

ALANALANALANALAN
Adventure Language Adventure Language Adventure Language Adventure Language

Reference ManualReference ManualReference ManualReference Manual

version 2.8version 2.8version 2.8version 2.8

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 9999

This version of the manual was printed on October 17, 2000

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 10101010

TABLE OF CONTENTSTABLE OF CONTENTSTABLE OF CONTENTSTABLE OF CONTENTS

1.1.1.1. INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION 13131313

2.2.2.2. TUTORIALTUTORIALTUTORIALTUTORIAL 14141414
2.1.2.1.2.1.2.1. WWWWHAT HAT HAT HAT IIIIS S S S AAAAN N N N AAAADVENTUREDVENTUREDVENTUREDVENTURE???? 14141414
2.2.2.2.2.2.2.2. EEEELEMENTS LEMENTS LEMENTS LEMENTS OOOOF F F F AAAADVENTURESDVENTURESDVENTURESDVENTURES 15151515
2.3.2.3.2.3.2.3. AAAALAN LAN LAN LAN FFFFUNDAMENTALSUNDAMENTALSUNDAMENTALSUNDAMENTALS 16161616
2.3.1. THE MAP 16
2.3.2. THE OBJECTS 16
2.3.3. THE VERBS 17
2.3.4. THE ACTORS 17
2.4.2.4.2.4.2.4. AAAALAN LAN LAN LAN LLLLANGUAGE ANGUAGE ANGUAGE ANGUAGE DDDDESCRIPTIONESCRIPTIONESCRIPTIONESCRIPTION 17171717
2.4.1. THE LOCATION CONSTRUCT 18
2.4.2. THE OBJECT CONSTRUCT 19
2.4.3. THE ACTOR CONSTRUCT 20
2.4.4. THE VERB CONSTRUCT 21
2.4.5. THE SYNTAX CONSTRUCT 23

3.3.3.3. THE LANGUAGETHE LANGUAGETHE LANGUAGETHE LANGUAGE 26262626
3.1.3.1.3.1.3.1. AAAAN N N N AAAADVENTUREDVENTUREDVENTUREDVENTURE 26262626
3.2.3.2.3.2.3.2. OOOOPTIONSPTIONSPTIONSPTIONS 26262626
3.3.3.3.3.3.3.3. AAAATTRIBUTES TTRIBUTES TTRIBUTES TTRIBUTES AAAAND ND ND ND DDDDEFAULT EFAULT EFAULT EFAULT AAAATTRIBUTESTTRIBUTESTTRIBUTESTTRIBUTES 27272727
3.4.3.4.3.4.3.4. SSSSYNONYMYNONYMYNONYMYNONYMSSSS 29292929
3.5.3.5.3.5.3.5. MMMMESSAGESESSAGESESSAGESESSAGES 30303030
3.6.3.6.3.6.3.6. SSSSYNTAX YNTAX YNTAX YNTAX DDDDEFINITIONSEFINITIONSEFINITIONSEFINITIONS 30303030
3.7.3.7.3.7.3.7. VVVVERBSERBSERBSERBS 33333333
3.7.1. VERB ALTERNATIVES 35
3.7.2. VERB QUALIFICATION 35
3.8.3.8.3.8.3.8. LLLLOCATIONSOCATIONSOCATIONSOCATIONS 37373737
3.9.3.9.3.9.3.9. OOOOBJECTSBJECTSBJECTSBJECTS 38383838
3.10.3.10.3.10.3.10. CCCCONTAINERSONTAINERSONTAINERSONTAINERS 41414141
3.11.3.11.3.11.3.11. EEEEVENTSVENTSVENTSVENTS 43434343
3.12.3.12.3.12.3.12. AAAACTORSCTORSCTORSCTORS 43434343
3.13.3.13.3.13.3.13. RRRRULESULESULESULES 45454545
3.14.3.14.3.14.3.14. SSSSTART TART TART TART SSSSECTIONECTIONECTIONECTION 45454545
3.15.3.15.3.15.3.15. SSSSTATEMENTSTATEMENTSTATEMENTSTATEMENTS 46464646
3.15.1. OUTPUT STATEMENTS 46
3.15.2. SPECIAL STATEMENTS 47
3.15.3. MANIPULATION STATEMENTS 49
3.15.4. EVENT STATEMENTS 50
3.15.5. ASSIGNMENT STATEMENTS 50
3.15.6. CONDITIONAL STATEMENTS 51
3.15.7. ACTOR STATEMENTS 52
3.16.3.16.3.16.3.16. WHERE SWHERE SWHERE SWHERE SPECIFICATIONSPECIFICATIONSPECIFICATIONSPECIFICATIONS 52525252
3.17.3.17.3.17.3.17. WHAT SWHAT SWHAT SWHAT SPECIFICATIONSPECIFICATIONSPECIFICATIONSPECIFICATIONS 53535353
3.18.3.18.3.18.3.18. EEEEXPRESSIONSXPRESSIONSXPRESSIONSXPRESSIONS 53535353
3.18.1. TYPES OF EXPRESSIONS 53
3.18.2. LITERAL VALUES 54
3.18.3. LOGICAL EXPRESSIONS 54

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 11111111

3.18.4. BINARY OPERATORS 54
3.18.5. RELATIONAL OPERATORS 54
3.18.6. THE VALUE OF ATTRIBUTES 55
3.18.7. THE WHEREABOUTS OF AN ENTITY 55
3.18.8. AGGREGATES 56

4.4.4.4. LEXICAL DEFINITIONSLEXICAL DEFINITIONSLEXICAL DEFINITIONSLEXICAL DEFINITIONS 57575757
4.1.4.1.4.1.4.1. CCCCOMMENTSOMMENTSOMMENTSOMMENTS 57575757
4.2.4.2.4.2.4.2. IIIIDENTIFIERS DENTIFIERS DENTIFIERS DENTIFIERS AAAAND ND ND ND NNNNAMESAMESAMESAMES 57575757
4.3.4.3.4.3.4.3. NNNNUMBERSUMBERSUMBERSUMBERS 58585858
4.4.4.4.4.4.4.4. SSSSTRINGSTRINGSTRINGSTRINGS 58585858
4.5.4.5.4.5.4.5. FFFFILESILESILESILES 59595959

5.5.5.5. EXECUTION OF AN ADVEEXECUTION OF AN ADVEEXECUTION OF AN ADVEEXECUTION OF AN ADVENTURENTURENTURENTURE 60606060
5.1.5.1.5.1.5.1. A TA TA TA TURN URN URN URN OOOOF F F F EEEEVENTSVENTSVENTSVENTS 60606060
5.2.5.2.5.2.5.2. PPPPLAYER LAYER LAYER LAYER IIIINPUTNPUTNPUTNPUT 60606060
5.3.5.3.5.3.5.3. RRRRUNUNUNUN----TIME TIME TIME TIME CCCCONTEXTSONTEXTSONTEXTSONTEXTS 61616161
5.4.5.4.5.4.5.4. MMMMOVING OVING OVING OVING AAAACCCCTORSTORSTORSTORS 62626262

6.6.6.6. HINTS AND TIPSHINTS AND TIPSHINTS AND TIPSHINTS AND TIPS 64646464
6.1.6.1.6.1.6.1. UUUUSE OF SE OF SE OF SE OF AAAATTRIBUTESTTRIBUTESTTRIBUTESTTRIBUTES 64646464
6.2.6.2.6.2.6.2. DDDDESCRIPTIONSESCRIPTIONSESCRIPTIONSESCRIPTIONS 65656565
6.3.6.3.6.3.6.3. CCCCOMMON OMMON OMMON OMMON VVVVERBSERBSERBSERBS 66666666
6.4.6.4.6.4.6.4. DDDDOOROOROOROORSSSS 66666666
6.5.6.5.6.5.6.5. CCCCONTAINERS AND ONTAINERS AND ONTAINERS AND ONTAINERS AND TTTTHEIR HEIR HEIR HEIR CCCCONTENTSONTENTSONTENTSONTENTS 66666666
6.6.6.6.6.6.6.6. AAAACTORSCTORSCTORSCTORS 67676767
6.7.6.7.6.7.6.7. DDDDISTANT ISTANT ISTANT ISTANT EEEEVENTSVENTSVENTSVENTS 69696969
6.8.6.8.6.8.6.8. VVVVEHICLESEHICLESEHICLESEHICLES 69696969
6.9.6.9.6.9.6.9. QQQQUEUEUEUESTIONS AND STIONS AND STIONS AND STIONS AND AAAANSWERSNSWERSNSWERSNSWERS 71717171
6.10.6.10.6.10.6.10. FFFFLOATING LOATING LOATING LOATING OOOOBJECTSBJECTSBJECTSBJECTS 71717171
6.11.6.11.6.11.6.11. DDDDARKNESS AND ARKNESS AND ARKNESS AND ARKNESS AND LLLLIGHT IGHT IGHT IGHT SSSSOURCESOURCESOURCESOURCES 72727272
6.12.6.12.6.12.6.12. DDDDISTANT ISTANT ISTANT ISTANT & I& I& I& IMAGINARY MAGINARY MAGINARY MAGINARY OOOOBJECTSBJECTSBJECTSBJECTS 73737373
6.13.6.13.6.13.6.13. SSSSTRUCTURETRUCTURETRUCTURETRUCTURE 75757575
6.14.6.14.6.14.6.14. DDDDEBUGGINGEBUGGINGEBUGGINGEBUGGING 75757575

7.7.7.7. ADVENTURE CONSTRUCTIADVENTURE CONSTRUCTIADVENTURE CONSTRUCTIADVENTURE CONSTRUCTIONONONON 79797979
7.1.7.1.7.1.7.1. GGGGETTING AN ETTING AN ETTING AN ETTING AN IIIIDEADEADEADEA 79797979
7.2.7.2.7.2.7.2. EEEELABORATING THE LABORATING THE LABORATING THE LABORATING THE SSSSTORYTORYTORYTORY 79797979
7.3.7.3.7.3.7.3. IIIIMPLEMENTING ITMPLEMENTING ITMPLEMENTING ITMPLEMENTING IT 80808080
7.4.7.4.7.4.7.4. PPPPOLISHING THE OLISHING THE OLISHING THE OLISHING THE AAAADVENTUREDVENTUREDVENTUREDVENTURE 80808080
7.5.7.5.7.5.7.5. BBBBETA ETA ETA ETA TTTTESTINGESTINGESTINGESTING 81818181

AAAA RUNRUNRUNRUN----TIME MESSAGESTIME MESSAGESTIME MESSAGESTIME MESSAGES 82828282
A.1A.1A.1A.1 IIIINPUT NPUT NPUT NPUT RRRRESPONSE ESPONSE ESPONSE ESPONSE MMMMESSAGESESSAGESESSAGESESSAGES 82828282
A.2A.2A.2A.2 SSSSYSTEM YSTEM YSTEM YSTEM EEEERRORSRRORSRRORSRRORS 87878787

BBBB ALAN LANGUAGE GRAMMAALAN LANGUAGE GRAMMAALAN LANGUAGE GRAMMAALAN LANGUAGE GRAMMARRRR 90909090
B.1B.1B.1B.1 DDDDESCRIPTIONESCRIPTIONESCRIPTIONESCRIPTION 90909090
B.2B.2B.2B.2 RRRRESERVED WORDSESERVED WORDSESERVED WORDSESERVED WORDS 90909090
B.3B.3B.3B.3 AAAADDITIONAL DDITIONAL DDITIONAL DDITIONAL KKKKEYWORDEYWORDEYWORDEYWORDSSSS 91919191

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 12121212

B.4B.4B.4B.4 TTTTHE HE HE HE GGGGRAMMARRAMMARRAMMARRAMMAR 91919191

CCCC COMPILER ERROR MESSACOMPILER ERROR MESSACOMPILER ERROR MESSACOMPILER ERROR MESSAGESGESGESGES 99999999
C.1C.1C.1C.1 FFFFORMAT OF MESSAGESORMAT OF MESSAGESORMAT OF MESSAGESORMAT OF MESSAGES 99999999
C.2C.2C.2C.2 MMMMESSAGE EXPLANATIONSESSAGE EXPLANATIONSESSAGE EXPLANATIONSESSAGE EXPLANATIONS 99999999

DDDD HOW TO USE THE SYSTEHOW TO USE THE SYSTEHOW TO USE THE SYSTEHOW TO USE THE SYSTEMMMM 110110110110
D.1D.1D.1D.1 CCCCOMPILINGOMPILINGOMPILINGOMPILING 110110110110
D.2D.2D.2D.2 CCCCOMPILER OMPILER OMPILER OMPILER SSSSWITCHESWITCHESWITCHESWITCHES 110110110110
D.3D.3D.3D.3 RRRRUNNING THE UNNING THE UNNING THE UNNING THE AAAADVENTUREDVENTUREDVENTUREDVENTURE 111111111111
D.4D.4D.4D.4 IIIINTERPRETER NTERPRETER NTERPRETER NTERPRETER SSSSWITCHESWITCHESWITCHESWITCHES 111111111111

EEEE SYSTEM DETAILSSYSTEM DETAILSSYSTEM DETAILSSYSTEM DETAILS 112112112112
E.1E.1E.1E.1 PPPPORTABILITY OF ORTABILITY OF ORTABILITY OF ORTABILITY OF GGGGAMESAMESAMESAMES 112112112112

FFFF VERSION DIFFERENCESVERSION DIFFERENCESVERSION DIFFERENCESVERSION DIFFERENCES 114114114114

GGGG FUTURE DEVELOPMENTSFUTURE DEVELOPMENTSFUTURE DEVELOPMENTSFUTURE DEVELOPMENTS 117117117117

HHHH REFEREREFEREREFEREREFERENCESNCESNCESNCES 118118118118

IIII EXAMPLE ADVENTUREEXAMPLE ADVENTUREEXAMPLE ADVENTUREEXAMPLE ADVENTURE 121121121121

JJJJ COPYING CONDITIONSCOPYING CONDITIONSCOPYING CONDITIONSCOPYING CONDITIONS 125125125125
J.1J.1J.1J.1 DDDDISTRIBUTIONISTRIBUTIONISTRIBUTIONISTRIBUTION 125125125125
J.2J.2J.2J.2 DDDDOCUMENTATIONOCUMENTATIONOCUMENTATIONOCUMENTATION 125125125125
J.3J.3J.3J.3 EEEEXECUTABLESXECUTABLESXECUTABLESXECUTABLES 125125125125
J.4J.4J.4J.4 RRRREGISTRATIONEGISTRATIONEGISTRATIONEGISTRATION 126126126126
J.5J.5J.5J.5 SSSSOURCEOURCEOURCEOURCE 126126126126
J.6J.6J.6J.6 EEEEXAMPLESXAMPLESXAMPLESXAMPLES 126126126126
J.7J.7J.7J.7 VVVVERSIONSERSIONSERSIONSERSIONS, , , , COMPATIBILITY AND SUCOMPATIBILITY AND SUCOMPATIBILITY AND SUCOMPATIBILITY AND SUPPORTPPORTPPORTPPORT 126126126126
J.8J.8J.8J.8 EEEEXECUTIVE XECUTIVE XECUTIVE XECUTIVE SSSSUMMARYUMMARYUMMARYUMMARY 127127127127

KKKK INDEXINDEXINDEXINDEX 128128128128

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 13131313

1.1.1.1. INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION
Text adventures or, using a more appropriate term, interactive fiction is a form of
computer game which has many things in common with fiction in book form, role-
playing games and puzzle-solving. To create a high quality interactive fiction game,
you need to be more of an author than a games programmer.

