ALAN

Adventure Language

-

L
47

5l

Reference Manual

version 2.8

Alan Language Manual

This version of the manual was printed on October 17, 2000

Alan Language Manual 10
TABLE OF CONTENTS
1. LINTRODUCTION 13 |
L TUTORIAL 14 |
2.1 WHAT Is AN ADVENTURE? 14 |
2. ELEMENTS OF ADVENTURES 15
73 AT AN FUNDAMENTALS 6
9 N 1= Y/ VN2 o)
232 THE OBJECTS 16
i_:%.:%. THE VERBS 17
3.4. THE ACTORS 7 |
74— AT AN ANGUAGE DESCRIPTION 7
4 1 |HE L OCATION CONSTRUCT 1O
2.4.2. THE OBJECT CONSTRUCT 19
943 THE ACTOR CONSTRUCT 20
P44 THE VERB CONSTRUCT 21 |
PZ5. THE SYNTAX CONSTRUCT 23
8. THE LANGUAGE 26 |
81 AN ADVENTURE 76
2 OPTIONS 20
83— ATTRBUTES AND DEFAULT ATTRE 27
.'B 4. SYNONYMS 29
5. MESSAGES 30
8.6. SYNTAX DEFINITIONS 30 |
7 VERBS 33
7 VERBALTERNATIVES 35
B.7.2. VERB QUALIFICATION 35
.8. LOCATIONS 37
%_g_ OBJECTS 38
fmmﬂﬂfs 47
1 EVENTS 43
B.12. AcTORS 43
A3. RULEs 45
814, START SECTION 45
] TATEMENTS 76
BI51 _OUTPUT STATEMENTS 16
8.5.2. SPECIAL STATEMENTS 47
8.5.3. MANIPULATION STATEMENTS 49
BI54. EVENT STATEMENTS 5O
jle e} ASSIGNMENT STATEMENTS 20)
5.0 CONDITIONAL STATEMENTS ol
8.5.7. ACTOR STATEMENTS 52
8.16. WHERE SPECIFICATIONS 52
317 WHAT SPECIFICATIONS 53]
818 FXPRESSIONS 53
BI8 L TYPES OF EXPRESSIONS 53]
8.18.2. LITERAL VALUES 54
818.3. LOGICAL EXPRESSIONS 54

Alan Language Manual 1

8.18.4. BINARY OPERATORS 54 |
B.18.5. RELATIONAL OPERATORS 54
B.18.6. THE VALUE OF ATTRIBUTES 55
187, N ENTITY 55]
188, AGGREGAIES 56]
4. LEXICAL DEFINITIONS 57 |
t | COMMENTS 57
2. |DENTIFIERS AND NAMES 57
4.3. EIUMBERS 58
4.4, STRINGS 58
5. FILES 59
%, EXECUTION OF AN ADVENTURE 60 |
5.1 A TurN OF EVENTS 60
57 PLAYERINPUT 60
.3, RUN-TIME CONTEXTS ol
5.4. MOVING ACTORS 62 |
6. HINTS AND TIPS 64 |
E.l. USE OF ATTRIBUTES 64
.2. DESCRIPTIONS 65
6.3. COMMON VERBS 66
54 DOORS 66
D 5 (:QNIAMEPQ AND THEIR CONTENTS [
5.6. ACTORS 67
.7. DISTANT EVENTS 69
6.8. VEHICLES 69
50 QUESTIONS AND ANSWERS 71
b.10) ELOATING ORIECTS /]
5.11. DARKNESS AND LIGHT SOURCES 72
12. DISTANT & IMAGINARY OBJECTS 73
13. STRUCTURE 75
614, DEBUGGING 757]
1. ADVENTURE CONSTRUCTION 79 |
1 GETTING AN IDEA 79
T2 ELABORATING THE STORY 9
3. IMPLEMENTING T 80
7.4. POLISHING THE ADVENTURE 80
1.5. BETA TESTING 8!
A RUN-TIME MESSAGES 82 |
Al INPUT RES_PONSE MESSAGES SL
A.2 SYSTEM ERRORS 87
IE.I DESCRIPTION 90
B.Z RESERVED WORDS o0 |
B3~ ADDITIONAL KEYWORDS Ol

Alan Language Manual 12
B.4 THE GRAMMAR o |
Q COMPILER ERROR MESSAGES 99 |
%.1 FORMAT OF MESSAGES 99
.2 MESSAGE EXPLANATIONS 99
p HOW TO USE THE SYSTEM 110 |
D.. COMPILING o)
.2 COMPILER SWITCHES 110
.3 RUNNING THE ADVENTURE i}
P4 INTERPRETER SWITCHES il
E_S_Y_SIEM_DEIALLS 112J
[T PORTABILTY OF GAMES 2]
£ VERSION DIFEFRENCES 14 |

G FUTUREDEVELOPMENTS 177

i REFERENCES 118 |
IL_EXAMPLE ADVENTURE 121 |
J COPYING CONDITIONS 125 |
.1 DISTRIBUTION 125
J 2 DOCUMENTATION 125]
oS EXECUTABLES 1ZD
J N 120 |
J5 Source 126
\@ EXAMPLES 126
J.7 VERSIONS, COMPATIBILITY AND SUPPORT 126
J.o EXECUTIVE SUMMARY 1Z7 |
K__INDEX 128 |

Alan Language Manual 13

INTRODUCTION

Text adventures or, using a more appropriate term, interactive fiction is a form of
computer game which has many things in common with fiction in book form, role-
playing games and puzzle-solving. To create a high quality interactive fiction game,
you need to be more of an author than a games programmer.

Alan is a special purpose computer language specifically designed to make it very
easy to create such adventure games with little programming skills.

The main principle of the design of the language is simplicity. That is, to make it
very easy to do normal things, but also allow more complex things using more
complex language constructs. This means that wherever a construct is optional, the
system supplies some sensible default instead.

The Alan language has been designed by the author and a very good friend during
several years of incremental improvement. This means that the language has a sound
foundation, based on practical use, a concept forgotten in many software projects
today. Tools develop and are made sharper and more powerful as usage is
intensified, the problem domain more and more understood and the requirements
increased to tackle new aspects of the problem.

This, we believe, is how software tools must be developed to give the support
intended. Therefore Alan and its support system will also develop further. This
version is, however, a complete and powerful tool as it stands.

2.1

Alan Language Manual 14

TUTORIAL

WHAT IS AN ADVENTURE?

As long as man has been around there have been stories, fairy tales and fantasies. In
early days the stories were told by story tellers to silent and astonished audiences.
After Gutenberg, the stories were printed and the readers partook in the fantasies of
the author. In our days, passive viewers are fed from the silver screen or through the
tube.

In our century, at last, there has evolved a way for the “audience” to take part in the
story themselves. It started in the forties and fifties and continued to develop into
the games today known as Dungeon and Dragons, Tunnels and Trolls, etc. Games
where a game leader designs the story, but the players decide (and perform) the
actions of the characters in the story.

These games, of course, have a computerized counterpart.

The games are played interacting with the computer. The program describes a scene
or situation (usually in text, but pictures are more and more frequently used), the
player decides on some action and gives orders to the computer to carry out his
wishes. Usually there are objects to manipulate, traps to negotiate and puzzles to
solve, the object being to find the hidden treasures or save the world.

This form of games was started by Crowther & Woods in the late sixties when they
designed the famous Colossal Cave Adventure now available on many mainframe
computer systems. Inspired by this, Lebling et.al. (then at MIT) took a giant step
forward in adventuring by creating the Great Underground Empire and making it
available for venturing Adventurers in the game Dungeon. This game contained a
much more developed story and could handle much more complex commands.

Later, Dave Lebling & Co started Infocom, a company where they continued to
develop their technique, first with Zork I, I11.and 111 (the first a reimplementation of
Dungeon, the others equally successful sequels). Since then a host of games has been
released (Starcross, Witness, Enchanter are some of the names that come to mind).
Infocom today only exists as a label with Mediagenic, the original authors scattered,
but the Infocom games are still among the best available today.

Other companies have followed in Infocom’s footsteps and a handful of them seem
to make a living out of creating adventure games. However, today most of the
works are performed by devoted people that produce games for the fun of it, as
shareware or completely free.

There have been many attempts to use computer graphics to display the sur-
roundings and objects in adventure games. Some of the more successful are the
Sierra OnLine games (notably the Leisure Suit Larry and the Kings Quest series)
which have mouse oriented moves but also allows single line text commands, games
from ICOM Simulations (DejaVu and The Uninvited) which are purely graphics
games with mouse and icon interfaces. Other manufacturers have tried to use (some

2.2.

Alan Language Manual 15

times optional) pictures to accompany the text, for example Magnetic Scrolls games
(e.g. the Pawn), which shift the picture automatically as you move around using the
normal directional commands.

A large number of so called Arcade Adventures are also available but they are always
more Arcade than Adventure and do not belong in this discussion.

The Alan Adventure Language is designed to aid construction of pure text ad-
ventures or, in the words of Infocom, interactive fiction. Possibly, in future versions
sound and graphics functions may be available.

ELEMENTS OF ADVENTURES

The success of all Infocom games can probably be attributed to three distinctive
features. First, they all have a ‘believable’ and consistent plot, which is flavoured
with humour and wittiness. Second, the descriptions are extensive and give a lot of
atmosphere to the game. Third, the command handler recognizes and understands a
large vocabulary and complex input. Add to this the worlds best graphics device
(the human brain) and you are unbeatable!

Looking at Adventures in more detail, one can see some common features. There is,
of course, a world or universe (called the map) where the Adventure is taking place.
Although you can move around quite freely there are usually some problems getting
into certain parts of the world (e.g. locked doors, no air to breathe or even finding
the entrance).

The size of the map ranges from hundreds of locations (like in some of the In-
focom games) to just two or three (some of the Scott Adams games are very
compact and very difficult).

Then, there are the objects in the game. These range from your tools, like lamps
and shovels, to immaterial things like a hole in the ground, in short, anything you
can manipulate. Ideally everything that is mentioned in a description should be an
object, but this is normally impossible because of storage limits (and perhaps the
stamina of the games designer!).

Most objects have uses. A key is easy to guess how to use, but what about the velvet
pillow? Red herring objects are also common in adventuring.

The player must be able to express his wishes. Natural language commands,
advocated in many advertisements, are probably overkill since most players do not
wish to wear their fingers out typing full sentences, but single verb-object input is
not sufficient for a good game either. The player must be able to say things like

> take all except the blue vase

or

> put the ring and the bag in the box

2.3.

2.3l

2.3.2.

Alan Language Manual 16

ALAN FUNDAMENTALS

The Alan Adventure Language is a high level computer language designed to make
it easy to create text Adventures. The Alan system handles all the tiresome tasks and
supplies reasonable defaults so you can concentrate on the plot, the puzzles, the
objects and the map.

There are no variables, subroutines or other traditional programming constructs in
Alan because Alan is not a programming language. Instead Alan takes a descriptive
view of the concepts of adventure authoring. The Alan language contains constructs
to make it possible for the author to describe the various features of these concepts.
By describing for example how the locations in the adventure are connected you
have described the geography in which the story will take place. Much of what
should be described is in terms of text that should be output to make the player
experience the story that you have designed.

Another fundament of Alan is that the execution of an adventure is event driven.
This means that the things happening in the adventure are triggered by one thing
only, namely the input of a player command. This command is analysed according
to the allowed syntax and transformed into execution of verbs or movements which
in turn executes other part of the description in the Alan source. After a player turn
other actors can move and scheduled events can be run, then the player takes
another turn.

The Map

In Alan, the map is a number of locations connected (or not!) by any number of
exits. A location has a description that is presented to the player when it is entered.
A location may also have a number of exits stating in which direction the exit is and
to which location it leads. Alan places no restrictions on the layout of the map, any
topology is allowed. Note, however, that since exits are one-way, an explicit
declaration of a backward path (if such is desired) must be made.

The Objects

The other vital entity in Alan is the object. Most Alan objects are things that in real
life would be objects too, like a knife or a key. In addition, other things that should
be possible to manipulate by the player, e.g. parts of the scenery, must be declared as
an object. For example if you require the player to ‘whistle the melody’, then the
melody must be an Alan object.

Objects, like locations, have a description that is presented when they are en-
countered during the game.

Every object may also have a set of properties, like eatable and movable, which may
be changed during the execution of an Alan program. Most objects would probably
not be edible so there is also a mechanism for giving default properties to objects.

Some verbs have special meaning or effects when applied to a certain object. These
verbs and their effects are also declared within the object.

2.3.3.

2.34.

24.

Alan Language Manual 17

The Verbs

Verbs are imperative statements input by the player to command some action.
These must also be declared in an Alan adventure, either in an object (as described
above) or as a general (global) verb that describes the effects of the verb when
applied to any object or for verbs to which no object may be given.

To make it possible for the player to input more complex commands a means to
specify the syntax for a verb is also available. Using this verbs can also be made to
operate on literals (strings and integers) giving the player the possibility to input
things like

> wite "Merry Christmas, M. Lawence" on the xmas card

The Actors

An extra thrill and dimension are additional characters in the game. These are called
actors and have a life of their own. For each move the player makes these
programmed characters also get a turn to do their thing. An actor may be a thief
running around and stealing your collected treasures, a dragon guarding the entrance
to its lair and so on.

Actors get their behaviour from scripts that step-by-step describes what is going to
happen for each player interaction.

One of the interesting things about playing adventure games with actors is to figure
out how to interact with and influence the other characters.

ALAN LANGUAGE DESCRIPTION

Alan is an Adventure language, i.e. a language designed to make it easy to write
Adventures. This means that the Alan language must reflect the various entities
encountered when creating an Adventure plot.

The first step after having come up with a plot for your Adventure is to draw a map
of the world where the Adventure is taking place. For this purpose the LOCATI ON
construct is provided.

The next step is to introduce tools, weapons and other objects possible to
manipulate. Here the OBJECT construct is used.

Then the player will need words to command action. The Alan language construct
to supply these with is the VERB. You may also define more complex types of
player input using the SYNTAX construct.

Additionally, you may also want other characters and creatures in your adventure.
For this the ACTOR construct is provided.

24.1

Alan Language Manual 18

The Location Construct

The scene for your Adventure is a series of “rooms” or, rather, locations. They are
connected by paths leading from one location to another. This makes it possible for
the hero to travel through the world of your design, exploring it and solving the
puzzles.

What is required if we want to describe a location? Every location (or LOCATI ON,
when we are referring to the Alan language construct) must have a name. This is so
that you, the designer, may refer to that LOCATI ON easily, instead of having to
remember a magic number for each LOCATI ON.

Unless you provide other means for transportation from a LOCATI ON, you should
also describe in which directions there are EXI Ts and to which LOCATI ONs
they lead.

In fact, this is all that is really necessary in a LOCATI ON, so lets look at an
example (you would probably like to try this out, referring to appendix E,
SYSTEM DETAILS, on page 111 for instructions for your particular system).

LOCATI ON Ki t chen
EXIT east TO hal | way.
END LOCATI ON Ki t chen.

LOCATI ON Hal | way
EXIT west TO ki tchen.
END LOCATI ON Hal | way.

START AT Kitchen.

This is a complete Alan Adventure (although very primitive). As you see, every Alan
construct ends with a period (*.’) and there is also a “START AT” sentence at the
end, indicating in which location to put the hero when the game starts.

Run this little Alan source through the Alan Compiler
O USE THE SYSTEM]on page 110 ahd appendix E], SYSTEM DETAIL{ on
;Eage 112} |and try the Adventure. After starting the Adventure, two lines will be
shown on your screen. The first line will contain “Kitchen” and the second a “>",
which is the prompt for the player to input a command. Now try typing “east”.

The word “Hallway” and the prompt will appear. Typing “west” will take you back
to “Kitchen” again.

We see that the name of a LOCATI ONis automatically used as a description
shown when that room is entered. We also see that the words listed in the EXI T-
parts are translated by Alan into directional commands that are usable by the player.

You should remember that exits are strictly one-way. An EXI T from a LO-
CATI ONto another does not automatically imply the opposite path. Thus one
must explicitly declare the path back, in the definition of the other LOCATI ON.

But just the name of the location is not much of a description. So in order to
provide the “purple prose” descriptions often found in high-class Adventures there
is an optional DESCRI PTI ON-clause in the LOCATI ON. Let us describe the
Hallway.

Alan Language Manual 19

LOCATI ON Hal | way
DESCRI PTI ON
“In front of you is a long hallway. In one end
is the front door, in the other a doorway. From
the snmell of things the doorway |eads to the
Ki t chen. ™"
EXIT west TO Kitchen
END Hal | way.

We introduce another feature in this example, namely the text enclosed in double
quotation marks (**) which is called a STRI NG or, when used on its own like this,

an output statement. When executed this string will be presented to the player and
formatted to suit the format of his screen.

Invent a description for the Kitchen, enter it in the Alan source and run the changed
adventure. You notice, of course, that the text in the output statements is
reformatted during output to suit your screen, in order to make room for as much
text as possible. Note also that you do not have to worry about this at all - in your
source file you may format the text any way you like.

This type of output statement is just one of the statements in the Alan Language,
and we will see more of them later.

It is also possible to have conditions and statements in the EXI T-clauses of a
LOCATI ON to restrict the access to the next location or to describe what happens
during this movement.

EXIT west To Kitchen
CHECK kit chen_door 1S open
ELSE "The door is closed.”
DOES
"As you enter the kitchen the snell of
somet hing burning is getting stronger."
END EXI T west.

2.4.2. The Object Construct

Another essential feature in Alan is the OBJECT. Like the LOCATI ON the
OBJECT is a means to describe the “physical” world where your Adventure is
taking place. Most objects are probably used to provide puzzles, like closed doors,
keys and so on, but other objects should be promoted to OBJECTs too. A large
number of objects that can be examined and manipulated makes a game so much
more enjoyable.

OBJECTs, like LOCATI ONs, have names and descriptions, so you might guess
the general structure of an OBJECT:

OBJECT door AT Hal | way
I'S cl osed.
DESCRI PTI ON
"The door to the kitchen is a sliding door."
| F door 1S closed THEN
"It is closed."
ELSE
"It is open.”
END | F.
END OBJECT door.

24.3.

Alan Language Manual 20

An OBJECT may initially be located at a particular LOCATI ON (although objects
do not have to start at a particular place in which case they are not present in the
game until located at some place where the player may lay his hands on them). This
is indicated by the AT-clause, in this case telling us that the door is initially located
in the Hallway.

In addition, OBJECTs may have attributes indicating the state of certain prop-
erties of the object. In this example with a door, the | S ¢l osed part indicates
that the OBJECT door should initially have the attribute closed set to TRUE (i.e.
the door is initially closed). The opposite would be indicated with a NOT, (i.e. | S
NOT closed).

Alternatively, attributes may be numeric (e.g. HAS wei ght 5) or be of string
type (e.9g. HAS i nscription "Kilroy was here").

We also introduce another Alan statement, the | F statement. The | F statement
allows you to select which statements to execute according to some condition. In
the example, the cl osed attribute of the door selects which description to show.
There are further variations of expressions and the IF statement, but we will come
back to these later (Expressions on page 51 and /fon page 49).

Instead let’s look at some other statements in relation to OBJECTS.

The attributes of an OBJ ECT must, of course, be changeable, and this is done with

the MAKE statement or the SET statement. For example if the door should be

opened (the player having said “open door”, perhaps) this could be performed by
MAKE door NOT cl osed.

or closed (i.e. setting the closed attribute to TRUE again) by

MAKE door cl osed.
The SET statement changes numeric or string attributes, for example

SET | evel OF bottle TO 4.

Another OBJ ECT manipulating statement is the LOCATE statement. This is the

statement to use when moving objects from one location to another. Opening a lid

might cause a previously hidden object to fall to the floor, something that could be

performed by moving the object from a limbo LOCATI ONto the current one with
LOCATE treasure HERE

Or to a particular place with

LOCATE vase AT hal | way.

The Actor Construct

The ACTORis used to populate the adventure with other creatures. They might be
pirates or monsters, but the thing they have in common is that they move around
and perform various actions more or less in the same way as the player does.

244,

Alan Language Manual 21

An ACTOR may have a DESCRI PTI ONand attributes like OBJECTs and
LOCATI ONs. An ACTOR performs his movements by following scripts, each
having a number of steps. Each step corresponds to one player move.

ACTOR charlie_chaplin NAVE Charlie Chaplin
SCRI PT goi ng_out
STEP
LOCATE ACTOR AT out si de_house.
STEP
LOCATE ACTOR AT hal | way.
USE SCRI PT goi ng_out.
END ACTOR charlie_chaplin.

The Verb Construct

The VERSB is the construct that implements the effects of an action requested by
the player. VERBs may be global, local to a particular LOCATION or associated
with an OBJECT. We will look at the implications of various combinations of
these in the next few sections.

To implement a VERB you need a name for it (which is also the default word the
player should input to request that action). You must also decide which effects this
verb should have under various circumstances.

If we want to implement the VERB open for the door we could use the following
code

VERB open
DOES
MAKE door NOT cl osed.

END VERB open.
This implementation makes direct references to the door, so to make the verb more
general it would instead need to reference the object the player mentioned in his
command (see [The Syntax oh page 13 for a discussion). In this case the attribute
cl osed must also be available for all objects (by making it a default object
attribute, see Attributes And Default Attributes pn page 27),

Of course, there are also conditions that have to be checked before we could execute
this code (perhaps to see if it was possible to open the object!). Therefore VERBs
may have CHECKSs.

CHECKING THINGS

In order to assert that the correct conditions are fulfilled before a VERB is actually
executed the VERB has an optional CHECK part.

VERB open
CHECK OBJECT | S openabl e
ELSE "You can't open the $o0."
DCES
MAKE OBJECT NOT cl osed.
END VERB open.

This is a more probable definition of the open VERB than the previous one. What
it means is that before the statements after DOES are executed, the condition after

Alan Language Manual

22

CHECK must be checked (that the object indicated by the player is really
openable). If the condition is TRUE then the requirements are fulfilled and the
body of the VERB may be executed. If this is not the case, the ELSE part is
executed instead (normally some error message).

A CHECK may have multiple conditions as the following code shows:

VERB t ake
CHECK OBJECT t akeabl e
ELSE "You can't take that."
AND OBJECT NOT I N inventory
ELSE "You al ready have it."
DCES
LOCATE OBJECT IN inventory.
END VERB t ake.

Here we encounter a variation on the LOCATE statement - the capability to place

an object inside a container.

GLOBAL, LOCAL AND OBJECTIVE VERBS
VERBs may be defined on three levels.

* Globally. These are always used, no matter in what location the player currently

is, or what object he is trying to manipulate.

» Locally (within a particular LOCATI ON). A local VERB is only considered
when the player issues the VERB at a particular LOCATI ON

* Within an object. When the player tries to manipulate the object within which

the VERB is defined, the VERB definition in that OBJ ECT is executed.

A VERB may be defined on all three levels (as well as in other LOCATI ONs and

OBJECTs of course), and may have CHECKSs in all instances. The implication
that all CHECKs must be passed before any execution and if they all do pass the
verb bodies (DOES parts) are executed. The order is global/local/ object.

An example:

VERB t hr ow
CHECK OBJECT IN inventory ...
DCES
LOCATE OBJECT HERE.
END VERB t hr ow.
LOCATI ON dar k_pl ace
VERB t hr ow
CHECK "Too dark to aim"
END VERB.
END LOCATI ON dar k_pl ace.
OBJECT vase
VERB t hr ow
DCES
"The vase breaks."
LOCATE vase AT |i nbo.
END VERB t hr ow.
END OBJECT vase.

is

245,

Alan Language Manual 23

The CHECK without a condition in dark_place is called unconditional and is
always FALSE (i.e. it will always fall out as if the CHECK had failed).

