and
messing aroundwith dimensions. It's just thatwhenmanipulating such rather complex
constructs a little help (and efficiency)makes a difference, also at the Lua end. Of course
one can argue the result but all is programmable in the end.

Directions 43

6.6 Considerations

Just in case you wonder if using these offsets is better than using normal kerning and
shifting, in practice offsets are notmore efficient. Let's compare the alternatives. We go
frommost to least efficient.

\setbox\scratchbox\hpack{}
\boxxoffset\scratchbox\scratchdimen
\boxyoffset\scratchbox\scratchdimen

This sets the offsets and by setting themwe also trigger the transform. Scanning is fast
and so is setting them. One million times expanding this takes (as reference) 0.73 sec­
onds onmy current machine.

\setbox\scratchbox\hpack
orientation \zerocount
xoffset \scratchdimen
yoffset \scratchdimen
{}

This takes a bit more time, 1.11 seconds, because the keywords have to be scanned
which happens on a token by token base.

\setbox\scratchbox\hpack{}
\scratchheight\ht\scratchbox
\scratchdepth\dp\scratchbox
\setbox\scratchbox\hpack
{\kern\scratchdimen
\raise\scratchdimen\box\scratchbox
\kern\scratchdimen}

\ht\scratchbox\scratchheight
\dp\scratchbox\scratchdepth

Now we're up to 1.69 seconds for the million expansions. Not only do we have some
parsing going on, but we also have assignments and extra packing, whichmeans calcu­
lations taking place.

\setbox\scratchbox\hpack{}
\scratchwidth\wd\scratchbox
\scratchheight\ht\scratchbox
\scratchdepth\dp\scratchbox
\setbox\scratchbox\hpack
{\kern\scratchdimen

44 Directions

\raise\scratchdimen\box\scratchbox}
\wd\scratchbox\scratchwidth
\ht\scratchbox\scratchheight
\dp\scratchbox\scratchdepth

This variant is about as fast, as I measured 1.72 seconds. So, compared to the 0.73 sec­
onds for the first variant, is this better? Does it helpwhenwe look at our existingmacros
and adapt them?

Normally we don't have an empty box and normally we use \hbox because we want
the content to be processed. And a million times building a list and processing con­
tent (whichmeans runs over the list) will make the differences in timing become noise.
Add to that garbage collection (in Lua) and memory management (in TEX) and it even
becomes unpredictable. Seeing differences of a factor two in such timings is no excep­
tion.

Another aspect is the parsing. When these commands are wrapped in macros we're
talking expanding tokens which is pretty fast. When it comes from the input file a con­
version to tokens has to happen too. And we will never see millions of such sequences
in a source file.

The backend also plays a role. Handling a kern or shift is more efficient than analyzing
transforms (andoffsets) especially in a Lua variant. But on the other hand,wedon't have
an extra wrapping in a box so that actually saves work.

So, before a ConTEXt user thinks “Let's updatemacros and change policy.”, just consider
staying with proven good old TEX approaches. These features are mostly meant for ef­
ficient low level manipulations as discussed in relation to for instance handling scripts.
In the rather large ConTEXt code base there are really only a few places where it will
make code look nicer, but there I don't expect an impact on performance.

6.7 Integration

How these mechanisms are used depends on ones needs and the macro package used.
It makes no sense to cook up generic solutions because integration in amacro package
is too different. But anyhow we'll give an example of some (definitely non optimized)
Lua magic.

\startluacode
local glyph_id = node.id("glyph")
local fontdata = fonts.hashes.identifiers -- assumes generic font
loader

Directions 45

local function is_vertical(c)
-- more ranges matter but this will do here
return c >= 0x04E00 and c <= 0x09FFF

end

function document.go_vertical(boxnumber)
local box = tex.getbox(boxnumber)
local n = box.list
while n do
if n.id == glyph_id and is_vertical(n.char) then
local o = .2 * fontdata[n.font].parameters.xheight
local prev, next = n.prev, n.next
n.next, n.prev = nil, nil
local l = nodes.new("hlist")
l.list = n
local w, h, d = n.width, n.height, n.depth
if prev then

prev.next, l.prev = l, prev
else

box.list = l
end
if next then

l.next, next.prev = next, l
end
l.width, l.height, l.depth = h + d + o, w, 0
l.orientation = 0x003
l.xoffset, l.yoffset = o/2, -o/2
l.hoffset, l.doffset = h, d - o
n = next

else
n = n.next

end
end

end
\stopluacode

We will use some other magic that we won't discuss here which relates to handling
scripts. For Hangul one needs to inject breakpoints and if needed also glue between
characters. The script environment does this. We also need to bump the interline spac­
ing. First we define a regular text helper and an auxiliary box.

\unexpanded\def\stripe#1%

46 Directions

{\hbox orientation 0 yoffset .2\exheight{\strut #1}}

\newbox\MyVerticalBox

Next we fill that box with some mix of text (I have no clue what, as I just copied it from
some web page).

\setbox\MyVerticalBox\hbox \bgroup
\NotoCJK
\startscript[hangul]%
\dorecurse{20}{ \stripe{test #1} }%
\unskip % remove last space
\stopscript

\egroup

We then apply the Luamagic to the result:

\ctxlua{document.go_vertical(\number\MyVerticalBox)}

and finally assemble the result:

\ruledvbox orientation 1 to \textwidth \bgroup
\setupinterlinespace[40pt]
\hsize .95\textheight
\unhbox\MyVerticalBox
\vfill

\egroup

The result is shown in figure 6.11. Of course this approach is not that user friendly but it
just serves as example. In ConTEXt we can follow a different route. First we define a new
font feature. It is probably clear that we need some code elsewhere that does something
useful with this information, but I will nos show this as it is rather ConTEXt dependent.

\definefontfeature
[vertical]
[vertical={%
orientation=3,%
down=.1,%
right=.1,%
ranges={%
cjkcompatibility,%
cjkcompatibilityforms,%
cjkcompatibilityideographs,%

Directions 47

cjkcompatibilityideographssupplement,%
cjkradicalssupplement,%

% cjkstrokes,%
cjksymbolsandpunctuation,%
cjkunifiedideographs,%
cjkunifiedideographsextensiona,%
cjkunifiedideographsextensionb,%
cjkunifiedideographsextensionc,%
cjkunifiedideographsextensiond,%
cjkunifiedideographsextensione,%
cjkunifiedideographsextensionf,%

}%
}]

We apply this feature to a font:

\definefont
[NotoCJKvertical]
[NotoSansCJKtc-Regular*default,vertical @ 24pt]

\setbox\MyVerticalBox\hbox\bgroup
\NotoCJKvertical
\startscript[hangul]%
\dorecurse{20}{ \stripe{test #1} }%
\unskip
\stopscript

\egroup

\ruledvbox orientation 1 to \textwidth \bgroup
\setupinterlinespace[40pt]
\hsize .95\textheight
\unhbox\MyVerticalBox
\vfill

\egroup

The result is shown in figure 6.12. Again this approach is not that user friendly but it
already is a bit easier.

48 Directions

通
用
规
范
汉
字
表test1

通
用
规
范
汉
字
表test2

通
用
规
范
汉
字
表test3

通
用
规
范
汉
字
表test4

通
用
规
范
汉
字
表test5

通
用
规
范
汉
字
表test6

通
用
规
范
汉
字
表test7

通
用
规
范
汉
字
表test8

通
用
规
范
汉
字
表test9

通
用
规
范
汉
字
表test10

通
用
规
范
汉
字
表test11

通
用
规
范
汉
字
表

test12

通
用
规
范
汉
字
表test13

通
用
规
范
汉
字
表test14

通
用
规
范
汉

字
表test15

通
用
规
范
汉
字
表test16

通
用
规
范
汉
字
表test17

通
用
规

范
汉
字
表test18

通
用
规
范
汉
字
表test19

通
用
规
范
汉
字
表test20

Figure 6.11 Some vertical magic using manipulations.

Directions 49

通
用
规
范
汉
字
表

test1

通
用
规
范
汉
字
表

test2

通
用
规
范
汉
字
表

test3
通
用
规
范
汉
字
表

test4

通
用
规
范
汉
字
表

test5

通
用
规
范
汉

字
表

test6

通
用
规
范
汉
字
表

test7

通
用
规
范
汉
字
表

test8

通
用
规

范
汉
字
表

test9

通
用
规
范
汉
字
表

test10

通
用
规
范
汉
字
表

test11

通
用
规
范
汉
字
表

test12

通
用
规
范
汉
字
表

test13

通
用
规
范
汉
字
表

test14

通
用
规
范
汉
字
表

test15

通
用
规
范
汉
字
表

test16

通
用
规
范

汉
字
表

test17

通
用
规
范
汉
字
表

test18

通
用
规
范
汉
字
表

test19

通

用
规
范
汉
字
表

test20

Figure 6.12 Some vertical magic using fonts.

50 Directions

Performance 51

7 Performance

7.1 Introduction

Those who've read the other documents describing the development of LuaTEX, know
that performance is always on my radar. A decent performance is a must for a use­
able workflow, especially because typesetting is amulti-pass process.26 One page refer­
ence changing from two digits to three digits can influence whatever follows and we're
not only talking of a different page break, even a change in line breaks can have con­
sequences. The core engine cannot be made much faster. When the (single core) run
has the whole cpu available not much can be gained. But multiple processes are run
at the same time, the cache has to be shared and misses can become an issue. So, ef­
ficiency of code is still important. Occasionally a (tiny) improvement can be made, but
only the accumulation of such improvements can make a dent. The feeling is that over
timeLuaTEXhasnot becomeslowerbutwekeepaneyeonpossible other improvements.
The memory footprint is also something to keep an eye on.27

The more we delegate to Lua, the less we can benefit from for instance cpu improve­
ments: in that case the Lua virtual machine is the bottleneck. And there is not much
we can do about that. This also means that when we delegate more to Lua we sacrifice
performance. Sometimes things can be done more efficient in Lua, but those are often
tasks that are not performed frequently. That said, I'm convinced most of the ConTEXt
code is quite efficient and not much can be gained.

The biggest change in LuaMetaTEX is the backend. We gain some efficiency in terms of
speed, performanceandoutput in somecases, while in other caseswe loose abit. On the
average the small performance hit is bearable. Because ConTEXt users don't complain
about performance I think that I have some slack here.

7.2 An example

There are a few places where LuaTEX looks ahead to check something and goes back
when the condition is not met. Take these:

26 I'm often baffled by reports of (non-ConTEXt) LuaTEX users about the performance of LuaTEX. It seems
easier to blame an engine than ones ownmacros or setup andmost of those testsmake no sense anyway.
Believe it or not, but if performance of ConTEXt MkIV was much worse than MkII (using pdfTEX or X ETEX)
it would have backfired and the project would never have taken of. Just think of this: would Hans really
use LuaTEX and continue with development if it were that slow?

27 Of course this is all becoming less relevant now that having e.g. a browser open in the backgroundwill set
you backwith a constant 5–10%cpu load and slowly accumulating gigabytememory usage. That actually
was something I had to keep in mind when running LuaMetaTEX benchmarks.

52 Performance

\hbox {...}
\hbox to 10cm {...}
\hrule width 10cm height 10cm \relax
\dimen0 =10cm
\dimen0 10cm
\mydimen 10cm
\toks0 {...}
\toks0 \toks2

Spaces and sometimes \relax after the trigger (\hbox, \dimen, etc.) are skipped and in
some case there can be an optional = sign. So, there are quite some cases where there is
first a check for anoptional equalwhich itself canbeprecededbyoptional spaces. When
there is no equal sign the last seen token is pushed back into the scanned which effec­
tively means that a temporary token is allocated, and a one token list is pushed on the
input stack. Then scanning goes on. The same can happen with the open brace in case
of a token list assignment: it gets pushed back and the content scanned checks it again.
In the case of keywords something similar takes place, because here LuaTEX checks ex­
plicitly for e.g. type width, and when it is not found again it pushes back consumed to­
kens and checks for the width. In the case of the specifiers of the box we don't need to
check at all when we have an opening brace. In the follow up, when the orientation
keyword was added, and the dir and bdirwere replaced by direction a little bit more
was optimized.

In LuaTEX this code comes from pdfTEXwhich takes if from TEX, but in both cases some
codesideeffects occur fromthe transition fromPascal toC.But, inLuaTEXwestick to the
C, so we can try to get rid of these artifacts. During the last years, especially when addi­
tional keywordswere introduces (for instance for attributes) already some optimization
took place. In the follow up again some optimizations were applied, for instance quite
often we can combine the check for an equal sign with skipping the spaces.

The gain is not spectacular but as all small bits add up eventually it is measurable in
a complex run. What definitely is true, is that we avoid some memory access which in
turnmight pay back whenmultiple runs happen in parallel.

Of course one can argue that such optimizations are to be avoided but as long as they
don't obscure the code, it's okay. After all, just as one optimizes for instance a compres­
sion algorithm or search routine, there is no reason not to mildly optimize some of the
critical code in LuaTEX. And in ConTEXt we have plenty of opportunities to check if that
works out well. At some point somemight be retrofit into LuaTEX 1.2 (or later).28

28 But it makes less sense now that there are variants popping up that might depend on the stable base.

Cleanup 53

8 Cleanup

8.1 Introduction

OriginalTEX isa literateprogram,whichmeans that codeanddocumentationaremixed.
This mix, called a web, is split into a source file and a TEX file and both parts are
processed independently into a program (binary) and a typeset document. The evo­
lution of TEX went through stages but in the end a Pascal web file was the result. This
fact has lead to themore or less standardweb2c compilation infrastructurewhich is the
basis for TEXLive.