Alan is a special purpose computer language specifically designed to make it very
easy to create such adventure games with little programming skills.

The main principle of the design of the language is simplicity. That is, to make it
very easy to do normal things, but also allow more complex things using more
complex language constructs. This means that wherever a construct is optional, the
system supplies some sensible default instead.

The Alan language has been designed by the author and a very good friend during
several years of incremental improvement. This means that the language has a sound
foundation, based on practical use, a concept forgotten in many software projects
today. Tools develop and are made sharper and more powerful as usage is
intensified, the problem domain more and more understood and the requirements
increased to tackle new aspects of the problem.

This, we believe, is how software tools must be developed to give the support
intended. Therefore Alan and its support system will also develop further. This
version is, however, a complete and powerful tool as it stands.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 14141414

2.2.2.2. TUTTUTTUTTUTORIALORIALORIALORIAL

2.1.2.1.2.1.2.1. WWWWHAT HAT HAT HAT IIIIS S S S AAAAN N N N AAAADVENTUREDVENTUREDVENTUREDVENTURE????
As long as man has been around there have been stories, fairy tales and fantasies. In
early days the stories were told by story tellers to silent and astonished audiences.
After Gutenberg, the stories were printed and the readers partook in the fantasies of
the author. In our days, passive viewers are fed from the silver screen or through the
tube.

In our century, at last, there has evolved a way for the “audience” to take part in the
story themselves. It started in the forties and fifties and continued to develop into
the games today known as Dungeon and Dragons, Tunnels and Trolls, etc. Games
where a game leader designs the story, but the players decide (and perform) the
actions of the characters in the story.

These games, of course, have a computerized counterpart.

The games are played interacting with the computer. The program describes a scene
or situation (usually in text, but pictures are more and more frequently used), the
player decides on some action and gives orders to the computer to carry out his
wishes. Usually there are objects to manipulate, traps to negotiate and puzzles to
solve, the object being to find the hidden treasures or save the world.

This form of games was started by Crowther & Woods in the late sixties when they
designed the famous Colossal Cave Adventure now available on many mainframe
computer systems. Inspired by this, Lebling et.al. (then at MIT) took a giant step
forward in adventuring by creating the Great Underground Empire and making it
available for venturing Adventurers in the game Dungeon. This game contained a
much more developed story and could handle much more complex commands.

Later, Dave Lebling & Co started Infocom, a company where they continued to
develop their technique, first with Zork I, II and III (the first a reimplementation of
Dungeon, the others equally successful sequels). Since then a host of games has been
released (Starcross, Witness, Enchanter are some of the names that come to mind).
Infocom today only exists as a label with Mediagenic, the original authors scattered,
but the Infocom games are still among the best available today.

Other companies have followed in Infocom’s footsteps and a handful of them seem
to make a living out of creating adventure games. However, today most of the
works are performed by devoted people that produce games for the fun of it, as
shareware or completely free.

There have been many attempts to use computer graphics to display the sur-
roundings and objects in adventure games. Some of the more successful are the
Sierra OnLine games (notably the Leisure Suit Larry and the Kings Quest series)
which have mouse oriented moves but also allows single line text commands, games
from ICOM Simulations (DejaVu and The Uninvited) which are purely graphics
games with mouse and icon interfaces. Other manufacturers have tried to use (some

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 15151515

times optional) pictures to accompany the text, for example Magnetic Scrolls games
(e.g. the Pawn), which shift the picture automatically as you move around using the
normal directional commands.

A large number of so called Arcade Adventures are also available but they are always
more Arcade than Adventure and do not belong in this discussion.

The Alan Adventure Language is designed to aid construction of pure text ad-
ventures or, in the words of Infocom, interactive fiction. Possibly, in future versions
sound and graphics functions may be available.

2.2.2.2.2.2.2.2. EEEELEMENTS LEMENTS LEMENTS LEMENTS OOOOF F F F AAAADVENTURESDVENTURESDVENTURESDVENTURES
The success of all Infocom games can probably be attributed to three distinctive
features. First, they all have a ‘believable’ and consistent plot, which is flavoured
with humour and wittiness. Second, the descriptions are extensive and give a lot of
atmosphere to the game. Third, the command handler recognizes and understands a
large vocabulary and complex input. Add to this the worlds best graphics device
(the human brain) and you are unbeatable!

Looking at Adventures in more detail, one can see some common features. There is,
of course, a world or universe (called the map) where the Adventure is taking place.
Although you can move around quite freely there are usually some problems getting
into certain parts of the world (e.g. locked doors, no air to breathe or even finding
the entrance).

The size of the map ranges from hundreds of locations (like in some of the In-
focom games) to just two or three (some of the Scott Adams games are very
compact and very difficult).

Then, there are the objects in the game. These range from your tools, like lamps
and shovels, to immaterial things like a hole in the ground, in short, anything you
can manipulate. Ideally everything that is mentioned in a description should be an
object, but this is normally impossible because of storage limits (and perhaps the
stamina of the games designer!).

Most objects have uses. A key is easy to guess how to use, but what about the velvet
pillow? Red herring objects are also common in adventuring.

The player must be able to express his wishes. Natural language commands,
advocated in many advertisements, are probably overkill since most players do not
wish to wear their fingers out typing full sentences, but single verb-object input is
not sufficient for a good game either. The player must be able to say things like

> take all except the blue vase

or

> put the ring and the bag in the box

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 16161616

2.3.2.3.2.3.2.3. AAAALAN LAN LAN LAN FFFFUNDAMENTALSUNDAMENTALSUNDAMENTALSUNDAMENTALS
The Alan Adventure Language is a high level computer language designed to make
it easy to create text Adventures. The Alan system handles all the tiresome tasks and
supplies reasonable defaults so you can concentrate on the plot, the puzzles, the
objects and the map.

There are no variables, subroutines or other traditional programming constructs in
Alan because Alan is not a programming language. Instead Alan takes a descriptive
view of the concepts of adventure authoring. The Alan language contains constructs
to make it possible for the author to describe the various features of these concepts.
By describing for example how the locations in the adventure are connected you
have described the geography in which the story will take place. Much of what
should be described is in terms of text that should be output to make the player
experience the story that you have designed.

Another fundament of Alan is that the execution of an adventure is event driven.
This means that the things happening in the adventure are triggered by one thing
only, namely the input of a player command. This command is analysed according
to the allowed syntax and transformed into execution of verbs or movements which
in turn executes other part of the description in the Alan source. After a player turn
other actors can move and scheduled events can be run, then the player takes
another turn.

2.3.1.2.3.1.2.3.1.2.3.1. The MapThe MapThe MapThe Map
In Alan, the map is a number of locations connected (or not!) by any number of
exits. A location has a description that is presented to the player when it is entered.
A location may also have a number of exits stating in which direction the exit is and
to which location it leads. Alan places no restrictions on the layout of the map, any
topology is allowed. Note, however, that since exits are one-way, an explicit
declaration of a backward path (if such is desired) must be made.

2.3.2.2.3.2.2.3.2.2.3.2. The ObjectsThe ObjectsThe ObjectsThe Objects
The other vital entity in Alan is the object. Most Alan objects are things that in real
life would be objects too, like a knife or a key. In addition, other things that should
be possible to manipulate by the player, e.g. parts of the scenery, must be declared as
an object. For example if you require the player to ‘whistle the melody’, then the
melody must be an Alan object.

Objects, like locations, have a description that is presented when they are en-
countered during the game.

Every object may also have a set of properties, like eatable and movable, which may
be changed during the execution of an Alan program. Most objects would probably
not be edible so there is also a mechanism for giving default properties to objects.

Some verbs have special meaning or effects when applied to a certain object. These
verbs and their effects are also declared within the object.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 17171717

2.3.3.2.3.3.2.3.3.2.3.3. The VerbsThe VerbsThe VerbsThe Verbs
Verbs are imperative statements input by the player to command some action.
These must also be declared in an Alan adventure, either in an object (as described
above) or as a general (global) verb that describes the effects of the verb when
applied to any object or for verbs to which no object may be given.

To make it possible for the player to input more complex commands a means to
specify the syntax for a verb is also available. Using this verbs can also be made to
operate on literals (strings and integers) giving the player the possibility to input
things like

> write "Merry Christmas, Mr. Lawrence" on the xmas card

2.3.4.2.3.4.2.3.4.2.3.4. The ActorsThe ActorsThe ActorsThe Actors
An extra thrill and dimension are additional characters in the game. These are called
actors and have a life of their own. For each move the player makes these
programmed characters also get a turn to do their thing. An actor may be a thief
running around and stealing your collected treasures, a dragon guarding the entrance
to its lair and so on.

Actors get their behaviour from scripts that step-by-step describes what is going to
happen for each player interaction.

One of the interesting things about playing adventure games with actors is to figure
out how to interact with and influence the other characters.

2.4.2.4.2.4.2.4. AAAALAN LAN LAN LAN LLLLANGUAGE ANGUAGE ANGUAGE ANGUAGE DDDDESCRIPTIONESCRIPTIONESCRIPTIONESCRIPTION
Alan is an Adventure language, i.e. a language designed to make it easy to write
Adventures. This means that the Alan language must reflect the various entities
encountered when creating an Adventure plot.

The first step after having come up with a plot for your Adventure is to draw a map
of the world where the Adventure is taking place. For this purpose the LOCATION
construct is provided.

The next step is to introduce tools, weapons and other objects possible to
manipulate. Here the OBJECT construct is used.

Then the player will need words to command action. The Alan language construct
to supply these with is the VERB. You may also define more complex types of
player input using the SYNTAX construct.

Additionally, you may also want other characters and creatures in your adventure.
For this the ACTOR construct is provided.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 18181818

2.4.1.2.4.1.2.4.1.2.4.1. The Location ConstructThe Location ConstructThe Location ConstructThe Location Construct
The scene for your Adventure is a series of “rooms” or, rather, locations. They are
connected by paths leading from one location to another. This makes it possible for
the hero to travel through the world of your design, exploring it and solving the
puzzles.

What is required if we want to describe a location? Every location (or LOCATION,
when we are referring to the Alan language construct) must have a name. This is so
that you, the designer, may refer to that LOCATION easily, instead of having to
remember a magic number for each LOCATION.

Unless you provide other means for transportation from a LOCATION, you should
also describe in which directions there are EXITs and to which LOCATIONs
they lead.

In fact, this is all that is really necessary in a LOCATION, so lets look at an
example (you would probably like to try this out, referring to appendix E,
SYSTEM DETAILS, on page 111 for instructions for your particular system).

LOCATION Kitchen
 EXIT east TO hallway.
END LOCATION Kitchen.

LOCATION Hallway
 EXIT west TO kitchen.
END LOCATION Hallway.

START AT Kitchen.

This is a complete Alan Adventure (although very primitive). As you see, every Alan
construct ends with a period (’.’) and there is also a “START AT” sentence at the
end, indicating in which location to put the hero when the game starts.

Run this little Alan source through the Alan Compiler (see appendix D , HOW
TO USE THE SYSTEM, on page 110 and appendix E , SYSTEM DETAILS, on
page 112) and try the Adventure. After starting the Adventure, two lines will be
shown on your screen. The first line will contain “Kitchen” and the second a “>”,
which is the prompt for the player to input a command. Now try typing “east”.
The word “Hallway” and the prompt will appear. Typing “west” will take you back
to “Kitchen” again.

We see that the name of a LOCATION is automatically used as a description
shown when that room is entered. We also see that the words listed in the EXIT-
parts are translated by Alan into directional commands that are usable by the player.

You should remember that exits are strictly one-way. An EXIT from a LO-
CATION to another does not automatically imply the opposite path. Thus one
must explicitly declare the path back, in the definition of the other LOCATION.

But just the name of the location is not much of a description. So in order to
provide the “purple prose” descriptions often found in high-class Adventures there
is an optional DESCRIPTION-clause in the LOCATION. Let us describe the
Hallway.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 19191919

LOCATION Hallway
 DESCRIPTION
 "In front of you is a long hallway. In one end
 is the front door, in the other a doorway. From
 the smell of things the doorway leads to the
 Kitchen."
 EXIT west TO Kitchen.
END Hallway.

We introduce another feature in this example, namely the text enclosed in double
quotation marks (") which is called a STRING or, when used on its own like this,
an output statement. When executed this string will be presented to the player and
formatted to suit the format of his screen.

Invent a description for the Kitchen, enter it in the Alan source and run the changed
adventure. You notice, of course, that the text in the output statements is
reformatted during output to suit your screen, in order to make room for as much
text as possible. Note also that you do not have to worry about this at all - in your
source file you may format the text any way you like.

This type of output statement is just one of the statements in the Alan Language,
and we will see more of them later.

It is also possible to have conditions and statements in the EXIT-clauses of a
LOCATION to restrict the access to the next location or to describe what happens
during this movement.

EXIT west To Kitchen
 CHECK kitchen_door IS open
 ELSE "The door is closed."
 DOES
 "As you enter the kitchen the smell of
 something burning is getting stronger."
END EXIT west.