Now assume the player is carrying the vase at dark_place. He says

> t hrow vase

So we have a VERB globally as well as locally and in the mentioned object. The
CHECKSs are examined in the following order:

e OBJECT I N i nvent ory?(in the global VERB)
 unconditional (in the LOCATI ON)

* None (in the OBJECT)

We fall out already in the LOCATION (player receiving the response “Too dark
to aim.”) so the third (empty) CHECK is never tested. Now the player tries the
same thing at bright_place where there is no restriction on throwing (no local
VERB “throw”).

This time there is no local VERB so we skip that level and get the CHECKS
e OBIJECT IN inventory? (in the global VERB)

* None (in the OBJECT)

Each is tried in turn and none fail, so we can go ahead and execute. This is done in
the same order, i.e.

* LOCATE OBJECT HERE (in the global VERB)
* nothing (in the LOCATION)

e "The vase breaks...” (in the OBJECT)

You can never destroy an OBJECT or remove it from the game. Instead, you will
probably need a limbo location, i.e. a location that is not connected to any of the
others and may thus be used as a storage for destroyed objects and other things the
player is not supposed to see.

The Syntax Construct
Normally a verb acts on one object or actor, henceforth called a parameter. This
means that the format of player input normally is something like

> take vase

This form, or syntax, is the default form when you don’t specify anything else. The
default syntax might thus be described as

Alan Language Manual 24

SYNTAX
? = ? (object)
VWHERE obj ect | SA OBJECT.

where the question marks are replaced by the name of the verb.

But in order to allow different and more complex player input the SYNTAX
construct is supplied.

The SYNTAX construct is a way to describe the words and parameters the player
may use in order to execute a particular verb (its global and more specialised parts).
Below is the syntax for put _i n, the verb to put something inside a container.

SYNTAX
put _in = "put’ (obj) 'in (cont).
This syntax defines the put _i n verb to be executed when the player has input the
word put ’ followed by a reference to an object or actor (a parameter named
obj), followed by the word * i n” followed by a reference to a second parameter
(the container), as in

> put the green pearl in the black box

This will bind the parameter obj to the object that represents the green pearl and
the parameter cont to the black box. It is also possible to restrict the types of the
parameters:

SYNTAX
put _in = 'put’ (obj) 'in
VWHERE obj | SA OBJECT
ELSE "You can’'t put that into anything."
AND cont | SA CONTAI NER OBJECT
ELSE "Nothing fits inside that."

This restricts the parameter obj to being an object (as opposed to an actor for
example) and the parameter cont to a container object (an object with the
container property).

(cont)

The parameters are used as normal identifiers in the Alan source, provided they are
defined in the current context, i.e. they can only be used in the bodies of the verb

(see also Run-time Contexts oh page 61 for a detailed discussion).

The SYNTAX construct generalises the verb execution order described previously
from execution of verbs in one object, to verb bodies in all the parameters. In the
example above, verb bodies in both the object or actor referenced as obj and
cont (the green pearl and the black box) are executed (if present in their
declarations).

Another use for the SYNTAX is to define the syntax for simple verbs such as
gui t, scor e etc. They also need a SYNTAX definition as they do not fit into
the default verb/object format. An example would be

SYNTAX q = "quit’.
But for simple verb/object forms no SYNTAX is actually necessary.

Alan Language Manual

25

In expressions, OBJ ECT always refers to the first parameter. This makes it
consistent with the default syntax of verb/object (and also with the definition of
OBJECT in version 1).

3.1

3.2.

Alan Language Manual 26

THE LANGUAGE

This chapter describes the Alan language in detail. For each construct the exact
syntax can be found in the form of BNF productions in appendix B, ALAN
LANGUAGE GRAMMAR, on page 91.

AN ADVENTURE

An adventure starts with an optional options section (see Mbelow) followed
by a set of units.

The units constitute the major part of the adventure. The units are rules, synonyms,
syntax definitions, verbs, locations, objects, containers, actors and events can be
declared in any order. Any combination and number are allowed. Default attributes
(see melow) for objects, locations and actors may
be decClared in any number of places.

The adventure source text must end with a start section. It indicates where the hero
is when the game starts and can also be used to set things up, welcome the player
and so on. The start section is mandatory.

START AT bedroom
SCHEDULE al arm cl ock AFTER 2.
"Slowy you come to your senses, your numb |inbs
starting to feel the blood flow ng through them.."

OPTIONS

Options define things concerning the overall behaviour of the generated Alan
adventure. An option is for example written either as

LANGUAGE Swedi sh.
(for multiple-valued options) or

PACK.
NO PACK.

(for boolean options).

The options are

Option name Values Default value
|
Language English,Swedish? English
Width 24-255 80
! Other non-English languages may be supported in the future depending on

demand.

3.3.

Alan Language Manual 27

Length 5-255 24
Pack Boolean (on or off) Off (No Pack)
Debug Boolean (on or off) Off (No Debug)

The Language option specifies in which language the adventure is intended to be
played, and selects different default message texts. Alan is primarily designed for
adventures in the English language, but it is also possible to write adventures in
other languages. To make this possible, the default messages output by the
interpreter may be generated in different languages.

The Alan compiler and interpreter will always allow multinational 8-bit characters
as input and the default messages is generated for 8-bit character sets, internally
representing national characters according to the 1ISO multinational character set
(1S0O8859-1) requiring 8 bits. On output this is converted to the native character
set of the machine (whenever possible) which means that portability between
platforms should be good even for text containing non-ASCII characters.

Width specifies how long the lines the interpreter outputs should be (formatting is
automatic!). The Length option will instruct the interpreter to how many lines to
show on the screen without any player interaction (<Mor e>).

In some environments the Width and Length options may be overridden by the
current values of the screen or window if the operating system can supply them.

The Pack option will cause the compiler to compress the texts to occupy less space.
As a bonus this also makes it impossible for the player to cheat by dumping the
adventure text data file. As a drawback it does make the execution of the adventure
a bit slower (quite noticeable on some smaller computers).

In order to allow debugging of the generated adventure (see dzmugaag_oh_pagu

75), the debug option must be turned on. This may also be performed using the
debug compiler flag (see also Compiler Switches, §n page 110)]

ATTRIBUTES AND DEFAULT ATTRIBUTES

An attribute is a definition of a property of either an object, an actor or a location
(for a description of these see the appropriate sections below). An attribute can be
boolean (having the value TRUE or FALSE), numeric or of string type. The type
of an attribute is automatically inferred from the type of its initial value. Attributes
may either be given to all objects, actors and locations (DEFAULT

ATTRI BUTES), to all object, actors or locations respectively

(OBJECT/ ACTOR/ LOCATI ON ATTRI BUTES) or for a single object, actor
or location (local attributes, see for example Attributes oh page 37 for attributes for
locations).

A boolean attribute is declared by simply giving the attribute name, or the name
preceded with the keyword NOT (indicating a FAL SE initial value:

Alan Language Manual 28

thirsty.

NOT hunan.
Numeric and string attributes are declared by simply typing the value after the
attribute name;

wei ght 42.

nmessage "Enter password:".
General attributes that every object, actor and location (all entities) have by default
should be declared in a DEFAULT ATTRI BUTES section. To declare a boolean
attribute that all objects, actors and location will have in common the following
code can be used:

DEFAULT ATTRI BUTES
NOT human.
This attribute will now be available in all entities, and if it is not set to a different
value it will be false. To get another value for a particular object, actor or location
you can declare it in its declaration and give it its desired value, which will be
effective only for that object, actor or location.

Attributes that every object, actor or location respectively has by default should be
declared in an OBJECT/ ACTOR/ LOCATI ON ATTRI BUTES (respectively)
section. A numeric attribute that all objects must have can be declared by:

OBJECT ATTRI BUTES
wei ght 5.

All objects will have the attribute wei ght with the default value 5.

Another example

ACTOR ATTRI BUTES
NOT hungry.
wei ght 50.
By combining these two level of defaults you can create attributes that all objects,
actors and locations have but with different default values for each of these classes.
For example:

DEFAULT ATTRI BUTES
NOT hunman.

ACTOR ATTRI BUTES
hunan.

will give all entitites the attribute human but the default value of the attribute will
be different for objects and locations (false) and actors (true).

Note that string valued attributes are mainly intended for saving string parameters
from the player input, like in

> scribble "Kilroy was here" on the wall

It is not intended for keeping long strings of descriptions, especially not as default
attributes as they (in the current implementation) require much space and takes long
time to initialise when starting the game.

34.

Alan Language Manual 29

Any number of default attributes sections are allowed. This makes it possible to
group verb declarations (see below) and the declaration of the default attributes that
a particular verb requires. For example:

OBJECT ATTRI BUTES
NOT t akeabl e,

VERB t ake
CHECK OBJECT | S takeabl e
ELSE "You can not take that."

This is a practical structuring aid that allows localisation of dependencies between
verbs and attributes.

SYNONYMS

Synonyms declare words that, when used as player input, are interchangeable at all
times.

SYNONYNMB

"i’, "invent’ = 'inventory’'.

Q" = 'quit’.
The word on the right hand side of the equal sign must be a word defined elsewhere
in the adventure source, such as (part of) an object or actor name (a noun or
adjective) or a direction. The list of words on the left hand side are new words
(NOT defined elsewhere) that always will be replaced by the word on the right in
the player input.

When defining synonyms remember that this only defines player words that are
interchangeable. Defining synonyms for verb names etc. will not always give you the
result that you expect. For example

SYNONYMS
"exam ne’ = | ook_at.
SYNTAX
| ook_at = "l ook’ "at’ (obj).
VERB | ook _at

This will result in the compiler issuing an error message indicating that the
synonym word 'look_at’ is not defined. This is because the SYNTAX (see below)
defined the verb look_at to have the specified syntax (including the player words
'look’ and 'at’), the player word ’look_at’ is not defined, which is as well as the

player would not be able to input a word with an underscore (see

You can achieve the desired effect by instead giving multiple verb identifiers in the
verb declarations, this will give the same verb bodies (checks and actions) to

multiple verbs. See m—%‘fper 5 qn page r details on verb declarations.

It is also possible to define multiple names for an object or actor to achieve other
effects similar to synonyms. See bjects o page 38 for a description of this.

3.5.

3.6.

Alan Language Manual 30

MESSAGES

The Alan system has a number of standard messages built in. These messages are
presented to the player in various situations, both normal and otherwise. An
example is the following:

> go north
You can't go that way.

The response "You can’'t go that way." is a typical example of such system messages
(for et seeappendh A1 (nput Response Messages bn page 1]

To make the user dialogue more adapted to the settings you select Alan allows you
to define your own versions of these messages. An example of this is:

MESSAGE
NOMY: "There is no exit in that direction."”

If the above is used in the source for same game as the previous example, it would
instead look like:

> go north
There is no exit in that direction.

The MESSAGE constructs allows general statements following the message
identifier:

MESSAGE:
NOWAY:
IF RANDOM 1 TO 2 = 1 THEN
"There is no way in that direction."
ELSE
"You can't go there."
END | F.

The standard message for NOWAY is replaced by the output from the statements in
the definitign.-Fora complete list of all the identifiers of messages and their use see
appendix O {RUN-THME MESSAGES]

SYNTAX DEFINITIONS

The syntax construct is used to specify the allowed structure of the input from the
player. Each definition defines the syntax for one VERB. The effects triggerd by the
player input are declared using the VERB construct (see [Verbs below).

The syntax is defined as a number of syntax elements each being either a player
word or the name of a parameter (an identifier enclosed in parenthesis).

SYNTAX
quit = 'quit’.
exam ne = 'exam ne’ (obj).

When the player inputs a command the set of allowed syntaxes are checked for
match, giving a very flexible way to extend the allowed command set (see also
Player Input dn page 60 flor details on general player input).

Alan Language Manual 31

After the player input has been matched to an allowed syntax the parameters are
bound to the entities referred to by the player. The identifiers in the syntax
declaration then refers to those entities and tests for attributes etc. will be done in
the entity referred by the parameter.

In the example above the parameter obj can be used in the declaration of the verb
examine and will refer to such a bound entity.

INDICATORS
Following a parameter i ndi cat or s are allowed. These indicators can be one of
Cxr indicating that this parameter can reference multiple objects or actors

(for example by the player using al | or concatenating a number of parameters
using a conjunction like and, see f7ayer Input oy page 6U)]

i indicating that the parameter (the object or actor given in this
position) need not be present at the current location. Normally the Alan interpreter
requires that a referred object or actor must be present at the same location as the
hero (as this is the most common case). But for the more rare cases where the player
must be able to refer to objects and actors that are not present (e.g. in a verb like

t al k_about) this omnipotent indicator can be used to force the interpreter to
accept references to any object or actor.

An example
SYNTAX
take = 'take' (obj)*.
drop = "drop’ (obj).

This shows the syntax definitions for the verbs t ake and dr op, t ake also
allowing multiple objects. This would allow inputs like

> take everything except the pillow
> drop the vase

but not

> drop the shovel and the bucket

Another example using the '!" indicator:

SYNTAX
talk_about = "talk’ 'to (act) 'about’ (sub)!.
find = find (obj)!

This will give the player the possibility to say

> talk to the policeman about the robber
> find the key

even though the robber or the key are not present.

For more information on player inputs refer to Alayer Input dn page 60. |

Alan Language Manual 32

CLASS RESTRICTIONS

To restrict the types of entities the player may refer to in the place of a parameter
its class can be defined by using explicit test in the syntax declaration.

The following example describes the syntax for a verb which only allows OB-
JECTSs as its parameters (this is however also the default, see below).

SYNTAX
take = 'take’ (obj)
VWHERE obj | SA OBJECT
ELSE "You can’'t take that."

Each parameter may be restricted to refer only to certain kinds (classes) of entities:
objects, objects with the container property, actors, numeric literals, string literals or
some combination of these. The statements following the EL SE will be executed if
that restriction is not met, i.e. if the player made a reference to an entity not in the
specified class or classes. The default is OBJECT, i.e. if no class tests are supplied
for that parameter identifier the player may only refer to objects at that position in
his input.

So a more elaborate example of prerequisites for conversation might look like:

SYNTAX
talk_about = "talk’ 'to (act) 'about’ (sub)!
VWHERE act | SA ACTCR
ELSE "Don’t you think talking to a person night
be better?!?!"

The classes defined for a parameter are also used by the compiler to analyse
statements and expressions in which that parameter occurs to ensure that the entity
referenced is guaranteed to have the properties required during run- time. A
parameter identifier defined using I SA OBJECT may for example not be used in
a LI ST statement as this requires the entity to have the container property (I SA
CONTAI NER would of course restrict the entities to only those entities that are
containers and would do the trick).

As both actors and objects may have the container property it is possible to restrict
parameters to only objects that are containers (CONTAI NER OBJECT), only
actors that are containers (CONTAI NER ACT CR) or that it need just have the
container property (either an object or an a

access to global default attributes (see A : : ﬂ@
27) of the parameter, as you can not be sure if it is an actor or an object.

DEFAULT SYNTAX
If no SYNTAX is defined for a VERB at all, this is equivalent to specifying

SYNTAX ? = ? (object).

The question marks represent the name of the VERB. This means that normal
verb/object type of VERBs by default have the correct syntax and may only refer
to objects. It also implies that the default name for the single parameter is OBJECT
(see WHAT Specifications §n page 53 for the implications of this).

3.7.

Alan Language Manual 33

Following this default mechanism all verbs that have no corresponding syntax
declaration will be assumed to require an object as parameter. This means that
simple ‘verb-only’ VERBs must be declared using a syntax likeq = ' q’ to make
it possible to input a single verb word. It also means that verbs that have no
SYNTAX will only accept OBJECTSs, not ACTORs for example.

VERBS

A verb declaration specifies the checks that has to be performed and the effects of
something the player does (commands using a syntactically legal input).

VERB t ake, get
END VERB t ake.

A verb can be declared at three different levels, global (outside any other dec-
laration), inside a declaration of a location or and inside an object or actor. The
meaning of this is that the global declaration will always be considered, a
declaration inside a location will only be considered if the hero is at this location
when the verb is executed. Finally a verb declaration inside an object or actor
declaration will only be considered if that object or actor is used as a parameter in
the input.

A verb need not be declared at all of these places.

The identifiers in the list (take and get in the example) will by default be the player
words that can be used to invoke the verb. But if a SYNTAX is declared for the
VERB (see Syntax Definitions above), the identifiers in the list will not be
accessible to the player, instead the sequence of words and parameters specified in
the SYNTAX must be used.

If more than one identifier is used in the list, as in the example above, this can be
viewed as a short hand for declaring identical checks and bodies for all the verbs in
the list. This in effect will create synonymous actions for different verbs on the level
where the verb declaration is. They may differ in implementation at other places, i.e.
if take and get are declared in the same verb declaration on the global level, they can
still have different bodies in a particular location, in fact if they must have the same
implementation they must both be declared together where this is required. For
example

VERB t ake, get ...
LOCATI ON unt akabl e_pl ace
VERB t ake ...
END LOCATI ON unt akabl e_pl ace.
Suppose that the declaration of t ake in the location prohibits taking things, the

global action of get will still function.

CHECKS

To decide if the action is possible to carry out, the CHECKSs are executed. First the
global checks are tried, then the checks in the verb declaration at the current

Alan Language Manual 34

location (if the verb has a specification in the current location) and finally the
checks declared for the verb in the objects or actors bound to the parameters (if

any).

VERB t ake
CHECK obj 1S noveabl e
ELSE "you can’'t take that."

END VERB t ake.

If no expression is specified for a check, the check will always fail, in effect an
unconditional check. This is useful for preventing certain actions at specific
locations for example, since the checks are always executed first.

LOCATI ON |
VERB j unp
CHECK "You can’t do that here."
END VERB j unp.
END LOCATI ON I .
If any check should fail, the execution of the current verb is interrupted and the
statements following the failing check are executed. The user (player) is then

prompted for another command.

In addition the CHECK is used when handling the user input ALL (see
[nput dp page U Tor details on possible player input). The mechanisms for this
involve examining all objects at the current location and evaluating all checks for the
verb. Any objects that do not pass the checks are not considered for execution. This
restricts the handling of ALL to only executing the verb bodies for objects that are
reasonable, and will not fail in the CHECK.

For example assuming the above definition of the verb take and a location
containing the two objects, bal | and box, of which only the bal | ist akea-
bl e the player input

> take all

would result in al | representing only the ball. See(Player Inputpn page 60 Tor an
explanation of the player view of this.

DOES-CLAUSE

If all checks succeed the DOES-part(s) of the VERB will be carried out. The order
is normally to first execute the body of any global declaration, then the body in the
verb declaration for the current location. Finally each parameter is examined to find
any declarations of the VERB inside what it refers to, those verb bodies are then
executed in the order in which the parameters occurred in the syntax declaration.
This is the most natural order and covers most cases but in some infrequent
situations another order may be necessary. By using the qualifiers,

BEFORE/ AFTER/ ONLY, the author can decide which verb bodies will be
executed and in which order (see section Fel! Hittar inte referenskélla. below for de-
tails).

VERB t ake
CHECK obj NOT IN inventory

3.7.1.

3.7.2.

Alan Language Manual 35

ELSE "You al ready have that."
DOES
LOCATE obj IN inventory.
END VERB t ake.

Verb Alternatives

When a VERB is declared inside an OBJECT, verb alternatives are allowed. These
alternatives are used in conjunction with the SYNTAX declaration defined for the
verb and allows differentiating between the object and the actor occurring in
different places in the input.

When a player inputs a command each parameter in the syntax (see above) is bound
to an actual object or actor or receives the value of a literal, depending on the
specified syntax. To find out which CHECKS to test and verb bodies to execute the
parameters are examined in turn according to the algorithm described in
QUALIFICATION Helow. Each object may have different verb bodies executed
depending on at which position it occurred (to which parameter it was bound).

For example with the syntax definition

SYNTAX break_with = "break’ (o) "with (w).

the VERB body for br eak_wi t h to execute for the del i cat e_vase could
differ if it occurs as the direct object (0), or if it occurs as the indirect object (w).

For each such parameter in the syntax you may define different actions by supplying
a verb alternative for each parameter identifier. The verb declaration could look like

OBJECT f eat her
VERB break _with
VWHEN o DCES
"The feather is even nore flat than before."
MAKE feat her flat.
VWHEN w DCES
"There is not nuch that you can break with a
f eat her!"
END VERB break with.
END OBJECT f eat her.

Verb Qualification

The order in which the different verb definitions are executed is normally from the
outside in, i.e. the global definition is executed first if a global definition exists, then
any possible definition of this verb in the current location. Lastly, the verb bodies in
the parameters (in the order they appeared in the syntax definition) on which the
verb was applied (if any) is examined to find and execute their verb definitions.

In most circumstances this is the most logical order, but if another order is required
the verb qualifiers AFTER, BEFORE and ONLY may be used to alter this
behaviour. The qualifiers alter the order of execution and a strict definition of this
is described below.

First, the verb in the last parameter (if any) is investigated and, if this definition had
the BEFORE or ONLY qualifier it is executed. If the qualifier was ONLY the

Alan Language Manual 36

execution is also aborted at this stage and no more verb definitions are examined,
otherwise the other parameters are examined in the same way.

In the next step, the current location is examined and, if it contained a verb
definition with a BEFORE or ONLY qualifier, that definition is now executed (and
if it was ONLY, execution is aborted). As a result a BEFORE qualifier in the verb
definition in an object will supersede an ONLY qualifier in the location.

At this stage, all BEFORE and ONLY qualifiers are handled appropriately since the
global definition is now in turn anyway. This leaves the definitions without any
qualifier or with the AFTER qualifier. The global definition is examined and if it
did not have the AFTER specification, it is executed (if it had an ONLY qualifier
execution is stopped after executing it). Any definition of the verb in the current
location is again examined and, if it did not have the AFTER qualifier, it is
executed. What remains is to execute the verb definition in the parameters if they
have not been executed already, and to execute the location definition and the
global definition (in that order) if they where declared with the AFTER qualifier.

So in short (with global definitions being the outermost and the definition in the
entity bound to the last syntax parameter the innermost):

* From the outside in, find any BEFORE or ONLY definitions and execute them
(stop if ONLY found).

» From the inside out, execute any definitions not already executed and not
declared with the AFTER qualifier.

» Execute the remaining verb definitions (those with an AFTER qualifier) from
the outside in.

The second item in the above list represents the normal order of execution.

The qualifiers are a powerful but confusing concept. The normal order of execution
is usually appropriate and only in special cases should qualifiers be used. When they
are needed, you will find that one qualifier at the correct definition will normally do
the trick. The above algorithm is used to get a strict definition of the execution
order. It is not expected that this complex behaviour will be needed in practice.

Note: All checks for a VERB will always be run in global-location-parameter order
regardless of any BEFORE/ AFTER/ ONLY qualifiers.

An example of the use of qualifiers is to ensure that only the verb body within the
object is executed:

OBJECT bonb
VERB t ake
DOES ONLY
"Your curious fingering at the intricate
nmechani smsets it of. BOOOM "
QI T.
END VERB exami ne.
END OBJECT bonb.

3.8.

Alan Language Manual 37

LOCATIONS

A location is a declaration of a place (a “room”) in the game that (normally) can be
visited by the player, have objects lying around, etc. In fact the map of your game is
a set of interconnected locations.

IDENTIFIER AND NAME

The | Dis the identifier used by the author throughout the source when referring to
this location. By default, this will also be the name of the location written out to the
player. But by using the NAME clause you can give a different name to the location
when presenting it to the player (see [Objectsjon page 38 and |ldentifiers And Names|

on page 57)| For example

LOCATI ON sout h_of house
NAME ' Sout h of House’

See lLdaatiﬁacs.Aﬂd_ALimas_dn_page_Eldlso for an explanation of the quoted

identifiers used in this example.