So, TEX is a woven program and this is also true for the starting point of LuaTEX: pdfTEX.
But, because we wanted to open up the internals, and because Lua is written in C, al­
ready in an early stage Taco decided to start from the C translated from Pascal. A per­
manent conversion was achieved using additional scripts and the original documenta­
tion stayed in the source. The one large file was split intomore logical smaller parts and
combined with snippets from Aleph.

After we released version 1.0 I went through the documentation parts of the code and
normalized that a bit. The at that moment still sort of simple web files became regular
C files, and the idea was (and is) that at some point it should be possible to process the
documentation (using ConTEXt).

Over time the C code evolved and functions ended up in places that at that made most
sense at that moment. After the previously described stripping process, I decided to go
through the files and see if a bit of reshuffling made sense, mostly because that would
make documenting easier. (I'm not literate enough to turn it into a proper literate pro­
gram.) It was also a good moment to get rid of unused code (not that much) and un­
usedmacros (somemore than expected). It alsomade sense to change a few names (for
instance to avoid potential future clashes with lua_ core functions). However, all this
takes quite some careful checking and compilation runs, so I expect that after this first
cleanup, for quite some time stepwise improvements can happen (especially in adding
comments).29 30

Oneof the things that I keep inmindwhendoing this, is thatweuseLua. This component
compiles on most relevant platforms and as such we can assume that LuaMetaTEX also

29 This is and will be an ongoing effort. It probably doesn't show, but getting the code base in the state it is
in now, took quite some time. It probably won't take away complaints and nagging but I've decided no
longer to pay attention to those on the sideline.

30 In the endnotmuch pdfTEX andAleph code is present in LuaMetaTEX, but thesewere useful intermediate
steps. Nomatter how lean LuaMetaTEX becomes, I have a weak spot for pdfTEX as it always served us well
and without it TEX would be less present today.

54 Cleanup

should (and canbe)made a bit less dependent on oldmechanisms that are used in stock
LuaTEX. For instance, we don't come from Pascal any longer but there are traces of that
transition still present. We also don't use specific operating system features, and those
that we use are also used in Lua. And, as we try to share code we can also delegate some
(more) to Lua. For instance file related code is not dependent on other components in
the TEX infrastructure, but maybe at some point the runtime loadable kpse library can
kick in. So, basically the idea is to sort of go bare bone first and later see how with the
help of Lua we can get bring some back. For the record: this is not needed for ConTEXt
as it already has this interface to tds.31

8.2 Motivation

The LuaTEX project started as an experiment of adding Lua to pdfTEX, which was done
by Hartmut and in order to avoid confusion we named it LuaTEX. When we figured out
that there this had possibilities we decided to go further and Taco took the challenge to
rework the code base. Part of that work was sponsored by Idris' Oriental TEX project. I
have fond memory of the intensive and rapid development cycles: online discussions,
binaries goingmy directions, experimental ConTEXt code going the otherway. Whenwe
had reached a sort of stable state but at some point, read: usage in ConTEXt had become
crucial, a steady further development started, where Taco redid MetaPost into mplib,
funded by user groups. At some point Luigi took over from Taco the task of integration
of components (also into TEXLive), introduced LuaJIT into the binary, conducted the
(again partially funded) swiglib project, followed by support for ffi. Awhile later Imyself
started messing around in the code base directly and continued extending the engine
and Lua interfaces.

I couldworkon thisbecause Ihavequite some freedomat theplacewhere Iwork. Weuse
(part of) ConTEXt for some projects and especially in dealing with xml we could benefit
fromLuaTEX. Itmust be said that (long running) projects like these never pay off (on the
contrary, they cost a lot in terms ofmoney and energy) so it's quite safe to conclude that
LuaTEXdevelopment is to a large extend a (manymanyears)work of love for the subject.
I guess that no sane company will do (permit) such a thing. It is also for that reason that
I keep spending time on it, and as a simplification of the code base was always one of
my dreams, this is what I spendmy time on now. After all, LuaTEX is just juggling bytes
and as it is written in C, and has no graphical user interface or complex dependencies, it
should be possible to have a relative simple setup in terms of codefiles and compilation.
Of course this is alsomade possible by the fact that I can use Lua. It's also why I decided
to “Just do it”, and then “Let's see where I end up”. Nomatter how it turns out, it makes
a good vehicle for further development and years of fun.

31 This has been removed frommy agenda.

Cleanup 55

8.3 Files

After a decade of adding andmoving around code it's about time to reorganize the code
a bit, but we do so without deviating too much from the original setup. For instance we
started out with a small number of Lua interface macros and these were collected in a
few files, and defined in one h file, but it made sense to have header files alongside the
libraries that implement helpers. This is a rather tedious job but with music videos or
video casts on a second screen it is bearable.

When I reached a state where we only needed the LuaTEX files plus the minimal set of
libraries I tried to get rid of directories in the source tree that were placeholders, but
with automake files, like those for pdfTEX and X ETEX. After a couple of attempts I gave
up on that because the build setup is rather hard coded for checking them. Also, there
were some (puzzling) dependencies in the configuring on Omega files as well as some
dvi related tools. So, that bit is for later to sort out.32

8.4 Command line arguments

Asweneed to set up a backend anddeal with font loading in Lua, we can aswell delegate
some of the command line handling to Lua as well. Therefore, only the a limited set of
options is dealt with: those that determine the startup and Lua behavior. In principle
we can even get rid of all and always use a startup script but for now it makes sense to
not deviate too much from a regular TEX run.

At the time of this writing some code is still in place that is a candidate for removal. For
instance, using the & to define a format file has long be replaced by --fmt. There are
sentimental reasons for keeping it but at the same time we need to realize that shells
use these special characters too. A for me unknown (or forgotten) feature of prefixing
a jobname with a * will be removed as it makes no sense. There is some MSWindows
specific last resort code that probablywill go too, unless I can figure out why it is needed
in the first place.33

Now left with a very simple set of command line options it also makes sense to use a
simple option analyzer, so that was a next step as it rid us of a dependency and produces
less code.

So, the option parser has now been replaced by a simple variant that is more in tune
with what will happen when you deal with options in Lua: no magic. One problem is

32 Of course later the decisionwasmade to forget about usingautotools and go for an as simple as possible
cmake solution.

33 Intercepting these symbols has been dropped in favor of the command line flags.

56 Cleanup

that TEX's first input file is moved from the command line to the input buffer and a an
interactive session is emulated. As mentioned before, there is some extra &, * and \\
parsing involved. One can wonder if this still makes sense in a situation where one has
to specify a format and Lua file (using --fmt and --ini) so thatmight as well be redone
a bit some day.34

8.5 Platforms

When going through the code I noticed conditional sections for long obsolete platforms:
amiga, dos and djgpp, os/2, aix, solaris, etc. Also, with 64 bit becoming the stan­
dard, it makes sense to assume that users will use a modern 64 platform (intel or arm
combined with MS Windows or some popular Unix variant). We don't need large and
complex codemanagement for obscure platforms and architectures simply becausewe
want to proof that LuaMetaTEX runs everywhere. With respect to MSWindows we use a
cross compiler (mingw) as reference but native compilation should be no big deal even­
tually. Wecancross that bridgewhenwehave a simplified compilation set up. Rightnow
it doesn't make sense to waste time on a native Microsoft compilation as it would also
pollute the code with conditional sections. We'll see what happens when I'm bored.35

8.6 Stubs

A ConTEXt run is managed bymtxrun in combination with a specific script

mtxrun --script context

On windows, we use a stub because using a cmd file create an indirectness that is not
seen as executable and therefore in other command files needs to be called in a special
way to guarantee continuation. So, there we have a small binary:

mtxrun.exe ...

that will call:

luatex --luaonly mtxrun.lua ...

And when the stub has a different name than mtxrun, say:

34 In the end only these explicit command line options were supported.
35 In the meantime no effort is made to let the source compile otherwise than with the cross compiler. Best

is to keep the code as clean as possible with respect to conditional code sections. So don't bothermewith
patches.

Cleanup 57

context.exe ...

it effectively becomes:

luatex --luaonly mtxrun.lua --script context ...

Because the stripped down version assumes some kind of initializations anyway a
small extension made it possible to use LuaMetaTEX as stub too. So, when we rename
luametatex.exe to mtxrun.exe (on Unix we don't use a suffix) it will start up as Lua
interpreter when it finds a script with the name mtxrun.lua in the same path. When
we rename it to context.exe it will search for context.lua and all that that script has
to do is this:

arg[0] = "mtxrun"

table.insert(arg,1,"mtx-context")
table.insert(arg,1,"--script")

dofile(os.selfpath .. "/" .. "mtxrun.lua")

So, it basically becomes a call tomtxrun, butwe stay in LuaMetaTEX. Becausewewant an
isolated run this will launch LuaMetaTEX againwith the right command line arguments.
This sounds inefficient but because we have a small binary this is no real issue, and as
that run is isolated, it cannot influence the caller. The overhead is really small: on my
somewhat older laptop it's .2 seconds, but we had that management overhead already
for decades, so no one bothers about it. On all platforms using symbolic links works ok
too.

8.7 Global variables

There are quite a bit global variables and function in the code base, but in the process
of opening up I got rid of some. The cleanup turned somemore into locals which saved
executable bytes (keep in mind that we also use the engine as Lua interpreter so, the
smaller, the more friendly).36 This is work in progress.

8.8 Memory usage

By going over all the code a couple of times, I was able to decrease the amount of used
memory a bit as well as avoid somememory allocations. This has no consequences for
performance but is nicerwhenmultiple runs at the same time (e.g. on virtualmachines)

36 Later the global variables were collected in so called C structs.

58 Cleanup

have to compete for resources.37

8.9 METAPOST

The current code base doesn't have that many files. We can imagine that, when Lua
can be compiled on a platform, that compiling LuaMetaTEX is also no that complicated.
However, the rather complexbuild infrastructuredemonstrates the opposite. Oneof the
complications is that mplib is codes in cweb and that needs some juggling to get C. The
process has quite some dependencies. There are some upstream patches needed, but
for now occasionally checking with the upstream sources used for compiling mplib in
LuaTEX works okay.38

As LuaMetaTEX is also used for experiments we use a copy of the Lua library interface.
That way we don't interfere with the stable LuaTEX situation. When we play with exten­
sions, we can always decide to backport them, once they are found useful and in good
working order. But, as that interface was just C this was trivial.

8.10 Files

In a relative late stage I decided to cleanup some of the filename handling. First I got rid
of the area, name and ext decomposition and optional recomposition. In the original
engine that goes through the string pool and although there is some recovery in the end,
withmanyfiles and fonts being used, the pool can get exhausted. For instancewhen you
have hundreds of thousands of \font \foo = bar kind of definitions, each definition
wipes out the previous entry in the hash, but its font name is kept in the string pool.
I got rid of that side effect by reusing strings but in the end decided to avoid the pool
altogether. It was then a small step to also do that for other filenames. In the process I
also decided that it made no sense to keep the code around that reads a filename from
the console: we now just quit. Restarting the program with a proper filename is no big
deal today. I might do some more cleanup there. In the end we can best use a callback
for handling input from the console.

37 I will probably have to spend somemore time on this in order to reach a state that I'm satisfied with.
38 Later I decided to cleanup themplib code: unused font related codewas removed, the PostScript backend

was untangled, the translation from cweb to C got done by a Lua script, aspects like error reporting and
io were redone, and in the end some new extensions were added. Some of that might trickle back to th
original, as long as it doesn't harm compatibility; after all MetaPost (the program) is standardized and
considered functionally stable.

Rejected 59

9 Rejected

9.1 Introduction

During the development of LuaTEX some extensions were considered but rejected after
some experiments. I already forgot about some that were tried the last decade. I will not
discuss what has been added already to LuaTEX.

9.2 Conditionals

The LuaTEX manual describes a few conditional primitives that were added. One thing
I played with was a native definer, think of \idef but in the end rejected it, because
in practice it was seldom needed. Another useful one would be \ifnothing but the
current implementation of \ifx is already pretty efficient so there is nothing to gain
here. Another rejected one is \ifxcase which takes a token and compares that with a
sequence, like

\ifxcase\foo\alpha
\or\beta
\or\gamma
\else
\fi

As this was never available, in ConTEXt already different strategies were followed so I
could only find a few placeswhere this couldmake codemore readable. But who knows,
I might change my mind when I split the code base and can adapt code accordingly al­
though it doesn't make much sense for the more high level modules because it would
only affect a few lines andmaintaining duplicate files is no fun.39

9.3 Dimensions

A primitive that returns the height plus depth wouldmake sense (hd) but one can easily
define one and the gain can be neglected. So, for now this has been rejected. Also, one
can use the token scanners to implement that kind of primitives but of course that then
does have a penalty in terms of performance.40

39 But playing with extensions that make for better code is fun.
40 Okay, in the end I decided to just add a primitive for this, but only as part of a larger set of box related

primitives.