2.4.2.2.4.2.2.4.2.2.4.2. The Object ConstructThe Object ConstructThe Object ConstructThe Object Construct
Another essential feature in Alan is the OBJECT. Like the LOCATION, the
OBJECT is a means to describe the “physical” world where your Adventure is
taking place. Most objects are probably used to provide puzzles, like closed doors,
keys and so on, but other objects should be promoted to OBJECTs too. A large
number of objects that can be examined and manipulated makes a game so much
more enjoyable.

OBJECTs, like LOCATIONs, have names and descriptions, so you might guess
the general structure of an OBJECT:

OBJECT door AT Hallway
 IS closed.
 DESCRIPTION
 "The door to the kitchen is a sliding door."
 IF door IS closed THEN
 "It is closed."
 ELSE
 "It is open."
 END IF.
END OBJECT door.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 20202020

An OBJECT may initially be located at a particular LOCATION (although objects
do not have to start at a particular place in which case they are not present in the
game until located at some place where the player may lay his hands on them). This
is indicated by the AT-clause, in this case telling us that the door is initially located
in the Hallway.

In addition, OBJECTs may have attributes indicating the state of certain prop-
erties of the object. In this example with a door, the IS closed part indicates
that the OBJECT door should initially have the attribute closed set to TRUE (i.e.
the door is initially closed). The opposite would be indicated with a NOT, (i.e. IS
NOT closed).

Alternatively, attributes may be numeric (e.g. HAS weight 5) or be of string
type (e.g. HAS inscription "Kilroy was here").

We also introduce another Alan statement, the IF statement. The IF statement
allows you to select which statements to execute according to some condition. In
the example, the closed attribute of the door selects which description to show.
There are further variations of expressions and the IF statement, but we will come
back to these later (Expressions on page 51 and If on page 49).

Instead let’s look at some other statements in relation to OBJECTs.

The attributes of an OBJECT must, of course, be changeable, and this is done with
the MAKE statement or the SET statement. For example if the door should be
opened (the player having said “open door”, perhaps) this could be performed by

MAKE door NOT closed.

or closed (i.e. setting the closed attribute to TRUE again) by

MAKE door closed.

The SET statement changes numeric or string attributes, for example

SET level OF bottle TO 4.

Another OBJECT manipulating statement is the LOCATE statement. This is the
statement to use when moving objects from one location to another. Opening a lid
might cause a previously hidden object to fall to the floor, something that could be
performed by moving the object from a limbo LOCATION to the current one with

LOCATE treasure HERE.

Or to a particular place with

LOCATE vase AT hallway.

2.4.3.2.4.3.2.4.3.2.4.3. The Actor ConstructThe Actor ConstructThe Actor ConstructThe Actor Construct
The ACTOR is used to populate the adventure with other creatures. They might be
pirates or monsters, but the thing they have in common is that they move around
and perform various actions more or less in the same way as the player does.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 21212121

An ACTOR may have a DESCRIPTION and attributes like OBJECTs and
LOCATIONs. An ACTOR performs his movements by following scripts, each
having a number of steps. Each step corresponds to one player move.

ACTOR charlie_chaplin NAME Charlie Chaplin
 SCRIPT going_out
 STEP
 LOCATE ACTOR AT outside_house.
 STEP
 LOCATE ACTOR AT hallway.
 USE SCRIPT going_out.
END ACTOR charlie_chaplin.

2.4.4.2.4.4.2.4.4.2.4.4. The Verb ConstructThe Verb ConstructThe Verb ConstructThe Verb Construct
The VERB is the construct that implements the effects of an action requested by
the player. VERBs may be global, local to a particular LOCATION or associated
with an OBJECT. We will look at the implications of various combinations of
these in the next few sections.

To implement a VERB you need a name for it (which is also the default word the
player should input to request that action). You must also decide which effects this
verb should have under various circumstances.

If we want to implement the VERB open for the door we could use the following
code

VERB open
 DOES
 MAKE door NOT closed.
END VERB open.

This implementation makes direct references to the door, so to make the verb more
general it would instead need to reference the object the player mentioned in his
command (see The Syntax on page 13 for a discussion). In this case the attribute
closed must also be available for all objects (by making it a default object
attribute, see Attributes And Default Attributes on page 27).

Of course, there are also conditions that have to be checked before we could execute
this code (perhaps to see if it was possible to open the object!). Therefore VERBs
may have CHECKs.

CHECKING THINGSCHECKING THINGSCHECKING THINGSCHECKING THINGS

In order to assert that the correct conditions are fulfilled before a VERB is actually
executed the VERB has an optional CHECK part.

VERB open
 CHECK OBJECT IS openable
 ELSE "You can’t open the $o."
 DOES
 MAKE OBJECT NOT closed.
END VERB open.

This is a more probable definition of the open VERB than the previous one. What
it means is that before the statements after DOES are executed, the condition after

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 22222222

CHECK must be checked (that the object indicated by the player is really
openable). If the condition is TRUE then the requirements are fulfilled and the
body of the VERB may be executed. If this is not the case, the ELSE part is
executed instead (normally some error message).

A CHECK may have multiple conditions as the following code shows:

VERB take
 CHECK OBJECT takeable
 ELSE "You can’t take that."
 AND OBJECT NOT IN inventory
 ELSE "You already have it."
 DOES
 LOCATE OBJECT IN inventory.
END VERB take.

Here we encounter a variation on the LOCATE statement - the capability to place
an object inside a container.

GLOBAL, LOCAL AND OBGLOBAL, LOCAL AND OBGLOBAL, LOCAL AND OBGLOBAL, LOCAL AND OBJECTIVE VERBSJECTIVE VERBSJECTIVE VERBSJECTIVE VERBS

VERBs may be defined on three levels.

• Globally. These are always used, no matter in what location the player currently
is, or what object he is trying to manipulate.

• Locally (within a particular LOCATION). A local VERB is only considered
when the player issues the VERB at a particular LOCATION.

• Within an object. When the player tries to manipulate the object within which
the VERB is defined, the VERB definition in that OBJECT is executed.

A VERB may be defined on all three levels (as well as in other LOCATIONs and
OBJECTs of course), and may have CHECKs in all instances. The implication is
that all CHECKs must be passed before any execution and if they all do pass the
verb bodies (DOES parts) are executed. The order is global/local/ object.

An example:

VERB throw
 CHECK OBJECT IN inventory ...
 DOES
 LOCATE OBJECT HERE.
END VERB throw.
LOCATION dark_place
 VERB throw
 CHECK "Too dark to aim."
 END VERB.
END LOCATION dark_place.
OBJECT vase
 VERB throw
 DOES
 "The vase breaks."
 LOCATE vase AT limbo.
 END VERB throw.
END OBJECT vase.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 23232323

The CHECK without a condition in dark_place is called unconditional and is
always FALSE (i.e. it will always fall out as if the CHECK had failed).

Now assume the player is carrying the vase at dark_place. He says

 > throw vase

So we have a VERB globally as well as locally and in the mentioned object. The
CHECKs are examined in the following order:

• OBJECT IN inventory? (in the global VERB)

• unconditional (in the LOCATION)

• None (in the OBJECT)

We fall out already in the LOCATION (player receiving the response “Too dark
to aim.”) so the third (empty) CHECK is never tested. Now the player tries the
same thing at bright_place where there is no restriction on throwing (no local
VERB “throw”).

This time there is no local VERB so we skip that level and get the CHECKs

• OBJECT IN inventory? (in the global VERB)

• None (in the OBJECT)

Each is tried in turn and none fail, so we can go ahead and execute. This is done in
the same order, i.e.

• LOCATE OBJECT HERE (in the global VERB)

• nothing (in the LOCATION)

• ’’The vase breaks...’’ (in the OBJECT)

You can never destroy an OBJECT or remove it from the game. Instead, you will
probably need a limbo location, i.e. a location that is not connected to any of the
others and may thus be used as a storage for destroyed objects and other things the
player is not supposed to see.

2.4.5.2.4.5.2.4.5.2.4.5. The Syntax ConstructThe Syntax ConstructThe Syntax ConstructThe Syntax Construct
Normally a verb acts on one object or actor, henceforth called a parameter. This
means that the format of player input normally is something like

> take vase

This form, or syntax, is the default form when you don’t specify anything else. The
default syntax might thus be described as

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 24242424

SYNTAX
 ? = ? (object)
 WHERE object ISA OBJECT.

where the question marks are replaced by the name of the verb.

But in order to allow different and more complex player input the SYNTAX
construct is supplied.

The SYNTAX construct is a way to describe the words and parameters the player
may use in order to execute a particular verb (its global and more specialised parts).
Below is the syntax for put_in, the verb to put something inside a container.

SYNTAX
 put_in = ’put’ (obj) ’in’ (cont).

This syntax defines the put_in verb to be executed when the player has input the
word ‘put’ followed by a reference to an object or actor (a parameter named
obj), followed by the word ‘in’ followed by a reference to a second parameter
(the container), as in

> put the green pearl in the black box

This will bind the parameter obj to the object that represents the green pearl and
the parameter cont to the black box. It is also possible to restrict the types of the
parameters:

SYNTAX
 put_in = ’put’ (obj) ’in’ (cont)
 WHERE obj ISA OBJECT
 ELSE "You can’t put that into anything."
 AND cont ISA CONTAINER OBJECT
 ELSE "Nothing fits inside that."

This restricts the parameter obj to being an object (as opposed to an actor for
example) and the parameter cont to a container object (an object with the
container property).

The parameters are used as normal identifiers in the Alan source, provided they are
defined in the current context, i.e. they can only be used in the bodies of the verb
(see also Run-time Contexts on page 61 for a detailed discussion).

The SYNTAX construct generalises the verb execution order described previously
from execution of verbs in one object, to verb bodies in all the parameters. In the
example above, verb bodies in both the object or actor referenced as obj and
cont (the green pearl and the black box) are executed (if present in their
declarations).

Another use for the SYNTAX is to define the syntax for simple verbs such as
quit, score etc. They also need a SYNTAX definition as they do not fit into
the default verb/object format. An example would be

SYNTAX q = ’quit’.

But for simple verb/object forms no SYNTAX is actually necessary.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 25252525

In expressions, OBJECT always refers to the first parameter. This makes it
consistent with the default syntax of verb/object (and also with the definition of
OBJECT in version 1).

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 26262626

3.3.3.3. THE LANGUAGETHE LANGUAGETHE LANGUAGETHE LANGUAGE
This chapter describes the Alan language in detail. For each construct the exact
syntax can be found in the form of BNF productions in appendix B, ALAN
LANGUAGE GRAMMAR, on page 91.

3.1.3.1.3.1.3.1. AAAAN N N N AAAADVENTUREDVENTUREDVENTUREDVENTURE
An adventure starts with an optional options section (see Options below) followed
by a set of units.

The units constitute the major part of the adventure. The units are rules, synonyms,
syntax definitions, verbs, locations, objects, containers, actors and events can be
declared in any order. Any combination and number are allowed. Default attributes
(see Attributes And Default Attributes below) for objects, locations and actors may
be declared in any number of places.

The adventure source text must end with a start section. It indicates where the hero
is when the game starts and can also be used to set things up, welcome the player
and so on. The start section is mandatory.

START AT bedroom.
 SCHEDULE alarm_clock AFTER 2.
 "Slowly you come to your senses, your numb limbs
 starting to feel the blood flowing through them..."

3.2.3.2.3.2.3.2. OOOOPTIONSPTIONSPTIONSPTIONS
Options define things concerning the overall behaviour of the generated Alan
adventure. An option is for example written either as

LANGUAGE Swedish.

(for multiple-valued options) or

PACK.
NO PACK.

 (for boolean options).

The options are

Option nameOption nameOption nameOption name ValuesValuesValuesValues Default valueDefault valueDefault valueDefault value

Language English,Swedish1 English

Width 24-255 80

1 Other non-English languages may be supported in the future depending on
demand.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 27272727

Length 5-255 24

Pack Boolean (on or off) Off (No Pack)

Debug Boolean (on or off) Off (No Debug)

The Language option specifies in which language the adventure is intended to be
played, and selects different default message texts. Alan is primarily designed for
adventures in the English language, but it is also possible to write adventures in
other languages. To make this possible, the default messages output by the
interpreter may be generated in different languages.

The Alan compiler and interpreter will always allow multinational 8-bit characters
as input and the default messages is generated for 8-bit character sets, internally
representing national characters according to the ISO multinational character set
(ISO8859-1) requiring 8 bits. On output this is converted to the native character
set of the machine (whenever possible) which means that portability between
platforms should be good even for text containing non-ASCII characters.

Width specifies how long the lines the interpreter outputs should be (formatting is
automatic!). The Length option will instruct the interpreter to how many lines to
show on the screen without any player interaction (<More>).

In some environments the Width and Length options may be overridden by the
current values of the screen or window if the operating system can supply them.

The Pack option will cause the compiler to compress the texts to occupy less space.
As a bonus this also makes it impossible for the player to cheat by dumping the
adventure text data file. As a drawback it does make the execution of the adventure
a bit slower (quite noticeable on some smaller computers).

In order to allow debugging of the generated adventure (see Debugging on page
75), the debug option must be turned on. This may also be performed using the
debug compiler flag (see also Compiler Switches, on page 110).

3.3.3.3.3.3.3.3. AAAATTRIBUTES TTRIBUTES TTRIBUTES TTRIBUTES AAAAND ND ND ND DDDDEFAULT EFAULT EFAULT EFAULT AAAATTRIBUTESTTRIBUTESTTRIBUTESTTRIBUTES
An attribute is a definition of a property of either an object, an actor or a location
(for a description of these see the appropriate sections below). An attribute can be
boolean (having the value TRUE or FALSE), numeric or of string type. The type
of an attribute is automatically inferred from the type of its initial value. Attributes
may either be given to all objects, actors and locations (DEFAULT
ATTRIBUTES), to all object, actors or locations respectively
(OBJECT/ACTOR/LOCATION ATTRIBUTES) or for a single object, actor
or location (local attributes, see for example Attributes on page 37 for attributes for
locations).

A boolean attribute is declared by simply giving the attribute name, or the name
preceded with the keyword NOT (indicating a FALSE initial value:

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 28282828

thirsty.
NOT human.

Numeric and string attributes are declared by simply typing the value after the
attribute name:

weight 42.
message "Enter password:".

General attributes that every object, actor and location (all entities) have by default
should be declared in a DEFAULT ATTRIBUTES section. To declare a boolean
attribute that all objects, actors and location will have in common the following
code can be used:

DEFAULT ATTRIBUTES
 NOT human.