ATTRIBUTES

A location can have attributes (see {Attributes And Default Attributesbn page 27). |

These can be local attributes available only for this location or override declared
default attributes.

LOCATI ON sout h_of house
NAME ' Sout h of House’
I S out doors.

DESCRIPTION

The statements in the DESCRIPTION clause should print a description of the
location. These statements are executed when the hero enters the location or when
executing a LOOK statement. See also
concerning the VISITS statement.

LOCATI ON sout h_of house
NAME ' Sout h of House’
I S out doors.
DESCRI PTI ON
"You are facing the south side of a white house.
There is no door here, and all the wi ndows are barred."

DOES-CLAUSE

The optional DOES clause contains statements performed when any actor enters
the room (is located there). An example usage of this would be if there were a weak
bridge that only allows a certain total weight before it collapsed. The DOES clause
of that location could contain actions for this, which would be executed whenever
any actor enters that location, not only the hero.

3.9.

Alan Language Manual 38

EXITS

To build a world of locations, these must be connected. This is done using exits.
An exit consists of ani d_| i st all of which are considered directional words, i.e.
when input by the player they will move him to the lacation identifi the | D. It
is possible to customize the exit using CHECKS (see Wr a
definition), that must be satisfied to allow passage through the exit, and statements
that will be executed when the player passes through.

Note: If there exists an exit from one location to another, there will NOT
automatically be an exit in the opposite direction!

Two interconnected locations might be declared like:

LOCATI ON east _end NAME ' East End of Hall’
DESCRI PTI ON
"This is the east end of a vast hall. Far away to
the west you can see the west end."
EXIT w TO west _end.
END LOCATI ON east _end.
LOCATI ON west _end NAME ' West End of Hall’

DESCRI PTI ON
"Fromthis western end of the large hall it is
al nost i nmpossible to discern the opposite end to
the east.”

EXIT e TO east _end.
END LOCATI ON west _end.

VERBS

Local verbs may also be declared in a LOCATI ON. See k[ecbs_bn_pa.ge_&%for a
description of how to declare verbs.

OBJECTS

Objects are all the things that can be manipulated by the player. They can be picked
up, examined and thrown away (if the author has allowed it). They will usually be
described when the player enters a location containing objects.

As for locations, the | D is the name you use to refer to this object. It is also the
default name for what is presented to the player and what he has to use when
referring to the object.

NAME
By using the NAIVE clause you can give the object another name, e.g.

OBJECT chair3 NAME |ittl e wooden chair

In this example the word “chair” is a noun and “little” and “wooden” would be
adjectives. When the player refers to the object with the author name chai r 3, he
may use just “chair” if it is the only object with “chair” as its noun at the current
location, or he may distinguish between multiple chairs by also giving one or more
adjectives to pin down the chair he wanted.

Alan Language Manual 39

Note: If the NAME clause is used the name chai r 3 is not available to the player.

It is possible to give an object multiple names by listing a number of name clauses.
Each one will define adjectives and a noun as described above. The result being that
the player can use any of the names to refer to the object. For example:

OBJECT rod AT grate
NAME rusty rod
NAMVE dynamite

This would allow the player to refer to the object using either of 'rusty rod’ or
"dynamite’.

INITIAL LOCATION

It is possible to set the initial location of an object by using an optional wher e
clause. If no such clause is used the object will not be present in the game until it is
moved somewhere by a LOCATE statement. Only the AT what and | N what
forms of the where construct (see WHERE Specifications dn page 52) bre allowed
when describing an initial location of an object.

OBJECT chest AT tresury

CONTAINER PROPERTIES

An object can also be a container. This is declared by means of the mfnﬁl
mﬁe, which looks like an ordinary container declaration (see @]

OBJECT chest
CONTAI NER
LIMTS ...
HEADER . . .
DESCRI PTI ON . ..

END OBJECT chest .

ATTRIBUTES

An object can have attributes (see Attributes And Default Attributes gn page 27)|
These can be local attributes or override values of declared default attributes.

OBJECT chest AT tresury
I'S NOT open.

ARTICLE

The optional article can be used to define the indefinite article that should be
placed before the object name in e.g. inventory listings and when presenting objects
that have no DESCRI PTI ON clause. For example

Alan Language Manual 40

OBJECT ow
ARTI CLE "an"

would result in things like

There is an ow here.
You are carrying an ow .

The article is not used when mentioning the object when acting on multiple objects:

> take everything
(ow) Taken.

Note: The default article, "a™ (if using english), is used for objects that have no
ARTI CLE declared.

For objects that should not have any article, like 'some money’, an ARTI CLE
clause containing no statements must be used:

OBJECT noney NAME sone noney
ARTI CLE

This will lead to:

There is sone nobney here.

instead of

There is a sonme noney here.

MENTIONED

The optional MENTI ONED clause specifies a short form for this object that will be
used when mentioned e.g. in listings of containers or when the ALL form is used.
If no MENTI ONED clause is present an appropriate default message, constructed
from the object name, is supplied by the system.

MENTI ONED
IF mrror IS broken THEN
"br oken"
END | F.
"mrror"

> take all

(little black book) K

(green pearl) X

(broken mrror) K
The MENTI ONED clause is also used when describing objects that have no
DESCRI PTI ON, by inserting the article (see above) and the short description in a
default message. In the following example output the article is underlined and the
short description is emphasised, the rest is the default message templates.

There is a little black book, a green pearl and an ow
her e.

3.10.

Alan Language Manual 41

The interpreter uses the same principle when constructing lists of objects in
container contents lists (as the result of the execution of a LI ST statement, see

page

DESCRIPTION

Objects can of course have descriptions, statements describing the object. This
description will normally be printed when the player enters the location where the
object currently is. It will also be given as a result of the DESCRI BE statement,
and indirectly by executing a LOOK statement at the location where the object is. If
the DESCRI PTI ON clause is missing the Alan system will supply a default
description such as “There is a round ball here.”. If there is a DESCRI PTI ON
clause but it contains no statements the object will be ‘invisible’, i.e. no description
of it will printed. This can be useful for objects already described by the location
description, or of objects with particular properties.

DESCRI PTI ON
"On the floor there is a heavy golden chest. Its sides
and top are conpletely encrusted with jewels."

VERBS

As for locations, local verbs can be declared inside an object. The verb declar
inside objects is only used when that verb is applied to the object. See
Mor details on verb declaration and usage.

CONTAINERS

A container is something that can contain objects. A container can either be an
object (or an actor) in itself (in which case it is declared as an object or actor with
the CONTAI NER property, see Qbjects qn page 38)]or be a pure container. A
container that is not an object or actor, a pure container, can NOT be manipulated
directly by the player. It can, however, be manipulated indirectly, if the author has
supplied some verbs to do this, such as t ake and dr op, which usually are
implemented to manipulate the inventory container. A container for worn objects, is
a common example of a pure container.

A container can only contain objects, not actors or locations.

LIMITS

The LI M TS clause put limitations on what and how much can be put in the
container. If any of these limits are exceeded when trying to locate anything inside
the container, the statements in the corresponding THEN-part will be executed and
the players turn aborted. In fact these checks are performed as a consequence of the
execution of a LOCATE statement (not actually the player placing anything inside
the container). This means that the execution of a sequence of statements can
actually be interrupted by these limitations.

Alan Language Manual 42

The specification of an attribute, which must be a numeric object default attribute,
implies that the sum of this attribute of all objects in the container can not exceed
the value specified. The special attribute COUNT is also allowed and indicates a
limitation on the number of objects allowed.

CONTAI NER i nvent ory
LIMTS
wei ght 50 THEN "You can not lift that mnuch."
COUNT 2 THEN "You only have two hands!"

HEADER AND ELSE

HEADER is used when the contents of the container are listed. It is intended to
produce something like

"The box contai ns"

or

"You are carrying"

The ELSE-part is used instead of the header if the container is empty.

If LI M TS or HEADER is missing the Alan system supplies the default of no
limits, and the messages “The $o contains” and “The $o is empty.” respectively.

THE INVENTORY

The inventayy, i.e. the container containing all objects carried by the hero is
predeclared? so that it already exists and can be used for common purposes. It can
however be re-declared if required, for example to provide limits and a different
header. An equivalent of its default declaration is

CONTAI NER i nvent ory
LIMTS
HEADER

END CONTAI NER i nventory.

One possible re-declaration of the inventory can serve as a more example of a
container declaration.

CONTAI NER i nvent ory
LIMTS
wei ght 50 THEN "You can not lift that much.”
HEADER
"You are carrying"
ELSE
"You are not carrying anything."
END CONTAI NER i nventory.

2 The inventory is actually the container properties of the hero (see section 3.12
on page 43 for a discussion of actors and their container properties). Any
object put into the container will be available in the hero also.

3.1

3.12.

Alan Language Manual 43

EVENTS

An event is a sequence of statements executed at a specified time (count of turns). It
is also executed at some specific location. An event can e.g. be used to create an
explosion where the bomb is three moves from now or to let the ceiling of the cave
fall down in five moves.

EVENT near by_expl osi on
"Somewhere in the distance there is an explosion.™
MAKE bonb gone_off.
SCHEDULE snmal | _aval anche AFTER 2.

END EVENT.

The body of an event can be any sequence of statements. They can however not
refer to any parameters, including OBJECT (since no verb is executing), or the
U] [Ne ONIEeX 1

ACTOR See Run-time Contextsbn page 61,

Events may be scheduled and cancelled with the SCHEDUL E and CANCEL

statements (see HVENT STATEMENTSpn page 50). |

ACTORS

An actor is something that seems to live its own life in the game. Another common
name for actors is NPC, non-player character. The author refers to the actor by
using the ID, and it is also the default name presented to the player.

NAME

By means of the NAME clause, a different name can be assigned to the actor in the
same way as for an object (see Qbjects oh page 38).|

CONTAINER PROPERTY

The optional property (CONTAI NER) clause may be used to indicate that this
actor can be used as a container, i.e it may contain things, thereby implying that the
actor is carrying the things contained. This is analogous to objects having the
container property (see [Objectsjpn page 38).]

ATTRIBUTES

An actor can have attributes (see Attributes And Default Attributes pn page 27)
These can be local attributes or override values of declared default attributes.

ACTOR kirk NAME Captain Kirk AT control _room
HAS heal th 25.
CONTAI NER
HEADER "Kirk is carrying"
ELSE "Captain Kirk is not carrying anything."
DESCRI PTI ON
"Your superior, Captain Kirk, is in the room"
END ACTCOR ki rk.

Alan Language Manual 44

DESCRIPTION

In the DESCRI PTI ON clause, a description of this actor can be given. The
statements describing the actor will be executed when the player enters a location
where the actor currently is. This description will also be given as a result of the
DESCRI BE statement. An exception is if the actor is currently executing a script
for which there is a separate description (see below).

SCRIPT

The SCRI PT is the actor’s way of performing things. In a way it corresponds to
what the hero is ordered to do by the player’s typed-in commands.

Every script has a name (or to be compatible with previous versions, a number) to
identify it. A script is selected by the USE statement. When a script is started it will
continue until it reaches the end or another USE statement is executed for this
actor.

The optional description allowed in the beginning of a script is used instead of the
general description (in the beginning of the actor declaration) whenever the actor is
executing that particular script. If it is not present the general description is used.

ACTOR george
NAVE Geor ge For nby
DESCRI PTI ON
"Ceorge Formby is here."
SCRI PT cl eani ng.
DESCRI PTI ON
"CGeorge Fornmby is here cl eaning w ndows."
STEP . ..
SCRI PT t uni ng.
DESCRI PTI ON
"CGeorge Formby is tuning his ukelele."
STEP. ..

STEPS

A script is divided into steps. Each step contains statements representing what the
actor will do in what corresponds to one player move. A step can be defined to be
executed immediately next move, to wait a number of moves before it is executed or
even to wait for a special situation (condition) to arise.

For example

STEP WAI T UNTI L HERO HERE
"Fromthe shadows a waiter energes: $p’-Bonjour,
nonsi eur’, he says."
When an actor has executed the last step of the current script, it will do nothing
more until the next USE statement is executed for this actor (the actor will be
“dead”, but still present at the location where it was). If this is not what is wanted,
it is recommended to end each script with a new USE statement.

3.13.

3.14.

Alan Language Manual 45

THE HERO

There is one very special actor, the hero, which is the player. This actor is always
predeclared, but if necessary it can be re-declared. One situation when this is
required is if you like to have attributes on the hero, such as “sleepy” or “hungry”.
Then a declaration like the following is possible:

ACTOR hero NAME e
'S NOT hungry.
CONTAI NER
VERB exani ne DOES
I F hero I'S hungry THEN
"Exam ni ng yourself reveals a poor, hungry soul."
ELSE
"You find nothing but a poor beggar."
END | F.
END VERB exani ne.
END ACTCR her o.

The container property of the hero is actually the inventory container, which is also
predeclared, see The inventory dn page 42. |

RULES

A rule is an arbitrary expression, which, when true, results in execution of the given
statements. Rules can be used to make things happen when certain situations arise,
such as starting an actor when the hero enters the cave.

VWHEN her o AT cave AND nonster NOT active =>
USE SCRI PT 3 FOR nonster.
The statements that are to be executed can not refer to parameters (including
OBJECT), but may refer to ACTOR

The rules are tested after each actor (including the player) has made his move and
after each event that is executed. So rules must be designed to be executed multiple

times for each player turn. Rules can be considered to be executed at %
where the last activity (actor move or event) was performed (see also

ventslon p his is | consider especially concerning use of
V\HERE specifications (see n rules.

START SECTION

The start section defines where the player (the hero) will be at the start of the game.
This must be a location. Optionally this may be followed by statements to be
executed at the beginning of the game, such as hello-messages or short instructions
as well as starting any actors and scheduling events.

START AT out si de_house.
SCHEDULE bird _chirp AFTER 5.
Only the AT what form of the where construct (see WHERE Specifications o |
age 52)]is allowed in the start section. Any statements are allowed in the start
section except that they can not refer to any parameters.

3.15.

3.15.1.

Alan Language Manual 46

STATEMENTS

Output Statements

An output statement is in the simplest case just a string, i.e. any text, possibly
stretching over multiple lines, surrounded by double quotes. Whenever it is
executed, the string will be printed on the players terminal with the following
exception: if an output statement is executed at a location in the game where the
hero not presently is the output will not be shown. This can be used in the
following way in a script for the actor char | i e_chapl i n:

“"Charlie Chaplin | eaves the house through the front

door."

LOCATE charlie_chaplin AT outside_house.

"Charlie Chaplin cones out fromthe nearest house."
If the hero is inside the house or out in the street he will now get different views of
the situation. This feature ensures that the player only sees what is going on at the
current location, and allows for easy adaption to various viewpoints on the events
without the need for any variable tests.

There are some character combinations that have special meaning for the printout:

$l The nane of the current |ocation

$v The verb the player used (the first word)

$p New paragraph (one enpty line)

$n New line

$i I ndent on a new line

$t Insert a tabulation

$$ Do not insert a space

$a The name of the actor that is executing

$0 The current object (first paraneter)

$<n> The paranmeter with nunber <n> (<n> is a digit)

Note: The $a, $0 and $<n> formats must be used with care as they are not
checked at compile time, e.g. you can use "$0" in a context where no
parameter is defined which would lead to a run- time error. To avoid any
run-time problems use the SAY statement with the parameter name. The use
of $a, $0 and $<n> formats may not be forward compatible.

DESCRIBE

The DESCRIBE statement executes the description part for an actor, an object or a
location. If no such description exists a default description, such as

"There is a $0 here."

is used instead. If the object has the container property a LI ST statement is also
executed for that object automatically (see below).

If a DESCRI BE statement is used for an object in the description part of a lo-
cation, the system will recognise this and make sure that the object is not described
more than once during the execution of a L OOK statement or when the hero enters
that location. This makes it possible to use objects as parts of a location and

3.16.2.

Alan Language Manual 47

embedding their description at the correct place in the longer description of the
location.

"This office is dusty and probably hasn’'t been used for
many years."
DESCRI BE desk.

SAY

The SAY statement will output a short description of what is referred to by the
what part. If it refers to an entity (a LOCATI ON, OBJECT or ACTOR) it will
print the name of that entity or execute its MENTI ONED clause if one is available.
If it refers to an attribute it will print its value (integer or string). Parameter names
are also allowed in the SAY statement, which, of course will result in a short
description of the entity to which it is bound, or a printing of the literal (if the
parameter was a STRI NGor | NTEGER parameter).

|F contents OF bottle > 0 THEN
"In the bottle there are still"
SAY contents OF bottle.
"l'itres of water left."
ELSE
"The bottle is empty."
END | F.

LIST

The LI ST statement lists all objects in a container together with the header as
specified for the container. If the container is empty the statements in the empty
clause of the container are executed instead.

"The chest is heavy."

I F chest IS open THEN
LI ST chest.

END | F.

Special Statements

QUIT

QUI T prints a question giving the player the choice of restarting the game, re-
loading a previously saved game or to quit. Any scoring or other printouts have to
be made explicitly before executing the QUI T statement.

LOOK

L OOK describes the current location and what it contains. The DESCRI PTI ON
part for the location is executed, which may include describing objects or actors by
explicitly executing DESCRI BE statements. Then objects and actors that have not
already been described will automatically be described.

Alan Language Manual 48

SAVE AND RESTORE

SAVE saves the game on a file for later use with RESTORE. Both save and restore
asks for a file name to use for storing and restoring.

If the player should be shown the current surroundings after a RESTORE, you will
have to implement a player verb like

VERB oops
DCES
RESTORE.
LOOK.
END VERB oops.

SCORE

SCORE is a way of rewarding the player by giving points for certain actions. This is
done using the statement

SCORE poi nt s.
for example

SCORE 25.

The first time every such statement is executed the points given are added to the
player’s current score. SCORE without any arguments prints a message indicating
the current accumulated score.

Note: The SCORE statements assume a simple model of scoring; a number of
actions are necessary to complete the game and all those are necessary to
achieve the maximum number of points. For adventures having a more
complex and varied scoring system (particularly if the game can be
successfully finished without performing all scoring actions or in multiple
ways) manual scoring should instead be implemented using attributes (e.g. on
the player) and suitable manipulation and test statements.

VISITS

The VI SI TS statement changes the number of times a location can be visited
before the long description is presented again:

VI SI TS count.

The value of the argument (count) controls the number of visits to a particular
location between full descriptions. The default setting (0) indicates that every time
a particular location is visited its full description will be shown (which can also be
expressed as: the full description will not be shown O times in between). Thus, a
setting of 1 (one) would give a full description every second time the same location
is visited. So

VISI TS 0.
will always show long descriptions (this is also the initial setting).

3.15.3.

Alan Language Manual 49

Note: The familiar VERBOSE, BRI EF etc. commands can be imitated using
different values in the VI SI TS statement.

Manipulation Statements

LOCATE

The LOCATE statement is a way of transferrlng objects and actors. When ex-
ecuted, the indicated object or actor will 2

description on how to specify where, see 66 dn-page-5
When an actor is located at a new location the DOES clause of that Iocatlon is
always executed.

—_ZT

One special case of the LOCATE statement is when the predefined actor HEROis
located somewhere. This is analogous to what happens when the player types in a
direction, i.e. the player is located at the appropriate location. Under particular
circumstances, you may want to locate the player at a different location as a side
effect of another action. For example:

EVENT expl osi on

"Suddenly the door seens to bul ge outwards, it bursts
open throwi ng rocks and splinters everywhere. The
i npact of the explosion literally throws you back
out in the hallway."
LOCATE HERO AT hal | way.

END EVENT expl osi on.

In this case the new location will be described and the DOES clause of that location

executed.

Another special case is when locating something inside a container. The LOCATE
statement will then cause the execution of the limits of that container, and if any of
the limits are exceeded the complete player turn is aborted immediately, resulting in
that no more statements are executed. So if a player command should result in the
location of an object inside a container, a good thing is to place the LOCATE
statement as early as possible, as this enforces the limit checks in the beginning of
this player turn.

EMPTY

The EMPTY statement locates all objects in the given container (or object or actor
with the CONTAI NER property) at a certain place. The meaning of the where part
is as for LOCATE.

EMPTY i nventory HERE.
"You seemto have | ost nost of your possessions. Vell,
you can’t have everything."
LOCATE hero AT restart_point.

3.154.

3.15.5.

Alan Language Manual 50

Event Statements

SCHEDULE

SCHEDUL E means that the named event will occur at the specified location after
the number of moves specified by the expression.

SCHEDULE ri ngi ng AT cl ock AFTER 60 - ninutes OF clock.

The number of moves can be zero, i.e. AFTER O means that the event will occur
now (during this player turn). If no location is specified, HERE is assumed, i.e. it
will be executed at the current location, the location where the statement itself was
executed.

The semantics of specifying the location (wher e) as AT i d, where the identifier
represents an object or an actor, is that wherever that object or actor is when the
event occurs, the event will be executed at that place.

Executing a second SCHEDULE statement for the same event before it has oc-
curred will reschedule the event to the new time. So an event can only be scheduled
for one execution at a time.

CANCEL
CANCEL will remove the event referenced from the queue of scheduled events.

EVENT ti cki ng

"Tick..."

IF tinmer OF bomb = 0 THEN
SCEHDULE expl osi on AFTER 1.

ELSE
DECREASE tinmer OF bonb.
SCHEDULE ticki ng AFTER 1.

END | F.

END EVENT ti cki ng.

VERB def use
DCES
CANCEL ti cki ng.
CANCEL expl osi on.
"Phuuui ! That was cl ose."
END VERB def use.
START AT office.

"The bonb is ticking..."
SCHEDULE ticki ng AFTER 1.

Assignment Statements
There are a number of statements for changing values of attributes.

MAKE
The MAKE statement is used to set or reset boolean attributes.

MAKE door open.

Alan Language Manual 51

INCREASE AND DECREASE

The | NCREASE and DECREASE statements modifies the values of numeric
attributes by increasing or decreasing them by the value of the expression given in
the optional BY clause. If no BY clause is specified the attributes are changed by 1
(one).

| NCREASE | evel OF bottle BY contents OF nug.
DECREASE | i ves OF HERO

SET

The SET statement is used when assigning values to numeric or string valued
attributes.

SET nood OF king tut TO 3.
SET hour OF clock TO hour OF cl ock + 1.

3.16.6. Conditional Statements

In Alan there are two conditional statements, the common | F statement and the
DEPENDI NG ON statement.

IF

The | F statement is essential for being able to vary the output and otherwise
we activities in the game. The expression is evaluated (see Expressionsof |
or details and examples of expression) and if it evaluates to true, the
statements following the THEN are executed. Otherwise the expressions in any
following ELSI F clauses are evaluated (in order) and the statements following the
first expression that results in a true value is executed. If none of the expressions in
the ELSI F clauses evaluated to true, or there are no ELSI F clauses, the
statements following the EL SE are executed. The ELSE clause is optional.

IF minute OF clock = 59 THEN

SET m nute OF clock TO 0.

| NCREASE hour OF cl ock.
ELSE

| NCREASE mi nute OF cl ock.
END | F.

IF level OF bottle = 0 THEN
"You have no water"
ELSIF | evel OF bottle < 5 THEN
"You have al nost no water |eft."
ELSE
"You have plenty of water."
END | F.

DEPENDING ON

The DEPENDI NG ON statement is a provided to select one of a number of
possible conditional cases depending on an expression. A simple example of the
DEPENDI NG ON statement is:

3.15.7.

3.16.