60 Rejected

9.4 The something

I played a bit with intercepting \the so that we could define commands that also re­
spond to this expander. It didn't work out well because full expansion happens, even
with protected macros:

\protected\def\foo{...] \the\foo

We just have to accept this and it's no big deal.

9.5 Primitives

Occasionally I'm wondering if we should have a way to flag primitives and macros as
being frozen but in the end it might not pay off. At some point I decided that at least
the \primitive and \ifprimitive could go away as they are not really working as ex­
pected. It's better to have nothing than something bad. Also, we can easily clone the
whole set of primitives in a new namespace with Lua if we want.41

41 But . . . in the end we got something else back.

Whatsits 61

10 Whatsits

Whatsits provide the natural extension mechanism for TEX. In pdfTEX there are plenty
such whatsits, for instance for pdf annotations. In LuaTEX this mechanism was reor­
ganized so that the code was better isolated. In the first versions of LuaMetaTEX only a
handful was left. Stepwise somewere removed and in the endwe could stick to only one
general whatsit because one can implement the few needed to be compatible with TEX.

We started out with this set of whatsits:

open open a file for writing (delayed)
write write to an open file (or terminal otherwise)
close close an opened file
special write some literal pdf code to the output file
user store and retrieve data in a node
latelua execute code delayed (in the backend)
literal write some literal pdf code to the output file, controlled by a mode
save push the transformation state
restore pop the transformation state
matrix apply a transformation (rx sx sy ry)
savepos register a position to be queried afterwards (x y)

The \openout, \write and \closeout primitives relate to the first three but they can
be prefixed with \immediate in which case they don't end up as whatsits but are ap­
plied directly. The special is actually meant for dvi while the \(pdf)literal is for
pdf output. The first four are available in regular TEX.

The last four are dealt with exclusively in the backend and by removing the backend
they basically became no-ops. I kept them for a while but in the end decided to kick
them out. Instead a generic whatsit was introduced that could be used as signal with
the same function. That simple whatsit only has a subtype (and of course optionally
attributes). And, as ConTEXt has its own backend, we can intercept them as we like. The
saving in code is not spectacular but keeping it around (basically doingnothing) neither.
The impact on ConTEXt was not that large because for instance saving positions is done
differently and transformations are encapsulated in a few helpers that could easily be
adapted.

From there it was a small step to also remove the literal whatsit, so then we had five
whatsits left, plus the generic one. I then entered sentimental mode: should we keep
the first four or not. Of coursewewant to be TEX compatible but we can remove the code
andprovide a compatible replacement usingmacros andour own simplewhatsit nodes.
That keeps all the housekeeping at the Lua end, simplifies the C, and we're still TEX.

62 Whatsits

Of course, once we remove these and only have the delayed Lua whatsit and user what­
sits left, we can as well replace these too. In LuaTEX user nodes are actually not dealt
with in the backend. One can create them at the Lua end and query them in callbacks.
The TEX machinery just ignores them, like any whatsit. In retrospect they could have
been first class nodes, butmaking themwhatsits was wise because that way they can be
ignored consistently when needed.

So, in the end all we need is a simple whatsit. As I removed the subtypes stepwise there
was an intermediate mix of code to recognize simple whatsits from core whatsits but
that distinction went away. Doing this kind of refactoring is best done stepwise be­
cause that way I can compile some large documents and see if things break. As a conse­
quence again some code could be simplified as we basically no longer have extensions.
Of course at theConTEXt end the removedprimitives had to be addedbut that didn't take
much effort. The binary shrunk some 30K but (a small amount of) Lua code was added
to provide a compatible functionality (not that we use it).

Feedback 63

11 Feedback

11.1 Introduction

As LuaTEX 1.10 is basically frozen in terms of functionality not much can or will be
added. But it made sense to some of the (small) improvements that were made in
LuaMetaTEX got feedback to LuaTEX (or will be at some point). Because we are also ex­
perimenting, there can be a delay.42

Of course the question is “Should we feedback (retrofit) at all?”. I'm still not sure about
it. There should be a good reason to do it because it can harm stability of the original.
At some point ConTEXt can default to the follow up in which case testing the original
becomes more difficult for specific features. I never ran into (useful) demands for ex­
tensions so retrofit can have a low priority.

Another factor is that when distributions start adding stuff to stock LuaTEX on top of
what is our default (after all isn't that what happenswith open source projects), itmakes
not much sense to look back and retrofit new functionality, because there is not much
change that we will use such a variant ourselves and we could introduce errors in the
process. Providing bloatware is not our objective.

Related to this is the question if we should always go into LMTXmode and I'm no longer
sure if we shouldn't do that. We can use plain TEX with the regular LuaTEX backend and
just forget about some generic framework. The danger of it backfiring is just too large.
It is a waste of time and will keep us back.

One reason for a dual mode is that it made possible some timings in order to determine
bottlenecks. I did some rough tests and that is enough to get the picture. Take this doc­
ument:

\starttext
\dorecurse

{1000}
{\samplefile{sapolsky} {\bf\samplefile{sapolsky}}\par}

\stoptext

Using regular LuaTEX this takes on an Intel i7-3840mobile processor about 9.3 seconds
while LuaMetaTEX needs 11.2 seconds, so we loose time. This is because we have only
text so the native backend wins on piping out the page stream. On my domotica fitlet

42 Later chapters mention a fewmore possible extensions.

64 Feedback

with an low power AMD A10 processor running linux the runtime goes from 25.4 sec­
onds to 27.8 seconds, so again a slow down.

But this is not a typical document! Add a bit more spice and the numbers reverse.
For processing the LuaTEX manual stock LuaTEX takes 12.6 seconds on the Intel and
LuaMetaTEX needs 12.4 seconds. On the AMD runtime goes from 35.1 seconds down to
32.8 seconds. So here we win some.

These are rough timings and a few weeks later we go these timings on the Intel:43

engine backend runtime LuaJIT vm

LuaTEX 1.10 normal 12.4 9.9
LuaTEX 1.10 lmtx 12.7 9.8
LuaMetaTEX 2.00 lmtx 12.2 9.3

BecausewehavemoreLua code active, wepay apricewith LMTXbutnot onLuaMetaTEX
(as of now, later we will see a performance bump). The gain when using the LuaJIT vir­
tual machine is more noticeable. And, there is probably somemore to gain. In case you
wonder why this matters: think of the low power AMD processor. When we have to re­
place computers we can consider using low power ones, with weaker processors, less
memory, and less cache. For the record: I use cross compiled MingW binaries on win­
dows (they are quite a bit faster than nativewindows binaries). And the binaries are less
than 3MB (small files and less resources are nice when running on remote file systems).

This all indicates that we have no real reason to stick to a mixed approach: if we want
we can just switch to always LMTX and never look back.

11.2 Expressions

Whenwriting an article that involved using a\numexpr it struckme thatwe should have
a proper integer division. Just compare these:

\the\numexpr 13/2\relax

and

\scratchcounter13 \divide\scratchcounter 2 \the\scratchcounter

This gives 7 and 6. We now also have:

\the\numexpr 13:2\relax

43 On the more modern gaming laptop of a nephew wemeasured half these numbers.

Feedback 65

which gives 6. I considered using a double slash (as in Lua) but using a colon is easier.
Of course those who make that an active character are probably toast. This is an easy
patch but it's hard to predict possible side effects outside ConTEXt.

11.3 Looking ahead

Sometimes you want to look ahead and act upon the presence of a specific character.
Implementing that in pure TEX primitives is no big deal, but especially when you want
to ignore leading spaces it leads to rather verbose code when tracing is enabled. Out of
curiosity I played with a primitive that can help us out. Although there is also a perfor­
mance gain, in practice one will not notice that unless such a feature is usedmillions of
times, but in that case the gain is noise compared to the rest of the run.

\def\foo{\futureexpand/\fooyes\foonop}
\def\fooyes/#1/#2{[#1:#2]}
\def\foonop #1{(#1)}

\foo/yes/{one}\quad
\foo {two}

Weeither expand \fooyes or \foonop, depending on the presence of a / after \foo. So,
the result is:

[yes:one] (two)

The next examples demonstrates two variants. The second one doesn't inject spaces
back into the stream.

\def\f<{\futureexpand/\y\n}
\def\y/#1/{#1}
\def\n {}

(\f</yes/>)\quad
(\f< >)

Watch the space in the \n case.

(yes>) (>)

\def\f<{\futureexpandis/\y\n}
\def\y/#1/{#1}
\def\n {}

(\f</yes/>)\quad

66 Feedback

(\f< >)

This time the space is not injected (is is short for ignore spaces).

(yes>) (>)

I will probably use this one in ConTEXt, but as said, not for performance reasons but
because it reduces code and therefore tracing.44

11.4 Checking numbers an dimensions

The ConTEXt user interface often uses parameters that take keywords as well as a num­
ber or dimension. In practice it has never been an issue to check for that but there are
a few cases where we'd like to be a bit more flexible.

\doifelsenumber{123999999999999999}YN
\doifelsenumber {123}YN
\doifelsenumber {A}YN
\doifelsenumber {\char123}YN
\doifelsenumber {\toks123}YN
\doifelsenumber{123\scratchcounter}YN

\doifelsedimension{123999999999999999pt}YN
\doifelsedimension {123pt}YN
\doifelsedimension {A}YN
\doifelsedimension {\char123}YN
\doifelsedimension {\toks123}YN
\doifelsedimension {123\scratchdimen}YN

This typesets:

N Y N NN Y
N Y N NN Y

especially the 123\scratch... checking is tricky. For that reason we now have two
new built-in checkers. Again, performance is not one of the arguments, because these
checks are not much faster than what we have already, they are just a bit more robust
for weird cases. A possible use of the primitives is:

\ifdimen123\or

44 In the ConTEXt code base there are several places where less code takes precedence over efficiency. But
in all cases extensive tests were done to see if it made a dent in practical performance.

Feedback 67

yes
\else % or \or
no

\fi

and:

\ifnumber123\or
yes

\else % or \or
no

\fi

When a valid number or dimension is gobbled, the value pushed in the branches is 1,
and when an error is encountered the value 2 is pushed. Deep down we have just an
\ifcase and by not using the value zero we nicely skip the invalid code. It might look
a bit weird but we need a sentinel for the number (and the \or serves as such, without
introducing strange new constructs. We'll see if we keep it (as testing must prove its
usefulness).

11.5 Comparing tokens

The following code compares (for instance) two strings:

\def\thisorthat#1#2%
{\edef\one{#1}
\edef\two{#2}
\ifx\one\two
this%

\else
that%

\fi}

\thisorthat{foo}{bar}

but this looks a bit cleaner (in a trace):

\def\thisorthat#1#2%
{\iftok{#1}{#2}%

this%
\else
that%

68 Feedback

\fi}

\thisorthat{foo}{bar}

It's not that much faster (unless one uses it a real lot) as similar things have to happen
to get the test to work. But the nice things of this checker is that it works with token
registers andmacros too. But in order use it in relevant places in ConTEXt I would have
to adapt quite some code. This could actually be a reason for a MkIV freeze and LMTX
code base (as with MkII). The question is: does it pay off?

Lua 69

12 LUA

12.1 Move to 5.4

Another experiment concerned testing Lua5.4which looks like aminor update in terms
of new functionality but has some consequences. By now the old module model is even
more deprecated and compatibility mode no longer makes much sense. As a conse­
quence we now need to adapt the way libraries are loaded (and we use global ones) and
a few other low level calls had to be adapted. This is no real issue and once that was
done, I found out that the bit32module was evenmore obsolete so I decided to get rid of
it. We already have a bit32 replacement in ConTEXt so I had to enable that. As ConTEXt
doesn't need compatibility mode it was no problem to drop that too.

The biggest changes in 5.4 are under the hood: some optimized byte code and a new
generational garbage collector. I did a few runs and a 12.4 seconds run on the manual
nowdropped to around 12.1 and given that we spend (probably)more than half the time
in Lua thatmeans some 5% gain in performance. This is still more than the 9.6 seconds
that LuaJIT needs but it looks like every Lua release gains a bit and I'm pretty sure that
there is more to gain.45

An interesting experiment was to disable the automatic string to number conversion
when a number is expected but a string is needed. So far I only had to adapt two lines of
code in the in themeantime considerable amount of Lua code that comeswith ConTEXt.

12.2 Nomore LUAJIT

One thing I had to consider was the future of LuaJIT. This project is sort of stalled and
will not follow Lua development. Now, to some extend we can deal with this but with
the faster Lua 5.4 around the corner, the limitations of LuaJIT with respect to loading
large tables, as well as the fact that we need a patched hash function to get an advantage
over regular Lua anyway, it makes sense to drop it in LuaMetaTEX. After discussing this
with Alan, who crunchednumbers in order tomake impressive graphicswithMetaPost,
we came to the conclusion that we should not overestimate the benefits. There is still
a gain but removing the need to support both could also makes it possible to improve
existing code (although one should not expect toomuch from that; it's more amatter of
convenience for me). Also, for as long as have LuajitTEX that is still an option when one
has to squeeze out every second.