This attribute will now be available in all entities, and if it is not set to a different
value it will be false. To get another value for a particular object, actor or location
you can declare it in its declaration and give it its desired value, which will be
effective only for that object, actor or location.

Attributes that every object, actor or location respectively has by default should be
declared in an OBJECT/ACTOR/LOCATION ATTRIBUTES (respectively)
section. A numeric attribute that all objects must have can be declared by:

OBJECT ATTRIBUTES
 weight 5.

All objects will have the attribute weight with the default value 5.

Another example

ACTOR ATTRIBUTES
 NOT hungry.
 weight 50.

By combining these two level of defaults you can create attributes that all objects,
actors and locations have but with different default values for each of these classes.
For example:

DEFAULT ATTRIBUTES
 NOT human.

ACTOR ATTRIBUTES
 human.

will give all entitites the attribute human but the default value of the attribute will
be different for objects and locations (false) and actors (true).

Note that string valued attributes are mainly intended for saving string parameters
from the player input, like in

> scribble "Kilroy was here" on the wall

It is not intended for keeping long strings of descriptions, especially not as default
attributes as they (in the current implementation) require much space and takes long
time to initialise when starting the game.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 29292929

Any number of default attributes sections are allowed. This makes it possible to
group verb declarations (see below) and the declaration of the default attributes that
a particular verb requires. For example:

OBJECT ATTRIBUTES
 NOT takeable,

VERB take
 CHECK OBJECT IS takeable
 ELSE "You can not take that."
 ...

This is a practical structuring aid that allows localisation of dependencies between
verbs and attributes.

3.4.3.4.3.4.3.4. SSSSYNONYMSYNONYMSYNONYMSYNONYMS
Synonyms declare words that, when used as player input, are interchangeable at all
times.

SYNONYMS
 ’i’, ’invent’ = ’inventory’.
 ’q’ = ’quit’.

The word on the right hand side of the equal sign must be a word defined elsewhere
in the adventure source, such as (part of) an object or actor name (a noun or
adjective) or a direction. The list of words on the left hand side are new words
(NOT defined elsewhere) that always will be replaced by the word on the right in
the player input.

When defining synonyms remember that this only defines player words that are
interchangeable. Defining synonyms for verb names etc. will not always give you the
result that you expect. For example

SYNONYMS
 ’examine’ = look_at.
 SYNTAX
 look_at = ’look’ ’at’ (obj).
 VERB look_at ...

This will result in the compiler issuing an error message indicating that the
synonym word ’look_at’ is not defined. This is because the SYNTAX (see below)
defined the verb look_at to have the specified syntax (including the player words
’look’ and ’at’), the player word ’look_at’ is not defined, which is as well as the
player would not be able to input a word with an underscore (see Player Input on
page 60).

You can achieve the desired effect by instead giving multiple verb identifiers in the
verb declarations, this will give the same verb bodies (checks and actions) to
multiple verbs. See Verbs on page 33 for details on verb declarations.

It is also possible to define multiple names for an object or actor to achieve other
effects similar to synonyms. See Objects on page 38 for a description of this.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 30303030

3.5.3.5.3.5.3.5. MMMMESSAGESESSAGESESSAGESESSAGES
The Alan system has a number of standard messages built in. These messages are
presented to the player in various situations, both normal and otherwise. An
example is the following:

> go north
 You can’t go that way.

The response "You can’t go that way." is a typical example of such system messages
(for details see appendix A.1, Input Response Messages, on page 1).

To make the user dialogue more adapted to the settings you select Alan allows you
to define your own versions of these messages. An example of this is:

:
MESSAGE
 NOWAY: "There is no exit in that direction."
:

If the above is used in the source for same game as the previous example, it would
instead look like:

> go north
There is no exit in that direction.

The MESSAGE constructs allows general statements following the message
identifier:

MESSAGE:
 NOWAY:
 IF RANDOM 1 TO 2 = 1 THEN
 "There is no way in that direction."
 ELSE
 "You can’t go there."
 END IF.

The standard message for NOWAY is replaced by the output from the statements in
the definition. For a complete list of all the identifiers of messages and their use see
appendix 0, RUN-TIME MESSAGES, on page 1.

3.6.3.6.3.6.3.6. SSSSYNTAX YNTAX YNTAX YNTAX DDDDEFINITIONSEFINITIONSEFINITIONSEFINITIONS
The syntax construct is used to specify the allowed structure of the input from the
player. Each definition defines the syntax for one VERB. The effects triggerd by the
player input are declared using the VERB construct (see Verbs below).

The syntax is defined as a number of syntax elements each being either a player
word or the name of a parameter (an identifier enclosed in parenthesis).

SYNTAX
 quit = ’quit’.
 examine = ’examine’ (obj).

When the player inputs a command the set of allowed syntaxes are checked for
match, giving a very flexible way to extend the allowed command set (see also
Player Input on page 60 for details on general player input).

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 31313131

After the player input has been matched to an allowed syntax the parameters are
bound to the entities referred to by the player. The identifiers in the syntax
declaration then refers to those entities and tests for attributes etc. will be done in
the entity referred by the parameter.

In the example above the parameter obj can be used in the declaration of the verb
examine and will refer to such a bound entity.

INDICATORSINDICATORSINDICATORSINDICATORS

Following a parameter indicators are allowed. These indicators can be one of

‘*’ indicating that this parameter can reference multiple objects or actors
(for example by the player using all or concatenating a number of parameters
using a conjunction like and, see Player Input on page 60).

’!’ indicating that the parameter (the object or actor given in this
position) need not be present at the current location. Normally the Alan interpreter
requires that a referred object or actor must be present at the same location as the
hero (as this is the most common case). But for the more rare cases where the player
must be able to refer to objects and actors that are not present (e.g. in a verb like
talk_about) this omnipotent indicator can be used to force the interpreter to
accept references to any object or actor.

An example

SYNTAX
 take = ’take’ (obj)*.
 drop = ’drop’ (obj).

This shows the syntax definitions for the verbs take and drop, take also
allowing multiple objects. This would allow inputs like

> take everything except the pillow
> drop the vase

but not

> drop the shovel and the bucket

Another example using the ’!’ indicator:

SYNTAX
 talk_about = ’talk’ ’to’ (act) ’about’ (sub)!.
 find = ’find’ (obj)!.

This will give the player the possibility to say

> talk to the policeman about the robber
> find the key

even though the robber or the key are not present.

For more information on player inputs refer to Player Input on page 60.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 32323232

CLASS RESTRICTIONSCLASS RESTRICTIONSCLASS RESTRICTIONSCLASS RESTRICTIONS

To restrict the types of entities the player may refer to in the place of a parameter
its class can be defined by using explicit test in the syntax declaration.

The following example describes the syntax for a verb which only allows OB-
JECTs as its parameters (this is however also the default, see below).

SYNTAX
 take = ’take’ (obj)
 WHERE obj ISA OBJECT
 ELSE "You can’t take that."

Each parameter may be restricted to refer only to certain kinds (classes) of entities:
objects, objects with the container property, actors, numeric literals, string literals or
some combination of these. The statements following the ELSE will be executed if
that restriction is not met, i.e. if the player made a reference to an entity not in the
specified class or classes. The default is OBJECT, i.e. if no class tests are supplied
for that parameter identifier the player may only refer to objects at that position in
his input.

So a more elaborate example of prerequisites for conversation might look like:

SYNTAX
 talk_about = ’talk’ ’to’ (act) ’about’ (sub)!
 WHERE act ISA ACTOR
 ELSE "Don’t you think talking to a person might
 be better?!?!"
...

The classes defined for a parameter are also used by the compiler to analyse
statements and expressions in which that parameter occurs to ensure that the entity
referenced is guaranteed to have the properties required during run- time. A
parameter identifier defined using ISA OBJECT may for example not be used in
a LIST statement as this requires the entity to have the container property (ISA
CONTAINER would of course restrict the entities to only those entities that are
containers and would do the trick).

As both actors and objects may have the container property it is possible to restrict
parameters to only objects that are containers (CONTAINER OBJECT), only
actors that are containers (CONTAINER ACTOR), or that it need just have the
container property (either an object or an actor). This last case will only allow
access to global default attributes (see Attributes And Default Attributes on page
27) of the parameter, as you can not be sure if it is an actor or an object.

DEFAULT SYNTAXDEFAULT SYNTAXDEFAULT SYNTAXDEFAULT SYNTAX

If no SYNTAX is defined for a VERB at all, this is equivalent to specifying

SYNTAX ? = ? (object).

The question marks represent the name of the VERB. This means that normal
verb/object type of VERBs by default have the correct syntax and may only refer
to objects. It also implies that the default name for the single parameter is OBJECT
(see WHAT Specifications on page 53 for the implications of this).

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 33333333

Following this default mechanism all verbs that have no corresponding syntax
declaration will be assumed to require an object as parameter. This means that
simple ‘verb-only’ VERBs must be declared using a syntax like q = ’q’ to make
it possible to input a single verb word. It also means that verbs that have no
SYNTAX will only accept OBJECTs, not ACTORs for example.

3.7.3.7.3.7.3.7. VVVVERBSERBSERBSERBS
A verb declaration specifies the checks that has to be performed and the effects of
something the player does (commands using a syntactically legal input).

VERB take, get
 ...
END VERB take.

A verb can be declared at three different levels, global (outside any other dec-
laration), inside a declaration of a location or and inside an object or actor. The
meaning of this is that the global declaration will always be considered, a
declaration inside a location will only be considered if the hero is at this location
when the verb is executed. Finally a verb declaration inside an object or actor
declaration will only be considered if that object or actor is used as a parameter in
the input.

A verb need not be declared at all of these places.

The identifiers in the list (take and get in the example) will by default be the player
words that can be used to invoke the verb. But if a SYNTAX is declared for the
VERB (see Syntax Definitions above), the identifiers in the list will not be
accessible to the player, instead the sequence of words and parameters specified in
the SYNTAX must be used.

If more than one identifier is used in the list, as in the example above, this can be
viewed as a short hand for declaring identical checks and bodies for all the verbs in
the list. This in effect will create synonymous actions for different verbs on the level
where the verb declaration is. They may differ in implementation at other places, i.e.
if take and get are declared in the same verb declaration on the global level, they can
still have different bodies in a particular location, in fact if they must have the same
implementation they must both be declared together where this is required. For
example

VERB take, get ...
LOCATION untakable_place
 VERB take ...
END LOCATION untakable_place.

Suppose that the declaration of take in the location prohibits taking things, the
global action of get will still function.

CHECKSCHECKSCHECKSCHECKS

To decide if the action is possible to carry out, the CHECKs are executed. First the
global checks are tried, then the checks in the verb declaration at the current

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 34343434

location (if the verb has a specification in the current location) and finally the
checks declared for the verb in the objects or actors bound to the parameters (if
any).

VERB take
 CHECK obj IS moveable
 ELSE "you can’t take that."
 ...
END VERB take.

If no expression is specified for a check, the check will always fail, in effect an
unconditional check. This is useful for preventing certain actions at specific
locations for example, since the checks are always executed first.

LOCATION l
 VERB jump
 CHECK "You can’t do that here."
 END VERB jump.
END LOCATION l.

If any check should fail, the execution of the current verb is interrupted and the
statements following the failing check are executed. The user (player) is then
prompted for another command.

In addition the CHECK is used when handling the user input ALL (see Player
Input on page 60 for details on possible player input). The mechanisms for this
involve examining all objects at the current location and evaluating all checks for the
verb. Any objects that do not pass the checks are not considered for execution. This
restricts the handling of ALL to only executing the verb bodies for objects that are
reasonable, and will not fail in the CHECK.

For example assuming the above definition of the verb take and a location
containing the two objects, ball and box, of which only the ball is takea-
ble the player input

> take all

would result in all representing only the ball. See Player Input on page 60 for an
explanation of the player view of this.

DOESDOESDOESDOES----CLAUSECLAUSECLAUSECLAUSE

If all checks succeed the DOES-part(s) of the VERB will be carried out. The order
is normally to first execute the body of any global declaration, then the body in the
verb declaration for the current location. Finally each parameter is examined to find
any declarations of the VERB inside what it refers to, those verb bodies are then
executed in the order in which the parameters occurred in the syntax declaration.
This is the most natural order and covers most cases but in some infrequent
situations another order may be necessary. By using the qualifiers,
BEFORE/AFTER/ONLY, the author can decide which verb bodies will be
executed and in which order (see section Fel! Hittar inte referenskälla.Fel! Hittar inte referenskälla.Fel! Hittar inte referenskälla.Fel! Hittar inte referenskälla. below for de-
tails).

VERB take
 CHECK obj NOT IN inventory

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 35353535

 ELSE "You already have that."
 DOES
 LOCATE obj IN inventory.
END VERB take.

3.7.1.3.7.1.3.7.1.3.7.1. Verb AlternativesVerb AlternativesVerb AlternativesVerb Alternatives
When a VERB is declared inside an OBJECT, verb alternatives are allowed. These
alternatives are used in conjunction with the SYNTAX declaration defined for the
verb and allows differentiating between the object and the actor occurring in
different places in the input.

When a player inputs a command each parameter in the syntax (see above) is bound
to an actual object or actor or receives the value of a literal, depending on the
specified syntax. To find out which CHECKs to test and verb bodies to execute the
parameters are examined in turn according to the algorithm described in VERB
QUALIFICATION below. Each object may have different verb bodies executed
depending on at which position it occurred (to which parameter it was bound).

For example with the syntax definition

SYNTAX break_with = ’break’ (o) ’with’ (w).

the VERB body for break_with to execute for the delicate_vase could
differ if it occurs as the direct object (o), or if it occurs as the indirect object (w).
For each such parameter in the syntax you may define different actions by supplying
a verb alternative for each parameter identifier. The verb declaration could look like

OBJECT feather
 VERB break_with
 WHEN o DOES
 "The feather is even more flat than before."
 MAKE feather flat.
 WHEN w DOES
 "There is not much that you can break with a
 feather!"
 END VERB break_with.
END OBJECT feather.

3.7.2.3.7.2.3.7.2.3.7.2. Verb QualificationVerb QualificationVerb QualificationVerb Qualification
The order in which the different verb definitions are executed is normally from the
outside in, i.e. the global definition is executed first if a global definition exists, then
any possible definition of this verb in the current location. Lastly, the verb bodies in
the parameters (in the order they appeared in the syntax definition) on which the
verb was applied (if any) is examined to find and execute their verb definitions.