Alan Language Manual 52

DEPENDI NG ON wei ght OF OBJECT
=1: "light as a feather"
BETVWEEN 2 AND 10 : "carryabl e"
BETWEEN 10 AND 20 : "heavy"
> 20 : "inmmobile"
ELSE : "weightl ess”
END DEPENDI NG.
The meaning of this example is to test the wei ght OF OBJECT and select one
of the cases depending on that. If it is equal to one the first case will be executed. If
none of the cases catch the optional EL SE case will be executed (in this case it will

only be executed for weights of zero or less).

The cases are tested in the order specified and at most one will be executed. In the
example, weight 10 will render as "carryable™.

Actor Statements

The USE statement starts execution of a given script for a given actor. It is possible
to leave out the FOR i d -part when writing code within a certain actor; in this
case the actor that the code is in is assumed.

USE SCRI PT pl ayi ng FOR geor ge.

WHERE SPECIFICATIONS

Many constructs in the Alan language require a specification of where the construct
should operate. The general intention of a wher e specification is to return a
location. The meaning of the different constructs is as follows

* HERE is the location where the current activity is performed. Normally this
means where the hero is, but if the expression is evaluated in an event scheduled
at a particular place, that place is HERE, and the same applies to activities
performed by other actors and for expressions within rules. Note that this is
equivalent to AT LOCATI ON.

* NEARBY means any adjacent location, adjacent meaning that there exists an
exit from the other location to HERE (note that the direction is from NEARBY
to HERE).

« AT what means at the location of the entity referenced by the what
specification (see ations oh page

e | N what must refer to a container and the expression refers to inside of that
container.

Note: Not all kinds of where specifications are meaningful in all constructs
requiring a where specification. An example is NEARBY which, of course, is
not allowed in a LOCATE statement as this needs a definite location to
locate to, and NEARBY is not specific. Instead, NEARBY is useful in | F
statements to see if the monster is somewhere near.

3.17.

3.18.

3.18...

Alan Language Manual 53

WHAT SPECIFICATIONS

Constructs in the grammar for the Alan language often refer to some entity defined
in the Alan source. This is generally called a what specification, as it specifies what
the construct refers to. The what specification may have the following forms

e OBJECT refers to the first parameter, i.e. the first object or actor referred to by
the player in the input as described by the syntax. Normally this is intended for
use with verbs relying on the default syntax handling; for verbs where a
SYNTAX construct is specified the identifiers for the parameters should be
used instead (the use of syntax declarations is strongly advised).

Note: If OBJECT is used in an expression no compile time checks can be made on
class restrictions which might lead to run-time errors when referring the first
parameter. The use of OBJECT in expressions might not be forward
compatible.

* ACTOCRIs always set to the actor currently active and this also applies to
expressions and statements within rules as these are run once for each actor.

* LOCATI ONis the current location, i.e. the location where the current activity
is performed. This is normally the location where the hero is, but may also be
where an event is executed or where the actor currently executing (other than
the hero) is.

e Anidentifier, i d, refers to the entity with that name, or a syntax parameter
with that name. A syntax parameter may have the same name as an entity
declared elsewhere in the source in which case the parameter overrides the
entity.

Note: Not all kinds of what specifications are meaningful in all contexts. For
example it is not possible to use LOCATI ON (nor an identifier referring to a
location) as the what -part of a LOCATE statement.

EXPRESSIONS

The grammar for Alan also refers to expression. This is a generic name for a
number of constructs yielding a value.

Types Of Expressions

Expressions are needed e.g. in | F and SET statements. The | F statement requires
a boolean expression, i.e. an expression yielding a true or false value, while the SET
statement needs a numeric or a string value. Some types of expressions return a
value referring to an entity (an object, an actor or a location) in the Alan source as
is, for example, the case with an identifier bound to a parameter allowing actors or
objects. So, the possible types of expressions in Alan are

3.18.2.

3.18.3.

3.18.4.

3.18.5.

Alan Language Manual 54

e integers
e strings

* Dboolean
e entities

Literal Values

A single integer (e.g. 42) is of course a numeric expression.

The expression RANDOM i nt eger TO i nt eger isalso a numeric value
that is randomly selected between and including the two integers.

SET eyes OF first_die TO RANDOM 1 TO 6.
A string can be used in expressions and then represents a string value, e.g.

SET password OF terminal TO "xyzzy".

Logical Expressions

The AND and OR operators are standard binary boolean operators. AND has higher
priority, but parenthesis may be used to change the order of evaluation.

IF kalif HERE AND npod OF sultan IS O THEN ...

Binary Operators

All binary operators (plus, minus, multiplication, division) may be used on integer
expressions. The result is another integer expression. The exact set of available
operators are

Relational Operators

Relational operators (=, <, >, <=, >=, meaning: equals, less than, greater than, less
than or equal, greater than or equal respectively) are used to compare expressions.
The result is TRUE or FALSE and may be negated by using an optional NOT.

I F tenperature OF oven NOT > 100 THEN.. .
| F weather OF world NOT < protection OF hero THEN...
Comparing two string expressions using the binary operator ‘=" will make a case
insensitive comparison, i.e. it will give a true value if the strings are the same
without considering the case of the characters. The special identity operator, ‘==",
only works on strings and compares the strings for an exact match (i.e. considering
character case).

3.18.6.

3.18.7.

Alan Language Manual 55

There is also a string containment operator, CONTAI NS, which can be used to test
if a string contains another string. The test ignores any differences in character case.
An expression which would give a TRUE value is

"A string" CONTAINS "a S
An optional NOT (before CONTAI NS) can be used to reverse the test.

Two identifiers referring to entities may be compared with the ‘=" and ‘<>’
operators, and may be used to test if a parameter refers to a particular entity or the
same as another parameter. For example

SYNTAX put _in = "put’ (o) 'in (c)
VWHERE ¢ | SA CONTAI NER
ELSE "You can't put anything in the $2"
VERB put _in
CHECK o <> ¢
ELSE "That would be a good trick if you could
doit!!"
DCES ...

Relational operations are not allowed on entities or strings, nor is it possible to
compare values of different types.

A special relational operator is the BETVWEEN operator which makes it possible to
test if a numeric expression is within a range of values. For example

I F level OF water BETWEEN 2 AND capacity OF bottle THEN

The Value Of Attributes
Expressions following the pattern

primary |S somet hing

are used to test the setting of boolean attributes of the entity referred to by
somet hi ng (which isawhat specification). For example

IF bottle IS enpty THEN ...
The test can be reversed by adding a NOT:

I F hero I'S NOT hungry THEN. ..

To get the value of a numeric or string attribute expressions following the pattern
ID‘OF what

are used.

IF s = password OF terminal THEN ...
"You have" SAY capacity OF bottle. "sips left."

The Whereabouts Of An Entity
The expression

3.18.8.

Alan Language Manual 56

primary optional not where
is used to test if a particular entity, as specified by the what , is (or is not), at the
place indicated by the wher e, as in

I F bottle INinventory THEN ...
or

| F HERO NEARBY THEN . ..

Aggregates
Aggregates are functions to calculate values from sets of other values.

COUNT counts the number of objects at the specified place, e.g.

"You are carrying"

SAY COUNT I N inventory.

"things."
The SUMand MAX aggregates return the sum and the maximum value respectively
of an attribute of all objects at the specified location. This implies that the attribute
must be a default object attribute in order to ensure that the attribute is available for
all objects. For example

| F SUM OF wei ght AT bridge > 500 THEN ...
IF MAX OF size IN inventory > size OF snmall_door THEN

The last example could be adopted to make various restrictions in the possible
travels of the hero.

4.1

4.2.

Alan Language Manual 57

LEXICAL DEFINITIONS

COMMENTS

Comments may be placed anywhere in the Alan source. A comment is opened by
double hyphens (*--") and extends to the end of the line.

-- This is a conment

IDENTIFERS AND NAMES

Words used as identifiers in an Alan source may only be composed of letters, digits
and underscores. The first character must be a letter.

identifier = letter (letter | digit | underscore)*

In order to be able to use reserved words as identifiers (e.g. for verbs) there is also a
second kind of identifier, namely the quoted identifier.

quoted_identifier = single_quote any character+

singl e_quote
A quoted identifier starts and ends with single quotes and may contain any
character except quotes (including spaces). It may be used to make an identifier out
of a reserved word such as LOOK. This may be useful in the definition of the verb
L OCK that then would look like:

VERB ’ | ook’
DOES
LOOK.

END VERB ’ | 00k’ .
Note that normal identifiers are always translated to lower case before making any
comparisons so it does not matter how you (or the player) write them (although it
is easier to read if the same kind of editing is used for the same kind of words).
Quoted identifiers are not changed at all, so they must always be written identically.
They may also contain spaces, which make them useful as long names for locations
asin

LOCATION pluto NAME "At the RRmof Pluto Crater’
DESCRI PTI ON

One single quoted identifier is used as the whole name of the location so as to
preserve editing and avoiding clashes with the reserved words AT and OF.

Note: Do NOT use a single quoted identifier as the name for anything other than
locations, as the words in objects and actor names are analysed separately and
assumed to be adjectives (except for the last, which is a noun). Only quote
separate words to avoid clashes with reserved words.

4.3.

4.4,

Alan Language Manual 58

Be careful when using quoted identifiers, especially if the player is supposed to use
the word. A player can not input words containing upper case characters,
underscores, spaces or other special characters or separators.

Note: To get a single quote within a quoted identifier repeat it (“Tom’s Diner’).

Some of the identifiers in an Alan description are by default used as player words.
This is for example the case with verb names (unless a SYNTAX statement has been
declared for the VERB) and object names (unless a NAME clause has been used). If
these contain special characters the player can not enter them.

NUMBERS
Numbers in Alan are only integers and thus may consist only of digits.

nunber = digit+

STRINGS

The string is the main lexical component in an Alan source. This is how you
describe the surroundings and events to the player. Strings, therefore, are easy to
enter and consist simply of a pair of double quotes surrounding any number of
characters. The text may include newline characters and thus may cover multiple
lines in the source.

string ="’ any_character+ "

When processed by the Alan compiler, any multiple spaces, newlines and tabs will
be compressed to one single space as the formatting to fit the screen is done
automatically during execution of the game (except for embedded formatting
information, as specified if OUTPUT STATEMENTS ¢n page 46)| You may
therefore write your strings any way you like; they will always be neatly formatted
on the player’s screen.

Note: ~ As strings may contain any character a missing double quote may lead to
many seemingly strange error messages. If the compiler points to the first
word after a double quote and indicates that it has deleted a lot if IDs
(identifiers), this is probably due to a missing end quote in the previous
string.

Note: To get a double quote within strings repeat it (" The sailor said
"'Hello!"".").

4.5.

Alan Language Manual 59

FILES

It is possible to write one adventure using many source files, having different parts
in different files, and thus giving an opportunity for some rudimentary kind of
modularisation. The method for this is the $include construct.

i nclude =’ $I NCLUDE' quoted_identifier

where the quoted identifier is the name of the file to include. The $i ncl ude may
be placed anywhere in a file and the effect will be the same as if the contents of the
named file had been inserted at that position in the file. Includes may be nested.

An included file is searched for first in the current directory and then in any of the
directories indicated using the include switch as described i]]

his search is performed in the same order as the include switches
occurred on the command line.

5.

5.2

Alan Language Manual 60

EXECUTION OF AN ADVENTURE

A TURN OF EVENTS

The player in a way controls the execution of an Alan adventure. Each of his inputs
are taken care of and acted upon by the run-time system. The execution of an Alan
adventure starts by executing the start section. Then the player is prompted for a
command.

The player input is analysed according to the explicit and implicit syntax rules and
converted to an execution of verb bodies (global and in possible parameters) or exits
(in case of directional commands).

After the players command has been taken care of all rules are evaluated and
possibly executed. Then each of the other actors executes one step (if active) and
for each actor the rules are evaluated again. Finally any events that are scheduled are
fired before prompting the player again.

So to summarise:

get and execute a player comrmand
evaluate all rules
for each actor
execute one step (if active)
eval uate all rules as above
end
check for and execute any pending events

Then the user is prompted for another command and everything is repeated.

A player command may be either a verb or a direction. A verb is executed by
checking the syntax of the input, performing any preconditions (checks) and then
executing the verb bodies (as described in|\erbs oh page 33).IA directional
command is executed by finding any exit in that direction, evaluating the checks and
the body (if any) of that exit and locating the hero at the new location.

PLAYER INPUT

The syntax defined in the Alan source is the basis for what the player is allowed to
input. Commands with these formats form the basic statements available to the
player. In addition the following combinations and variations are possible:

» concatenating of statements using AND or THEN, like
> open the door then enter

e theuse of I T to refer to the last object mentioned in the previous command,

e.0.
> take the book and read it

5.3.

Alan Language Manual 6!

 references to multiple objects using AND, this allows
> take the blue vase and the pillow

» reference to multiple objects using ALL or EVERYTHI NG
> drop all

« excluding objects using BUT or EXCEPT, like:
> wear everything except the bowler hat

e the use of THEMto refer to the multiple objects referenced in the last
command, e.g.
> remove the hat and the scarf then drop them

The reference to multiple objects (or actors) in a position is, of course, only allowed
if the adventure author has allowed it by using a multiple indicator in the syntax
definition (see Fyntax Definitions qn page 30)] The variations above are built in
and handled automatically by the run-time system.

The interpreter also automatically restricts parameter references to objects and
actors at the current location. I.e. the player can only refer to objects and actors that
are present in his input. The one single exception is if the syntax for the command
uses the omnipotent " indicator, see|Syntax Definitions pn page 30 for details. For
hints on other ways to allow references to objects and actors that are not at the
current location, refer to [Distant & Tmaginary Objects pn page /3.

The use of ALL results in the execution of the appropriate verb for all objects at
the current location, except the ones that does not pass all checks for the verb (see
Verbs gn page 33 for further details on this).

Another restriction placed on the player input by the interpreter is that the words
the player is allowed to use can only contain alphabetic characters. This must be
kept in mind when naming verbs that use the default syntax (an explicit SYNTAX
statement can always specify other player words to trigger the verb).

RUN-TIME CONTEXTS

When the player enters a command the Alan run-time system evaluates the various
constructs from the adventure description (source) as described above. Depending
on the player’s command evaluation of different parts of the adventure may be
triggered. These parts all have different conditions under which they are evaluated
and also have different contexts. Four different execution contexts can be identified:

» execution of a verb, during the execution of a verb (the syntax and verb checks
and the verb bodies), which is the result of the player entering a command that
was not a directional command, parameters are defined and may be referenced
in the statements and expressions. Also the ACTOR s set to the hero and
LOCATI ONto the location where the hero is (HERE refers to the location of
the hero).

54.

Alan Language Manual 62

» execution of descriptions, these are started as the response to a directional
command, a LOOK or DESCRI BE statement, or a LOCATE statement
operating on the hero. During this no parameters are defined, ACTOR is set as
above, and LOCATI ON of course to the current (or new) location. The
description clauses for objects and locations as well as the DOES part of
locations are evaluated in this context. DOES-parts are executed for all actors
entering a location with ACTOR set to the current actor.

» execution of actors and rules, each actor performs his step and after each actor
all rules are executed. In these contexts no parameters are defined but ACTOR is
set to the actor that is executing or was executing immediately preceding the
rules. So you could say that rules are run for each actor, and LOCATI ON s set
to that of the executing actor (HERE refers to where the executing actor is).

e execution of events, no parameters and no actor is defined. The location is set
to where the event was scheduled to be executed (see also BVENT

STATEMENTS Off page 50).|

So the execution of various parts of the adventure source can also be said to have a
number of different focuses, meaning where the action is considered to take place:

» the hero - the actions of the player are always focused on the hero and the
actions performed are always related to where the hero is

e an actor - steps executed by an actor are always focused where the actor is

e anevent - code ix%%tf% in gvgnti arg fg%iif whirg th(j event was specified to
take place (see

» arule - rules are executed once after each actor (including the hero) with the
focus set to where that actor is

MOVING ACTORS

The main way to move actors is the exits (see Locafionspn page 37).]They, of
course, only apply to the hero, but are executed if the player inputs a directional
command, i.e. a word defined as the name for an exit in any location. First the
current location is investigated for an exit in the indicated direction, if there is none
an error message is output. Otherwise that exit is examined for CHECKs which are
run according to normal rules (see \erbs bn page 33). If no CHECK was present or
if the check passed the statements in the body (the DOES-part) is executed. The
hero is then located at the location indicated in the exit header, which will result in
the description of the location (by executing the DESCRI PTI ON-clause of the
location) and any objects or actors present (by executing their DESCRI PTI ONs).

When any actor (including the hero) is located at a location, the DOES-clause of
that location is executed as if the actor had moved into that LOCATI ON The
actor that was moved will be the ACTOR even though the movement was not

Alan Language Manual 63

caused by himself (but the result of an event, for example). So this is also the last
step in the sequence of events caused by locating the hero somewhere.

6.l

Alan Language Manual 64

HINTS AND TIPS

This chapter will give you some ideas about how the various features of Alan may
be used to implement common features in an Adventure game. These are only
suggestions and you are, of course, welcome to invent your own, but these are
probably some ideas that can get you started.

USE OF ATTRIBUTES

Attributes are primarily used for holding status information about the object, actor
or location to which it belongs. This allows, for example, the water bottle to
contain three levels of water.

OBJECT bottle
HAS | evel 3.
VERB dri nk
DCES
IF level OF bottle > 0 THEN
DECREASE | evel OF bottle.
ELSE
"There is no nore water in the bottle."
END | F.
END VERB dri nk.
END OBJECT bottl e.

Another example is the broken mirror.

OBJECT mirror
I'S NOT broken.
VERB br eak
DOES
MAKE m rror broken.
END VERB br eak.
END OBJECT mrror.

The appropriate verbs defined in the objects may then modify the attributes and
thus update the status information.

But attributes defined for all objects also allow a kind of classification of the objects
(or locations or actors as appropriate). If the following declaration is made

OBJECT ATTRI BUTES
NOT t akeabl e.

then all objects receive the attribute “takeable” and if the attribute is not specifically
redeclared for an object it will not be takeable. Note however that the semantic
meaning of “takeable” must be implemented e.g. in the verb “take”:

VERB t ake
CHECK OBJECT 1S takeabl e
ELSE "You can’'t take the $o0."
DCES
LOCATE OBJECT IN inventory.
END VERB t ake.

Alan Language Manual 65

In the same way restrictions concerning what is possible to eat, drink, open etc. may
be implemented. This use of attributes to classify objects is “action- oriented”, i.e.
they imply that a particular action (verb) is applicable to the object.

An alternate approach is to classify objects after their characteristics. Consider:

VERB t ake
CHECK OBJECT IS NOT heavy
ELSE "That is nmuch too heavy."
AND OBJECT | S NOT ani nal
ELSE "The $o0 noves qui ckly away, just far enough
for you not to reach it."
DOES
LOCATE OBJECT IN inventory.
END VERB t ake.

This approach is more “class-oriented” as the objects are classified and a verb is
possible to apply to certain classes of objects and not to others. This approach is
more elegant but is harder to keep track of as you introduce new objects (which
class or even classes does a new object belong to?).

6.2. DESCRIPTIONS

The attributes are also used when presenting information about status to the player.
The attributes are tested in | F-statements to modify the DESCRI PTI ONs and
possibly even the short description in the MENTI ONED sections. For example:

OBJECT mirror
I'S NOT broken.
DESCRI PTI ON
"On the wall there is a beautiful mrror with an
el aborate golden frane."
IF mrror IS broken THEN
"Sonme nmoron has broken the glass init."
END | F.
VERB br eak
DOES
MAKE m rror broken
END VERB br eak.
END OBJECT mrror.

To use this feature with the short descriptions makes the adventure feel a bit more
consistent.

OBJECT bottle
HAS | evel 3.
ARTI CLE ""
MENTI ONED
IF level OF bottle > 0 THEN
"a bottle of water"
ELSE
"an enpty bottle"
END | F.
END OBJECT bottl e.

> inventory
You are carrying
an enpty bottle

6.3.

6.4.

6.5.

Alan Language Manual 66

COMMON VERBS
As your library of adventures grow you will find that some verbs are always needed,

and always function the same way. Examples are “take”, “drop”, “invent”, “look”,
“quit” and so on. It is advised to use an include file (see section fm@
containing these verbs as well as their syntax definitions and any synonyms.
Attributes needed for these particular verbs could also be placed in a default

attribute declaration in this file.

All your adventures may then include this file, making these features immediately
accessible when you start a new adventure. All that this takes is some thought as to
what names to use for the attributes as discussed in Use of Attributes on page 63.

DOORS
Another common feature is the closed door. Here’s how to implement it.

OBJECT treasury_door AT hall way
VERB open
DOES
MAKE t r easury_door open.
MAKE hal | way_door open.
END VERB open.
END OBJECT treasury_door.

LOCATI ON hal | way
EXIT east TO treasury
CHECK treasury_door IS open
ELSE "The door to the treasury is closed."
END EXIT.
END LOCATI ON hal | way.

OBJECT hal | way_door AT treasury
VERB open
DOES
MAKE t reasury_door open.
MAKE hal | way_door open.
END VERB open.
END OBJECT treasury_door.

LOCATI ON treasury
EXIT west TO hal | way
CHECK hal | way_door IS open
ELSE "The door to the hallway is closed."
END EXI T.
END LOCATI ON treasury.
Note that we need two doors, one at each location, but they are synchronised by
always making them both open or closed at the same time. The check in the

EXI Ts makes sure that the hero can not pass through a closed door.

CONTAINERS AND THEIR CONTENTS

Containers are either pure containers or objects or actors with the container
property. A pure container is always considered to be where the hero is. This means
that the inventory (what the hero is carrying), his clothes etc. are suitable to be pure
containers.

6.6.

Alan Language Manual 67

For a container to be directly manipulable by the player it must be an object (or
actor). This means that it always is located at a particular location in the same way
as other objects. A container (in the following the term container is used to refer to
objects with the container property) is always open, i.e the objects it contain are
always accessible.

To be able to “close” a container, i.e. to make it impossible for the hero to take or
see things inside a container, the following technique may be used (other techniques
may be possible and even better!). Create an extra object with the container
property, this container is used as a temporary storage for objects in the first
container (the one the player is seeing). Place this at a location not accessible to the
player (the limbo location Nowhere always comes in handy!).

The verbs “open” and “close” then get the following definition within the object:

OBJECT chest AT treasury
CONTAI NER
I'S NOT open.

VERB cl ose
DCES
MAKE chest NOT open.
EMPTY chest | N chest _contents.
END VERB cl ose.

VERB open
DCES
MAKE chest open.
EMPTY chest _contents I N chest.
"Openi ng the chest reveals its contents."”
LI ST chest.
END VERB open.
END OBJECT chest.
The trick used here is to make all the things in the container disappear when it is
closed. To do this, the extra container chest _cont ent s isused as a
temporary holding place for the things inside the chest. Note that we need to make
chest _cont ent s an actual object since pure containers are always accessible
(they are where the hero is!). When the chest is opened again we simply empty the

contents of the chest _cont ent s container into the chest, and Voila

ACTORS

Actors are a vital component to make a story dynamic. They move around and act
according to their scripts. To make the player aware of the other actor’s actions they
need to be described. This must be done so that the player always get the correct
perspective on the actions of the actors.

A way to ensure this is to rely on the fact that output statements are not shown
unless the hero is at the location where the output is taking place. This means that
for every actor action, especially movement, you need to first describe the actions,
then let the actor perform them and, finally, possibly describe the effects.

An example is the movement of an actor from one location to another. In this case
the step could look something like

Alan Language Manual 68

"Charlie Chaplin goes down the stairs to the hallway."
LOCATE charlie_chaplin AT hal |l way.
"Charlie Chaplin cones down the stairs and
| eaves the house through the front door."
LOCATE charlie_chaplin AT outside house.
“"Charlie Chaplin cones out fromthe nearest house."