A valid question is if ditching LuaJITwill harmusers. The answer to this depends on the

45 In the meantime there are experiments in 5.4 with <const> directives whichmight have advantages.

70 Lua

kind of documents that you process. Given decent programming, you can gain quite a
bit of runtime, but on the average the difference is not that large. There is for instance
always the overhead of callbacks and crossing the so called C boundary that has an im­
pact.

12.3 Performance

At the time of writing this Thomas Schmitz was wondering if there was a significant
difference in runtime between the table mechanisms and especially natural tables and
extreme tables. Some test demonstrated that extreme tableswere best for his case. That
case concerned generating about 400pages of tables fromxmlfiles, including some jug­
gling of data in Lua. The bottleneck in that document can be roughly simulatedwith the
following test. We assume one pass over the table but in practice there are upto four, but
only the last one has frames. So, the test concerns 80.000 (400 pages with 40 rows of 5
columns) calls to \framed.

1 \hpack{\framed {oeps}}
2 \hpack{\framed[frame=off] {oeps}}
3 \setupframed[frame=off] \hpack{\framed {oeps}}
4 \hpack{\framed[frame=on] {oeps}}
5 \setupframed[frame=on] \hpack{\framed {oeps}}
6 \hpack{\framed[frame=closed]{oeps}}
7 \setupframed[frame=closed] \hpack{\framed {oeps}}

sample luatex &mkiv luajittex &mkiv luametatex & lmtx

1 17.3 16.8 13.5
2 17.8 17.2 14.0
3 17.3 16.8 13.3
4 17.9 17.4 13.7
5 17.4 17.1 13.3
6 17.4 16.8 12.9
7 16.4 16.0 12.6

Even if we add the usual .1 second interval around these values it will be clear that we
gain enough not toworry about the loss of LuaJIT, also because the gain is not in the Lua
part only. A nice consequence of this is that when we replace the cpu's in a server with
low power ones that perform 25% less, we can compensate that by using LMTX.46

46 There's still room for improvement, because mid July 2019 we're at 12.9, 13.2, 12.9, 13.5, 13.0, 12.5 and
12.2 seconds or less. But don't expect too manymiracles.

Lua 71

Whenwrapping this up, the LuaTEXmanual processedwith LMTX took slightly less than
11.9 seconds, compared to a normal run of 12.6 seconds, so we're gaining some there
too. And just after I wrote this we went down to 11.7 seconds by (as experiment) chang­
ing theLuavirtualmachinedispatcher, so there is still some togain. In theenergy saving
fitlet with small amdprocessor processing themanualwith stock LuaTEX takes about 37
seconds, but 33.5 with LMTX so here also we're not off worse.

12.4 Modules

Right from the start LuaTEX had some extra libraries linked in: md5 (for hashing), lfs
(for accessing file properties), slunicode (for basic utf handling), gzip and zlib (for
zipping files and streams), zip (for accessing zip files) and socket (for communicating
other than with files).

In LuaMetaTEX the not so useful slunicode library was removed pretty early but the
others stayed around. The more backend specific img and pdf libraries went away too,
as did the (already not used) fontloader library. The kpse library is also gone, as we
do those things in Lua. The epdf library was kept. A couple of libraries were added, like
sha2, basexx, and flate, plus a few handy helper libraries that are still experimental
and therefore not mentioned here.

The flate library is also an experiment but will replace the gzip and zlib libraries.
Currently these use libz but libdeflatewill be the low level replacement once it sup­
port streams and is already used for flate. The md5 library has been redone using util­
ity code pplib, as sha2does. The type basexx library also falls back on utility code form
pplib (that code is actually independent).

The lfs code has been replaced by a variant that omits features not common to the
platforms and with a iterator that permits much faster directory scans and has a few
morehelpers. It is not compatible butwekept thenamebecause of legacyusage. Imight
strip the socket code to what is actually used, but on the other hand: don't touch what
works well. The original code doesn't change that much anyway.

72 Lua

Compilation 73

13 Compilation

Compiling LuaTEX is possible because after all it's what I do onmymachine. The LuaTEX
source tree is part of a larger infrastructure: TEXLive. Managing that one iswork for spe­
cialists and the current build system is the work of experts over a quite long period of
time. When you only compile LuaTEX it goes unnoticed that there are many dependen­
cies, some of which are actually unrelated to LuaTEX itself but are a side effect of the
complexity of the build structure.

When going fromLuaTEX to LuaMetaTEXmany dependencies were removed and I even­
tually ended upwith a simpler setup. The source tree went down to less than 30MB and
zipped to around 4MB. Thatmakes it possible to consider adding the code to the regular
ConTEXt distribution.

One reason for doing that is that one keeps the current version of the engine packaged
with the current version of ConTEXt. But amore important one is that it fulfils a demand.
Some time ago we were asked by some teachers participating in a (basically free) math
method for technical education what guarantees there are that the tools used are avail­
able forever. Now, even with LuaMetaTEX one has to set up a compiler but it is much
easier than installing the whole TEXLive infrastructure for that. A third reason is that
it gives me a comfortable feeling that I myself can compile it anywhere as can ConTEXt
users who want to do that.

The source tree traditionally has libs in a separate directory (lua, luajit, zlib and zzi­
plib). However, it is more practical to have them alongside our normal source. These
are relative small collections of files that never change so there is no reason not to do
it.47

Another assumptionwe're going tomake is that we use 64 bit binaries. There is no need
to support obsolete platforms either. As a start we make sure it compiles on the plat­
forms used by ConTEXt users. Basically wemake a kind of utility. For now I can compile
theWindows 32 bit binaries thatmy colleague needs in half aminute anyway, but in the
long run we will settle for 64 bits.

I spent about a week figuring out why the compilation is so complex (by selectively re­
moving components). At some point compilation on os-x stopped working. When the
minimum was reached I decided to abandon the automake tool chain and see if cmake
could be used (after all, Mojca challenged that). In retrospect I should have done that
sooner because in a day I could get all relevant platformsworking. Flattening the source

47 If I ever decide to add more libraries, only the minimal interfaces needed will be provided, but at this
moment there are no such plans.

74 Compilation

tree was a next step and so there is no way back now. What baffled me (and Alan, who
at some point joined in testing os-x) is the speed of compilation. My pretty old laptop
needed about half a minute to get the job done and even on a RaspberryPi with only a
flash card just a fewminuteswere needed. At that point, aswe could removemoremake
related files, the compressed 11MB archive (tar.xz) shrunk to just over 2MB. Interest­
ing is that compilingmplib takesmost time, andwhenone compiles in parallel (onmore
cores) that one finishes last.

For the record: I do all this on a laptop runningMSWindows 10 using the Linux subsys­
tem. When that came around, Luigimademe aworking setup for cross compilation but
in themeantimewith GCC 8.2 all works out of the box. I edit the files at theMSWindows
end (using SciTE), compile at the linux end, and test everything on MSWindows. It is a
pretty convenient setup.

When compilation got faster it became also more convenient to do some more code
reshuffling. This time I decided to pack the global variables into structures, more or
less organized the way the header files were organized. It gives a bit more verbosity
but also has the side effects that (at least in principle) the cpu cache can perform bet­
ter because neighboring variables are often cached as part of the deal. Now it might be
imagination, but in the process I did notice thatmidMarch processing themanual went
down to below 11.7 seconds while before it stayed around 12.1 seconds. Of course this
is not that relevant currently, but I might make a difference on less capable processors
(as in a low power setup). It anyway didn't hurt.

In the meantime some of the constants used in the program got prefixes or suffixes to
make themmore unique and for instance the use of normal as equivalent for zero was
made a bit more distinctive as we now have more subtypes. That is: all the subtypes
were collected in enumerations instead of C defines. Back to the basics.

End of 2020 I noticed that the binary had grown a bit relative to the mid 2020 versions.
This surprised me because some improvements actually made them smaller, some­
thing you notice when you compile a couple of times when doing these things. I also
noticed that the platformson the compile farmhadquite a bit of variation. Inmost cases
we're still below my 3MB threshold, but when for instance cross compiled binaries be­
come a few hundred MB larger one can get puzzled. In the LuaMetaFun manual I have
this comment at the top:

------------------------ ------------------------ ------------------------

2019-12-17 32bit 64bit 2020-01-10 32bit 64bit 2020-11-30 32bit 64bit

------------------------ ------------------------ ------------------------

freebsd 2270k 2662k freebsd 2186k 2558k freebsd 2108k 2436k

openbsd6.6 2569k 2824k openbsd6.6 2472k 2722k openbsd6.8 2411k 2782k

linux-armhf 2134k linux-armhf 2063k linux-armhf 2138k 2860k

Compilation 75

linux 2927k 2728k linux 2804k 2613k linux (?) 3314k 2762k

linux-musl 2532k 2686k

osx 2821k osx 2732k osx 2711k

ms mingw 2562k 2555k ms mingw 2481k 2471k ms mingw 2754k 2760k

ms intel 2448k

ms arm 3894k

ms clang 2159k

------------------------ ------------------------ ------------------------

So why the differences? One possible answer is that the cross compiler now uses gcc9
insteadof gcc8. It is quite likely that inlining code is donemore aggressively (at least one
can find remarks of that kind on the Internet). An interesting exception in this overview
is the linux 32 bit version. The native Windows binary is smaller than the MingW bi­
nary but the clang variant is still smaller. For the native compilation we always enabled
link time optimization, whichmakes compiling a bit slower but similar to regular com­
pilation in WLS but when for the other compilers we turn on link time optimization the
linker takes quite some time. I just turn it off when testing code because it's no fun to
wait these additional minutes with gcc. Given that the native windows binary by now
runs nearly as fast as the cross compiled ones, it is an indication that the native Win­
dows compiler is quite okay. The numbers also show (for Windows) that using clang is
not yet an option: the binaries are smaller but alsomuch slower and compilation (with­
out link time optimization) also takes much longer. But we'll see how that evolves: the
compile farm generates them all.

So, what effects does link time optimization has? The (current) cross compiled binary
is is some 60KB smaller and performs a little better. Some tests show some 3 percent
gain but I'm pretty sure users won't notice that on a normal run. So, when we forget to
enable it when we release new binaries, it's no big deal.

Another end 2020 adventure was generating arm binaries for os-x and Windows. This
seems to work out well. The os-x binaries were tested, but we don't have the proper
hardware in the compile farm, so for now users have to use Intel binaries on that hard­
ware. Compiling the LuaMetaTEXmanual on a 2020 M1 is a little more that twice as fast
than on my 2013 i7 laptop running Windows. A native arm binary is about three times
faster, which is what one expects from a more modern (also a bit performance hyped)
chipset. On a RaspberryPi with 4MB ram, an external ssd on usb3, running Ubuntu
20, the manual compiles three times slower than on my laptop. So, when we limit con­
clusions to LuaMetaTEX it looks like arm is catching up: these modern chipsets (from
Apple and Microsoft, although the later was not yet tested) with plenty of cache, lots of
fast memory, fast graphics and speedy disks are six times faster than a cheap media
oriented arm chipset. Being a single core consumer, LuaMetaTEX benefits more from
faster cores than frommore cores. But, unless I have thesemachines onmy desk these

76 Compilation

rough estimates have to do.

Stubs 77

14 Stubs

14.1 Bare bone

Themost barebone way to process a ConTEXt file is something like:

luametatex
--fmt="<cache path to>/luametatex/cont-en"
--lua="<cache path to>/luametatex/cont-en.lui"
--jobname="article"
"cont-yes.mkiv"

We pas extra options, like:

--c:autopdf
--c:currentrun=1
--c:fulljobname="./article.tex"
--c:input="./article.tex"
--c:kindofrun=1
--c:maxnofruns=9
--c:texmfbinpath="c:/data/develop/tex-context/tex/texmf-win64/bin"

but for what we are going to discuss here it doesn't really matter. Themain point is that
we use a Lua startup file. That one has aminimal amount of code so that the format can
be loaded as we like it. For instance we need to start up with initial memory settings.

Thefilecont-yes sets up thewayprocessing content happens. This canbe thejobname
file but also something different. It is enough to know that this startup is quite con­
trolled.

I will explore a different approach to format loading but for now this is how it goes. After
al, we need to be compatible with LuaTEX and normal MkIV runs, at least for now.

14.2 Management (some history)

In ConTEXt we always had a script: texexec, originally a Modula2 program, later a Perl
script, then a Ruby script but now we have mtxrun, a Lua script. All take care of mak­
ing sure that the file is processed enough times to get the cross references, tables of
contents, indexes, multi-pass data stable. It also makes it possible to avoid using these
special binaries (or links) that trick the engine into thinking it is bound to a format: we
never had pdfcontext or luacontext, just one context. Actually, because we have
multiple user interfaces, we would have needed many stubs instead. Getting this ap­

78 Stubs

proach accepted was not easy but in the meantime I've seen management scripts for
other packages being mentioned occasionally.

The same is true for scripts: for a long time ConTEXt came with quite some scripts but
when an average TEX distribution started growing, including many other scripts, we
abandoned this approach and stuck to one management script that also launched aux­
iliary scripts. That way we could be sure that there were no clashes in names. If you
look at a full TEX installation you seemany stubs to scripts andmore keep coming. How
that can work out well without unexpected side effects (name clashes) is not entirely
clear to me, as a modern computer can have large bin paths. Just imagine that all large
programs (or ecosystems) would introduce hundreds of new ‘binaries’.