In most circumstances this is the most logical order, but if another order is required
the verb qualifiers AFTER, BEFORE and ONLY may be used to alter this
behaviour. The qualifiers alter the order of execution and a strict definition of this
is described below.

First, the verb in the last parameter (if any) is investigated and, if this definition had
the BEFORE or ONLY qualifier it is executed. If the qualifier was ONLY the

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 36363636

execution is also aborted at this stage and no more verb definitions are examined,
otherwise the other parameters are examined in the same way.

In the next step, the current location is examined and, if it contained a verb
definition with a BEFORE or ONLY qualifier, that definition is now executed (and
if it was ONLY, execution is aborted). As a result a BEFORE qualifier in the verb
definition in an object will supersede an ONLY qualifier in the location.

At this stage, all BEFORE and ONLY qualifiers are handled appropriately since the
global definition is now in turn anyway. This leaves the definitions without any
qualifier or with the AFTER qualifier. The global definition is examined and if it
did not have the AFTER specification, it is executed (if it had an ONLY qualifier
execution is stopped after executing it). Any definition of the verb in the current
location is again examined and, if it did not have the AFTER qualifier, it is
executed. What remains is to execute the verb definition in the parameters if they
have not been executed already, and to execute the location definition and the
global definition (in that order) if they where declared with the AFTER qualifier.

So in short (with global definitions being the outermost and the definition in the
entity bound to the last syntax parameter the innermost):

• From the outside in, find any BEFORE or ONLY definitions and execute them
(stop if ONLY found).

• From the inside out, execute any definitions not already executed and not
declared with the AFTER qualifier.

• Execute the remaining verb definitions (those with an AFTER qualifier) from
the outside in.

The second item in the above list represents the normal order of execution.

The qualifiers are a powerful but confusing concept. The normal order of execution
is usually appropriate and only in special cases should qualifiers be used. When they
are needed, you will find that one qualifier at the correct definition will normally do
the trick. The above algorithm is used to get a strict definition of the execution
order. It is not expected that this complex behaviour will be needed in practice.

Note: All checks for a VERB will always be run in global-location-parameter order
regardless of any BEFORE/AFTER/ONLY qualifiers.

An example of the use of qualifiers is to ensure that only the verb body within the
object is executed:

OBJECT bomb
 VERB take
 DOES ONLY
 "Your curious fingering at the intricate
 mechanism sets it of. BOOOM!"
 QUIT.
 END VERB examine.
END OBJECT bomb.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 37373737

3.8.3.8.3.8.3.8. LLLLOCATIONSOCATIONSOCATIONSOCATIONS
A location is a declaration of a place (a “room”) in the game that (normally) can be
visited by the player, have objects lying around, etc. In fact the map of your game is
a set of interconnected locations.

IDENTIFIER AND NAMEIDENTIFIER AND NAMEIDENTIFIER AND NAMEIDENTIFIER AND NAME

The ID is the identifier used by the author throughout the source when referring to
this location. By default, this will also be the name of the location written out to the
player. But by using the NAME clause you can give a different name to the location
when presenting it to the player (see Objects on page 38 and Identifiers And Names
on page 57). For example

LOCATION south_of_house
 NAME ’South of House’
...

See Identifiers And Names on page 57 also for an explanation of the quoted
identifiers used in this example.

ATTRIBUTESATTRIBUTESATTRIBUTESATTRIBUTES

A location can have attributes (see Attributes And Default Attributes on page 27).
These can be local attributes available only for this location or override declared
default attributes.

LOCATION south_of_house
 NAME ’South of House’
 IS outdoors.
...

DESCRIPTIONDESCRIPTIONDESCRIPTIONDESCRIPTION

The statements in the DESCRIPTION clause should print a description of the
location. These statements are executed when the hero enters the location or when
executing a LOOK statement. See also SPECIAL STATEMENTS on page 47,
concerning the VISITS statement.

LOCATION south_of_house
 NAME ’South of House’
 IS outdoors.
 DESCRIPTION
 "You are facing the south side of a white house.
There is no door here, and all the windows are barred."
 ...

DOESDOESDOESDOES----CLAUSECLAUSECLAUSECLAUSE

The optional DOES clause contains statements performed when any actor enters
the room (is located there). An example usage of this would be if there were a weak
bridge that only allows a certain total weight before it collapsed. The DOES clause
of that location could contain actions for this, which would be executed whenever
any actor enters that location, not only the hero.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 38383838

EXITSEXITSEXITSEXITS

To build a world of locations, these must be connected. This is done using exits.
An exit consists of an id_list, all of which are considered directional words, i.e.
when input by the player they will move him to the location identified by the ID. It
is possible to customize the exit using CHECKs (see Verbs on page 33 for a
definition), that must be satisfied to allow passage through the exit, and statements
that will be executed when the player passes through.

Note: If there exists an exit from one location to another, there will NOT
automatically be an exit in the opposite direction!

Two interconnected locations might be declared like:

LOCATION east_end NAME ’East End of Hall’
 DESCRIPTION
 "This is the east end of a vast hall. Far away to
 the west you can see the west end."
 EXIT w TO west_end.
END LOCATION east_end.
LOCATION west_end NAME ’West End of Hall’
 DESCRIPTION
 "From this western end of the large hall it is
 almost impossible to discern the opposite end to
 the east."
 EXIT e TO east_end.
END LOCATION west_end.

VERBSVERBSVERBSVERBS

Local verbs may also be declared in a LOCATION. See Verbs on page 33 for a
description of how to declare verbs.

3.9.3.9.3.9.3.9. OOOOBJECTSBJECTSBJECTSBJECTS
Objects are all the things that can be manipulated by the player. They can be picked
up, examined and thrown away (if the author has allowed it). They will usually be
described when the player enters a location containing objects.

As for locations, the ID is the name you use to refer to this object. It is also the
default name for what is presented to the player and what he has to use when
referring to the object.

NAMENAMENAMENAME

By using the NAME clause you can give the object another name, e.g.

OBJECT chair3 NAME little wooden chair

In this example the word “chair” is a noun and “little” and “wooden” would be
adjectives. When the player refers to the object with the author name chair3, he
may use just “chair” if it is the only object with “chair” as its noun at the current
location, or he may distinguish between multiple chairs by also giving one or more
adjectives to pin down the chair he wanted.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 39393939

Note: If the NAME clause is used the name chair3 is not available to the player.

It is possible to give an object multiple names by listing a number of name clauses.
Each one will define adjectives and a noun as described above. The result being that
the player can use any of the names to refer to the object. For example:

OBJECT rod AT grate
 NAME rusty rod
 NAME dynamite
...

This would allow the player to refer to the object using either of ’rusty rod’ or
’dynamite’.

INITIAL LOCATIONINITIAL LOCATIONINITIAL LOCATIONINITIAL LOCATION

It is possible to set the initial location of an object by using an optional where
clause. If no such clause is used the object will not be present in the game until it is
moved somewhere by a LOCATE statement. Only the AT what and IN what
forms of the where construct (see WHERE Specifications on page 52) are allowed
when describing an initial location of an object.

OBJECT chest AT tresury
...

CONTAINER PROPERTIESCONTAINER PROPERTIESCONTAINER PROPERTIESCONTAINER PROPERTIES

An object can also be a container. This is declared by means of the CONTAINER
property clause, which looks like an ordinary container declaration (see Containers
on page 41).

OBJECT chest
 CONTAINER
 LIMITS ...
 HEADER ...
 DESCRIPTION ...
 :
END OBJECT chest.

ATTRIBUTESATTRIBUTESATTRIBUTESATTRIBUTES

An object can have attributes (see Attributes And Default Attributes on page 27).
These can be local attributes or override values of declared default attributes.

OBJECT chest AT tresury
 IS NOT open.
...

ARTICLEARTICLEARTICLEARTICLE

The optional article can be used to define the indefinite article that should be
placed before the object name in e.g. inventory listings and when presenting objects
that have no DESCRIPTION clause. For example

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 40404040

OBJECT owl
 ARTICLE "an"
:

would result in things like

There is an owl here.
You are carrying an owl.

The article is not used when mentioning the object when acting on multiple objects:

> take everything
(owl) Taken.

Note: The default article, "a" (if using english), is used for objects that have no
ARTICLE declared.

For objects that should not have any article, like ’some money’, an ARTICLE
clause containing no statements must be used:

OBJECT money NAME some money
 ARTICLE
:

This will lead to:

There is some money here.

instead of

There is a some money here.

MENTIONEDMENTIONEDMENTIONEDMENTIONED

The optional MENTIONED clause specifies a short form for this object that will be
used when mentioned e.g. in listings of containers or when the ALL form is used.
If no MENTIONED clause is present an appropriate default message, constructed
from the object name, is supplied by the system.

MENTIONED
 IF mirror IS broken THEN
 "broken"
 END IF.
 "mirror"
...

> take all
(little black book) OK!
(green pearl) OK!
(broken mirror) OK!

The MENTIONED clause is also used when describing objects that have no
DESCRIPTION, by inserting the article (see above) and the short description in a
default message. In the following example output the article is underlined and the
short description is emphasised, the rest is the default message templates.

There is a little black book, a green pearl and an owl
here.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 41414141

The interpreter uses the same principle when constructing lists of objects in
container contents lists (as the result of the execution of a LIST statement, see
page 47).

DESCRIPTIONDESCRIPTIONDESCRIPTIONDESCRIPTION

Objects can of course have descriptions, statements describing the object. This
description will normally be printed when the player enters the location where the
object currently is. It will also be given as a result of the DESCRIBE statement,
and indirectly by executing a LOOK statement at the location where the object is. If
the DESCRIPTION clause is missing the Alan system will supply a default
description such as “There is a round ball here.”. If there is a DESCRIPTION
clause but it contains no statements the object will be ‘invisible’, i.e. no description
of it will printed. This can be useful for objects already described by the location
description, or of objects with particular properties.

DESCRIPTION
 "On the floor there is a heavy golden chest. Its sides
 and top are completely encrusted with jewels."
...

VERBSVERBSVERBSVERBS

As for locations, local verbs can be declared inside an object. The verb declarations
inside objects is only used when that verb is applied to the object. See Verbs on
page 33 for details on verb declaration and usage.

3.10.3.10.3.10.3.10. CCCCONTAINERSONTAINERSONTAINERSONTAINERS
A container is something that can contain objects. A container can either be an
object (or an actor) in itself (in which case it is declared as an object or actor with
the CONTAINER property, see Objects on page 38) or be a pure container. A
container that is not an object or actor, a pure container, can NOT be manipulated
directly by the player. It can, however, be manipulated indirectly, if the author has
supplied some verbs to do this, such as take and drop, which usually are
implemented to manipulate the inventory container. A container for worn objects, is
a common example of a pure container.

A container can only contain objects, not actors or locations.

LIMITSLIMITSLIMITSLIMITS

The LIMITS clause put limitations on what and how much can be put in the
container. If any of these limits are exceeded when trying to locate anything inside
the container, the statements in the corresponding THEN-part will be executed and
the players turn aborted. In fact these checks are performed as a consequence of the
execution of a LOCATE statement (not actually the player placing anything inside
the container). This means that the execution of a sequence of statements can
actually be interrupted by these limitations.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 42424242

The specification of an attribute, which must be a numeric object default attribute,
implies that the sum of this attribute of all objects in the container can not exceed
the value specified. The special attribute COUNT is also allowed and indicates a
limitation on the number of objects allowed.

CONTAINER inventory
 LIMITS
 weight 50 THEN "You can not lift that much."
 COUNT 2 THEN "You only have two hands!"

HEADER AND ELSEHEADER AND ELSEHEADER AND ELSEHEADER AND ELSE

HEADER is used when the contents of the container are listed. It is intended to
produce something like

"The box contains"

or

"You are carrying"

The ELSE-part is used instead of the header if the container is empty.

If LIMITS or HEADER is missing the Alan system supplies the default of no
limits, and the messages “The $o contains” and “The $o is empty.” respectively.

THE INVENTORYTHE INVENTORYTHE INVENTORYTHE INVENTORY

The inventory, i.e. the container containing all objects carried by the hero is
predeclared2, so that it already exists and can be used for common purposes. It can
however be re-declared if required, for example to provide limits and a different
header. An equivalent of its default declaration is

CONTAINER inventory
 LIMITS
 HEADER
END CONTAINER inventory.

One possible re-declaration of the inventory can serve as a more example of a
container declaration.

CONTAINER inventory
 LIMITS
 weight 50 THEN "You can not lift that much."
 HEADER
 "You are carrying"
 ELSE
 "You are not carrying anything."
END CONTAINER inventory.

2 The inventory is actually the container properties of the hero (see section 3.12
on page 43 for a discussion of actors and their container properties). Any
object put into the container will be available in the hero also.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 43434343

3.11.3.11.3.11.3.11. EEEEVENTSVENTSVENTSVENTS
An event is a sequence of statements executed at a specified time (count of turns). It
is also executed at some specific location. An event can e.g. be used to create an
explosion where the bomb is three moves from now or to let the ceiling of the cave
fall down in five moves.

EVENT nearby_explosion
 "Somewhere in the distance there is an explosion."
 MAKE bomb gone_off.
 SCHEDULE small_avalanche AFTER 2.
END EVENT.

The body of an event can be any sequence of statements. They can however not
refer to any parameters, including OBJECT (since no verb is executing), or the
ACTOR. See Run-time Contexts on page 61.

Events may be scheduled and cancelled with the SCHEDULE and CANCEL
statements (see EVENT STATEMENTS on page 50).

3.12.3.12.3.12.3.12. AAAACTORSCTORSCTORSCTORS
An actor is something that seems to live its own life in the game. Another common
name for actors is NPC, non-player character. The author refers to the actor by
using the ID, and it is also the default name presented to the player.

NAMENAMENAMENAME

By means of the NAME clause, a different name can be assigned to the actor in the
same way as for an object (see Objects on page 38).

CONTAINER PROPERTYCONTAINER PROPERTYCONTAINER PROPERTYCONTAINER PROPERTY

The optional property (CONTAINER) clause may be used to indicate that this
actor can be used as a container, i.e it may contain things, thereby implying that the
actor is carrying the things contained. This is analogous to objects having the
container property (see Objects on page 38).