An actor is described, for example, when a location is entered or as the result of a
LOOK, in the same way as objects are. This means that a good idea is to include
the description of an actor’s activities in the description of him. One way to do this
would be to use attributes to keep track of the actors state and test these in the
description clause.

ACTOR george NAME Ceorge For nby
IS

NOT cl eani ng_w ndows.
NOT t uni ng.
DESCRI PTI ON
| F george IS cl eani ng_wi ndows THEN
"CGeorge Formby is here cl eaning wi ndows."
ELSI F george IS tuning THEN
"CGeorge Formby is tuning his ukelele."
ELSE
"CGeorge Formby is here.”
END | F.

Although quite feasible, this is a bit tedious. As, at least a part of, the state is
indicated by the script the actor is executing, this could be used to avoid the
potentially large I F-chain. The optional descriptions tied to each script will be
executed instead of the main description when the actor is following that script. So
this would allow

ACTOR george NAME Ceorge For by
DESCRI PTI ON
"Ceorge Formby is here."
SCRI PT cl eani ng.
DESCRI PTI ON
"CGeorge Fornmby is here cl eaning w ndows."
STEP

SCRI PT t uni ng.
DESCRI PTI ON
"Ceorge Formby is tuning his ukelele."
STEP

This makes it easier to keep track of what an actor is doing. Another hint here is to
describe the change in an actor’s activities at the same time as executing the USE
statement, like

EVENT start_cl eani ng
USE SCRI PT cl eani ng FOR geor ge.
"Al'l of a sudden, George starts to clean the w ndows."
END EVENT.
This makes the descriptions of changes to be shown when it takes place and the
description of the actor is always consistent. You can, of coursg, still have attributes
describing the actor’s state to customize the description of the actor on an even
more detailed level, but it generally suffices to describe an actor in terms of what
script he is executing.

6.7.

6.8.

Alan Language Manual 69

DISTANT EVENTS

A slight problem with the feature that output is not visible unless the hero is
present, is that a description of an event might not always be presented to the

player.

EVENT expl osi on
"A gigantic explosion fills the whole roomwi th snoke
and dust. Your ears ring fromthe | oud noise. After
a while cracks start to show in the ceiling,
wi deni ng fast, stones and debris falling in
i ncreasing size and nunbers until finally the
conplete roof falls down fromthe heavy expl osion."
MAKE LOCATI ON destroyed.
END EVENT.

If the hero isn't at the location where the event is executed, he will never know

anything about what has happened. The solution is to create an event that goes of
where the hero is.

EVENT di st ant _expl osi on
"Somewhere far away you can hear an expl osion.”
END EVENT.

| F HERO NEARBY THEN
SCHEDULE di st ant _expl osi on AT HERO AFTER O.

VEHICLES

The current version of Alan does not support actors being inside containers or
inside other actors, which could be a straight forward way to implement vehicles.
However, as the reader/player does not need to know how the output is generated
we can use a location and a row of events to substitute for the vehicle. Try the
following complete example:

SYNONYMS
car = ferrari.

SYNTAX
drive = drive.
park = park.

SYNTAX | = 1.

VERB |
DOES
LOOK.
END VERB.

LOCATI ON gar age
END LOCATI ON.

LOCATI ON parking_l ot NAME ' Large Parking Lot'
END LOCATI ON.

OBJECT car NAME little red sporty ferrari
AT gar age
IS

NOT runni ng.
HAS

Alan Language Manual 70

position O.
VERB ent er
DCES
LOCATE hero AT inside_car.
END VERB enter.
END OBJECT car.

LOCATI ON inside_car NAME 'Inside the Ferrari'

DESCRI PTI ON
"This sporty little red vehicle can really take you
pl aces..."

EXIT out TOinside car -- just a dumy, since we are

-- going to change it bel ow
CHECK car IS NOT running
ELSE "1 think you should stop the car before
getting
out..."
DOES
| F position OF car = 0 THEN
LOCATE hero AT garage.
ELSIF position OF car = 1 THEN
LOCATE hero AT parking |ot.
--- Etc.
END | F.
END EXIT.

VERB drive
CHECK car 1S NOT running
ELSE "You are already driving it!"
DOES
"You start the car and drive off."
MAKE car runni ng.
SCHEDULE drivel AFTER 1.
END VERB dri ve.

VERB par k
CHECK car |S running
ELSE "You are not driving it!"
DCES
"You slowto a stop and turn the engine off."
MAKE car NOT runni ng.
CANCEL drivel. CANCEL drive2. --- Etc.
END VERB parKk.
END LOCATI ON i nsi de_car.

EVENT drivel

"You drive out from your garage and approach a | arge
parking lot."

SET position OF car TO 1.

LOCATE car AT parking_ |lot.

SCHEDULE drive2 after 1.
END EVENT drivel.

EVENT drive2
"You drive out fromthe parking |ot and approach your
own garage."
SET position OF car TO 0.
LOCATE car AT gar age.
SCHEDULE drivel after 1.
END EVENT drive2.

START AT gar age.

The main idea is that the player/reader is inside the car, and the events are executed
at this location thus emulating movement. It is possible to exchange the events for

6.9.

6.10.

Alan Language Manual 71

script steps and the car object for an actor. However as the car object is not where
the hero is ('inside_car’) the output from the scripts will not be shown. There are
(at least) two different ways to deal with this (one involving attributes, the other
involving an extra object), but the solutions are left as an exercise to the reader!

Sincere thanks go to Walt (sandsquish@aol.com) for inspiring communication that
brought this example to life.

QUESTIONS AND ANSWERS

Sometimes it may be necessary to ask the player for an answer to some question.
One example is if you want to confirm an action. The following example delineates
one simple way to do this, which could be adopted for various circumstances.

ACTOR hero I'S NOT quitting.
END ACTCR her o.

SYNTAX
‘quit' = 'quit'.
yes = yes.

SYNONYMS

y = yes.
q quit'.

VERB 'quit' DOES "Do you really want to give up?
Type 'yes' to quit, or to carry on
type your next command."

MAKE hero quitting.
SCHEDULE unquit AFTER 1.
END VERB 'quit'.

VERB yes CHECK hero IS quitting
ELSE "That does not seemto answer any
question.”
DOES QUIT.
END VERB yes.

EVENT unquit MAKE hero NOT quitting.
END EVENT unqui t.

Thanks to Tony O'Hagan (aoh@maths.nott.ac.uk) for this excellent idea.

FLOATING OBJECTS

Floating objects is a term used for objects that are available everywhere or at least at
many places. Usually they are available wherever the hero is.

Examples of floating objects are the air, the ground and such semi-abstract objects.
But sometimes you also need to make actual objects be floating objects such as parts
of the heroes body.

To create floating objects you can use a particular feature of containers, namely the
fact that they are always located where the hero is.

6.1l

Alan Language Manual 72

Note: This only applies to containers that are pure containers, for objects and
actors that have the container property this does not apply of course. See
Containers qn page 41 for a discussion.

So to have the hero’s body parts and the air and the sky to be available wherever the
hero goes you can use:

CONTAI NER body_parts
END CONTAI NER body parts.

CONTAI NER out door _t hi ngs
END CONTAI NER out door _t hi ngs.

OBJECT right _arm NAME right armIN bocy_parts ...

OBJECT head NAME head I N body parts ...

OBJECT sky I N outdoor_things ...

OBJECT air IN outdoor _things ...
Of course you would not want the outdoor things to be available when you are
indoors, but this can be fixed in a way similar to the container contents trick shown
in Containers and Their Contents on page 66. Simply create a container object and
place it where the hero can never be:

OBJECT out door _t hings_storage AT |inbo
CONTAI NER
END OBJECT out door _t hi ngs_st or age.

VWHEN | ocation IS outdoors =>
EMPTY out door _t hi ngs_storage | N outdoor _things.
VWHEN | ocation IS NOT outdoors =>
EMPTY out door _things I N outdoor_things_storage.
And Voila’, every time the hero arrives at an outdoor location he will find the air
and the sky. And every time he enters a location that has the attribute out door s
set to false he will not find them available.

Well, perhaps he would like to have the air available indoors too, but that is left as
an exercise for the reader...

DARKNESS AND LIGHT SOURCES

A very common puzzle in old time adventures (so much so that it has possibly been
exploited beyond its potential) is the problem of dark locations and finding a
source of light.

This puzzle can be implemented in Alan in a rather general way by using a default
object attribute, a default location attribute and a few additions to the descriptions
of the dark locations and the | ook verb.

bj ect Attributes
i ghtsource O.
Location Attributes
lit.
This will give all objects the value of O of the attribute | i ght sour ce. Any
object that provide light should set this to something larger than zero. The attribute

6.12.

Alan Language Manual 73

might of course change value dynamically, e.g. when the lamp is lit and
extinguished. We can thus sum all the values of the attribute | i ght sour ce ata
location and if the sum is above zero there is some light provided. So the look verb
could be reworked to:

Verb 'l ook
Does
If Sum O lightsource Here = 0
And Location Is Not lit Then
"You cannot see anything without any light."
El se
Look.
End |f.
End Verb 'l ook'.

Of course we must also modify the dark locations:

Locati on i ndoors

I's
Not lit.
Descri ption
If Sum O |ightsource Here > 0 Then
"This is usually a very dark room But in this
I'i ght
you can see...'
El se
"You can not see anything in the dark."
End If.

Exit out To outdoors.
End Locati on.

Locati on outdoors
Descri ption
"Qut here in the sun you can see everything."
Exit 'in' To indoors.
End Locati on.
So for every location which should be dark we must add the above test to the

description clause.

There is however still a small problem with this solution. Objects available at the
location are visible (described) as you enter the location. This must be taken care of,
e.g. by moving all objects present to a limbo location (analogous to the container
contents trick described in section 6.5 on page 66) in the dark part of the | F
statement, and back in the EL SE clause.

Thanks goes to Thomas Ally (Thomas_Ally@freenet.richland.oh.us) for
prompting this solution.

DISTANT & IMAGINARY OBJECTS

A feature introduced in v2.7 made the following section almost obsolete. The new
feature is the ability to refer to distant objects and actors (see|Syntax Definitions pn_|
page 30 for a discussion on the omnipotent '!" indicator). 1.e. the previous

restriction that the player could only refer to objects and actors at the same location
was removed. However there are instances where it may still be required to separate
the handling of an object when it is present and when it is not, therefore this section

Alan Language Manual 74

gives a few examples of what can be done using some trickery with the mechanisms
of Alan.

Sometimes you need to make it possible for the player to refer to things either far
away, that are not really objects or that may be at many places at once. Examples of
these are a distant mountain that may be examined through a set of binoculars, the
melody in “whistle the melody”, and water or walls.

For objects that should be visible from a distance the easiest method is to introduce
a ‘shadow object’. This is a second object acting on behalf of, or representing, the
distant object at the locations where it should be possible to refer to it. For example:

LOCATION hills

END LOCATI ON hill's.
OBJECT mountain AT hills
END OBJECT nount ai n.

LOCATI ON sceni c_vista NAME Scenic Vista
END LOCATI ON sceni c_vi st a.

OBJECT shadow_nount ai n
NAME di stant nountain AT scenic_vista
DESCRI PTI ON
"Far in the distance you can see the Pebbly
Mount ai n rai sing towards the sky."
END OBJECT shadow_nout ai n.

This would allow for example at scenic_vista:

Sceni ¢ Vista.

Far in the distance you can see the Pebbly Muntain
rai si ng

towar ds the sky.

> | ook at nountain through the binoculars

which would otherwise be impossible. If the mountain should be visible and
manipulable from a number of locations, you might implement one shadow object
for each location but this is a bit tedious if they are identical. One trick here is to
use something like the following rule:

WHEN hero AT scenic_vista OR hero AT hill _road =>
LOCATE shadow nmount ai n AT hero.

This will ensure that whenever the hero moves to any of the places from where the
mountain is visible, the shadow_nount ai n is sure to follow. However, as the
rules are executed after the hero has moved, a better strategy might be to make the
shadow_nount ai n ‘silent’, i.e. to have no description. Instead the description
of it should be embedded in the description of the adjacent locations. Yet another
possibility would be to move the pseudo-object around using statements in the
exits, like

LOCATI ON sceni c_vista NAME Scenic Vista
EXIT east TO hills

6.13.

6.14.

Alan Language Manual 75

DOES
LOCATE shadow rmountain AT hills.
END EXI T east.

END LOCATI ON sceni c_vi st a.
Objects that are always present, such as the air or the parts of the hero’s body, may
be treated like normal objects. I.e. they are defined as the objects they represent.
They are then placed in a container that is not an object, which makes the objects
always accessible, since containers (that are not objects) are considered to be where
the hero is (cf. the inventory). This is also a simple way to create other
compartments on the hero, such as a belt.

CONTAI NER bel t
LIMT count 2
ELSE "You can’'t fit nmore in your belt."
END CONTAI NER bel t.

VERB i nvent
DCES
LI ST i nventory.
LI ST bel t.
END VERB i nvent.

CONTAI NER pseudo
END CONTAI NER pseudo.

OBJECT air I N pseudo
VERB br eat he

END VERB br eat he.
END OBJECT air.

STRUCTURE

A good thing to do when designing an interactive fiction story is to separate the
geography from the story. In Alan you can use the include facility to structure your
Alan source. One approach could be to place the description of each location in a
separate file together with any objects that could be considered part of the scenery
or at least is not only a tool in a puzzle. These files can then be included in a 'map’
file, which in turn is included by the top-level file.

The story line can be divided into files too, one for each 'scene’. A scene being
comments describing the important things that are suppose to happen, any
prerequisites and objects, events, rules etc. which are specific for this part of the
story.

This strategy will both give you a better structure of your adventure as well as help
you design a better story, much like the storyboarding technique used in making
movies or plays.

DEBUGGING

To simplify the development of adventures written in the Alan language, the
interpreter Arun incorporates some features for debugging. There are a few
debugging switches available when starting the interpreter:

Alan Language Manual 76

- Create a |l og of the player conmands
-t Enabl e trace node

-s Enable single instruction trace

-d Enabl e debug node

COMMAND LOG

For various purposes, such as debugging, an actual log of the player commands can
be handy. Such a log is created if the option - | is given to the interpreter when
starting a game. The log file is created in the directory, which was current when the
interpreter was started, the name of the log file will be the same as the game with
the extension .log.

INTERPRETER AND INSTRUCTION TRACE

Trace mode can also act as an aid in debugging. It will print information about each
invocation of the instruction interpreter, making it easier to see which parts of the
code are being executed.

Single instruction trace will, in addition to the trace mode information, also trace
every single Acode instruction.

DEBUG MODE

Finally, debug mode will execute the start up sequence and then prompt for a debug
command with

ABUG>

Note: None of the above switches are effective unless the adventure was compiled
with the debug option set (see @ptions §n page Z6)|

Abug may also be entered by typing the single command

> debug
during the execution of an Adventure that was compiled with the debug option.

A question mark or an ‘h’ will give a brief listing of the commands available in
Abug:

a Display a list of all actors.

c Display a list of all containers.

e Display a list of all events and their status.

g Go on. |.e. proceed by executing the next turn.

Abug
will stop and pronpt for a new comand agai n before
the player is next in turn.

I Display a list of all locations.

0 Display a list of all objects.

Quit the adventure (and Abug).

o)

Alan Language Manual 77

s Toggl e single instruction trace.
t Toggl e trace nmode (off and on).
X Exit Abug, i.e. proceed w thout stopping.

The commands A, C, L and Omay optionally be followed by a number. Abug will
then display detailed information about the entity requested, such as values of
attributes, its present location etc.

Currently there is no way to modify anything using Abug.

The following is a short excerpt from a debugging session (user input in bold face):

<Arun, Adventure Interpreter version 2.6 al pha>
<Version of 'saviour' is 2.6(0)a>

Wel come to the game of SAVI OUR!

[introductory text deleted for brevity]

ABUG> s

Step on.

ABUG> t

Trace on

ABUG> ¢

>n

<EXIT 1 (n) from22 (CQutside The Tall Building), Executing: >

B B

dd9: PUSH 1
dda: SCORE 1 (5)
ddb: RETURN

<EXIT 1 (n) from22 (CQutside The Tall Building), Mving:>

B B

ded4: PUSH 4

de5: PUSH 6229

de6: PRI NT 6229, 4 “"Hal I "
de7: RETURN

B B

de8: PUSH 158
de9: PUSH 6235
dea: PRI NT 6235, 158 "Inside the entrance is a hallway full of

dust and pieces of the ceiling have fallen to the floor. At the west end
is a staircase, and to the south is the exit."
1

deb: PUSH
dec: DESCRI BE 1
++++++
620: PUSH 30
621: PUSH 1428
622: PRI NT 1428, 30 " To the east is a folding door."
623: PUSH 6
624: PUSH 1
625: ATTRI BUTE 1, 6 (1)
626: | F TRUE
627: PUSH 13
628: PUSH 1446
629: PRI NT 1446, 13 "1t is closed.”
62a: ELSE
62f: RETURN
ded: RETURN
ABUG> a
ACTORS:
17: Hero
ABUG> a 17

ACTOR 17 : Hero
Location = 23 Hal
Script =0
Step = 0
Attributes =

Alan Language Manual 78

1: door
2: rats

3: spool of conputer tape

4: ol d book

5: 3 metre |long | adder

6: rather heavy conputer term na
7: small coin

8: birds nest

9: set of rusty keys

10: clock

11: drawer

12: desk

13: dirty manual

14: conputer

15: vendi ng machi ne

16: old nmoul dy candy bar

ABUG> o 6

OBJECT 6 : rather heavy conputer term na
Location = 30 Term nal Room
Attributes =

(takeabl e)

(readabl e)

(openabl e)

(startable)

(exami nabl e)

(connect ed)

(showi ng_nsgl)

(showi ng_nsg2)

eNogrwNE
cooRrOORR

ABUG> (g

Lines of '+’ characters indicates the start of interpretation, thus they can be present
inside other single step traces (like the DESCRI BE in the example above).
Likewise lines of ’-” indicates the return from one such level of interpretation.

7.1,

1.2.

Alan Language Manual 79

ADVENTURE CONSTRUCTION

This chapter will give a few clues on how to be a successful adventure author,
because creating a good adventure is more like writing a book than writing a
program (although Alan can be viewed as a kind of programming language).

GETTING AN IDEA

As with a book, the success or failure depends on how intriguing the story is, how
hooked you can get the reader (in our case the player). So, the first step must be to
get a good idea. This may be hard or easy but with time you, like a good author,
learn to pick up ideas when you get them in ordinary every-day life, and store them
for later use.

A seemingly simple idea might also be developed into a good adventure if it is
placed in the correct setting and supplied with additional features, tricks and
problems.

When you have a good idea, try to refrain from typing it in directly in a text editor
and compile it with Alan. Instead, write the story down as if it were the story line
for a book or a movie. Where appropriate, insert hints on various diversions and
alternate paths that come to mind, but try to stay mainly with the main story from
beginning to the preferred end. Then, let a close friend read it.

ELABORATING THE STORY

After having rewritten the story line once or twice, start creating the scenery. If your
setting is small, you could draw a map of the locations needed, but a better way is
probably to make a list of major locations first (those essential to the story). For
each location note what important properties the location must have and which
objects are necessary (just as notes, don’t create the Alan declarations yet!). For each
object, make a small note on what the object is needed for (by the player!).

This may also be done using a scene-by-scene approach. By this we mean that the
story is segmented into scenes (and maybe also acts) like in a play. For each act and
scene you do the above. This makes it easier to get an overview over a larger
adventure.

| also suggest that you also create a story on a level above the actual game, at least in
your own mind. This story should explain why the game-world exists and thus give
a consistency to the text that you will present to the player. Nobody likes an
adventure without a cause. This story or world of ideas need not be revealed to the
player.

This also applies to the narrator, i.e. the imaginary person or creature that carries

out the conversation with the player. Create an image of him or it and stick to it.

Receiving comments about your (limited) progress in the game might be funny as
long as they are not out of character.

7.3.

14,

Alan Language Manual 80

IMPLEMENTING IT

At last it is time to sit down at the terminal. Divide the adventure text into files
containing global verbs, the map (possibly divided further according to the scenes),
the actors (perhaps one file for each actor) and a main file including the other files.
This makes it easy to handle the adventure and you may also ask your friend to
participate in the development by giving him a few files to work on.

First, just declare the locations and connect them with exits. Do not work on the
“purple prose” descriptions yet. The Alan system supplies good defaults for
descriptions and so on so use these while developing the structure of the adventure.
Do not bother even with the details of making it impossible to pick up the
elephant, etc.

Play the adventure continuously during the development, but do not try the things
you plan to make impossible later. Just go through it according to the line you
planned the story to follow. A hint here is to use a separate file for the start section.
In this file you can easily set up the situation you wish to test while not having to
tire yourself by playing the adventure from the start every time.

POLISHING THE ADVENTURE

So, now you have a working adventure, a bit bare bones, but still the story plays the
way you planned. Now it is time to insert all the nice descriptions, the limitations
and perhaps the extra things to divert and hinder the hero. Just be careful not to fall
into the locked-door-syndrome. Too many adventures have been tedious to play
because you need to find-key/get-key/unlock-door- with-key/open-door (anyway,
why do people go around locking doors and throwing away the keys). Think big.

Start by fixing the verbs so that they prohibit the impossible. Introduce as many
synonyms as you can think of, this makes the adventure so much more playable.

Create the location descriptions. Remember to use the same style in all your
descriptions; breaking out of style does not look good in the eyes of the ad-
venturous. The descriptions must give the player the correct image, the brain is still
the best graphic interface available, but they should also plant ideas in the player on
how to solve the problems you place before him.

Another thing to aim for is the feeling that a player gets when he somehow finds
information explaining things he has encountered earlier in the game. Here, as
always, it is good advice to ask a friend to read the texts and convey his or her
impressions (remember you know it all because you wrote it!).

Lastly fill in the adjectives for the objects, their descriptions and short descriptions
(if needed).

1.5.

Alan Language Manual 81

BETA TESTING

Now you might think that you can start distributing your game. But, wait! As any
complex computer program it can have various kinds of bugs. Bugs in a work of
interactive fiction range from misspellings and grammar errors in your descriptions,
logic errors in your implementation of puzzles or events or omissions in the
descriptions of surroundings that make the player miss or misunderstand how to
act, to inconsistencies in the settings or story, plots that don’t work.

So how do you find these? Your only help are the beta testers. They are the people
that you now should consider first a first trial beta release of your game. They
should be people who you trust do give their honest opinion and also really play it
through to find any problems.

The beta testers will probably give you a long list of issues that you have to address
before the next release. Some of the issues are simple; others may affect the basis of
your story. You should seriously consider (and if possible discuss) such suggestions.

One aid in finding any problems in the playability of the game is to use the log file
facility of the interpreter (see Command Log oh page 76) ko produce a list of the
commands a player have used. This can greatly aid in spotting troublesome areas,
such as where the player is stuck and reverts to ""guess-the- verb™. This log can be
fed into the interpreter and will give you the exact game played.

After having collected all this information, considered which ones to act upon, and
implemented these, you should probably do this again (sigh!).

Now, at last, your adventure game is ready to meet its audience.

Al

Alan Language Manual 82

RUN-TIME MESSAGES

This appendix describes the errors that may occur during the running of the
adventure, i.e. during interpretation of the generated Acode. There are two classes
of errors, player input response messages and system errors.

Input response errors are not fatal but abort the execution of the current player
command and discard the rest of the user input, which is a normal part of the
interaction between the player and the Alan run-time system. System errors are fatal
and abort the execution of the adventure.

Input Response Messages

Various messages are printed for the benefit of the player. Most messages probably
come from the adventure itself, i.e. they where provided by the adventure author.
But there is a set of messages that can be given directly by the Arun interpreter.
They are presented below using the Alan STRING-format, i.e. containing the
special character combinations described in Output Statements on page 43. These
standard messages exist for all languages and the default value of the texts are
selected depending upon the setting of the language option.