Anyway, in the end a ConTEXt installation using MkIV only needs mtxrun and as bonus
context. The above call is triggered by:

mtxrun --autogenerate --script context --autopdf article.tex

from the editor. Here we create formats when none is found, and start or activate the
pdf viewer afterwards, so more minimal is:

mtxrun --script context article.tex

Normally there is also a context stub so this also works:

context article.tex

14.3 The launch process (more history)

In MkII, when we use pdfTEX, the actual launch of these script is somewhat complex
and a bit different per platform. But, on all platforms kpse does the lookup of the script.
Already long ago I found out that this startup overhead could amount to seconds on a
completeTEXLive installation (imagine runningover anetwork)which iswhyeventually
we came up with the minimals. The reason is that the file databases have to be loaded:
first for looking up, then for the stub that also needs that information and finally by the
actual program. There were no ssd's then.

The first hurdlewe tookwas to combine the lookup and the runner. Of course this is sort
of out of our control because an installer can decide to still use a lookup approach but
at least on MSWindows this was achieved quite easy. Sort of:

texexex -> [lookup] -->
texexec.pl -> [lookup] ->

pdftex + formats ->

Stubs 79

[lookup] -> processing

Thefirst lookup canbe avoidedby some fast relative lookup, but formore complexman­
agement the second one is always there. Over time this mechanism became more so­
phisticated, for instance we use caching, could work over sockets using a kpse server,
etc.

When LuaTEX came around, it was already decided early that it also would serve as
script engine for the ConTEXt runner, this time mtxrun. The way this works differs per
platform. On Windows there is a small binary, say runner.exe. It gets two copies:
mtxrun.exe and context.exe. If you find more copies on your system, something
might be wrong with your installation.

mtxrun.exe -> loads mtxrun.lua in same path
context.exe -> idem but runs with --script=context

The mtxrun.lua script will load its file database which is very efficient and fast.
It will then load the given script and execute it. In the case of context.exe the
mtx-context.lua script is loaded, which lives in the normal place in the TEX tree
(alongside other scripts).

So, a minimal amount of programs and scripts is then:

texmf-win64/bin/luatex.exe
texmf-win64/bin/mtxrun.exe
texmf-win64/bin/mtxrun.lua
texmf-win64/bin/context.exe

with (we also need to font manager):

texmf-context/scripts/context/lua/mtx-context.lua
texmf-context/scripts/context/lua/mtx-fonts.lua

But . . . there is a catch here: LuaTEX has to be started in scriptmode in order to process
mtxrun. So, in fact we see this in distributions.

texmf-win64/bin/luatex.exe
texmf-win64/bin/texlua.exe
texmf-win64/bin/mtxrun.exe
texmf-win64/bin/mtxrun.lua
texmf-win64/bin/context.exe

The texlua program is just a copy of luatex that by its name knows that is is supposed
to run scripts and not process TEX files. The setup can be different using dynamic li­

80 Stubs

braries (more files but a shared engine part) but the principles are the same. Nowadays
the stub doesn't need the texlua.exe binary anymore, so this is the real setup:

texmf-win64/bin/luatex.exe large program
texmf-win64/bin/mtxrun.exe small program
texmf-win64/bin/mtxrun.lua large lua file
texmf-win64/bin/context.exe small program

Just for the record: we cannot really use batch files here because we need to know the
original command, and when run from a script that is normally not known. It works
to some extend but for instance when started indirectly from an editor it can fail, de­
pending on how that editor is calling programs. Therefore the stub is the most robust
method.

On a Unix system the situation differs:

texmf-linux-64/bin/luatex large program
texmf-linux-64/bin/texlua symlink to luatex
texmf-linux-64/bin/mtxrun large lua file
texmf-linux-64/bin/context shell script that starts mtxrun

Here mtxrun.lua is renamed to mtxrun with a shebang line that triggers loading by
texluawhich is a symlink toluatexbecause shebang lines don't support the--texlua
argument. As on windows, this is not really pretty.

14.4 The LMTXway (the present)

Now when we move to LMTX we need to make sure that the method that we choose is
acceptable for distributions but also nicely consistent over platforms. We only have one
binary luametatexwith all messy logic removed and no second face like metaluatex.
When it is copied to another instance (or linked) it will load the script with its own name
when it finds one. So onWindows we now have:

texmf-win64/bin/luametatex.exe medium program
texmf-win64/bin/mtxrun.exe copy (or link) of luametatex
texmf-win64/bin/mtxrun.lua large lua file
texmf-win64/bin/context.exe copy (or link) of luametatex
texmf-win64/bin/context.lua small lua file

and in Unix:

texmf-linux-64/bin/luametatex mediumprogram
texmf-linux-64/bin/mtxrun copy (or link) of luametatex

Stubs 81

texmf-linux-64/bin/mtxrun.lua large lua file
texmf-linux-64/bin/context copy (or link) of luametatex
texmf-linux-64/bin/context.lua small lua file

So, luametatex[.exe], mtxrun[.exe] and context[.exe] are all the same. On both
platforms there is mtxrun.lua (with suffix) and on both we also use the same runner
approach. The context.lua script is really small and just sets the script command
line argument before loading mtxrun.lua from the same path. In the case of copied
binaries: keep in mind that the three copies together are not (much) larger than the
luatex and texlua pair (especially when you take additional libraries into account).

The disadvantage of using copies is that one can forget to copy with an update, but the
fact that one can use themmight be easier for installers. It's up to those who create the
installers.

One complication is that the mtxrun.lua script has to deal with the old and the new
setup. But, whenwe releasewewill assume that one used either LuaTEX or LuaMetaTEX,
not some mix. As mtxrun and context know what got it started they will then trigger
the right engine, unless one passes --engine=luatex. In that case the LuaMetaTEX
launcher will trigger a LuaTEX run. But a mixed installation is unlikely to happen.

14.5 Why not . . .

Technicallywe coulduse one call for both the runner andTEXprocessor butwhenmulti­
ple runs are needed this would demand an internal engine reset as well asmacro pack­
age reset while keeping some (multi-pass) data around. A way in-between could be to
spawn thenext run. In the end the gainwould beminimal (wehavenow .2 seconds over­
head per total run, which can triggermultiple passes, due to themanagement script, to
basically we can neglect it. (Triggering the viewer takes more time.)

82 Stubs

MetaPost 83

15 METAPOST

15.1 Introduction

Relatively late in the followup I started wondering about what to do with mplib. Alan
Braslau is working on the luapostmodule and we discuss handy extensions written in
Lua and MetaPost code but who knows what more is needed. Some ideas were put on
delay but it looked like a goodmoment to pick up on them. One problem is that whenwe
play with the mplib code itself in LuaMetaTEX, the question is how to keep in sync with
the official library. In this chapter I'll discuss both: keeping up with the official code,
and keeping ahead with ideas.

15.2 The code base

The mplib code is written in cweb and lives in files with the suffix w. These files need
to be converted to c and h files, something that is done with the ctangle program. To
avoid that dependency I just took theCfiles fromLuaTEX, but I had to apply a fewpatches
(to get rid of dependencies). Now, it is a fact that MetaPost doesn't really develop fast
and in principle a diff could identify the changes easily. So, why shouldn't I also start
experimenting with mplib itself in the follow up? It's easy to merge future changes (in
both directions).

The first thing I wrote was a w-to-c script. This was not that hard given that I already
had written lexers. After a first prototype worked out well, I redid the code a bit (so that
in the future I can also implement support for change files for instance). A complication
was that I found out that the regular cweb converter messes around a bit with the code.
So, I had to write another script to mimmick that to the level that I could compare the
results. For example, spaces are removed before and after operators and all leading
space gets removed too. When I got the same output I could get rid of that code and
outputwhat Iwant. For instance I'd like to keep the spacing the samebecause compilers
canwarnabout some issues, likemissing; andmisleading indentation in simpleifand
while constructs where braces are omitted.48 One can argue that this is not important,
but if not, then why enable warnings at all. I had to fix half a dozen places in the w file to
make the compiler happy, so the price was small.

Once I had a more or less instantaneous conversion49 I got the same feeling as with the
rest of the code: experimenting became convenient due to the fast edit-compile cycle.

48 This is no problem in for instance Pascal where we always have a begin and end.
49 Conversion of the w files involved took just over half a second at that time, currently it takes just over a

quarter of a second, on a relatively old machine that is.

84 MetaPost

So, with al this covered I could do what I always had wanted to do: remove traces of
the backends (including the full PostScript one), because they are actually to be plug-
ins, and also get rid of internal font handling, which is bound to Type1 (rendering) and
small size tfm (generating). With respect to that export: I wonder if anyone used that
these days because even the Gust font project always had their own tool chain alongside
MetaPost. I could also void the hacks needed to trick the library in not being dependent
of png.h and zlib.h headers, for which I had to use dummies.50

It took a few days scripting the converter (most time went into getting identical output
in order to check the converter which was later dropped), a few days stripping unused
code, another day cleaning up the remaining code and then I could start playing with
some new extensions. The binary has shrunk with 200KB and the whole LuaMetaTEX
code base in compressed tar.xz format is now below 1.8MB while before it was above
2MB. Not that it matters much, but it was an nice side effect.51

What new extensions would show up was still open. Because Alan and I play with scan­
ners it made sense to look into that. Error handling and logging has also been on my
radar for a while. In the process some more code might be dropped, but actually the
current version is still useable as library for a stand alone program, given that one re­
constructs the PostScript driver from the dropped code (not that much work). Some
configuration options are missing then but that could be provided as extensions (after
all we can have change files.) On the other hand, wrapping code in ConTEXt, like:

\starttext
\startMPpage

........
\stopMPpage
\startMPpage

........
\stopMPpage
\stoptext

will give a pdf file that can be converted to all kinds of formats, and the advantage is
that one has full font support. There is already a script in the distribution that does this
anyway.

15.3 Communication

Thefirst experiment concernsachange in the interfacingbetween theMetaPost andLua

50 The converter can load a file with patches to be applied but by now there are no patches.
51 Size matters as we want to code to end up in the ConTEXt distribution. It might grow a bit as side effect of

adding somemore features to mplib.

MetaPost 85

end. In the original library all file io is handled by the library itself. The filenames can
be resolved via a callback. Once an instance is initialized, snippets of code are passed
to the instance via the execute call. Log, terminal and error information is collected
and returned as part of the return value (a table). This means that reporting back to
the user has a delay: it can be shown after all code in the buffer has been processed.
The code given as argument to execute is passed to the engine as (fake) terminal input,
whichnicelyfits in the concept of interactive input, whichalready is part of theMetaPost
concept.

In our follow up variant all file io goes via Lua. This means that we have a bit more con­
trol over matters. In ConTEXt we now can use the usual file handling code. One defines
an open_file callback that returns a table with possible methods close, reader and
writer, as in similar LuaTEX callbacks. A special file, with the name terminal is used
for terminal communication. Now, when the execute command is handled, the string
that gets passed ends up in the terminal, so the file handler has to deal with it: the string
getswritten to the handle, and the handle has to return it as lines on request. In ConTEXt
we directly feed the to be executed code into the terminal cache.

It's all experimental and subject to changes but as we keep ConTEXt LMTX and
LuaMetaTEX in sync, this is no problem. Users will not use these low level interfaces
directly. It might take a few years to settle on this.

The reports that come from the MetaPost engine are now passed on to the run_logger
callback. That one gets a target and a string passed. Where the original library can
output stuff twice, once for the log and once for the console, in the new situation it gets
output once, with the target being terminal, log file or both. The nice thing about this
callback is that there is no delay: the messages come as the code is processed.

We combine this logging with the new halt_on_error flag, which makes the engine
abort after one error. Thismechanismwill be improved aswe go. The interaction option
silent hides some of the less useful messages.

Theoverall efficiencyof the librarydoesn't suffer fromthese changes, and in somecases
it can perform even better. Anyhow, the user experience is much better with synchro­
nous reports.

Although not strictly related to io, we already has extended the librarywith the option to
support utf-8, which is handy for special symbols, as for instance used in the luapost
library.

15.4 Scanning

Another extension is more fundamental in the sense that it can affect the way users
see MetaFun: extending the user interface. It is again an example of why is having an

86 MetaPost

independent code base has benefits: we cando such experiments for a long time, before
we decide that (and how) it can end up in the parent (of course the same is true for the
mentioned io features). I will not discuss these features here. For now it is enough to
know that it gets applied in ConTEXt and will provide a convenient additional interface.
Once it is stable I'll wrap it up in writing.

TEX 87

16 TEX

16.1 Prefixes

The fact that we merged 𝜀-TEX, a bit of pdfTEX and some of Aleph into LuaTEX, already
makes it a non-standard TEX engine. In LuaMetaTEXwe go a bit further. Completely out­
sourcing the backend has the side effect that some (extension related) primitives have
to be implemented explicitly. The fact that Lua is integrated has consequences for, for
instance, initialization. Defaulting to utf-8 input makes it different too. And delegating
many font matters to Lua also doesn't make it behave like good old TEX.

Here I discuss another difference. One can argue that this definitely makes it less TEX,
but in practice this is not that problematic. We're talking prefixes here. Traditional TEX
has only prefixes:

1. \global: when used, it will make the next definition a global one. The \globaldefs
parameter can be used to force global or local definitions.