ATTRIBUTESATTRIBUTESATTRIBUTESATTRIBUTES

An actor can have attributes (see Attributes And Default Attributes on page 27).
These can be local attributes or override values of declared default attributes.

ACTOR kirk NAME Captain Kirk AT control_room
 HAS health 25.
 CONTAINER
 HEADER "Kirk is carrying"
 ELSE "Captain Kirk is not carrying anything."
 DESCRIPTION
 "Your superior, Captain Kirk, is in the room."
END ACTOR kirk.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 44444444

DESCRIPTIONDESCRIPTIONDESCRIPTIONDESCRIPTION

In the DESCRIPTION clause, a description of this actor can be given. The
statements describing the actor will be executed when the player enters a location
where the actor currently is. This description will also be given as a result of the
DESCRIBE statement. An exception is if the actor is currently executing a script
for which there is a separate description (see below).

SCRIPTSCRIPTSCRIPTSCRIPT

The SCRIPT is the actor’s way of performing things. In a way it corresponds to
what the hero is ordered to do by the player’s typed-in commands.

Every script has a name (or to be compatible with previous versions, a number) to
identify it. A script is selected by the USE statement. When a script is started it will
continue until it reaches the end or another USE statement is executed for this
actor.

The optional description allowed in the beginning of a script is used instead of the
general description (in the beginning of the actor declaration) whenever the actor is
executing that particular script. If it is not present the general description is used.

ACTOR george
 NAME George Formby
 DESCRIPTION
 "George Formby is here."
 SCRIPT cleaning.
 DESCRIPTION
 "George Formby is here cleaning windows."
 STEP ...
 SCRIPT tuning.
 DESCRIPTION
 "George Formby is tuning his ukelele."
 STEP...
:

STEPSSTEPSSTEPSSTEPS

A script is divided into steps. Each step contains statements representing what the
actor will do in what corresponds to one player move. A step can be defined to be
executed immediately next move, to wait a number of moves before it is executed or
even to wait for a special situation (condition) to arise.

For example

STEP WAIT UNTIL HERO HERE
 "From the shadows a waiter emerges: $p’-Bonjour,
 monsieur’, he says."

When an actor has executed the last step of the current script, it will do nothing
more until the next USE statement is executed for this actor (the actor will be
“dead”, but still present at the location where it was). If this is not what is wanted,
it is recommended to end each script with a new USE statement.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 45454545

THE HEROTHE HEROTHE HEROTHE HERO

There is one very special actor, the hero, which is the player. This actor is always
predeclared, but if necessary it can be re-declared. One situation when this is
required is if you like to have attributes on the hero, such as “sleepy” or “hungry”.
Then a declaration like the following is possible:

ACTOR hero NAME me
 IS NOT hungry.
 CONTAINER
 VERB examine DOES
 IF hero IS hungry THEN
 "Examining yourself reveals a poor, hungry soul."
 ELSE
 "You find nothing but a poor beggar."
 END IF.
 END VERB examine.
END ACTOR hero.

The container property of the hero is actually the inventory container, which is also
predeclared, see The inventory on page 42.

3.13.3.13.3.13.3.13. RRRRULESULESULESULES
A rule is an arbitrary expression, which, when true, results in execution of the given
statements. Rules can be used to make things happen when certain situations arise,
such as starting an actor when the hero enters the cave.

WHEN hero AT cave AND monster NOT active =>
 USE SCRIPT 3 FOR monster.

The statements that are to be executed can not refer to parameters (including
OBJECT), but may refer to ACTOR.

The rules are tested after each actor (including the player) has made his move and
after each event that is executed. So rules must be designed to be executed multiple
times for each player turn. Rules can be considered to be executed at the location
where the last activity (actor move or event) was performed (see also A Turn Of
Events on page 60). This is important to consider especially concerning use of
WHERE specifications (see on page 52) in rules.

3.14.3.14.3.14.3.14. SSSSTART TART TART TART SSSSECTIONECTIONECTIONECTION
The start section defines where the player (the hero) will be at the start of the game.
This must be a location. Optionally this may be followed by statements to be
executed at the beginning of the game, such as hello-messages or short instructions
as well as starting any actors and scheduling events.

START AT outside_house.
 SCHEDULE bird_chirp AFTER 5.

Only the AT what form of the where construct (see WHERE Specifications on
page 52) is allowed in the start section. Any statements are allowed in the start
section except that they can not refer to any parameters.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 46464646

3.15.3.15.3.15.3.15. SSSSTATEMENTSTATEMENTSTATEMENTSTATEMENTS

3.15.1.3.15.1.3.15.1.3.15.1. Output StatementsOutput StatementsOutput StatementsOutput Statements
An output statement is in the simplest case just a string, i.e. any text, possibly
stretching over multiple lines, surrounded by double quotes. Whenever it is
executed, the string will be printed on the players terminal with the following
exception: if an output statement is executed at a location in the game where the
hero not presently is the output will not be shown. This can be used in the
following way in a script for the actor charlie_chaplin:

"Charlie Chaplin leaves the house through the front
door."
LOCATE charlie_chaplin AT outside_house.
"Charlie Chaplin comes out from the nearest house."

If the hero is inside the house or out in the street he will now get different views of
the situation. This feature ensures that the player only sees what is going on at the
current location, and allows for easy adaption to various viewpoints on the events
without the need for any variable tests.

There are some character combinations that have special meaning for the printout:

$l The name of the current location
$v The verb the player used (the first word)
$p New paragraph (one empty line)
$n New line
$i Indent on a new line
$t Insert a tabulation
$$ Do not insert a space
$a The name of the actor that is executing
$o The current object (first parameter)
$<n> The parameter with number <n> (<n> is a digit)

Note: The $a, $o and $<n> formats must be used with care as they are not
checked at compile time, e.g. you can use "$o" in a context where no
parameter is defined which would lead to a run- time error. To avoid any
run-time problems use the SAY statement with the parameter name. The use
of $a, $o and $<n> formats may not be forward compatible.

DESCRIBEDESCRIBEDESCRIBEDESCRIBE

The DESCRIBE statement executes the description part for an actor, an object or a
location. If no such description exists a default description, such as

"There is a $o here."

is used instead. If the object has the container property a LIST statement is also
executed for that object automatically (see below).

If a DESCRIBE statement is used for an object in the description part of a lo-
cation, the system will recognise this and make sure that the object is not described
more than once during the execution of a LOOK statement or when the hero enters
that location. This makes it possible to use objects as parts of a location and

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 47474747

embedding their description at the correct place in the longer description of the
location.

"This office is dusty and probably hasn’t been used for
 many years."
 DESCRIBE desk.

SAYSAYSAYSAY

The SAY statement will output a short description of what is referred to by the
what part. If it refers to an entity (a LOCATION, OBJECT or ACTOR) it will
print the name of that entity or execute its MENTIONED clause if one is available.
If it refers to an attribute it will print its value (integer or string). Parameter names
are also allowed in the SAY statement, which, of course will result in a short
description of the entity to which it is bound, or a printing of the literal (if the
parameter was a STRING or INTEGER parameter).

IF contents OF bottle > 0 THEN
 "In the bottle there are still"
 SAY contents OF bottle.
 "litres of water left."
 ELSE
 "The bottle is empty."
 END IF.

LISTLISTLISTLIST

The LIST statement lists all objects in a container together with the header as
specified for the container. If the container is empty the statements in the empty
clause of the container are executed instead.

"The chest is heavy."
IF chest IS open THEN
 LIST chest.
END IF.

3.15.2.3.15.2.3.15.2.3.15.2. Special StatementsSpecial StatementsSpecial StatementsSpecial Statements

QUITQUITQUITQUIT

QUIT prints a question giving the player the choice of restarting the game, re-
loading a previously saved game or to quit. Any scoring or other printouts have to
be made explicitly before executing the QUIT statement.

LOOKLOOKLOOKLOOK

LOOK describes the current location and what it contains. The DESCRIPTION
part for the location is executed, which may include describing objects or actors by
explicitly executing DESCRIBE statements. Then objects and actors that have not
already been described will automatically be described.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 48484848

SAVE AND RESTORESAVE AND RESTORESAVE AND RESTORESAVE AND RESTORE

SAVE saves the game on a file for later use with RESTORE. Both save and restore
asks for a file name to use for storing and restoring.

If the player should be shown the current surroundings after a RESTORE, you will
have to implement a player verb like

VERB oops
 DOES
 RESTORE.
 LOOK.
 END VERB oops.

SCORESCORESCORESCORE

SCORE is a way of rewarding the player by giving points for certain actions. This is
done using the statement

SCORE points.

for example

SCORE 25.

The first time every such statement is executed the points given are added to the
player’s current score. SCORE without any arguments prints a message indicating
the current accumulated score.

Note: The SCORE statements assume a simple model of scoring; a number of
actions are necessary to complete the game and all those are necessary to
achieve the maximum number of points. For adventures having a more
complex and varied scoring system (particularly if the game can be
successfully finished without performing all scoring actions or in multiple
ways) manual scoring should instead be implemented using attributes (e.g. on
the player) and suitable manipulation and test statements.

VISITSVISITSVISITSVISITS

The VISITS statement changes the number of times a location can be visited
before the long description is presented again:

VISITS count.

The value of the argument (count) controls the number of visits to a particular
location between full descriptions. The default setting (0) indicates that every time
a particular location is visited its full description will be shown (which can also be
expressed as: the full description will not be shown 0 times in between). Thus, a
setting of 1 (one) would give a full description every second time the same location
is visited. So

VISITS 0.

will always show long descriptions (this is also the initial setting).

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 49494949

Note: The familiar VERBOSE, BRIEF etc. commands can be imitated using
different values in the VISITS statement.

3.15.3.3.15.3.3.15.3.3.15.3. Manipulation StatementsManipulation StatementsManipulation StatementsManipulation Statements

LOCATELOCATELOCATELOCATE

The LOCATE statement is a way of transferring objects and actors. When ex-
ecuted, the indicated object or actor will be placed at the location given. For a
description on how to specify where, see WHERE Specifications on page 52.
When an actor is located at a new location the DOES clause of that location is
always executed.

One special case of the LOCATE statement is when the predefined actor HERO is
located somewhere. This is analogous to what happens when the player types in a
direction, i.e. the player is located at the appropriate location. Under particular
circumstances, you may want to locate the player at a different location as a side
effect of another action. For example:

EVENT explosion
 "Suddenly the door seems to bulge outwards, it bursts
 open throwing rocks and splinters everywhere. The
 impact of the explosion literally throws you back
 out in the hallway."
 LOCATE HERO AT hallway.
 END EVENT explosion.

In this case the new location will be described and the DOES clause of that location
executed.

Another special case is when locating something inside a container. The LOCATE
statement will then cause the execution of the limits of that container, and if any of
the limits are exceeded the complete player turn is aborted immediately, resulting in
that no more statements are executed. So if a player command should result in the
location of an object inside a container, a good thing is to place the LOCATE
statement as early as possible, as this enforces the limit checks in the beginning of
this player turn.

EMPTYEMPTYEMPTYEMPTY

The EMPTY statement locates all objects in the given container (or object or actor
with the CONTAINER property) at a certain place. The meaning of the where part
is as for LOCATE.

EMPTY inventory HERE.
 "You seem to have lost most of your possessions. Well,
 you can’t have everything."
 LOCATE hero AT restart_point.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 50505050

3.15.4.3.15.4.3.15.4.3.15.4. Event StatementsEvent StatementsEvent StatementsEvent Statements

SCHEDULESCHEDULESCHEDULESCHEDULE

SCHEDULE means that the named event will occur at the specified location after
the number of moves specified by the expression.

SCHEDULE ringing AT clock AFTER 60 - minutes OF clock.

The number of moves can be zero, i.e. AFTER 0 means that the event will occur
now (during this player turn). If no location is specified, HERE is assumed, i.e. it
will be executed at the current location, the location where the statement itself was
executed.

The semantics of specifying the location (where) as AT id, where the identifier
represents an object or an actor, is that wherever that object or actor is when the
event occurs, the event will be executed at that place.

Executing a second SCHEDULE statement for the same event before it has oc-
curred will reschedule the event to the new time. So an event can only be scheduled
for one execution at a time.

CANCELCANCELCANCELCANCEL

CANCEL will remove the event referenced from the queue of scheduled events.

EVENT ticking
 "Tick..."
 IF timer OF bomb = 0 THEN
 SCEHDULE explosion AFTER 1.
 ELSE
 DECREASE timer OF bomb.
 SCHEDULE ticking AFTER 1.
 END IF.
 END EVENT ticking.

 VERB defuse
 DOES
 CANCEL ticking.
 CANCEL explosion.
 "Phuuui! That was close."
 END VERB defuse.

 START AT office.
 "The bomb is ticking..."
 SCHEDULE ticking AFTER 1.

3.15.5.3.15.5.3.15.5.3.15.5. Assignment StatementsAssignment StatementsAssignment StatementsAssignment Statements
There are a number of statements for changing values of attributes.

MAKEMAKEMAKEMAKE

The MAKE statement is used to set or reset boolean attributes.

MAKE door open.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 51515151

INCREASE AND DECREASINCREASE AND DECREASINCREASE AND DECREASINCREASE AND DECREASEEEE

The INCREASE and DECREASE statements modifies the values of numeric
attributes by increasing or decreasing them by the value of the expression given in
the optional BY clause. If no BY clause is specified the attributes are changed by 1
(one).

INCREASE level OF bottle BY contents OF mug.
DECREASE lives OF HERO.

SETSETSETSET

The SET statement is used when assigning values to numeric or string valued
attributes.

SET mood OF king_tut TO 3.
SET hour OF clock TO hour OF clock + 1.

3.15.6.3.15.6.3.15.6.3.15.6. Conditional StatementsConditional StatementsConditional StatementsConditional Statements
In Alan there are two conditional statements, the common IF statement and the
DEPENDING ON statement.

IFIFIFIF

The IF statement is essential for being able to vary the output and otherwise
change the activities in the game. The expression is evaluated (see Expressions on
page 53 for details and examples of expression) and if it evaluates to true, the
statements following the THEN are executed. Otherwise the expressions in any
following ELSIF clauses are evaluated (in order) and the statements following the
first expression that results in a true value is executed. If none of the expressions in
the ELSIF clauses evaluated to true, or there are no ELSIF clauses, the
statements following the ELSE are executed. The ELSE clause is optional.