The contents of any message may be modified using the MESSAGE statement (See
section m he identifier on the first line of a message explanation is

the identifier that should be used in the MESSAGE statement to change the
contents of that message. The second line is the default English message text, and
finally a short explanation is given.

All messages are available in all supported languages but below the English message
texts are shown.

Note: Although the default values of the messages are static strings, it is possible to
create more dynamic messages as the MESSAGE statement allows any

statements not only strings, see {vmssagaswpage—so'for details.

WHAT,
"l don't understand.",

The input did not follow any syntax the Arun parser knows about.

VHATALL,
"I don't know what you nean by "all’

The player input ALL, but the Arun parser could not find any objects or
actors that it could refer to.

Alan Language Manual 83

VHATI T,
"I don't know what you nean by "it'.",

I T may only be used when the previous command contained a reference to
one object or actor.

VHATTHEM
"I don't know what you mean by 'them.",

THEMrefers to the set of objects or actors mentioned in the previous
command. If there were no multiple parameters in the previous player
command, Arun will issue this message.

Alan Language Manual 84

MULTI PLE
"You can't refer to multiple objects with '$v'.",

The syntax for the indicated verb did not allow multiple parameters.

ANT,
"l can't guess what you want to $v.",

The verb required a parameter.

NOUN,
"You must supply a noun.",

The player started to specify an object or actor but only supplied the
adjectives.

AFTERBUT,
"You must give an object after "but'.",

In acommand containing ALL BUT, the player must also give the ob-
ject or objects excluded.

BUTALL,
"You can only use 'but' after "all'.",

The words BUT and EXCEPT may only be used after ALL.

NOTMJCH,
"That doesn't |eave nmuch to $v!",

The player used an ALL BUT construct which explicitly excluded
everything matched by the ALL.

VHI CHONE,
"1 don't know which $1 you nean.",

There were multiple objects (or actors) that matched the description given by
the player. More adjectives are necessary to distinguish between them.

NOSUCH
"l can't see any $1 here.",

The player referred to an object or actor that was not present.

NOWAY,
"You can't go that way.",

A directional word was used but there is no exit in that direction.

CANTO,
"You can't do that.",
Somehow Arun found no verb body to execute. This may be a situation
overlooked by the author or the player may be trying to do something that is
not possible.

CANT,
"You can't $v the $1.",

Alan Language Manual 85

This is a variation of the above message.

SEEOBJECT1,
"There is",

SEEOBJECTCOVVA,
" $$l ")

SEECBJECTAND,
"and ",

SEEOBJECTEND,
"here.",

These four messages are used to construct the default text for describing
objects present at the current location (unless they have a description clause,
in which case they are used instead). The message parts are used as in " There
Is <article> <object>, <article> <object> and <article> <object> here."
The underlined parts are the ones in the messages and <article> and
<object> are inserted as appropriate.

SEEACTOR,
"i's here.",

The default message for presenting actors present, unless they present
themselves (have a description).

CONTAI NS1,
"The",

CONTAI NS,
"cont ai ns",

CONTAI NSCOMVA,

CONTAI NSAND,
"and ",

CONTAI NSEND,
"$3. "

The four messages above are used to construct the default contents listing of
a container in much the same way as for the object listing above. The
messages are used according to the pattern "' The <container> contains
<article> <object>, <article> <object> and <article> <object>."

Alan Language Manual 86

EMPTY1,
"The",

| SEMPTY,
"is enpty. ",

The default messages for empty containers.

HAVESCORED,
"You have scored",

SCOREQUTOF,
"points out of",

Two parts of the default scoring message.

UNKNOWNWORD,
"l don't know that word.",

MORE,
"<Mor e>",

The classic message when the screen is full. The player should press
RETURN to proceed.

AGAI N,
"(again)",
This message is presented immediately after the location name if the location
has been visited before to give the player the information that he has visited
this location before (a good thing in some adventures). If you wish to disable
this set this message to an empty string.

SAVEVWHERE,
"Enter file nane to save in",

When executing a SAVE the player can enter the name of the file to save in.
The name used in the previous SAVE is used as a default.

SAVEOVERWRI TE,
"That file already exists, overwite (y) ? ",

If the save file already existed the player must confirm the overwrite.

SAVEFAI LED,
"Sorry, save failed.",

When executing a SAVE, the file system indicated some error, usually a write
protected directory or full disks.

A2

Alan Language Manual 87

SAVEVERSI ON,
"Sorry, the save file was created by a different
version.",

The save file found was created by a different version of the Alan interpreter.

SAVENANME,
"Sorry, the save file did not contain a save for
this adventure.",

The indicated save file did not contain a save of this adventure.

RESTOREFROM
"Enter file nane to restore front,

A RESTORE statement can restore from any named file. The previously
used file name is used as the default.

SAVEM SSI NG,
"Sorry, could not open the save file.",

When executing a RESTORE, Arun could not find a save file with the
indicated name in the current directory.

QUI TACTI ON,
"Do you want to RESTART, RESTORE or QUIT ?",

The QUI T statement requests an action from the player.

Note: The possible answers are currently hard-wired into the interpreter, so
changing RESTART, RESTORE or QUI T will probably confuse the player!

DEFARTI CLE,
"an

The indefinite article is needed for objects, objects which have none declared

(using the ARTI CLE clause) will receive the default article. This is mainly
available for the ease of constructing adventures in unsupported languages.

System Errors

System errors are errors caused by internal malfunctions. Mainly these are im-
plementation errors (aka. bugs!), but may (in some manner) also result from user
errors. The system error messages also have a purple prose style to fit in with your
game, e.g..

As you enter the twilight zone of Adventures, you
stumble and fall to your knees. In front of you, you can
vaguel y see the outlines of an Adventure that never was.

SYSTEM ERROR: Can’t open adventure code file.

Alan Language Manual 88

AUTHOR ERRORS

The following system errors are in some sense caused by the Adventure author
(you).

Qut of nenory.

The adventure was so large that the interpreter could not allocate enough
dynamic memory for it. Try to finish other running applications (does not
work or is not possible on all systems), get more real memory, or complain to

the Alan implementors (see appendix §, FUTURE DEVELOPMENTSoh |
page 117 fpr how to reach us).

I nconpati bl e versi on of ACODE program

The interpreter you are using have a different version than the Alan compiler
used to compile the adventure. Use a different Arun or recompile the
adventure with the matching compiler.

Note: the Arun switch * - d’ will, beside entering debug mode, also print the
version of both the Arun interpreter and the version of the Alan compiler
used to compile the adventure.

Recur si ve LOOK

This message is shown when a LOOK statement is executed as a result of a
LOOK i.e. a recursive LOOK! The LOOK statement should only be used in
global verb bodies, not in descriptions of LOCATI ONs and OBJECTSs as
there is a definite risk that it will be executed as the effect of a LOOK, either
explicit or implicit (by the hero entering that location!).

Locating sonething inside itself.

This means that an attempt to locate an object (that is a container) inside
itself has been made. This might happen if the adventure author has
neglected to check this in a verb like

put _in = "'put’ (o) 'in (c)

Non- exi sting paraneter referenced.

A parameter that wasn't available was referenced. This is probably due to
using a parameter shorthand such as $2 inside a string in a context where the
syntax was restricted to only one parameter. This may avoided by using the
SAY statement instead of the embedded string parameter references, which
would result in compile time checking avoiding the risk of having this happen
to the player.

Note: Parameter references embedded in strings are not currently checked during
compile time.

Alan Language Manual 89

Note: Embedded string references ($1, $o, etc.) is not guaranteed to be forward
compatible (i.e. it may be removed in future versions).

PLAYER ERRORS
Errors caused by incorrect arguments or file names.

Can't open adventure code file.

Can't open adventure data file.

The player attempted to run an adventure for which there were no code or
data file available, probably a misspelling.

Coul d not read all ACD code

Checksumerror in .ACD file (% instead of %R).

These two messages indicate problems in the adventure files. Possibly caused
by transfer problems of the .acd and .dat files which must be made in binary
mode.

IMPLEMENTOR ERRORS

Any other text in a system error message is really a SYSTEIr']%Mibee
down the text and contact the implementors (see appendix

bevEL opmENTS b page 1173l If possible supply the source for your ad-
venture, a trace of the few last player commands (if possible with single step and
trace turned on, see Debugging bn page 75).

B.l

B.2

Alan Language Manual 90

ALAN LANGUAGE GRAMMAR

Description

The Alan language is defined formally below using a BNIF-form. This is a set of
rules defining exactly what constructs are legal in an Alan source. The rules are
numbered for easy reference.

The BNF form divides the structure of the input source into smaller parts (rules)
which in turn are defined by other rules. For example rule 1 says that an
ADVENTURE (in this case an Alan program) consists of options, units and a start
section. In rule 1 we can see that an adventure is defined to contain an

opti onal _opti ons section, some uni t s, and then the

start _secti on. Eachisin turn defined further down in the rules.

The equal sign (=) may thus be read as “consists of” or “is defined as”. The
exclamation mark indicates a choice between the two different constructs, for
example in rule 6 through 8 one can see that an option may either be a single
identifier (I D), an identifier followed by another identifier or an identifier followed
by an integer. The semicolon indicates the end of the complete definition of the
symbol on the left hand side of the equal sign.

Reserved words

The following is a complete list of all words reserved for special use in the Alan
language. Note that the reserved words can still be used as identifiers in a source file
provided that the rules described inl Identifiers And Names bn page 57 hre
followed.

ACTOR
AFTER

ATTRI BUTES
BEFORE

BY

CANCEL
CHECK
CONTAI NER
COUNT
DECREASE
DEPEND
DEPENDI NG
DESCRI BE
DESCRI PTI ON
DCES

ELSE

ELSI F
EMPTY

END

EVENT
EXIT

FOR

HAS
HEADER
HERE

I F

| NCREASE

I NTEGER

B.3

B4

Alan Language Manual

ol

IS

I SA
LIMTS
LI ST
LOCATE
LOCATI ON
LOOK
MAKE

MAX
MENTI ONED
NAME

NEARBY
NOT
OBJECT
OF

ONLY
OPTI ONS
OR
RANDOM
SAY
SCHEDULE
SCORE
SCRI PT
SET
START
STEP
STRI NG
SUM
SYNONYNMVS
SYNTAX
SYSTEM
THEN

Additional Keywords

The following words are also keywords in the Alan language but may be used as
identifiers without requiring the use of single quotes.

ARTI CLE
BETWEEN
CONTAI NS
DEFAULT
I'N
MESSAGE
N

QT
RESTART
RESTORE
SAVE
VAT

The Grammar

1. <adventure> = <optional _options> <units> <start>

2. <optional _options> =
3. I " OPTIONS' <options>

4. <options> = <option>

5. I <options> <option>
6. <option> = 1D "."'

7. ' IDID".

8. ! I D Integer

9. <units> = <unit>
10. I <units> <unit>

Alan Language Manual 92

26
27.
28

29
30

31
33,
34

35

36
37.

38
39

40
41.

42.
43

44.
45

46
<opt

47.
48

49
50

51.
52.

53
54.

<unit> = <defaul t>
! <object_defaul t>

I <l ocation_defaul t>
| <actor_defaul t>

I <messages>

I <rul e>

I <synonyns>

I <synt ax>

I <verb>

I <l ocation>

| <object>

I <cont ai ner>

! <actor>

I <event >

<defaul t> = ' DEFAULT' ' ATTRI BUTES' <attributes>

<l ocation_default> = ' LOCATION ' ATTRI BUTES' <attri butes>

<obj ect_default> = ' OBJECT' ' ATTRIBUTES <attributes>

<actor_default> = ' ACTOR 'ATTRIBUTES' <attributes>

<attributes> = <attribute> '.
I <attributes> <attribute>

<attribute>

<synonyns> = ' SYNONYMS' <synonym|i st>

<synonym | i st> = <synonynp
I <synonym | i st> <synonyn®

<synonym> = <id_list>"'=" ID".
<messages> = ' MESSAGE <nessage_list>
<message_l i st> = <message>

I <message_l i st> <nessage>
<nessage> = |ID ':' <statenents>
<syntax> = ' SYNTAX' <syntax_list>

<syntax_list> = <syntax_itenp
I <syntax_list> <syntax_itenp

<syntax_item> = ID'=" <syntax_el ements>
onal _class_restrictions>

<synt ax_el ement s> = <synt ax_el enent >
I <synt ax_el enent s> <synt ax_el enent >

<syntax_el ement> = | D
I *(" ID")" <optional_indicators>
<optional _indi cators> =

| <optional _i ndi cators> <indi cator>

<indicator> = '*'
[

Alan Language Manual

93

55
56

57.
58

<optional _class_restrictions> = "'."'
I "WHERE' <cl ass_restrictions>

<class_restrictions> = <class_restriction>
I <class_restrictions>"'AND

<class_restriction>

59

71.

72.

73
74.

75
76

77.

78

79

80
81.
82.

83
84.

85

86
87.

88

89

90

91.
92.

93
94.
95

<class_restriction> = ID 'l SA <classes> 'ELSE <statenments>

<cl asses> = <class_identifier>
I <classes> 'OR <class_identifier>

<class_identifier> = ' OBJECT
I "ACTOR

I ' CONTAI NER

I "I NTEGER

I ' STRING

I " CONTAI NER ' OBJECT'

I ' CONTAI NER ' ACTOR

<optional _verbs> =)
| <optional _verbs> <verb>

<verb> = <verb_header> <verb_body> <verb_tail >

<verb_header> = 'VERB' <id_list>

<verb_body> = <sinpl e_verb_body>
I <verb_alternatives>

<verb_alternatives> = <verb_alternative>
! <verb_alternatives> <verb_alternative>

<verb_alternative> = 'WHEN |D <sinpl e_verb_body>

<si npl e_verb_body> = <optional _checks> <opti onal _does>
<verb_tail> = "END 'VERB' <optional _id>".

<optional _checks> =
I " CHECK <statenments>
I " CHECK' <check_list>

<check_list> = <check>
I <check_list>"'AND <check>

<check> = <expression> 'ELSE <statenents>

<optional _does> =
! <does>

<does> = 'DOES <optional _qual > <stat ement s>

<l ocati on> = <l ocati on_header> <l ocati on_body> <l ocation_tail >

<l ocati on_header> = ' LOCATI ON | D <opti onal _nane>

<l ocati on_body> =
I <l ocation_body> <l ocation_body_part>

<l ocati on_body_part> = <description>
<does>
| <is> <attributes>

Alan Language Manual 94

96
97.

98

99
100

101.

102.
103

I <exit>
I <verb>

<l ocation_tail> = "'"END 'LOCATION <optional _id>

<optional _exits> =
! <optional _exits> <exit>

<exit> = "EXIT <id_list>"'TO |D <optional_exit_body> ".'

<optional _exit_body> =
| <optional _checks> <optional _does> ' END

"EXIT

104.

105

106
107.

108
109
110.
111.
112.
113.

114.

115.
116.

117.
118.
119.

120.
121.

122.
123.

124.
125.

126.

127.
128.

129.
130

131.
132.
133.

134

<optional _i d>

<obj ect > = <obj ect _header > <obj ect _body> <obj ect _tail >

<obj ect _header> = ' OBJECT' |D <opti onal _where> <opti onal _nanes>
<opti onal _wher e>

<obj ect _body> =
I <obj ect _body> <obj ect _body_part >

<obj ect _body_part> = <properties>

I <description>

I <article>

! <menti oned>

| <is> <attributes>
I <verb>

<object_tail> = "'"END 'OBJECT' <optional_id>".

<optional _attributes> =
| <optional _attributes> <is> <attributes>

<is> ="1S
I " ARE'
I " HAS
<optional _description> =
I <description>

<description> = ' DESCRI PTI ON
! ' DESCRI PTI ON <st at enent s>

<article> = "' ARTICLE
I "ARTI CLE' <st at enent s>

<menti oned> = ' MENTI ONED <st at ement s>

<optional _name> =
I <nanme>

<optional _names> =)
| <optional _nanes> <nane>

<name> = ' NAME' <ids>

<properties> = ' CONTAI NER <cont ai ner_body>

<cont ai ner> = <cont ai ner _header > <cont ai ner _body> <cont ai ner_tail >

<cont ai ner _header> = ' CONTAINER |D

Alan Language Manual

135. <cont ai ner _body> = <optional _|imts> <optional _header>
<optional _enpty>
136. <container_tail> = "END 'CONTAINER <optional _id>"."'

137. <optional _linmits> =

138. ' "LIMTS <linits>
139. <limts> = <limt>

140. I <limts> <linmt>

141. <limt> = <limt_attribute>"'THEN <statenments>

142. <limt_attribute> = <attribute>
143. I " COUNT' | nteger

144. <optional _header> =
145. ! ' HEADER <st at enent s>

146. <optional _enpty> =
147. ! "ELSE <statenents>

148. <event> = <event _header > <stat ements> <event_tail >

149. <event_header> = 'EVENT' ID

150. <event_tail> = "END 'EVENT' <optional _id>"'."'

151. <actor> = <actor_header> <actor_body> <actor_tail >

152. <actor_header> = ' ACTOR |D <optional _where> <optional _nanes>
<opti onal _wher e>

153. <actor_body> =
154. I <actor_body> <actor_body_part>

155. <actor_body_part> = <properties>

156. I <description>
157. | <is> <attributes>
158. I <verb>

159. I <script>

160. <actor_tail> = "END 'ACTOR <optional _id>"."

161. <optional _actor_script> =
162. | <optional _actor_script> <script>

163. <script> = 'SCRIPT' <integer_or_id>"'."' <optional _description>
<step_list>

164. <step_list> = <step>
165. I <step_list> <step>

166. <step> = 'STEP' <statenents>

167. I "STEP' ' AFTER Integer <statenents>

168. I "STEP" "WAIT' 'UNTIL'" <expression> <statenents>
169. <rule> = '"WHEN <expression> '=>' <statenents>

170. <start> = 'START' <where> '.' <optional _statenents>

171. <optional _statenments> =

Alan Language Manual 96

172.

173.
174.

175.
176.
177.
178.
179.
180

181.

182.
183
184.
185

186
187.
188
189
190
191.
192.
193.

194.
195

196
197.

<st at ement s>

<statenment s> = <statenent>
I <statenments> <statenent>

<statement > = <out put _st at ement >
<speci al _st at ement >
<mani pul ati on_st at enent >
<event _st at ement >

<act or

_statenent >
<conpari son_st at enent >

<out put _statenment> = STRI NG
' DESCRI BE' <what> '.'

<speci al _statement> = 'QUI T '.
LOOX .
SAVE' .

<mani pul ati on_statenment> = ' EMPTY' <what> <optional _where> '.

<expressi on>

198
199

200
201.

' SAY' <expressi on>

"LIST <what> '.'

!
|
1
I <assi gnnment _st at enent >
!
|

' RESTORE' ' .'
' RESTART" ' .'
' SCORE' <optional _integer> '.

VI SI TS

I nt eger

' SYSTEM STRING '.'

I ' LOCATE <what> <where> ".'

<event _statenment> = 'CANCEL' ID"'."'
! ' SCHEDULE' |D <optional _where> ' AFTER
<assi gnment _statenent> = ' MAKE' <what > <sonet hing> '.

<expressi on>

202.
203

204.
205

206

=

207.
208

209
210.

211.
212.

213.
' END

214.
215.

<optional _by_cl ause> =
!

I "I NCREASE' <attribute_reference>

<opt

onal _by_cl ause>

| ' DECREASE <attribute_reference>

<opt
I ' SET

onal _by_cl ause>
<attribute_reference> 'TO

' BY' <expression>

<conparison_statenent> = <if_statenent>
| <dependi ng_st at enent >

<if_statenent> = 'I|F

<optional _elsif_list> =

<elsif_list> ="'"ELSIF

<optional _el se_part> =

<dependi ng_st at enent >

<depend_cases> = <depend_case>

<expressi on> ' THEN <statenments>
<optional _elsif_list> <optional _else_part>"'END

<elsif_list>

<expression> ' THEN <statenments>
| <elsif_list>"ELSIF <expression> 'THEN <statenents>

' ELSE

<st at ement s>

' DEPENDI NG ' ON' <prinary> <depend_cases>

'DEPEND ' .°'

| <depend_cases> <depend_case>

Alan Language Manual 97
216. <depend_case> = 'ELSE <st at ement s>
217. I <right_hand_side> ':' <statenents>
218. <actor_statenent> = 'USE 'SCRI PT' <integer_or_id>
<optional _for_actor>
219. <optional _for_actor> =
220. I "FOR ID
221. <expression> = <ternp
222. I <expression> 'OR <ternp
223. <ternp = <factor>
224. I <ternr ' AND <factor>
225. <factor> = <primary>
226. I <primary> <right_hand_si de>
227. <right_hand_si de> = <optional _not> <where>
228. ! <bi nop> <pri mary>
229. | <optional _not> <rel op> <primary>
230. ! <i s> <sonet hi ng>
231. ! <optional _not> ' CONTAINS' <factor>
232. I <optional _not> 'BETWEEN <factor> 'AND <factor>
233. <primary> = <optional _m nus> | nteger
234. I STRI NG
235. I <what >
236. I ' SCORE
237. I <aggregat e> <where>
238. I " (' <expression> ')’
239. | <attribute_reference>
240. I "RANDOM <primary> 'TO <prinary>
241. <aggregate> = ' COUNT
242. I'"SuM "OF ID
243. I "MAX "OF' ID
244. <sonet hing> = <optional _not> ID
245. <what> = ' OBJECT
246. I " LOCATI ON
247. I "ACTOR
248. 11D
249. <optional _where> =
250. I <where>
251. <where> = ' HERE
252. I ' NEARBY'
253. I AT <what >
254. I "IN <what>
255. <binop> ="'+
256. [
257. [
258. !
259. <relop> = '<>
260. 1=
261. ==
262. [
263. <=
264. [
265. RS
266. <optional _qual > =

Alan Language Manual

98

267.
268
269

270.
271.

272.
273.

274.
275.

276.
277.

278.
279.

280.
281.

282.

283.
284.

285.
286.
287.
288.
289.
290.
291.
292.
293.
294.
295.
296.
297.

! ' BEFORE'
! " AFTER
I "ONLY
<optional _not> =
I NOT
<optional _id> =
11D
<ids> = 1D
! <ids> ID
<id_list>=1D
I <id_list>"," ID
<optional _integer> =
I Integer
<optional _m nus> =
|
<attribute_reference> = ID "' COF
<i nteger_or_i d> = | nteger
11D

ID = | DENT
! ' DEFAULT
| ' ARTI CLE
| ' MESSAGE
QT
I ' SAVE
| ' RESTORE
| ' RESTART'
IUWAIT

! ' BETVEEN

| ' CONTAI NS

I ON

1IN

<what >

Alan Language Manual 99

C COMPILER ERROR MESSAGES

Cl Format of messages

This appendix describes the error messages generated by the Alan compiler. The
compiler presents the messages in the order of occurrence in the file. The offending
source line is always shown together with the message. The following example
illustrates a typical compiler output.

ZI Lexanpl e. al an

}23. If barfoo |Is foobared Then
====> 1
* 1% 310 E : ldentifier 'barfoo' not defined.

27. Exit north To Rumbl e.
=_===> 1
* 1% 310 E : ldentifier 'rumble' not defined.

28. Exit west To Tunbl e.
—====> 1
- f r 'tunble' not defined.

1
101 E : 'START' 'HERE' '.' inserted.

211 E : Adventure nmust start at a Locati on.
5 error(s).

No det ect ed war ni ngs.
2 informational message(s).