2. \long: when applied, this will make amacro bark on a \par (or its equivalent) when
grabbing an argument. In LuaTEX this check can be disabled.52

3. \outer: when applied the macro can only be used at the outer level.

Multiple prefixes can be given and their effects accumulate. The 𝜀-TEX extension adds
another one:

4. \protected: this will make a macro unexpandable inside an \edef, an \xdef or
token list serialization.

In ConTEXt we never use(d) \outer and I can't even think of a useful application in a
largemacro package. in MkII most interfacemacros are defined as \long, and because
in MkIV we block the complaints, we don't need this prefix either. On the other hand,
manymacros are defined \protected.53

When you look at the implementation, \long and \outer are properties of the so called
command code: we have normal, long, outer and long outer macros, and each has a
unique command code. For some reason \protected is not implemented with com­
mand codes, which would have doubled the number to eight, but as special token in­

52 In a similar fashion barking about a \par in math mode can be disabled. Such warnings made much
sense when a TEX run tookmuch time and was triggered and traced on relative slow output devices.

53 Or in ConTEXt speak, they are defined as \unexpanded, because we already had \protected as well as
\unexpanded before these were introduces as primitives.

88 TEX

jected in front of the macro preamble. Using a command code would have made more
sense as there is no real speed penalty in that, while the special token indicating is a
macro (body) is protected now has to be intercepted in some cases.

Anyhow, already for awhile Iwondered if I shoulddrop\longand\outer (making them
no-ops). I also had on my agenda to promote \protected to a normal command code.
And, already for a long time I wanted to play with a new prefix:54

5. \frozen: this will protect amacro (for now only amacro) against redefinition, which
provides a bit of protection for a user.

Promoting \protected brings the set of call commands from four to eight, and a
\frozenpropertywouldbump it to sixteen. This is still okay, but in someplaces itwould
involve mode testing. However, dropping \long and \outer would not only keep the
set small (just four) but also rid it of some tests. There is no performance penalty either
(even a bit of gain in case of many protected macros as we no longer need to skip the
special signal token) and it even saves somememory (but not that much).

As a bonus there are a few more conditionals: \ifprotected, \iffrozen, and, very
experimental, \ifusercmd, which can be used to check if something is user defined
(often not a primitive). These probably only make sense for diagnostic purposes.

In the end, the implementation was not that hard. In the process I also removed the
\suppress... parameters so \par no longer plays havoc. If this new prefix \frozen
stays of will affect more definitions, we'll see.

16.2 Conditionals

Another domain where there have been some extensions is conditions. In a previous
chapter I mentioned \iftok already. As this is not a manual I will not go into details
about other new conditionals. For instance we have a few that can be used to check for
validdimensionsandnumbers. This can lead toabit cleaner code, although for instance
in ConTEXt we always used support macros for this. We seldom needed more than we
had but when interfacing with MetaPost it helps a little.

Another, maybe interesting one is \ifcondition which when TEX is in jump over
branches mode is seen as a valid \if<cmd> token but when it comes to expansion the
following macro determines a true or false state. A second nice experiment is \orelse
which is to be followed by a valid \if<cmd> token and makes for less nesting which
sometimes looks nicer and also has some advantages.

54 This is a typical example of a feature that I like playing with, before deciding if it will stay (as such).

TEX 89

I might wrap up these and other extensions in articles once they are considered stable
anduseful. But first I'll test them in real situation, which in practicemeans that ConTEXt
users will test them, probably without noticing.

90 TEX

Retrospect 91

17 Retrospect

At some point in a new development, and LuaMetaTEX feels like that, there comes amo­
ment when you need tomake a decision. In this case the question is if we need tomake
hybrid MkIV and LMTX files or do the same as with the transition from MkII to MkIV:
use two variants. For TEX files a conditional section has only overhead in the format
generation as skipped code doesn't end up in the format. With conditional Lua code it's
different: the ignored section is still present in byte code. But even for TEX code a condi­
tional section is not entirely invisible: encountered control sequences are still creating
(bogus) hash entries. So the question is: dowe go lean andmeananddoweomit historic
non-LMTX code?

A comparisonwith the transition fromMkII is actually relevant. For instance right from
the start ConTEXt had an abstract backend layer, and support for engines and output
formats was loaded on demand. There was never any specific code in the core. With
MkIV we changed the model but there is still some abstraction.

InMkII we also had to deal with encodings and that has consequences for font handling,
language support and input encodings. In MkIV all that changed: internal all is utf, as
is normally the input (but we can still use encodings), and fonts are always mapped to
Unicode.

Anyhow,much thatmade sense for MkII was no longer relevant for MkIV: code could be
dropped. But somemechanisms were reimplemented using Lua: code was added. The
user interface stayed the same but inMkIV uses a conceptually different approach deep
down. Therefore the code base was split in MkII and MkIV files but this transition was
made stepwise.

So should the same happen with LMTX? There is not that much that needs to be added
toMkIV in terms of functionality. In the end, for theTEX code the differences are not that
substantial, so therewecanconsider loadingdifferentfiles. Thefiles involvedare rather
stable so there is not much danger of functionality betweenMkIV and LMTX getting out
of sync. The same is true for the Lua files, although synchronization is probably more
an issue there.

Another option is to always assume that LuaMetaTEX is used. For testing regular LuaTEX
(patches) we can just use a 2019 stable ConTEXt. But in order for users to benefit from
developments we then expect them all tomove on to LMTX. Using a frozen 2019 version
with upcoming LuaTEX is no big deal as we've done the same with MkII and that worked
out okay.

When we started with ConTEXt development in the previous century we were doing
pretty weird things. I remember getting comments that what we did made no sense

92 Retrospect

because it was not what TEX was meant for and some even suggested that it disrupted
the picture. Highly structured input, a clear separation (and abstraction) of front and
backend, inheritance and user defined styling, integrated support for xml, embedded
MetaPost, advanced interactive documents, handling of fonts en encodings, the list is
long. Occasionally some of the things that came with ConTEXt were ridiculed, like the
fact that a script was used to manage the (multiple) run(s), but in the end, look at how
many script are around now. Some even wondered why we used TEX at all because TEX
was meant for typesetting math. And who needs xml let alone MathML? Or interactive
pdf features? Much in ConTEXt and its management got smoother over time and the
LuaMetaTEX engine fits nicely into this evolution. It's hard to keep the cutting edge but
at least we have the instruments.

During BachoTEX 2019 (end of April, beginning of May) this project was presented the
first time outside the ConTEXt community. During that meeting Mojca Miklavec, one of
the driving forces behind ConTEXt, upgraded the compile farm that already was used to
compile (intermediate versions of) LuaTEX and TEXLive to also compile pplib (handy
for development) and LuaMetaTEX. This permits us to fine-tune the cmake setup which
is still work in progress. And, also further improvements take place in the code base
itself.

One of the properties of open source is that one can build upon an existing code base, so
when at BachoTEXArthur announced that hewas going tomake amerge of X ETEX (which
he maintains) and LuaTEX no one was surprised. But it could be a strong argument for
a rather strict code freeze: spin-offs need stability. I've been told that there are now
several projects where more libraries (like Harfbuzz) get integrated. Those cases don't
influence the parent but here stability of the original also is expected, unless of course
additional features go in these engines, which itself creates instability, but that's an­
other matter. One could actually argue that the arrival of variants defeats the argument
that stability is important: if a macro package uses new features, it needs to adapt, and
naturally (temporary) issues might show up. Such are the dynamics of todays software
development. History in general shows that not that much is persistent (or even accu­
mulative) and programs are probably the least, so maybe the whole stability aspect has
lost its relevance.55 Of course LuaMetaTEX is also a follow up, but one of the ideas behind
it was that I could use it as platform for (independent) experiments that could result in
code being put into LuaTEX. Also, the changes have a limited impact: only ConTEXt will
be affected.56

It is not feasible to make ConTEXt work with all kind of engines that in practice are not

55 In a similar way as that the argument “Publishers want this or that, so we as TEX community need to
provide it.” is no longer that relevant because publishing is nowmore a business model than vocation.

56 So maybe, in the end, stability boils down to “The engine behaves the same and the ConTEXt that comes
with it exploits its features as good as possible”.

Retrospect 93

used by its users. For instance, after X ETEX showed up it went through several iterations
or font rendering, sowenever really spent time on the low level features that it provided
(therewas no demand anyway). One cannot simply claim that onemethod is better than
another that replaces it and expect constant adaptation (probably for the sake of a few
potential users). There simply is no ‘best’ engine and no ‘perfect’ solution. Another
aspect is that when we would adapt ConTEXt to LuaTEX variants the dependencies on
specific functionality that itself depends on the outside world is kind of unavoidable.
Especially languages and fonts are fluid and for the average user there is not that much
difference in that department. Should we really complicatematters for a few (potential)
users? In ConTEXt support like that is added on demand, driven by specific needs of
users who use TEX for a reason and are willing to test.

There's enough huge and complex software around that demonstrates what happens
when programs are extended, keep growing, their code base becoming more complex.
Such a process doesn't really fit in my ideas about for TEX. We positioned 1.10 as long
term stable, with the option to add a few handy things in the long run. For sure there are
niches to fill and it is a fact that the TEX community can deal with variants of engines:
just look at the different cjk engines around, with prefixes like p, up, ep, etc. But the
question is, where does that put further LuaTEX development? And, more important,
what consequences does it have for the ConTEXt code base?

The reason Imention this is that I had inmind to eventually backport features thatwork
out well in LuaMetaTEX. I also mentioned that in order to support stock LuaTEX it made
no sense to split the ConTEXt code base. After all, a few conditional sections could deal
with the difference between LuaTEX and LuaMetaTEX: some differences could be tem­
porary anyway. But, given recent developments it actually made sense to split the code
base: why spent time onbackportingwhen the engine user base is spread over different
spinoffs. I can better just assume ConTEXt to exclusively use LuaMetaTEX and that other
macro packages use (one or more) LuaTEX variants. I can then keep the generic code
up to date and maybe occasionally add some proven stable features. It is also no big
deal to keep the minimum subset needed for (plain) font handling compatible, assum­
ing LuaTEX compatibility, as in the end that engine is the benchmark, especially when I
strip it a bit from features not needed outside ConTEXt.

Thoughts like this show how fragile plans and predictions are: within a year one has to
adapt ideas and assumptions. But it also proves that LuaMetaTEX was a good choice for
ConTEXt, especially because it is bound to ConTEXt development, which keep the users
independent and isolated from developments that don't mind that much the (side) ef­
fects on ConTEXt.

Around the ConTEXt meeting (or maybe a bit later) we hope to have the new installation
infrastructure stable too (currently it is also experimental). By that time it will also be
clear howwewill proceedwith the LMTXproject. In themeantime I have decided so put

94 Retrospect

LuaMetaTEX specific files alongside the MkIV files, simply because I always need to be
able run stock LuaTEX. In order to show the close relationship these files are flagged as
MkXL, so we bump from ‘Mark Four’ to ‘Mark Fourty’. The suffixes mkiv, mkvi and mpiv
get company from mkxl, mklx and mpxl. Depending on backporting features, files can
come and go. I'm not yet sure about the Lua files but the lmt suffix is already reserved
for future use.57 All this is also driven by (user) demand.

Consider this (and these thoughts) a snapshot. Therewill be theusual reports onexperi­
ments anddevelopments. And in due time therewill also be amanual for LuaMetaTEX.58

And yes, at some point I have tomake upmymind with respect to backporting features
that have proven to be useful.

57 This is because Lua 5.4 introduces some new syntax elements andwhere we can get awaywith the differ­
ence between 5.2 (LuajitTEX) and 5.3 (LuaTEX) such a syntax change is more drastic.

58 In fact it already lives onmymachine but I'm not in ready yet for the usual complaints aboutmanuals, so
I'm not in that much of a hurry.

Scaled fonts 95

18 Scaled fonts

18.1 History

The infrastructure for fonts makes up a large part of the code of any TEX macro pack­
age. We have to go back in time to understand why. When TEX showed up, fonts were
collections of bitmaps and measures. There were at most 256 glyphs in a font and in
order to do its job, TEX needed to know (and still needs to know) the width, height and
depth of glyphs. If you want ligatures it also needs to know how to construct them from
the input andwhen youwant kerning there has to be additional information about what
neighboring glyphs need a kern in between. Math is yet another subtask that demands
extra information, like chains of glyphs that grow in size and if needed even recipes of
how to construct large shapes from smaller ones.

Fonts come in sizes. LatinModernand theoriginalComputerModern, for instance, have
quite a few variantswhere the shapes are adapted to the size. Thismeans thatwhen you
need a 9pt regular shape alongside a 12pt one, two fonts have to be loaded. This is quite
visible inmath where we have three related sizes: text, script and scriptscript, grouped
in so called families. When we scale the digit 2 to the same height you will notice that
the text, script and scriptscript sizes look different (the last three are unscaled):

2 2 2 2 2 2 222 2 2 2

Plenty has been written (in various documents that come with ConTEXt) about how this
all works together and how it impacts the design of the system, so here I just give a short
summary of what a font system has to deal with.

• In a bodyfont setup different sizes (9pt, 10pt, 12pt) can have their own specific set
of fonts. This can result in quite a number of definitions that relate to the style, like
regular, bold, italic, bold italic, slanted, bold slanted, etc. When possible loading the
fonts is delayed. In ConTEXt often the number of fonts that are actually loaded is not
that large.