IF minute OF clock = 59 THEN
 SET minute OF clock TO 0.
 INCREASE hour OF clock.
ELSE
 INCREASE minute OF clock.
END IF.

IF level OF bottle = 0 THEN
 "You have no water"
ELSIF level OF bottle < 5 THEN
 "You have almost no water left."
ELSE
 "You have plenty of water."
END IF.

DEPEDEPEDEPEDEPENDING ONNDING ONNDING ONNDING ON

The DEPENDING ON statement is a provided to select one of a number of
possible conditional cases depending on an expression. A simple example of the
DEPENDING ON statement is:

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 52525252

DEPENDING ON weight OF OBJECT
 = 1 : "light as a feather"
 BETWEEN 2 AND 10 : "carryable"
 BETWEEN 10 AND 20 : "heavy"
 > 20 : "immobile"
 ELSE : "weightless"
END DEPENDING.

The meaning of this example is to test the weight OF OBJECT and select one
of the cases depending on that. If it is equal to one the first case will be executed. If
none of the cases catch the optional ELSE case will be executed (in this case it will
only be executed for weights of zero or less).

The cases are tested in the order specified and at most one will be executed. In the
example, weight 10 will render as "carryable".

3.15.7.3.15.7.3.15.7.3.15.7. Actor StatementsActor StatementsActor StatementsActor Statements
The USE statement starts execution of a given script for a given actor. It is possible
to leave out the FOR id -part when writing code within a certain actor; in this
case the actor that the code is in is assumed.

USE SCRIPT playing FOR george.

3.16.3.16.3.16.3.16. WHERE SWHERE SWHERE SWHERE SPECIFICATIONSPECIFICATIONSPECIFICATIONSPECIFICATIONS
Many constructs in the Alan language require a specification of where the construct
should operate. The general intention of a where specification is to return a
location. The meaning of the different constructs is as follows

• HERE is the location where the current activity is performed. Normally this
means where the hero is, but if the expression is evaluated in an event scheduled
at a particular place, that place is HERE, and the same applies to activities
performed by other actors and for expressions within rules. Note that this is
equivalent to AT LOCATION.

• NEARBY means any adjacent location, adjacent meaning that there exists an
exit from the other location to HERE (note that the direction is from NEARBY
to HERE).

• AT what means at the location of the entity referenced by the what
specification (see WHAT Specifications on page 53).

• IN what must refer to a container and the expression refers to inside of that
container.

Note: Not all kinds of where specifications are meaningful in all constructs
requiring a where specification. An example is NEARBY which, of course, is
not allowed in a LOCATE statement as this needs a definite location to
locate to, and NEARBY is not specific. Instead, NEARBY is useful in IF
statements to see if the monster is somewhere near.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 53535353

3.17.3.17.3.17.3.17. WHAT SWHAT SWHAT SWHAT SPECIFICATIONSPECIFICATIONSPECIFICATIONSPECIFICATIONS
Constructs in the grammar for the Alan language often refer to some entity defined
in the Alan source. This is generally called a what specification, as it specifies what
the construct refers to. The what specification may have the following forms

• OBJECT refers to the first parameter, i.e. the first object or actor referred to by
the player in the input as described by the syntax. Normally this is intended for
use with verbs relying on the default syntax handling; for verbs where a
SYNTAX construct is specified the identifiers for the parameters should be
used instead (the use of syntax declarations is strongly advised).

Note: If OBJECT is used in an expression no compile time checks can be made on
class restrictions which might lead to run-time errors when referring the first
parameter. The use of OBJECT in expressions might not be forward
compatible.

• ACTOR is always set to the actor currently active and this also applies to
expressions and statements within rules as these are run once for each actor.

• LOCATION is the current location, i.e. the location where the current activity
is performed. This is normally the location where the hero is, but may also be
where an event is executed or where the actor currently executing (other than
the hero) is.

• An identifier, id, refers to the entity with that name, or a syntax parameter
with that name. A syntax parameter may have the same name as an entity
declared elsewhere in the source in which case the parameter overrides the
entity.

Note: Not all kinds of what specifications are meaningful in all contexts. For
example it is not possible to use LOCATION (nor an identifier referring to a
location) as the what-part of a LOCATE statement.

3.18.3.18.3.18.3.18. EEEEXPRESSIONSXPRESSIONSXPRESSIONSXPRESSIONS
The grammar for Alan also refers to expression. This is a generic name for a
number of constructs yielding a value.

3.18.1.3.18.1.3.18.1.3.18.1. Types Of ExpressionsTypes Of ExpressionsTypes Of ExpressionsTypes Of Expressions
Expressions are needed e.g. in IF and SET statements. The IF statement requires
a boolean expression, i.e. an expression yielding a true or false value, while the SET
statement needs a numeric or a string value. Some types of expressions return a
value referring to an entity (an object, an actor or a location) in the Alan source as
is, for example, the case with an identifier bound to a parameter allowing actors or
objects. So, the possible types of expressions in Alan are

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 54545454

• integers

• strings

• boolean

• entities

3.18.2.3.18.2.3.18.2.3.18.2. Literal ValuesLiteral ValuesLiteral ValuesLiteral Values
A single integer (e.g. 42) is of course a numeric expression.

The expression RANDOM integer TO integer is also a numeric value
that is randomly selected between and including the two integers.

SET eyes OF first_die TO RANDOM 1 TO 6.

A string can be used in expressions and then represents a string value, e.g.

SET password OF terminal TO "xyzzy".

3.18.3.3.18.3.3.18.3.3.18.3. Logical ExpressionsLogical ExpressionsLogical ExpressionsLogical Expressions
The AND and OR operators are standard binary boolean operators. AND has higher
priority, but parenthesis may be used to change the order of evaluation.

IF kalif HERE AND mood OF sultan IS 0 THEN ...

3.18.4.3.18.4.3.18.4.3.18.4. Binary OperatorsBinary OperatorsBinary OperatorsBinary Operators
All binary operators (plus, minus, multiplication, division) may be used on integer
expressions. The result is another integer expression. The exact set of available
operators are

+, -, *, /

3.18.5.3.18.5.3.18.5.3.18.5. Relational OperatorsRelational OperatorsRelational OperatorsRelational Operators
Relational operators (=, <, >, <=, >=, meaning: equals, less than, greater than, less
than or equal, greater than or equal respectively) are used to compare expressions.
The result is TRUE or FALSE and may be negated by using an optional NOT.

IF temperature OF oven NOT > 100 THEN...
 IF weather OF world NOT < protection OF hero THEN...

Comparing two string expressions using the binary operator ‘=’ will make a case
insensitive comparison, i.e. it will give a true value if the strings are the same
without considering the case of the characters. The special identity operator, ‘==’,
only works on strings and compares the strings for an exact match (i.e. considering
character case).

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 55555555

There is also a string containment operator, CONTAINS, which can be used to test
if a string contains another string. The test ignores any differences in character case.
An expression which would give a TRUE value is

"A string" CONTAINS "a S"

An optional NOT (before CONTAINS) can be used to reverse the test.

Two identifiers referring to entities may be compared with the ‘=’ and ‘<>’
operators, and may be used to test if a parameter refers to a particular entity or the
same as another parameter. For example

SYNTAX put_in = ’put’ (o) ’in’ (c)
 WHERE c ISA CONTAINER
 ELSE "You can’t put anything in the $2"
VERB put_in
 CHECK o <> c
 ELSE "That would be a good trick if you could
 do it!!"
DOES ...

Relational operations are not allowed on entities or strings, nor is it possible to
compare values of different types.

A special relational operator is the BETWEEN operator which makes it possible to
test if a numeric expression is within a range of values. For example

IF level OF water BETWEEN 2 AND capacity OF bottle THEN
...

3.18.6.3.18.6.3.18.6.3.18.6. The Value Of The Value Of The Value Of The Value Of AttributesAttributesAttributesAttributes
Expressions following the pattern

primary IS something

are used to test the setting of boolean attributes of the entity referred to by
something (which is a what specification). For example

IF bottle IS empty THEN ...

The test can be reversed by adding a NOT:

IF hero IS NOT hungry THEN...

To get the value of a numeric or string attribute expressions following the pattern

ID ‘OF’ what

are used.

IF s = password OF terminal THEN ...
"You have" SAY capacity OF bottle. "sips left."

3.18.7.3.18.7.3.18.7.3.18.7. The Whereabouts Of An EntityThe Whereabouts Of An EntityThe Whereabouts Of An EntityThe Whereabouts Of An Entity
The expression

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 56565656

primary optional_not where

is used to test if a particular entity, as specified by the what, is (or is not), at the
place indicated by the where, as in

IF bottle IN inventory THEN ...

or

IF HERO NEARBY THEN ...

3.18.8.3.18.8.3.18.8.3.18.8. AggregatesAggregatesAggregatesAggregates
Aggregates are functions to calculate values from sets of other values.

COUNT counts the number of objects at the specified place, e.g.

"You are carrying"
SAY COUNT IN inventory.
"things."

The SUM and MAX aggregates return the sum and the maximum value respectively
of an attribute of all objects at the specified location. This implies that the attribute
must be a default object attribute in order to ensure that the attribute is available for
all objects. For example

IF SUM OF weight AT bridge > 500 THEN ...
IF MAX OF size IN inventory > size OF small_door THEN
...

The last example could be adopted to make various restrictions in the possible
travels of the hero.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 57575757

4.4.4.4. LEXICAL DEFINITIONSLEXICAL DEFINITIONSLEXICAL DEFINITIONSLEXICAL DEFINITIONS

4.1.4.1.4.1.4.1. CCCCOMMENTSOMMENTSOMMENTSOMMENTS
Comments may be placed anywhere in the Alan source. A comment is opened by
double hyphens (’--’) and extends to the end of the line.

-- This is a comment

4.2.4.2.4.2.4.2. IIIIDENTIFIERS DENTIFIERS DENTIFIERS DENTIFIERS AAAAND ND ND ND NNNNAMESAMESAMESAMES
Words used as identifiers in an Alan source may only be composed of letters, digits
and underscores. The first character must be a letter.

identifier = letter (letter | digit | underscore)*

In order to be able to use reserved words as identifiers (e.g. for verbs) there is also a
second kind of identifier, namely the quoted identifier.

quoted_identifier = single_quote any_character+
single_quote

A quoted identifier starts and ends with single quotes and may contain any
character except quotes (including spaces). It may be used to make an identifier out
of a reserved word such as LOOK. This may be useful in the definition of the verb
LOOK that then would look like:

VERB ’look’
 DOES
 LOOK.
END VERB ’look’.

Note that normal identifiers are always translated to lower case before making any
comparisons so it does not matter how you (or the player) write them (although it
is easier to read if the same kind of editing is used for the same kind of words).
Quoted identifiers are not changed at all, so they must always be written identically.
They may also contain spaces, which make them useful as long names for locations
as in

LOCATION pluto NAME ’At the Rim of Pluto Crater’
 DESCRIPTION
 ...

One single quoted identifier is used as the whole name of the location so as to
preserve editing and avoiding clashes with the reserved words AT and OF.

Note: Do NOT use a single quoted identifier as the name for anything other than
locations, as the words in objects and actor names are analysed separately and
assumed to be adjectives (except for the last, which is a noun). Only quote
separate words to avoid clashes with reserved words.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 58585858

Be careful when using quoted identifiers, especially if the player is supposed to use
the word. A player can not input words containing upper case characters,
underscores, spaces or other special characters or separators.

Note: To get a single quote within a quoted identifier repeat it (‘Tom’’s Diner’).

Some of the identifiers in an Alan description are by default used as player words.
This is for example the case with verb names (unless a SYNTAX statement has been
declared for the VERB) and object names (unless a NAME clause has been used). If
these contain special characters the player can not enter them.

4.3.4.3.4.3.4.3. NNNNUMBERSUMBERSUMBERSUMBERS
Numbers in Alan are only integers and thus may consist only of digits.

number = digit+

4.4.4.4.4.4.4.4. SSSSTRINGSTRINGSTRINGSTRINGS
The string is the main lexical component in an Alan source. This is how you
describe the surroundings and events to the player. Strings, therefore, are easy to
enter and consist simply of a pair of double quotes surrounding any number of
characters. The text may include newline characters and thus may cover multiple
lines in the source.

string = ’"’ any_character+ ’"’

When processed by the Alan compiler, any multiple spaces, newlines and tabs will
be compressed to one single space as the formatting to fit the screen is done
automatically during execution of the game (except for embedded formatting
information, as specified in OUTPUT STATEMENTS on page 46). You may
therefore write your strings any way you like; they will always be neatly formatted
on the player’s screen.

Note: As strings may contain any character a missing double quote may lead to
many seemingly strange error messages. If the compiler points to the first
word after a double quote and indicates that it has deleted a lot if IDs
(identifiers), this is probably due to a missing end quote in the previous
string.

Note: To get a double quote within strings repeat it ("The sailor said
""Hello!"".").

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 59595959

4.5.4.5.4.5.4.5. FFFFILESILESILESILES
It is possible to write one adventure using many source files, having different parts
in different files, and thus giving an opportunity for some rudimentary kind of
modularisation. The method for this is the $include construct.

include = ’$INCLUDE’ quoted_identifier

where the quoted identifier is the name of the file to include. The $include may
be placed anywhere in a file and the effect will be the same as if the contents of the
named file had been inserted at that position in the file. Includes may be nested.

An included file is searched for first in the current directory and then in any of the
directories indicated using the includeincludeincludeinclude switch as described in Compiler Switches on
page 110, this search is performed in the same order as the inininincludecludecludeclude switches
occurred on the command line.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 60606060

5.5.5.5. EXECUTION OF AN ADVEEXECUTION OF AN ADVEEXECUTION OF AN ADVEEXECUTION OF AN ADVENTURENTURENTURENTURE

5.1.5.1.5.1.5.1. A TA TA TA TURN URN URN URN OOOOF F F F EEEEVENTSVENTSVENTSVENTS
The player in a way controls the execution of an Alan adventure. Each of his inputs
are taken care of and acted upon by the run-time system. The execution of an Alan
adventure starts by executing the start section. Then the player is prompted for a
command.

The player input is analysed according to the explicit and implicit syntax rules and
converted to an execution of verb bodies (global and in possible parameters) or exits
(in case of directional commands).