The following information is available in the compiler listing:
Message summary
Message number and text

Message indicator or pointer

Line number and source text of that line

File name

To change what messages to show and where output is directed refer to the options
and their descriptions in section Compiler Switches on page 110. |

C.2 Message explanations

For each message, a short description of the error, possible causes etc. are given.
Each message reported also indicates the severity of that error. The message is

Alan Language Manual 100

supplemented with an indication of its severity. An informational message
(indicated by an I) simply gives some information to the user, a warning message
(W) indicates an error but the compilation still generates a valid output (although
not always what the user intended). Error messages (E) indicate errors that have
made it impossible to generate any output, but the compiler still continues to
process all input. Fatal (F) and system (S) messages always terminate the
compilation process immediately.

The message descriptions below may also contain the special insertion markers ‘%’
(where n is a digit), which indicate that text will be inserted at that point in the
message during compile time, e.g. the offending identifier or a file name.

Alan Language Manual 101

100

101

102

103

104

105

106

107

108

150

151

Par si ng resuned here.

A severe syntax error was discovered. Some input was skipped. This error
message marks the place where the parsing was restarted.

% i nserted.

A syntax error was discovered and one or more symbols inserted in the input
in an attempt to recover.

%4 del et ed.

A syntax error was discovered and one or more symbols were skipped from
the input in an attempt to recover.

% replaced by 9%.

A syntax error was discovered and one or more symbols were replaced by one
or more other symbols in an attempt to recover.

Severe syntax error, construct ignored.

An intricate syntax error was discovered. A complete construct was skipped
in an attempt to recover.

Syntax error, couldn't recover.
Parse stack overfl ow.
Parse table error.

Par si ng term nated.

Alan compiler implementation errors. Should not occur!

Unt er mi nat ed STRI NG

An opening double quote was not terminated by a closing quote before end
of file. Error message points to the opening quote. Remember STRI NGs
may cover several lines.

File name missing for $I NCLUDE directive.

An include directive was given but no file was indicated. The complete file
name must be given according to the rules in section m

Alan Language Manual 102

198

199

201

202

203

204

205

206

207

208

209

Coul d not open output file "9%' for witing.

The indicated output file could not be opened, probably because the
directory did not exist or the file or directory was write-protected.

Adventure source file (%) not found.

The source file given on the command line did not exist. The Alan compiler
adds the .alan extension to the file name given, if it did not include a period.

M smat ched bl ock identifier, "9 assuned.

The identifier following a terminating END did not match the one given at
the beginning of the construct. This indicates an illegal nesting or a missed
END | F. The identifier indicates to which block the END is assumed to
belong.

Mul tiple usage of direction "%’ in this EXIT.

Multiple definition of EXIT "%’ in this |ocation.

The directional word indicated was used more than once, either in the same,
or different exit declaration from the location. This is contradictory and not
legal.

Multiple definition of %4 DEFAULTS. I gnored.

Only one declaration of default attributes per type is allowed. The second
declaration is ignored.

Multiple usage of "9’ in this VERB definition.

When specifying actions for multiple verbs in the same declaration, the
indicated word occurred twice.

Multiple definition of SYNTAX for 9%.

More than one syntax definition for the same verb was found. This is an
error. You should remove the offending one.

VERB ' 9%’ is not defined.
A SYNTAX construct defined the syntax for a verb that was never defined.

"%’ is not a VERB.

The identifier on the left hand side of a SYNTAX definition was defined as
something that was not a VERB.

First element in a SYNTAX nust be a player word.

The definition of a SYNTAX construct may not start with a parameter. The
first word must be a player word so as to distinguish it from other forms of
input.

Alan Language Manual 103

210

211

212

Action qualification not allowed here.

The BEFORE, AFTER and ONLY qualifiers may not be used in a DOES-
clause in this context.

Adventure nust start at a Location.

You specified a wher e expression in the START section that did not
specify an explicit location. The start section specifies where the hero starts
and must be a LOCATI ON

Syntax paraneter '9%’ overrides synbol.

The SYNTAX definition valid in this context defined a symbol that is the
same as an entity (object, location or actor). The syntax parameter will take
precedence.

Alan Language Manual 104

213

214

215

216

217

218

220

221

222

Verb alternatives not all owed here.

You may only specify different verb body alternatives within objects. The
global verb body and the verb body in the location may not have alternatives.

Par anmet er not defined in syntax for '9%’.

The identifier given as the selector in a verb body alternative was not defined
in the syntax for that verb.

Syntax not conpatible with syntax for '9%’.

To be able to use the same body for different verbs by supplying them in a
comma-separated list in the verb header they must all be compatible. This
means that they have the same number of parameters and the parameters have
the same names. Otherwise conflicts will arise when figuring out which
parameter to use.

Parameter 9%’ multiply defined in this SYNTAX
The parameter was defined more than once in the same SYNTAX definition.

Only one nultiple paraneter allowed for each syntax.
Thi s one ignored.

To be able to use multiple parameters in a player command only one
parameter may be marked as referring to multiple objects or actors using
ALL or conjugations. This is a warning, the syntax will be as if the first
multiple marker was the only one.

Multiple definition of attribute "%’ .

The indicated attribute name was defined more than once in the same
context (default attribute list or within the same entity). Remove one
definition.

Multiple definition of *9%’.
The indicated word has multiple, and possibly different, definitions.
Multiple class restriction for paraneter ' 9%’ .

The same parameter occurred more than once in the list of class restriction in
the same SYNTAX definition.

Identifier "9’ in class definition is not a paraneter.

Only the parameters in the syntax may be referenced in the class-restricting
clause of a SYNTAX definition.

Alan Language Manual 105

230

310

311

312

No syntax defined for this verb, assuned "%l (object)’.

This message is a warning to indicate that the default syntax handling has
been used.

Identifier "%’ not defined.

The indicated word was never defined. It must be declared either as a
location, an object, a container, an actor or an event.

Must refer to %.

The construct indicated does not refer to the correct kind of item, the
message indicates which kind of item was expected.

Par amet er not uniquely defined as %, which is
required.

In certain contexts it is necessary to refer to a particular type of entity, e.g. the
I N expression must refer to a container or an object with the container
property. If the reference (the WHAT part) is a parameter identifier, this
parameter must be restricted to be of the required type by use of parameter
restrictions (such as WHERE ¢ | SA CONTAI NER).

Alan Language Manual 106

315 Attribute not defined for "%’

The indicated attribute is not defined for the particular object, location or
actor. It must either be a default attribute or be locally declared.

318 Entity "%’ is not a Container.

The referenced entity (object or actor) was not declared to have the container
property, although the context required a container.

320 wWord 9%’ belongs to nultiple word classes (% and 98).

A word was declared as to belong to different word classes such as noun,
verb, adjective etc. Only multiple declarations that may lead to unexpected
behaviour are reported, usually because of limitations in the current
implementation. Generally it is allowed to declare a word e.g. as both an
adjective and a noun.

321 Synonym target word '%’ not defi ned.

To define a synonym its target word (the word on the left side of the equal
sign) must be defined as a proper word elsewhere in the source.

322 wrd 9%’ already defined as a synonym
A word may not be declared as a synonym for different target words.

330 Wong types of expression. Mist be of 9% type.

In an expression, a value or an expression was used that had a type that was
not allowed. The message indicates the correct type.

331 I nconpatible types in %.

The two values in an expression with a binary operator did not have
compatible types, or the value used in a SET statement was not type
compatible with the referenced attribute.

332 Type of local attribute nust match default attribute.

An attribute declared locally (within an object, actor or location) that has the
same name as a default attribute, has to have the same type (boolean, integer
or string).

333 The word "%’ is defined as a synonymas well as of
anot her word cl ass.

Synonyms must be words not defined elsewhere.

Alan Language Manual 107

400

401

402

403

404

405

406

407

408

409

Script not defined for Actor "%’ .
No script with the indicated identity was defined for the actor.

Actor reference required outside Actor specification.

Inside an actor specification it is permissible to leave out the actor reference
in a USE statement in which case the surrounding actor is assumed. Outside
actor specifications, the actor reference must always be supplied.

An Actor can’t be inside a Container.

The LOCATE statement tried to locate an actor inside a container. This is
not allowed.

Script nunber nultiply defined for Actor '’ .
The indicated number was used for more than one script for the same actor.

Attribute to %4 nust be a default attribute.

To reference attributes for OBJECT, LOCATI ONand ACTOR the attribute
used must be a default attribute, as all objects, locations or actors must have
it.

The class of a paraneter used in %4 nust be uniquely
def i ned.

In some statements the class of the identifier must be determined during
compile time. This is, for example, the case in MAKE and SET statements.

A paraneter defined as Contai ner have no default
attri butes.

A parameter that was restricted to containers do not have any default
attributes. Actors, objects and locations have separate sets of default
attributes. In order to refer to an attribute on a parameter it must be re-
stricted to one of these classes. If the parameter also requires the container
property, use CONTAI NER ACTOR or CONTAI NER OBJECT.

Attribute in LIMTS nust be a default attribute.
All objects must have the attribute that a limit is to test.

Attributes in % nust be of bool ean type.
The attribute referenced in the indicated context must be a boolean attribute.

No paraneter defined in this context.

No parameter is defined in the context where a reference to OBJECT was

made. Parameters are only defined within checks and bodies of verbs, so the
use of OBJECT (an obsolete construct, use the parameter identifier instead)
is also restricted to those contexts. See Fbun-time Contexts on-page-61.

Alan Language Manual 108

410

411

412

413

414

415

416

417

418

A paraneter may not be used in %A.

In certain statements a parameter may not be used at all.

% ignored for Actor ’'hero’

It is allowed to redefine the predefined actor HERO (the player). This makes
it possible to define local attributes and descriptions for the hero. However
any definition of scripts or initial location is ignored (the script is supplied by
the player in his input and the initial location is defined in the START
section).

"ACTOR is not allowed inside events.
In events no actor j j i rence to the active actor
can be made. See Run=ti :

Expression in %4 nust be of integer type.

The context required a numeric expression.

Invalid initial location for 9%.
The initial location specified was not valid.
Invalid Where specification in % statenent.

The statement indicated does not allow the WHERE specification used.

Interval of size 1 in RANDOM expression

This message informs that the interval in a RANDOMSstatement was just one
single value, resulting in always returning the same value, not very random.

Conparing two constant entities will always yield the
sanme result.

The expression compared two identifiers none of which was a parameter.
This will always give the same result. This is probably an error, but the
message is still a warning as it gives a perfectly running adventure (but,
perhaps not what you intended?).

Aggregate is only allowed on integer type attributes.

The aggregates MAX and SUMcan only perform their calculation on integers.

Alan Language Manual 109

419

501

600

601

602

997

998

999

Expression in % nust be of integer or string type.

In the indicated context only integer and string type expressions may be used.

LOCATION ' %4’ has no EXITs.

In case the hero is located at the indicated location he may not be able to
escape from that location. This may be intentional (as for a limbo location or
a location with magic words to use as an escape) but the warning is presented
as a reminder.

Mul tiple use of option '9%’, ignored.

The indicated option was used more than once, this occurrence is ignored
and the previous setting used.

Unknown option, '%’

A word was given in the option section that was not the name of an option.

Illegal value for option '%’

The indicated option does not allow the value used.

SYSTEM ERROR %
A severe implementation dependent error has occurred (a bug!). Please report.

Feature not inplenented in %.

The combination of some syntactically correct but semantically tricky
constructs is not yet implemented. Please report.

No Adventure gener at ed.

When an error is detected this informational message is given to indicate that
no executable adventure was output.

D.l

D.2

Alan Language Manual 10

HOW TO USE THE SYSTEM

Compiling

This version of the Alan Adventure Development System is a traditional batch
compiler. This means that the actual development system is a compiler that reads
text files created using any normal text editor. To compile an adventure use the
following command in a command shell:

al an <advent ur e>

where <adventure> is the name of the main file containing your adventure source
text. The compiler will add an extension, “.alan™ (or “.ala” on PCs), if none is
supplied. The option -help will give a brief help on other options to the compiler.

The output from the compiler, alan, is two files, an adventure code file ad-
venture.acd and an adventure data file, adventure.dat.

Compiler Switches

The compiler supports the following switches:

» -charset select the character set of the input files. This can be handy when you get
a source file written on another platform, or for Windows where you edit in a
Windows editor (ISO characters) and use the compiler in a DOS window (DOS
characters). The option should be followed with one of the keywords iso, mac or
dos

* -verbose print compiler version and other verbose messages

* -warnings show warning messages from the compilation process

* -infos show informational messages from the compilation process

« -include add a directory to the search path for included files (see Ailes dn page 59 |
for details on the include directive). This switch can be used multiple times, each
adding a new directory

« -full give a complete listing of the source on the screen
* -height <n> use page height <n> (lines) when producing list files
* -width <n> use page width <n> (columns) when producing list files

* -debug include debugging information in the produced adventure files (same as
the debug option, see [Opfions dn page 26) |

D.3

D4

Alan Language Manual

1

* -pack encode and compress the text data (same as the pack option, see m

-summary produce a summary about number of actors, size of adventure files,
timing information etc.

* -dump print the internal form (developers use only)

Giving an extra hyphen before the option reverses its meaning, e.g. --warnings
means don’t show warnings. Switches may be abbreviated.

Running the Adventure
To play the generated adventure the Alan interpreter, arun, is executed with the
adventure name as a parameter.

arun <advent ure>

No extension on the adventure name is allowed.

If the interpreter program is copied to a different name it will look for code and
data files with the same name. Any parameters or switches will be ignored. For
example, by copying the arun program to adventure the interpreter will, when
started under the new name, directly look for the files adventure.acd and
adventure.dat. The three files adventure, adventure.acd and adventure.dat thus
makes a complete game package which is easy to start using the single command:

> adventure

Interpreter Switches
The interpreter supports the following switches:

-V print the version of the interpreter

-d print the version of interpreter and enter debug mode

-i ignore CRC and version errors in the adventure files

-t trace sections executed

-S show single instruction trace

-l log all player command in a log-file in the current directory

In later versions an interactive development environment is envisioned but this is
still far away. So you have to be content with the debugging support described in
Debugging §n page /5 for now.

E.l

Alan Language Manual 12

SYSTEM DETAILS

A complete Alan system should contain a compiler and an interpreter. They are
normally called alan and arun respectively, but depending on the environment may
have different names, such as alan.exe.

The Alan system is delivered packaged in different ways depending of the platform.
On each platform the 'standard’ way of packing software has been attempted. Seek
local wisdom or look at the FTP-site ftp.gmd.de where the Interactive Fiction
Archives are located for info.

Alan has been ported to many platforms (try the Alan Home Pages at
http://welcome.to/alan-if for latest info). Below follows some very specific
information for some of the platforms.

AMIGA

The Alan compiler requires more than the standard stack size (4096), a size of
20000 has been used without trouble.

The Alan interpreter arun supports Workbench-start-up through double- clicking
on the Arun-icon. The tooltype WINDOW is supported to make it possible to
select the window in which the adventure should be run. If a console handler device
such as NEWCON: in 1.3 or the normal CON: in 2.x and above history and
command line editing is available.

UNIX
On UNIX systems command history, recall and editing is available.

PC

In the PC environment Alan and Arun are command shell programs. This means
that it needs an MS-DQOS console to run. In this case it is most convenient to have
the programs in your command path. Refer to your MS-DOS manuals for info on
how to do this.

In a Windows environment you can associate the extensions .ala and .acd with the
programs Alan and Arun respectively. This will enable compiling and running by
double clicking on the files.

Portability of Games

The adventure files produced by the Alan compiler is compatible across all
supported platforms. This means that by copying the binary .acd and .dat files to
another machine they should be possible to interpret by an interpreter on that new
machine without any changes. Note however that the files must be transferred in

Alan Language Manual 13

binary mode (where applicable). All characters are automatically converted to the
native set allowing multi-national characters to be presented correctly even on
machines that do not support the 1SO 8859-1 standard. This is of course restricted
to characters having a representation in the current native character set.

It is a strong goal to achieve complete portability of the games to be able to provide
games for all supported platforms without re-compilation. Game authors should
take this into serious consideration when designing games and not use any system
specific characters, character combinations or special commands that may be
available on some systems.

Portability will not extend to different versions of the system. Changes in the game
file format can occur between versions. Conversion tools may be available, older
interpreter versions can be requested.

Alan Language Manual 14

VERSION DIFFERENCES

VERSION 2.8

A number of bug fixes have been performed in this release, mainly various problems
with syntax declarations and named scripts.

A new statement has been introduced. The DEPENDI NG ON statement is an
improved version of the common switch/case statement available in many other
languages.

Two new expression types have also been introduced. The CONTAI NS expressions
performs sub-string containment tests, and the BETWEEN expression makes it easy
to test if a value is within a specified, consecutive, range.

SCHEDULE and RANDOM now accepts general expressions instead of only lit-
erals.

VERSION 2.7
This version introduces the following radical improvements:

» objects no longer need be present to be used in a player command, the normal
case is still that they are required to be present but this default behaviour can
now be overridden using omnipotent indicator in the syntax clause.

» general attributes are now available, i.e. attributes that all objects, actors and
actors have can be declared using the new DEFAULT ATTRI BUTES clause.

» objects and actors can now have multiple names giving the opportunity for
synonyms for entities and not only for words.

Multiple minor improvements has also been made, e.g. free order of declaration of
initial location and names, ’,’ can now be used as a conjunction in player input, a
new RESTART statement, the MESSAGE clause now accepts general statements
(not only strings) and named actor scripts.

VERSION 2.6

The 2.6 interpreter will run 2.5 games, but the 2.6 compiler can not generate 2.5
games. So upgrading to 2.6 will create games only playable with 2.6 interpreters,
but you can keep old games and still play them.

User definition of run-time messages is now possible.

Removed the indefinite article from the default messages. Instead introduced the
ARTI CLE slot in objects which will be used (if present) before producing the
VENTI ONED message (which may be constructed automatically). If no article is

Alan Language Manual LS

declared a default is supplied ("a™ if using english). This means that some tricks
that have been used to somewhat remedy the article problem (‘a' was always used!),
don't work any more. Remove all 'a', 'an' etc. from the texts and names in the Alan
source (usually in the MENTI ONED slot and possibly in the HEADER for
containers), and introduce the ARTI CLE "an" declaration on objects that require
it (those whos name start with a vowel sound). For objects that doesn't need an
article define an empty ARTI CLE clause.

It also means that there is now a new reserved word ARTI CLE.

It is also now possible to define the ARTI CLE, MENTI ONED and DESCRI P-
T1 ON on objects in any order.

VERSION 2.5

String quotes (") within strings are now allowed, if doubled ("'Charlie said
"""Hello!""""). The same goes for single quotes (") within quoted identifiers.
(Luis Torres <let@reef.cis.ufl.edu>)

Multiple default attribute sections simplifies using general include files as the
default attributes can be distributed across the complete adventure source.

The new VI SI TS statement replaces the previous option with the same name,
allowing setting of the visits variable during run-time.

The compiler now generates completely cross-platform compatible adventure files,
including multi-national character sets, which are converted automatically to be
presented correctly on any supported platform.

If the interpreter is renamed it will automatically load adventure files (.acd and .dat)
with the same name.
(Jeff Harrison <harrison@mprgate.mpr.ca>)

The QUI T statement prints a restart question which may be answered affirmative,
in which the game is reloaded and restarted, or negative in which case the adventure
is terminated.

(Byron Montgomerie <byron@saturn.cs.mun.ca>)

SAVE and RESTORE now prompts for a filename so multiple save files can be
used by the player.
(Luis Torres <let@reef.cis.ufl.edu>)

Multiplication and division can now be performed using the ™*" and '/’ operators
respectively.
(Robert Yoke-Loong Foo <af685@freenet.carleton.ca>)

VERSION 2.4

Actors may now be containers (allows for making them carry things). The class
indications in the syntax declarations have been enhanced to account for this also.

Alan Language Manual 116

You can now restrict parameters to all entities having the container property, only
actors having it, or only objects having it (see $yntax Definitions oh page 30, gnd
Containers §n page 41 for details).

String comparison normally ignores the case of characters (the new operator ‘==’
does exact matching) (see Binary operators on page 52).

The statements to increase or decrease values are now called | NCREASE and
DECREASE (instead of | NCREMVENT and DECRENMENT).

An optional description has been introduced on actor scripts, giving a possibility to
create descriptions that are directly coupled to the activities of the actor (refer to
Actorsbn page 43) |

The QUI T statement now does not print any scores. This has to be made explicitly.
Also the identifier SCORE is now allowed in expressions, representing the current
value of scores collected so far.

Containers are now listed in a more natural way; the old format of one item per line
has been replaced by concatenating them into a natural sentence, like:

You are carrying a box, a ball and a |ightbulb.
This might require a change to the HEADER declaration of containers.

VERSION 2.3

String and integer literals are introduced in the player input and in the syntax
declarations. Attributes may now also be strings. No incompatibilities should occur.

VERSION 2.0

In version 2, the concept of syntax is introduced. A programmer may allow different
and more complex input from the player, not just the simple verb/ object type used
in version 1. However, the default mechanism is still this simpler form of input so
very little needs to be changed when converting to version 2. This also follows the
spirit of Alan; it means that syntax is not strictly necessary unless you want to do
something extra. For player input following the simple verb/object syntax there is
nothing you have to do.

Another difference is the improvement in the definition of synonyms. First, the
order of definition is different, you should now supply all the synonyms first and
then the word they are synonyms for. This will probably require some rewriting of
your Alan programs, but it is the more logical way to specify synonyms. Also,
synonyms are now allowed anywhere in the program, so it is now possible to group
global verb definitions, syntax definitions and synonyms for the same verb together
(and perhaps place them in a separate include file).

Alan Language Manual 7

FUTURE DEVELOPMENTS

As Alan is an application-oriented language, i.e. it is designed to fit a particular
application domain perfectly (in this case adventure authoring), it is dependent on
adventure authors requirements and ideas for its further evolution. So please let us
know!

email: thomas.nilsson@progindus.se
gorfo@ida.liu.se

postage: Thomas Nilsson phone: Int. +46 13 651 12
Junovdgen 12 Nat. 013 - 651 12
S-590 74 LJUNGSBRO
SWEDEN
Goran Forslund phone: Int. +46 13 1339 91
Vallmogatan 22 Nat. 013-133991
S-582 46 LINKOPING
SWEDEN

The Alan Home Pages on the Internet can be found at
http://welcome.to/alan-if

Here are some ideas of things we are thinking about:

. Definition of common attributes, verb definitions etc. through in-
troduction of a class structure.

. Definition of interaction with actors, perhaps through some kind of
pattern matching sub-language using string literals.

. Background pictures

. Sound

Alan Language Manual 18

REFERENCES

[Ada80] Scott Adams : Pirate’s Adventure, BY TE December 1980, pp 192-212

An article describing the history behind the Scott Adam’s adventures,
particularly the Pirate’s Adventure. Also includes BASIC source for the adventure,
consisting mostly of DAT A-statements.

[Bla80] Marc S. Blank, S. W. Galley : How to Fit a Large Program Into a
Small Machine; Creative Computing July 1980, pp 80-87

A good article on the internals of the Z-interpreter, the pseudo-
machine created by Infocom for creating and running adventures. As always from
the hands of the Infocom men, also very good reading.

[Bet87] David Betz : An Adventure Authoring System; BY TE May 1987, pp
125-135

A description of a system similar to Alan, AdvSys, consisting of a
special purpose language, a compiler and an interpreter for it. At last the term
authoring is used instead of programming. The system is available through various
PD-sources such as Fred Fish, BIX etc.

[Bra84] A. J. Bradbury : Adventure Games for the Commodore 64, Granada
Publishing 1984, ISBN 0-246- 12412-1

A good book, especially on the topic of adventure writing
methodology. Carries the concept of storyboarding a bit further than [Gra83]. Also
contains interspersed utilities and modules (in C64 BASIC) and a small adventure,
“The Case of the Lost Adventure”.