• Some font designs have different shapes per bodyfont size. A minor complication is
that when one is missing some heuristic best-match choice might be needed. Okay,
in practice only Latin Modern falls into this category for ConTEXt. Maybe OpenType
variable fonts can be seen this way, but, although we supported that right from the
start, I haven't noticed much interest in the TEX community.

96 Scaled fonts

• Within a bodyfont size we distinguish size variants. We can go smaller (x and xx), for
instance when we use sub- and superscripts in text, or we can go larger, for instance
in titles (a, b, c, d, . . .). Fortunately most of the loading of these can be delayed too.

• When instances are not available, scaling can be used, as happens for instance with
11pt in Computer Modern. Actually, this is why in ConTEXt we default to 12pt, be­
cause the scaled versions didn't look as nice as the others (keep in mind that we
started in the age of bitmaps).

• Special features, such as smallcaps or oldstyle numerals, can demand their own de­
finitions. More loading and automatic definitions can be triggered by sizes needed
in, e.g., scripts and titles.

• A document can have a mixed setup, that is: using different font designs within one
document, so some kind of namespace subsystem is needed.

• In an eight-bit font world, we not only have text fonts but also collections of symbols,
and even inmath there are additional symbol collections. In OpenType symbols end
up in text fonts, but there we have tons of emojis and color fonts. All has to be dealt
with in an integratedway. Andwe're not even talking of virtual fonts, (runtime)Meta­
Post generated fonts, and so on.

• In traditional eight-bit engines, hyphenation depends on a font's encoding, which
can require loadinga fontmultiple times indifferent encodings. This dependson the
languagemix used. A side point is that defining a European encoding coveringmost
Latin languages was not that hard, especially when one keeps in mind that many
eight-bit encodings waste slots on seldom used symbols, but by that time OpenType
and Unicode input started to dominate.

• In the more modern OpenType fonts combinations of features can demand addi­
tional instances: one can think of language/script combinations, substitutions in
base mode, special effects like emboldening, color fonts, etc.

• Math is complicated by the fact that in traditional TEX, alphabets come fromdifferent
fonts, which is why we have many so-called families; a font can have several alpha­
bets which means that some mapping can be needed. Operating on the size, shape,
encoding and style axes puts some demands on the font system. Add to this the (of­
ten) partial (due to lack of fonts) bold support and it gets evenmore complicated. In
OpenType all the alphabets come from one font.

• There is additional math auto-definition and loading code for the sizes used in text
scripts and titles.

Scaled fonts 97

All this has resulted in a pretty complex subsystem. Although goingOpenType (and em­
ulated OpenType with Type1 fonts as we do in MkIV) removes some complications, like
encodings, it also adds complexity because of the many possible font features, either
dependent or not on script and language. Text as well as math got simpler in the TEX
code, though that was traded for quite a bit of Lua code to deal with new features.

So, in order to let the font subsystemnot impact performance toomuch, let alone exten­
sivememoryusage, theConTEXt font subsystemis ratheroptimized. Thebiggestburden
comes from fonts that have a dynamic (adaptive) definition because then we need to do
quite a bit of testing per font switch, but even that has always been rather fast.

18.2 Reality

In MkIV and therefore also in LuaMetaTEX (LMTX) more font magic happens. The ini­
tial node lists thatmake up a box or paragraph can getmanipulated in several ways and
often fonts are involved. The font features (smallcaps, oldstyle, alternates, etc.) can be
defined as static (part of the definition) or as dynamic (resolved on the spot at the cost
of some overhead). Characters can be remapped, fonts can be replaced. Themath sub­
system in MkIV was different right from the start: we use a limited number of families
(regular, bold, l2r and r2l), and stay abstract till the moment we need to deal with the
specific alphabets. But still, in MkIV, we have the families with three fonts.

In the LuaMetaTEX manual we show some math magic for different fonts. As a side ef­
fect, we set up half a dozen bodyfont collections: Lucida, Pagella, Latin Modern, Dejavu,
the math standard Cambria, etc. Even with delayed and shared font loading, we end
up with 158 instances but quite a few of them are math fonts, at least six per bodyfont
size: regular and bold (emboldened) text, script and scriptscript. Of course most are
just copies with different scaling that reuse already loaded resources. In the final pdf
we have 21 subsetted fonts.

If we look at the math fonts that we use today, there is however quite some overlap. It
starts with a text font. From that, script and scriptscript variants are derived, but often
these variants usemany text size related shapes too. Someshapes get alternatives (from
thessty feature), and thewhole clonegets scaled. But,muchof the logic of, for instance,
extensibles is the same.

A similar situation happenswith large cjk fonts: there are hardly any advanced features
involved there, so any size is basically a copy with scaled dimensions, and these fonts
can be truly huge!

When we talk about features, in many cases in ConTEXt you don't define them as part
of the font. For instance small caps can best be triggered by using a dynamic feature:
applied to a specific stretch of text. In fact, often features like superiors of fractions

98 Scaled fonts

only work well on characters that fit the bill and produce weird side effects otherwise (a
matter of design completeness). When the font handler does its work there are actually
four cases: no features get applied (something that happens with, for instance, most
monospaced fonts); basemode is used (whichmeans that the TEXmachinery takes care
of constructing ligatures and injecting kerns); and node mode (where Lua handles the
features). The fourth case is a special case of nodemode where a different feature set is
applied.59At the cost of someextra overhead (for eachnodemode run) dynamic features
arequitepowerful andsavequite a lot ofmemoryanddefinitions.60 Theoverheadcomes
frommuchmore testing regarding the fontwedealwithbecause suddenly the same font
can demand different treatments, depending on what dynamic features are active.61

Although the font handling is responsible for much of the time spent in Lua, it is still
reasonable given what has to be done. Because we have an extensible system, it's often
the extensions that takes additional runtime. Flexibility comes at a price.

18.3 Progress

At some point I started playing with realtime glyph scaling. Here realtimemeans that it
doesn't depend on the font definition. To get an idea, here is an example (all examples
are additionally scaled for TugBoat):

test {\glyphxscale 2500 test} test

test test test

The glyphs in the current font get scaled horizontally without the need for an extra font
instance. Now, this kind of trickery puts some constraints on the font handling, as is
demonstrated in the next example. We use LatinModern because that font has all these
ligatures:

\definedfont[lmroman10-regular*default]%
e{\glyphxscale 2500 ff}icient
ef{\glyphxscale 2500 f}icient
ef{\glyphxscale 2500 fi}cient
e{\glyphxscale 2500 ffi}cient

efficient efficient efficient efficient

59 We also have so-called plugmodewhere an external renderer can do thework but that one is only around
due to some experiments during Idris Hamid's font development.

60 The generic font handler that is derived from the ConTEXt one doesn't implement this, so it runs a little
faster.

61 Originally this model was introduced for a dynamic paragraph optimization subsystem for Arabic but in
practice no one uses it because there are no suitable fonts.

Scaled fonts 99

In order to deal with this kind of scaling, we now operate not only on the font (id) and
dynamic feature axes, but also on the scales, of which we have three variants: glyph
scale, glyph xscale and glyph yscale. There is actually also a state dimension but we
omit that for now (think of flagging glyphs as initial or final). This brings the number
of axes to six. It is important to stress that in these examples the same font instance is
used!

Just for the record: several approaches to switching fonts are possible but for now we
stick to a simple font id switch plus glyph scale settings at the TEX end. A variant would
be to introduce a newmechanismwhere id's and scales go together but for now I see no
real gain in that.

18.4 Math

Given what has been discussed in the previous sections, a logical question would be
“Can we apply scaling to math?” and the answer is “Yes, we can!”. We can even go a bit
further and that is partly due to some other properties of the engine.

FrompdfTEX the LuaTEX engines inherited character protrusion and glyph expansions,
aka hz. However, where in pdfTEX copies of the font are made that carry the expanded
dimensions, inLuaTEXat somepoint thiswas replacedbyanexpansionfield in theglyph
and kern nodes. So, instead of changing the font id of expanded glyphs, the same id
is used but with the applied expansion factor set in the glyph. A side effect was that
in places where dimensions are needed, we call functions that calculate the expanded
widths on request (as these can change during linebreak calculations) in combination
with accessing font dimensions directly. This level of abstraction is even more present
in LuaMetaTEX. This means that we have an uniform interface to fonts and as a side
effect scaling need be dealt with in only a few places in the code.

Now, inmath we have a fewmore complications. First of all, we have three sizes to con­
sider and we also have lots of parameters that depend on the size. But, as I wanted to
be able to apply scaling tomath, the wholemachinery was also abstracted in a way that,
at the cost of some extra overhead, made it easier to work with scaled glyph properties.
This means that we can stick to loading only one bodyfont size of math (note that each
math family has three sizes, where the script and script sizes can have different, fine
tuned, shapes) and just scale that on demand.

Once all that was in place it was a logical next step to see if we could stick to just a single
instance. Because in LuaMetaTEX we try to load fonts efficiently we store only themini­
mallyneeded informationat theTEXend. A fontwithnomath thereforehas less dataper
glyph. Again, this brings some abstraction that helped to implement the one instance
mechanism. Amath glyph has optional lists of increasing sizes and vertical or horizon­
tal extensibles. So what got added was an optional chain of smaller sizes. If a character

100 Scaled fonts

has three different glyphs for the three sizes, the text glyph has a pointer to the script
glyph which in turn has a pointer to the scriptscript glyph. This means that when the
math engine needs a specific character at a given size (text, script, scriptscript) we just
follow that chain.

In an OpenTypemath font the script and scriptscript sizes are specified as percentages
of the text size. When the dimensions of a glyph are needed, we just scale on the fly.
Again this adds some overhead but I'm pretty sure that no user will notice.

So, to summarize: if we need a character at scriptscript size, we access the text size
glyph, check for a pointer to a script size, go there, and again check for a smaller size.
We use only what fits the bill. And, when we need dimensions we just scale. In order to
scale we need the relative size, so we need to set that up whenwe load the font. Because
in ConTEXt we also can assemble a virtual OpenType font from Type1 fonts, it was actu­
ally that (old) compatibility feature, the one that implements Type1 based on OpenType
math, that took the most time to adapt, not so much because it is complicated but be­
cause in LMTXwe have to bypass some advanced loadingmechanisms. Becausewe can
scale in two dimensions the many (font-related) math parameters also need to be dealt
with accordingly.

The end result is that formathwe now only need to define two fonts per bodyfont setup:
regular and bold at the natural scale (normally 10pt) and we share these for all sizes.
As a result of this and what we describe in the next section, the 158 instances for the
LuaMetaTEXmanual can be reduced to 30.

18.5 Text

Sharing instances in textmode is relatively simple, althoughwedohave to keep inmind
that scaling is an extra axis when dealing with font features: two neighboring glyphs
with the same font id and dynamics but with different scales are effectively from differ­
ent fonts.

Another complication is thatwhenweuse font fallbacks (read: takemissing glyphs from
another font) we no longer have a dedicated instance but use a shared one. This in itself
is not a problem but we do need to handle specified relative scales. This was not that
hard to patch in ConTEXt LMTX.

We can enforce aggressive font sharing with:

\enableexperiments[fonts.compact]

After that we often use fewer instances. Just to give an idea, on the LuaMetaTEXmanual
we get these stats:

Scaled fonts 101

290 pages, 10.8 sec, 292M lua, 99M tex, 158 instances
290 pages, 9.5 sec, 149M lua, 35M tex, 30 instances

So, we win on all fronts when we use this glyph scaling mechanism. The magic prim­
itive that deals with this is named \glyphscale; it accepts a number, where 1200 and
1.2 both mean scaling to 20%more than normal. But it's best not to use this primitive
directly.

A specific scaled font can be defined using the \definefont command. In LMTX a reg­
ular scaler can be followed by two scale factors. The next example demonstrates this (as
can be seen, the yoffset affects the baseline):

\definefont[FooA][Serif*default @ 12pt 1800 500]
\definefont[FooB][Serif*default @ 12pt 0.85 0.4]
\definefont[FooC][Serif*default @ 12pt]

\definetweakedfont[runwider] [xscale=1.5]
\definetweakedfont[runtaller][yscale=2.5,xscale=.8,yoffset=-.2ex]

{\FooA test test \runwider test test \runtaller test test}\par
{\FooB test test \runwider test test \runtaller test test}\par
{\FooC test test \runwider test test \runtaller test test}\par

We also use the new \definetweakedfont command here. This example not only
shows the two scales but also introduces the offset.

test test test test test test
test test test test test test

test test test test test test
In compact mode this is one font. Here is another example:

\definetweakedfont[squeezed][xscale=0.9]

\startlines
$a = b^2 + \sqrt{c}$
{\squeezed $a = b^2 + \sqrt{c}$}
\stoplines

𝑎 = 𝑏2 + √𝑐
𝑎 = 𝑏2 + √𝑐

Watch this:

102 Scaled fonts

\startcombination[3*1]
{\bTABLE

\bTR \bTD foo \eTD \bTD[style=\squeezed] $x = 1$ \eTD \eTR
\bTR \bTD oof \eTD \bTD[style=\squeezed] $x = 2$ \eTD \eTR

\eTABLE}
{local}
{\bTABLE[style=\squeezed]

\bTR \bTD $x = 1$ \eTD \bTD $x = 3$ \eTD \eTR
\bTR \bTD $x = 2$ \eTD \bTD $x = 4$ \eTD \eTR

\eTABLE}
{global}
{\bTABLE[style=\squeezed\squeezed]

\bTR \bTD $x = 1$ \eTD \bTD $x = 3$ \eTD \eTR
\bTR \bTD $x = 2$ \eTD \bTD $x = 4$ \eTD \eTR

\eTABLE}
{multiple}

\stopcombination

foo 𝑥 = 1

oof 𝑥 = 2

𝑥 = 1 𝑥 = 3

𝑥 = 2 𝑥 = 4

𝑥 = 1 𝑥 = 3

𝑥 = 2 𝑥 = 4

local global multiple

An additional style parameter is also honored:

\definetweakedfont[MyLargerFontA][scale=2000,style=bold]
test {\MyLargerFontA test} test

This gives:

test test test
Just for the record: the LatinModern fonts, when set up to use design sizes, will still use
the specific size-related files.

18.6 Hackery

You can use negative scale values, as is demonstrated in the following code:

\bTABLE[align=middle]
\bTR
\bTD a{\glyphxscale 1000 \glyphyscale 1000 bc}d \eTD
\bTD a{\glyphxscale 1000 \glyphyscale -1000 bc}d \eTD

Scaled fonts 103

\bTD a{\glyphxscale -1000 \glyphyscale -1000 bc}d \eTD
\bTD a{\glyphxscale -1000 \glyphyscale 1000 bc}d \eTD

\eTR
\bTR
\bTD \tttf +1000 +1000 \eTD
\bTD \tttf +1000 -1000 \eTD
\bTD \tttf -1000 -1000 \eTD
\bTD \tttf -1000 +1000 \eTD

\eTR
\eTABLE

gives:

abcd abcd abcd abcd

+1000 +1000 +1000 -1000 -1000 -1000 -1000 +1000

Glyphs can have offsets and these are used for implementing OpenType features. How­
ever, they are also available on the TEX side. Take this example where we use the new
\glyph primitive (a variant of \char that takes keywords):

\ruledhbox{
\ruledhbox{\glyph yoffset 1ex options 0 123} % left curly brace
\ruledhbox{\glyph xoffset .5em yoffset 1ex options "C0 123}
\ruledhbox{oeps{\glyphyoffset 1ex \glyphxscale 800

\glyphyscale\glyphxscale oeps}oeps}
}

{ { oepsoepsoeps

This example demonstrates that the \glyph primitive takes quite a few keywords:
xoffset, yoffset, xscale, yscale, left, right, raise, options, font and id where
the last two take a font identifier or font id (a positive number). For this article it's
enough toknow that theoption indicates that glyphdimension should include theoffset.
In a moment we will see an alternative that doesn't need that.

\samplefile{jojomayer}
{\glyphyoffset .8ex
\glyphxscale 700 \glyphyscale\glyphxscale
\samplefile{jojomayer}}
{\glyphyscale\numexpr3*\glyphxscale/2\relax
\samplefile{jojomayer}}
{\glyphyoffset -.2ex

104 Scaled fonts

\glyphxscale 500 \glyphyscale\glyphxscale
\samplefile{jojomayer}}
\samplefile{jojomayer}

To quote Jojo Mayer:

If we surrender the thing that separates us frommachines, wewill be replaced by
machines. The more advanced machines will be, the more human we will have
to become. If we surrender the thing that separates us frommachines, we will be replaced by machines. The

more advanced machines will be, the more human we will have to become. If we surrender the thing
that separates us from machines, we will be replaced by machines. The more
advanced machines will be, the more human we will have to become. If we surrender the

thing that separates us from machines, we will be replaced by machines. The more advanced machines will be, the more human we will have to become. If
we surrender the thing that separates us from machines, we will be replaced by
machines. Themore advancedmachines will be, themore humanwewill have to
become.

Keep inmind that this can interfere badly with font feature processing which also used
offsets. It might often work out okay vertically, but less well horizontally.

The scales, as mentioned, works with pseudo-scales but that is sometimes a bit cum­
bersome. This is why a special \numericscale primitive has been introduced.

1200 : \the\numericscale1200
1.20 : \the\numericscale1.200

Both these lines produce the same integer:

1200 : 1200
1.20 : 1200

You cando strange thingswith these primitives but keep inmind that you can alsowaste
the defaults.

\def\UnKernedTeX
{T%
{\glyph xoffset -.2ex yoffset -.4ex `E}%
{\glyph xoffset -.4ex options "60 `X}}

We use \UnKernedTeX\ and {\bf \UnKernedTeX} and {\bs \UnKernedTeX}:
the slanted version could use some more left shifting of the E.

This gives the TEX logos but of course we normally use the more official definitions in­
stead.

Scaled fonts 105

WeuseTEXandTEX andTEX: the slanted version coulduse somemore left shifting
of the E.

Because offsets are (also) used for handling font features like mark and cursive place­
ment as well as special inter-character positioning, the above is suboptimal. Here is a
better alternative:

\def\UnKernedTeX
{T\glyph left .2ex raise -.4ex `E\glyph left .2ex `X\relax}

The result is the same:

WeuseTEXandTEX andTEX: the slanted version coulduse somemore left shifting
of the E.

But anyway: don't overdo it. We have dealt with such cases for decades without these
fancy new features. The next example showsmargins in action:

<M> <M> <M>
raise 3pt raise -3pt

<M> <M> <M>
left 3pt right 2pt left 3pt right 2pt

<M> <M> <M>
left -3pt right -2pt left -3pt right -2pt

Here is another way of looking at it:

\glyphscale 4000
\vl\glyph `M\vl\quad
\vl\glyph raise .2em `M\vl\quad
\vl\glyph left .3em `M\vl\quad
\vl\glyph right .2em`M\vl\quad
\vl\glyph left -.2em right -.2em`M\vl\quad
\vl\glyph raise -.2em right .4em`M\vl

The raise as well as left and right margins are taken into account when calculating the
dimensions of a glyph.

M M M M M M

106 Scaled fonts

18.7 Implementation

Discussing the implementation in the enginemakes no sense here, also because details
might change. However, it is good to know that many properties travel with the glyph
nodes, for instance the scales, margins, offsets, language, script and state properties,
control over kerning, ligaturing, expansion andprotrusion, etc. The dimensions (width,
height and depth) are not stored in the glyph node but calculated from the font, scales
and optionally the offsets and expansion factor. One problem is that the more clever
(and nice) solutions we cook up, the more it might impact performance. So, I will delay
some experiments till I have a more powerful machine.

One reason for not storing the dimensions in a glyph node is that we often copy those
nodes or change character fields in the font handler and we definitely don't want the
wrong dimensions there. At that moment, offsets and margin fields don't reflect fea­
tures yet, so copying them is no big deal because at that moment these are still zero.
However, dimensions are rather character bound so every time a character is set, we
also would have to set the dimensions. Even worse, when we can set them, the question
arises if they were already set explicitly. So, this is a can of worms we're not going to
open: the basic width, height and depth of the glyph as specified in the font is used and
combined with actual dimensions (likely already scaled according the glyph scales) in
offset andmargin fields.

Now, I have to admit that especially playing with usingmargins to glyphs instead of font
kerns is more of an experiment to see what the consequences are than a necessity, but
what would be the joy of TEXwithout such experiments? And as usual, in ConTEXt these
will become options in the font handler that one can enable, or not.

Memory 107

19 Memory

19.1 Introduction

19.2 LUA

When you initialize Lua a proper memory allocator has to be provided. The allocator
gets an old size and new size passed. When both are zero the allocator can free the
blob, when the new size exceeds the old size the blob has to berealloc's, and otherwise
an initial malloc happens. When used with ConTEXt, LuaMetaTEX will do lots of calls to
the allocator and often an initial allocation is followed by a reallocation, for instance
because tables start out small but immediately grows a while after.

It is for this reason that early 2021 I decided to look into alternative allocators. I can of
course code one myself, but where a LuaTEX run is a one time event, often with grow­
ingmemory usage due to all kind of accumulating resources, using the engine as stand
alone interpreter needs a more sophisticated approach than just keeping a bunch of
bucket pools alive: when the script engine runs for months or even years memory
should be returned to the operating system occasionally. We don't want the same side
effects that html browsers have: during the day you need to restart them occasionally
because they use up quite a bit of your computers memory (often for no real reason, so
it probably has to do with keepingmemory in store instead of returning it and/or it can
be a side effect of a scattered pool . . . who knows).

Instead of reinventing thatwheel I endedupwith testingDaanLeijen'smimalloc imple­
mentation: a not bloated, not too low level, reasonable sized library. Some simple ex­
periments learned that it does make a difference in performance. The experiment was
done with the native Microsoft compiler (msvc). One reason for that is that till that mo­
ment I preferred the cross compiledMingWversions (for cross compiling I use the linux
subsystem that comes with MSWindows). Although native binaries compile faster and
are smaller, the cross compiled ones perform somewhat better (often some 5%). Inter­
esting is thatmaking the format file is alwaysmuch fasterwith a native binary, probably
because the console output is supported better. When the alternative memory alloca­
tor is plugged into Lua suddenly the native version outperforms the cross compiled one
(also by some 5%). The overall gain on a native binary for compiling the LuaMetaTEX
manual is between 5 and 10% which was reason enough to continue this experiment.
As a first step the native compiled version will default to it, later other platforms might
follow.

108 Memory

19.3 TEX

Memory allocation in TEX has always been done by the engine itself. At startup a couple
of big chunks are allocated and from that smaller blobs are taken. The largest chunks
are for nodes, tokens and the table of equivalents (including the hash where control se­
quences are mapped onto registers and macros (lists of tokens). Smaller chunks are
used for nesting states, after group restoration stacks, in- and output levels, etc. Inmod­
ern engines the sizes of the chunks can be configured, some only at format generation
time. In LuaMetaTEX we are more dynamic and after an initial (minimal) chunk alloca­
tion, when needed more memory will be allocated on demand, in steps, until a config­
ured size is reached. That size has an upper limit (which if needed can be enlarged at
compilation time). A side effect is that we (need to) do somemore checking.

Node memory is special in the sense that nodes are basically offsets in a large array
where each node has a number of slots after that offset. This is rather efficient in terms
of performance and memory. New nodes (of any size) are taken from the node chunk
and never returned. When freed they are appended to a list per size and that list serves
as pool before new nodes get taken from the chunk. Variable size chunks are done dif­
ferently, if only because we use them plenty in ConTEXt and they can lead to (excessive
and) fragmentedmemory usage otherwise.

Tokens all have the same size so here there is only one list of free tokens. Because to­
kens and (most) nodes make it into linked lists those lists of free nodes and tokens are
rathernatural. And it's also fast. It allmeans thatTEX itself doeshardly any realmemory
allocation: only a few dozen large chunks. An exception is the string pool, where con­
trary to traditional TEX engines, the LuaTEX (and LuaMetaTEX) engines allocate strings
usingmalloc. Those strings (used for control sequences) arenever freed. In other cases
where strings areused, like in for instance\csname construction, temporary strings are
used. The same is true for some file related operations. None of these are real demand­
ing in terms of excessive allocation and freeing. Also, in places that matter LuaMetaTEX
is already quite optimized so using a different allocator gives no gain here.

Technically we could allocate nodes by using malloc but there are a few places in the
engine that makes this hard. It can be done but then we need tomake some conceptual
changes (with regards to the way inserts are dealt with) and the question is if we gain
much by breaking away from tradition. I guess there it will actually hurt performance
if we change this. Another variant is where we allocate nodes of the same size from
different pools but this doesn't bring us any gain either. A stringer argument is that
changing the current (and historic) memory management of nodes will complicate the
code.

A bit of an exception is the flow of information between Lua and TEX. There we do quite
some allocation but it depends on howmuch amacro package demands of that.

Memory 109

19.4 METAPOST

When theMetaPost librarywaswritten, Taco changed thememory allocation to bemore
dynamic. One reason for this is that the number models (scaled, double, decimal, bi­
nary) have their own demands. For some objects (like numbers) the implementation
uses a pool so it sits between the way TEX works and Lua when the standard allocator is
used. This means that although quite some allocation is demanded, often the pool can
serve the requests. (Wemight use a fewmore pools in the future.)

In LuaMetaTEX the memory related code has been reorganized a little so that (again as
experiment) the mimallocmanager can be used. The performance gain is not as im­
pressive as with Lua, but we'll see how that evolves when more demand poses more
stress.

19.5 The verdict

In LuaMetaTEX version 2.09.4 and later the native MSWindows binaries now use the al­
ternative mimalloc allocator. The gain is most noticeable for Lua and a little for TEX
and MetaPost. The test suite with 2550 files runs in 1200 seconds which is quite an
improvement over the MingW cross compiled binary that needs 1350 seconds. We do
occasionally test a binary compiled with clang but that one is much slower than both
others (compilation also takes much more time) but that might improve over time. Be­
cause of these results, it is likely that I'll also check out the other platforms, once the
MSWindows binaries have proven to be stable (those are the once I use anyway).

110 Memory