[Brig4] Tony Bridge, Richard Williams : Sinclair QL Adventures, Sunshine
Books 1984, ISBN 0-946408-66-1

Contains a few good chapters on adventures and reviews of some
games of the classical text-type, but then goes on to present the listing of a fairly
uninteresting “adventure generator” for a menu-driven Dungeon And Dragons
inspired (much fighting, strength scoring and banes and such) kind of adventures
games.

[Buc87] Mary Ann Buckles : Interactive Fiction as Literature; BY TE May
1987, pp 135-142

A very interesting article discussing the literary heritage of adventure
games and their future in that perspective.

[Fic86] Erik Fichtelius : Nu kommer det svenska dventyrsspelet: Upp&Ner, nr
2 1986

A swedish article describing the famous swedish “Stuga” game, created
around 1980, which at that time was available for the PC.

[Gra83] Mike Grace : Commodore 64 Adventures, Sunshine Books 1983,
ISBN 0-946408-11-4

A fairly good book on playing and writing adventure games, written by
an beginner programmer. Strictly BASIC programming but contains many good

Alan Language Manual 119

ideas to borrow. Includes some short sections on methods and mentions the concept
of storyboarding. Contains a type-in adventure (“Nightmare Planet™) for the C64.

[Geu85] AF. de Geus, J.H. Jongejan, A.M. Koelmans : Adventure Description
Language; Sigma Press 1985, ISBN 1-85058-011-1

Describes an assembler-like Adventure Language for the BBC Micro,
and uses its design as a vehicle for briefly describing a few basic computer science
techniques (e.g. grammars, hashing, huffman coding and graph theory). Source (in
ADL!) for “Red Button” and “Long Forgotten Arabia” adventures plus complete
source for the “scanner”, “interpreter” and “editor” for ADL. Note: this is not the
better known ADL by Ross Cunniff.

[Goe93] Phil Goetz : Interactive Fiction, Dept. of Computer Science, SUNY,
Buffalo NY 14260, USA

Interesting paper setting out to define the term interactive fiction. Also
discusses history and future of IF, and various media it may use.

[Gra87] David Graves : Second Generation Adventure Games, Journal of
Computer Game Design, VVolume 1, number 2 (August 1987), pp 4-7

An article describing many of the more fundamental concepts
(conceptual and implementational) of interactive fiction of today, such as object
orientation, natural language, text generation and goal orientation.

[Gra88] David Graves : Bringing Characters to Life; Journal of Computer
Game Design, Volume 2, number 2 (December 1988), pp 10-11

Describes the role and implementation of artificial personalities in
interactive fiction. This feature is seldom implemented in main stream interactive
fiction but would probably give greater depth to the non- player characters in the
story.

[Gra91] David Graves : Plot Automation; Journal of Computer Game Design,
Volume 5, number 1 (October 1991), pp 10-12

The interesting idea of automatically creating a plot from the
personalities and goals of the actors in the story is presented and discussed.

[Het84] Tony Hetherington : Adventure Games, Personal Computer World,
January 1984 (October 1991), pp 17-26

Introductory discussion on what makes a good adventure, text vs.
graphic, then some reviews on current games, e.g. The Hobbit and Snowball.

[Has80] Greg Hassett : How to write An Adventure, Creative Computing July
1980, pp 88-90

A short superficial article containing nothing that can’t be found
elsewhere.

[Leb79] P. David Lebling, Mark S. Blank, Timothy A. Andersson : ZORK - A
Computerized Fantasy Simulation Game, IEEE Computer, April 1979

An interesting article describing the inner workings and motivations
behind ZORK by the men who (almost) started it all.

Alan Language Manual 120

[Leb80] P. David Lebling : ZORK and the Future of Computerized Fantasy
Simulations, BY TE December 1980, pp 172-182

Lebling again describes the Zork world and machine. This article adds
discussions on various implications of continuing to development, such as
intelligent actors and communication with them, how far to take the parsing of
natural language and how careful you must be before adding another feature in the
games universe.

[Lid80] Bob Liddil : On the Road to Adventure, BY TE December 1980, pp
158-170

Some tips for playing and reviews of number of not so famous
adventures (by Adams, Hassett, Programmer’s Guild and Mad Hatter).

[Mit86] David Mitchell : An adventure in programming techniques, Addison-
Wesley 1986, ISBN 0-201-15030-1

An excellent book covering almost every aspect of adventure playing
and writing. As the title suggests adventure writing is taken as the goal for
presenting various programming techniques, but still with the problems of writing
and designing adventures as the primary issue. A bible for adventurers.

[McG84] Gary McGath : COMPUTE!’s Guide To Adventure Games,
COMPUTE! Books 1984, ISBN 0-942386- 67-1

An excellent book, its primary merit is the reviews of most of the
Infocom adventures, all Scott Adam’s and a bunch of various other adventure games
available and popular in 1984. Also contains a field guide for adventurers and a
short discussion on how to program your own games. Includes source (in various
dialects of BASIC!) for “Tower Of Mystery”. The concluding chapter on the future
of adventure games is most intriguing and may serve as a source for inspiration
when trying to push its limits.

[Owe83] Peter Owens : Adventures in Learning, Popular Computing, December
1983, pp. 147-150

An article discussing how computer games, adventures in particular,
can be used in education and their potential effect of learning people to think.

[Sca81] Peter D. Scargill : Adven-80, An Advanced Adventure Development
System; Dr. Dobb’s Journal, Number 61 (November 1981)

An interesting predecessor, assembler like in structure with a lot of
”magic numbers”, but was probably a good system at the time.

Alan Language Manual 121

EXAMPLE ADVENTURE

This section contains a small example of how an adventure can be written in Alan.
The emphasis has not been on the ultimate features of the language. Instead it is
intended to show how much functionality can be achieved by just a few hundred
lines of code.

-- This is an exanple of an adventure witten in ALAN using al nost
-- nothing of the nore advanced features

-- The story is not nmuch: You have |ost your nenmory and stunble around
-- on a narrow path in the mddle of the jungle. To the north the path
-- takes you to a river and to the south to a clearing where a tiger

-- blocks your way. The only way to get past the tiger is to eat a

-- certain kind of fungus, which works as tiger repellant (a clue about
-- this can be found in your notebook). The fungus can only be found

-- by clinbing the vine hangi ng down over the path. Wen you have

-- succeded in getting past the tiger the game gets to a happy ending

DESCRI PTI ON
"You are standing on a barely visible path in the mddle of nowhere
The path looks like it's been wal ked by bare feet (or rather paws)
for
many a year. Fromthe small amount of |ight reaching the ground here
| should say the path runs in al nost straight north/south direction
On both sides of the path is the deepest, darkest jungle you've ever
seen. | really wouldn't recommend going that way. The path itself
isn'"t nuch of a place to hold on to either. You get the inpression
that the vegetation is trying hard to recapture even this tiny part
of land. The trees on both sides seens to cone closer and there are
vi nes hangi ng down al nost touching your head."

EXIT north TO bank

EXIT south TO cl earing

EXIT east, west TO jungle
END LOCATI ON.

DESCRI PTI ON
"The path ends here on the south side of a wide river. On the ground
you can see lots of paw prints (sone pretty big ones, too). The
obvi ous
guess is naturally that this is a conmon place for the wild animals

to
stop by for a drink or two (and maybe a bite too). The river itself
doesn't seemto be too dangerous - it's neither too w de nor too
rapid -
but those logs with a pair of eyes give you second thoughts."
EXIT north, swimTO river
EXI T south TO path
EXIT east, west TO jungle
END LOCATI ON.

DESCRI PTI ON

"You have now ended up hi gh above the ground in the mddle of the
trees and vines. The vegetation is so thick up here that it seens
al nost like a green floor."

EXI T down TO path
END LOCATI ON.

DESCRI PTI ON
"Defying the obvious horrors of the river you try for the northern
river bank. One crocodile i mediately chops your left foot of, but

Alan Language Manual 122

you makes it alnost to the niddle of the river before another
mer ci ful
crocodil e finishes you off."

QIT.
END LOCATI ON.

DESCRI PTI ON

"Here the jungle opens up a bit and the path takes you straight into
a clearing. The path seems to continue on the south side of the
clearing sonme fifty paces away."

EXIT north TO pat h.
EXIT east, west TO jungle.
EXI T south TO canp
CHECK hero IS repelling
ELSE "The tiger opens its big nouth and lets out a terrifying
growl . Apparently it won't let you pass."
S

"When you approaches the tiger it |ooks confused. Then it
really takes in your snell. It suddenly bolts, turns and
takes off into the jungle."
LOCATE tiger AT nowhere.
END EXI T.
END LOCATI ON.

DESCRI PTI ON
"Now you' ve really done it. Didn't |I tell you NOT to enter the
jungle."

EXIT north, south, east, west TO jungle DOCES
"Stunbling around in the jungle trying to nmake your way through
the danp vegetation that al nbst seems to reach out for you,
you suddenly stunble onto a snake, which disapprove very clearly
of you stepping on it. One bite in the leg and you have had it."
QIIT.

END EXIT.
END LOCATI ON.

DESCRI PTI ON
"Here is the scattered parts of what ones was the canp of your
expedi tion. The sight of it nakes your nmenory cone back. Wen
you were attacked last night of a herd of wild el ephants everyone
fled in panic. You yourself ran straight into a tree and nust

have | ost both conciousness and nenory. 'Well, hope the conputer
still works.' you think. "I think | stick to conputer adventures,
at least for the imrediate future.'"
QIT.
END LOCATI ON.

-- The location for disappearing objects.
END LOCATI ON.

OBJECT Tiger AT dearing
DESCRI PTI ON
"An enornous tiger is standing here blocking your way."
END OBJECT.

OBJECT Not ebook IN inventory
DESCRI PTI ON
"The book is called ' The Jungle Book: Tricks and Tips'. It
al so has your nane on it."

VERB Take DCES
LOCATE OBJECT I N inventory.
"Taken!"

END VERB.

VERB Drop DCES
LOCATE OBJECT HERE.
" Dr opped! "

Alan Language Manual

123

END VERB.
VERB Read DCES

"You open the book and gl ance over the notes. It is really
a very strange mixture. Sonething about a tree you shoul dn't
hi de under when it rains, 'cause sone kind of bugs will
falling of its |eaves, sonmething el se about a certain kind of
fungus, which grows up anmong the vines and when eaten is a
strong tiger repellant and sonething about how to make a fire
fromwet noss. Here are page after page of useful hints of
how to survive in the jungle, all in your own hand witing."

END VERB.
END OBJECT.

OBJECT Vi ne AT Path
DESCRI PTI ON

"A particulary long and thick vine is hanging down just beside

you. "

VERB clinb DCES

"The vine is quite slippery, but you still nmanage to clinb

well into the trees."
LOCATE HERO AT Tr ees.
END VERB.
END OBJECT.

OBJECT Fungus AT Trees
DESCRI PTI ON

"Sone kind of vaguely familiar fungus is growing here on a vine."

VERB Take DCES
LOCATE OBJECT IN inventory.
"Taken!"

END VERB.

VERB Drop DCES

LOCATE OBJECT HERE.

"The fungus inmmediately clings to a new vine."
END VERB.

VERB eat DOES

"You try a bit of the fungus. It doesn't taste bad although it

isn't that delicious either. You swallow the rest of

wi t hout chewi ng. After a short while a strange odour starts

perspiring fromyour body."
LOCATE fungus AT nowhere.
MAKE hero repel ling.

END VERB.
END OBJECT.
SYNTAX take_inventory = "inventory'.
SYNONYMS i = '"inventory'.

VERB t ake_i nvent ory DCES
LI ST inventory.
END VERB.
SYNTAX 'l ook' = 'l ook'.
SYNONYMS | = "1 ook'.
VERB ' | ook' DCES
LOCK.
END VERB.
SYNTAX 'quit' = ‘'quit'.
SYNONYMS q = 'quit'.
VERB 'quit' DOCES

QIT.
END VERB.

-- NOTE ! It is NOT necessary to declare the actor Hero (which is the
-- pl ayer hinself). But |IF you want to nake in possible to give

-- the Hero certain attributes, THEN you have to declare it.

ACTOR Hero

Alan Language Manual 124

I'S NOT repel ling.
END ACTOR

START AT path.
"$p' Oh, ny head. It hurts. Wiy am| out here when |'ve got this kind
of headache? And where is 'here'? And who am|?'"

J.l

J.2

J.3

Alan Language Manual 125

COPYING CONDITIONS

The Alan Adventure Development System is now REGISTER-WARE. This
means that for use of the system you are only required to register. This is done
preferably through a simple email, but postal mail will also do, and is free.

Copies of the documentation and executables can also be received from the
ThoNi&GorFo Adventure Factories, henceforth called The Factories, through
email for free on request. Requesting delivery through email will automatically
register the receiver.

A copy of these conditions must accompany any copy of the Alan System.

Distribution

The Alan System is mainly distributed through electronic mail. This distribution is
free. Uploads to FTP sites and BBS are allowed, provided that the distribution
package is uploaded in its original form, and download from there is of course also
free.

Physical media, such as disk or tape, may be supported depending on plat- form. A
requirement is that the requester supplies appropriate media. The cost for physical
media distribution may vary.

Documentation

The documentation is copyrighted by The Factories. Copying is allowed provided
it is distributed as a whole, or quoted accompanied with appropriate references.

Executables

The Alan system contains two executable programs, the compiler Alan and the
interpreter Arun.

Distribution of the interpreter alone or together with game data produced by the
compiler is allowed without restrictions or royalty claims provided appropriate
references and acknowledgment accompanies the game in documentation or
program output. In addition a description of the game, its plot and major features,
and/or the game itself (preferably in source) should be donated to The Factories.
The Factories agree to any copying or copyright restrictions placed on such a game.

The compiler may not be used, other than for evaluation or trial purposes, without
registering with The Factories.

Registered users will receive free notification of updates, new platforms sup- ported,
information on commercially or otherwise released games and other information
supplied by other users or The Factories.

J4a

J.5

J.6

J.7

Alan Language Manual 126

Registration

Registration is free and preferably made through a simple email message. Re-
questing a distribution through email will automatically register the requestor.

Registration can be done with an email on the Alan Home Pages at
http://welcome.to/alan-if.

Source

The source is not in the public domain but can be acquired for porting to new
platforms and technologies and support of such ports The source will not be
released for other purposes.

Examples

The Factories would appreciate any example adventures or solutions to problems to
improve the documentation and user support. However Alan source marked as an
example will be considered not copyrighted and may or may not be used, as a whole
or in part, in the Alan documentation or distributed in other forms by decision of
The Factories.

This will also add to the suite of test data and therefore improve the quality of
future releases as well as allow us to find and document any incompatibilities. If you
also enclose a solution we can automate the testing even further. The Factories will
not redistribute your game without your written permission.

Versions, compatibility and support

The Alan System is versioned using a three level number coding schema, indicating
version number, release and correction respectively. Major differences in the
language or the introduction of many new features will be indicated by an
increment of the version number. Minor changes to the language and introduction
of features are indicated by an increment of the release number. Bug fixes will
increase the correction number.

Any adventure files and interpreters having the same version and release numbers
will be compatible. Adventure files are also compatible across all supported
platforms. This includes character sets, the intent being to correctly present any
multinational character on any system. Thus complete coverage of the supported
platforms from a single development machine can be achieved.

As the Alan System is a non-profit project user support may vary. To maximise
probability of handling, error reports should be sent to The Factories (preferably by
email) and include source, version of compiler and interpreter as well as a detailed
description of how to reproduce the error and its symptoms.

Releases and corrections will be issued on irregular intervals.

J.8

Alan Language Manual 127

Executive Summary

So, in short, the interpreter Arun and any game produced using the Alan Sys- tem is
yours. You may sell or copy it as you like, and as you need the interpreter to run the
game it may be copied freely too. The Arun interpreter may also be uploaded on
BBS'es or FTP-sites to allow players to download an interpreter for his platform
and use that to run your game.

The documentation and examples are free to copy or place on any BBS'es or FTP-
sites if their contents are not changed.

To use the Alan compiler you must register.

Distribution on disks or tape may cost depending on the media. A floppy disc
distribution is free, provided you supply the disk (we’ll pay the return postage).

If you create a game using the Alan System we’d like to see it. Send us a copy
(preferably in source) and any documentation or a description of the game and its
novel features.

Short games or samples of Alan source are most welcome as examples that we might
use and distribute to other users. Sending an example means you waive all rights to
it. Examples add to the suite of test data and thus helps further improve the quality
of the system.

Alan Language Manual 128
INDEX
closing 66
A hints about 65
Abug 76 containment operator 55
actor 17 CONTAINS 55
ACTOR 21,43 contexts of execution 61
in what specifications 53 CO_U NT 56
actors in limits 42
execution context 62 D
hints about 66
moving 62 Debug option 27
adjective 39 debugging 75
AFTER qualifier 35 DECREASE statement 51
aggregate default
MAX 56 attributes 27,65
SUM 56 syntax 24,32
ALL 31, 34, 40, 61, 82, 84 DEPENDING ON statement 52
alternatives, verb 35 DESCRIBE statement 41, 47
AND 31, 60 DESCRIPTION
article 40 of actor scripts 44, 67
Arun 75, 82,112 of actors 44
AT 53 of locations 18, 37
attributes 20, 55, 63 descriptions
boolean 27 execution context 61
default 27 DOES
numeric 28 in exits 62
of actors 44 in locations 38,62
of locations 37 in verbs 34
of objects 40 doors, hints about 65
string 28 double quotes 58
B E
BEFORE qualifier 35 EMPTY statement 50
BETWEEN 55 comparisons 55
binary operators 55 EVENT 43
BNF 90 events
boolean attributes 27 execution context 62
BUT 61, 84 hints about 68
EVERYTHING 61
C EXCEPT 61,84
CANCEL statement 50 execution contexts 61
character combinations, in strings 46 execution of an adventure 60
character sets 27 EXIT . 18, 38, 62
CHECK 34 expression types 54
in exits 38, 62 expressions 54
in verbs 21 logical 54
check, unconditional 34 F
checks
execution order 36 formatting characters 46
common verbs 65 formatting, of output 46
concatenation, in player commands 60
CONTAINER 41 H
container property HEADER 42
of actors 43 HERE 53
of objects 39 hero 45, 62

containers

Alan Language Manual 10
/ shadow object
shadow 73
identifiers OBIECT 19, 38
case translation of 57 in what specifications 53
lexical definition 57 omnipotent indicator 31,73
quoted U omnipotent indicator 61
IF statement 20,51, 64 ONLY qualifier 35
INS3 operator
include string containment 55
ConStrUCt 58 operators
files 58, 65 binary 55
SWitCh 111 |ogica| 54
INCREASE statement 51 relational 55
IndIC_’cltOI‘_] 31 options 26
multiple indicator 31 output statements 46
indicator, omnipotent 31,61,73
Infocom 14,15 P
'Irjlyesrgogé 42 Pack option 27
' parameter 24,32
L classes 32
) referencing 61
Language option 26 player commands 60
Egr?;&gzsption 2? presence, of parameters 61
LIMITS 42 Q
LISe'I)EesCt:tt:e?]rq]ecr)]]; 42, 23 qualifiers, verb 34,35
literals 54 QuIT statement 48
LOCATE statement 20, 49 quoted identifier 57
locating inside containers 42,50 quo;es bl
location 16,18 ‘ouble o8
LOCATION 37 single 58
in what specification 53 string 58
Iog!cal expressions 54 R
logical operators 54
LOOK statement 48 RANDOM 54
relational operators 55
M RESTORE statement 48
MAKE statement 20 51 resltriction, of parameters 24,32
map 16 rules .
MAX aggregate 56 executing 45
MENTIONED 40 execution context 62
multinational characters 27 S
multiple indicator 31,61
multiple parameters 60, 61 SAVE statement 48
SAY statement 47
N SCHEDULE statement 50
NAME SCORE statement 48
of actors 43 SC.RIPT a4
of locations 37,57 seripts
of objects 39 description of 44
NEARBY 53 S_ET statement 20,51
noun 39 smgl_e quotes 58
nuMbers spacing, in strings 58
lexical definition 58 start section 26,46
numeric attributes 28 CANCEL 50
(o) DECREASE 51
) DEPENDING ON 52
object 16 DESCRIBE 47

Alan Language Manual 1

EMPTY 50 syntax, default 24, 32

IF 51

INCREASE 51 T

LIST 47 text formatting 46

LOCATE 49 THEM 61,83

LOOK 48 THEN 60

MAKE 51 types of expressions 54

output from 46

QUIT 48 U

?E\S/EORE jg unconditional check 34

SAY 47 USE statement 44,52

SCHEDULE 50

SCORE 48 vw

SET 51 verb 17

USE 52 alternative 35

VISITS 49 execution context 61
STEP 45 execution order 23,24, 36
step, executing the last 45 qualifiers 34,35
string reusing common 65

attributes 28 VERB 21,29, 33

comparisons 55 global 22

special character combinations 46 in location 22
STRING 19, 46 in object 22
string quotes 58 what specifications 53
strings rules 45

lexical definition 58 where specification 52

spacing 58 Width option 27
SUM aggregate 56 VISITS statements 49
SYNONYMS 29
SYNTAX 24,30

	INTRODUCTION
	TUTORIAL
	What Is An Adventure?
	Elements Of Adventures
	Alan Fundamentals
	The Map
	The Objects
	The Verbs
	The Actors

	Alan Language Description
	The Location Construct
	The Object Construct
	The Actor Construct
	The Verb Construct
	The Syntax Construct

	THE LANGUAGE
	An Adventure
	Options
	Attributes And Default Attributes
	Synonyms
	Messages
	Syntax Definitions
	Verbs
	Verb Alternatives
	Verb Qualification

	Locations
	Objects
	Containers
	Events
	Actors
	Rules
	Start Section
	Statements
	Output Statements
	Special Statements
	Manipulation Statements
	Event Statements
	Assignment Statements
	Conditional Statements
	Actor Statements

	WHERE Specifications
	WHAT Specifications
	Expressions
	Types Of Expressions
	Literal Values
	Logical Expressions
	Binary Operators
	Relational Operators
	The Value Of Attributes
	The Whereabouts Of An Entity
	Aggregates

	LEXICAL DEFINITIONS
	Comments
	Identifiers And Names
	Numbers
	Strings
	Files

	EXECUTION OF AN ADVENTURE
	A Turn Of Events
	Player Input
	Run-time Contexts
	Moving Actors

	HINTS AND TIPS
	Use of Attributes
	Descriptions
	Common Verbs
	Doors
	Containers and Their Contents
	Actors
	Distant Events
	Vehicles
	Questions and Answers
	Floating Objects
	Darkness and Light Sources
	Distant & Imaginary Objects
	Structure
	Debugging

	ADVENTURE CONSTRUCTION
	Getting an Idea
	Elaborating the Story
	Implementing it
	Polishing the Adventure
	Beta Testing

	RUN-TIME MESSAGES
	Input Response Messages
	System Errors

	ALAN LANGUAGE GRAMMAR
	Description
	Reserved words
	Additional Keywords
	The Grammar

	COMPILER ERROR MESSAGES
	Format of messages
	Message explanations

	HOW TO USE THE SYSTEM
	Compiling
	Compiler Switches
	Running the Adventure
	Interpreter Switches

	SYSTEM DETAILS
	Portability of Games

	VERSION DIFFERENCES
	FUTURE DEVELOPMENTS
	REFERENCES
	EXAMPLE ADVENTURE
	COPYING CONDITIONS
	Distribution
	Documentation
	Executables
	Registration
	Source
	Examples
	Versions, compatibility and support
	Executive Summary

	INDEX