After the players command has been taken care of all rules are evaluated and
possibly executed. Then each of the other actors executes one step (if active) and
for each actor the rules are evaluated again. Finally any events that are scheduled are
fired before prompting the player again.

So to summarise:

get and execute a player command
evaluate all rules
for each actor
 execute one step (if active)
 evaluate all rules as above
end
check for and execute any pending events

Then the user is prompted for another command and everything is repeated.

A player command may be either a verb or a direction. A verb is executed by
checking the syntax of the input, performing any preconditions (checks) and then
executing the verb bodies (as described in Verbs on page 33). A directional
command is executed by finding any exit in that direction, evaluating the checks and
the body (if any) of that exit and locating the hero at the new location.

5.2.5.2.5.2.5.2. PPPPLAYER LAYER LAYER LAYER IIIINPUTNPUTNPUTNPUT
The syntax defined in the Alan source is the basis for what the player is allowed to
input. Commands with these formats form the basic statements available to the
player. In addition the following combinations and variations are possible:

• concatenating of statements using AND or THEN, like
 > open the door then enter

• the use of IT to refer to the last object mentioned in the previous command,
e.g.
 > take the book and read it

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 61616161

• references to multiple objects using AND, this allows
 > take the blue vase and the pillow

• reference to multiple objects using ALL or EVERYTHING
 > drop all

• excluding objects using BUT or EXCEPT, like:
 > wear everything except the bowler hat

• the use of THEM to refer to the multiple objects referenced in the last
command, e.g.
 > remove the hat and the scarf then drop them

The reference to multiple objects (or actors) in a position is, of course, only allowed
if the adventure author has allowed it by using a multiple indicator in the syntax
definition (see Syntax Definitions on page 30). The variations above are built in
and handled automatically by the run-time system.

The interpreter also automatically restricts parameter references to objects and
actors at the current location. I.e. the player can only refer to objects and actors that
are present in his input. The one single exception is if the syntax for the command
uses the omnipotent ’!’ indicator, see Syntax Definitions on page 30 for details. For
hints on other ways to allow references to objects and actors that are not at the
current location, refer to Distant & Imaginary Objects on page 73.

The use of ALL results in the execution of the appropriate verb for all objects at
the current location, except the ones that does not pass all checks for the verb (see
Verbs on page 33 for further details on this).

Another restriction placed on the player input by the interpreter is that the words
the player is allowed to use can only contain alphabetic characters. This must be
kept in mind when naming verbs that use the default syntax (an explicit SYNTAX
statement can always specify other player words to trigger the verb).

5.3.5.3.5.3.5.3. RRRRUNUNUNUN----TIME TIME TIME TIME CCCCONTEXTSONTEXTSONTEXTSONTEXTS
When the player enters a command the Alan run-time system evaluates the various
constructs from the adventure description (source) as described above. Depending
on the player’s command evaluation of different parts of the adventure may be
triggered. These parts all have different conditions under which they are evaluated
and also have different contexts. Four different execution contexts can be identified:

• execution of a verb, during the execution of a verb (the syntax and verb checks
and the verb bodies), which is the result of the player entering a command that
was not a directional command, parameters are defined and may be referenced
in the statements and expressions. Also the ACTOR is set to the hero and
LOCATION to the location where the hero is (HERE refers to the location of
the hero).

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 62626262

• execution of descriptions, these are started as the response to a directional
command, a LOOK or DESCRIBE statement, or a LOCATE statement
operating on the hero. During this no parameters are defined, ACTOR is set as
above, and LOCATION of course to the current (or new) location. The
description clauses for objects and locations as well as the DOES part of
locations are evaluated in this context. DOES-parts are executed for all actors
entering a location with ACTOR set to the current actor.

• execution of actors and rules, each actor performs his step and after each actor
all rules are executed. In these contexts no parameters are defined but ACTOR is
set to the actor that is executing or was executing immediately preceding the
rules. So you could say that rules are run for each actor, and LOCATION is set
to that of the executing actor (HERE refers to where the executing actor is).

• execution of events, no parameters and no actor is defined. The location is set
to where the event was scheduled to be executed (see also EVENT
STATEMENTS on page 50).

So the execution of various parts of the adventure source can also be said to have a
number of different focuses, meaning where the action is considered to take place:

• the hero - the actions of the player are always focused on the hero and the
actions performed are always related to where the hero is

• an actor - steps executed by an actor are always focused where the actor is

• an event - code executed in events are focused where the event was specified to
take place (see EVENT STATEMENTS on page 50).

• a rule - rules are executed once after each actor (including the hero) with the
focus set to where that actor is

5.4.5.4.5.4.5.4. MMMMOVING OVING OVING OVING AAAACTORSCTORSCTORSCTORS
The main way to move actors is the exits (see Locations on page 37). They, of
course, only apply to the hero, but are executed if the player inputs a directional
command, i.e. a word defined as the name for an exit in any location. First the
current location is investigated for an exit in the indicated direction, if there is none
an error message is output. Otherwise that exit is examined for CHECKs which are
run according to normal rules (see Verbs on page 33). If no CHECK was present or
if the check passed the statements in the body (the DOES-part) is executed. The
hero is then located at the location indicated in the exit header, which will result in
the description of the location (by executing the DESCRIPTION-clause of the
location) and any objects or actors present (by executing their DESCRIPTIONs).

When any actor (including the hero) is located at a location, the DOES-clause of
that location is executed as if the actor had moved into that LOCATION. The
actor that was moved will be the ACTOR even though the movement was not

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 63636363

caused by himself (but the result of an event, for example). So this is also the last
step in the sequence of events caused by locating the hero somewhere.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 64646464

6.6.6.6. HINTS AND TIPSHINTS AND TIPSHINTS AND TIPSHINTS AND TIPS
This chapter will give you some ideas about how the various features of Alan may
be used to implement common features in an Adventure game. These are only
suggestions and you are, of course, welcome to invent your own, but these are
probably some ideas that can get you started.

6.1.6.1.6.1.6.1. UUUUSE OF SE OF SE OF SE OF AAAATTRIBUTESTTRIBUTESTTRIBUTESTTRIBUTES
Attributes are primarily used for holding status information about the object, actor
or location to which it belongs. This allows, for example, the water bottle to
contain three levels of water.

OBJECT bottle
 HAS level 3.
 VERB drink
 DOES
 IF level OF bottle > 0 THEN
 DECREASE level OF bottle.
 ELSE
 "There is no more water in the bottle."
 END IF.
 END VERB drink.
END OBJECT bottle.

Another example is the broken mirror.

OBJECT mirror
 IS NOT broken.
 VERB break
 DOES
 MAKE mirror broken.
 END VERB break.
END OBJECT mirror.

The appropriate verbs defined in the objects may then modify the attributes and
thus update the status information.

But attributes defined for all objects also allow a kind of classification of the objects
(or locations or actors as appropriate). If the following declaration is made

OBJECT ATTRIBUTES
 NOT takeable.

then all objects receive the attribute “takeable” and if the attribute is not specifically
redeclared for an object it will not be takeable. Note however that the semantic
meaning of “takeable” must be implemented e.g. in the verb “take”:

VERB take
 CHECK OBJECT IS takeable
 ELSE "You can’t take the $o."
 DOES
 LOCATE OBJECT IN inventory.
END VERB take.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 65656565

In the same way restrictions concerning what is possible to eat, drink, open etc. may
be implemented. This use of attributes to classify objects is “action- oriented”, i.e.
they imply that a particular action (verb) is applicable to the object.

An alternate approach is to classify objects after their characteristics. Consider:

VERB take
 CHECK OBJECT IS NOT heavy
 ELSE "That is much too heavy."
 AND OBJECT IS NOT animal
 ELSE "The $o moves quickly away, just far enough
 for you not to reach it."
 DOES
 LOCATE OBJECT IN inventory.
END VERB take.

This approach is more “class-oriented” as the objects are classified and a verb is
possible to apply to certain classes of objects and not to others. This approach is
more elegant but is harder to keep track of as you introduce new objects (which
class or even classes does a new object belong to?).

6.2.6.2.6.2.6.2. DDDDESCRIPTIONESCRIPTIONESCRIPTIONESCRIPTIONSSSS
The attributes are also used when presenting information about status to the player.
The attributes are tested in IF-statements to modify the DESCRIPTIONs and
possibly even the short description in the MENTIONED sections. For example:

OBJECT mirror
 IS NOT broken.
 DESCRIPTION
 "On the wall there is a beautiful mirror with an
 elaborate golden frame."
 IF mirror IS broken THEN
 "Some moron has broken the glass in it."
 END IF.
 VERB break
 DOES
 MAKE mirror broken.
 END VERB break.
END OBJECT mirror.

To use this feature with the short descriptions makes the adventure feel a bit more
consistent.

OBJECT bottle
 HAS level 3.
 ARTICLE ""
 MENTIONED
 IF level OF bottle > 0 THEN
 "a bottle of water"
 ELSE
 "an empty bottle"
 END IF.
END OBJECT bottle.

> inventory
 You are carrying
 an empty bottle

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 66666666

6.3.6.3.6.3.6.3. CCCCOMMON OMMON OMMON OMMON VVVVERBSERBSERBSERBS
As your library of adventures grow you will find that some verbs are always needed,
and always function the same way. Examples are “take”, “drop”, “invent”, “look”,
“quit” and so on. It is advised to use an include file (see section 4.5 on page 59)
containing these verbs as well as their syntax definitions and any synonyms.
Attributes needed for these particular verbs could also be placed in a default
attribute declaration in this file.

All your adventures may then include this file, making these features immediately
accessible when you start a new adventure. All that this takes is some thought as to
what names to use for the attributes as discussed in Use of Attributes on page 63.

6.4.6.4.6.4.6.4. DDDDOORSOORSOORSOORS
Another common feature is the closed door. Here’s how to implement it.

OBJECT treasury_door AT hallway
 VERB open
 DOES
 MAKE treasury_door open.
 MAKE hallway_door open.
 END VERB open.
END OBJECT treasury_door.

LOCATION hallway
 EXIT east TO treasury
 CHECK treasury_door IS open
 ELSE "The door to the treasury is closed."
 END EXIT.
END LOCATION hallway.

OBJECT hallway_door AT treasury
 VERB open
 DOES
 MAKE treasury_door open.
 MAKE hallway_door open.
 END VERB open.
END OBJECT treasury_door.

LOCATION treasury
 EXIT west TO hallway
 CHECK hallway_door IS open
 ELSE "The door to the hallway is closed."
 END EXIT.
END LOCATION treasury.

Note that we need two doors, one at each location, but they are synchronised by
always making them both open or closed at the same time. The check in the
EXITs makes sure that the hero can not pass through a closed door.

6.5.6.5.6.5.6.5. CCCCONTAINERS AND ONTAINERS AND ONTAINERS AND ONTAINERS AND TTTTHEIR HEIR HEIR HEIR CCCCONTENTSONTENTSONTENTSONTENTS
Containers are either pure containers or objects or actors with the container
property. A pure container is always considered to be where the hero is. This means
that the inventory (what the hero is carrying), his clothes etc. are suitable to be pure
containers.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 67676767

For a container to be directly manipulable by the player it must be an object (or
actor). This means that it always is located at a particular location in the same way
as other objects. A container (in the following the term container is used to refer to
objects with the container property) is always open, i.e the objects it contain are
always accessible.

To be able to “close” a container, i.e. to make it impossible for the hero to take or
see things inside a container, the following technique may be used (other techniques
may be possible and even better!). Create an extra object with the container
property, this container is used as a temporary storage for objects in the first
container (the one the player is seeing). Place this at a location not accessible to the
player (the limbo location Nowhere always comes in handy!).

The verbs “open” and “close” then get the following definition within the object:

OBJECT chest AT treasury
 CONTAINER
 IS NOT open.

 VERB close
 DOES
 MAKE chest NOT open.
 EMPTY chest IN chest_contents.
 END VERB close.

 VERB open
 DOES
 MAKE chest open.
 EMPTY chest_contents IN chest.
 "Opening the chest reveals its contents."
 LIST chest.
 END VERB open.
END OBJECT chest.

The trick used here is to make all the things in the container disappear when it is
closed. To do this, the extra container chest_contents is used as a
temporary holding place for the things inside the chest. Note that we need to make
chest_contents an actual object since pure containers are always accessible
(they are where the hero is!). When the chest is opened again we simply empty the
contents of the chest_contents container into the chest, and Voila!

6.6.6.6.6.6.6.6. AAAACTORSCTORSCTORSCTORS
Actors are a vital component to make a story dynamic. They move around and act
according to their scripts. To make the player aware of the other actor’s actions they
need to be described. This must be done so that the player always get the correct
perspective on the actions of the actors.

A way to ensure this is to rely on the fact that output statements are not shown
unless the hero is at the location where the output is taking place. This means that
for every actor action, especially movement, you need to first describe the actions,
then let the actor perform them and, finally, possibly describe the effects.

An example is the movement of an actor from one location to another. In this case
the step could look something like

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 68686868

"Charlie Chaplin goes down the stairs to the hallway."
LOCATE charlie_chaplin AT hallway.
"Charlie Chaplin comes down the stairs and
 leaves the house through the front door."
LOCATE charlie_chaplin AT outside_house.
"Charlie Chaplin comes out from the nearest house."

An actor is described, for example, when a location is entered or as the result of a
LOOK, in the same way as objects are. This means that a good idea is to include
the description of an actor’s activities in the description of him. One way to do this
would be to use attributes to keep track of the actors state and test these in the
description clause.

ACTOR george NAME George Formby
 IS
 NOT cleaning_windows.
 NOT tuning.
 DESCRIPTION
 IF george IS cleaning_windows THEN
 "George Formby is here cleaning windows."
 ELSIF george IS tuning THEN
 "George Formby is tuning his ukelele."
 ELSE
 "George Formby is here."
 END IF.
...

Although quite feasible, this is a bit tedious. As, at least a part of, the state is
indicated by the script the actor is executing, this could be used to avoid the
potentially large IF-chain. The optional descriptions tied to each script will be
executed instead of the main description when the actor is following that script. So
this would allow

ACTOR george NAME George Formby
 DESCRIPTION
 "George Formby is here."
 SCRIPT cleaning.
 DESCRIPTION
 "George Formby is here cleaning windows."
 STEP
 ...
 SCRIPT tuning.
 DESCRIPTION
 "George Formby is tuning his ukelele."
 STEP
 ...
...

This makes it easier to keep track of what an actor is doing. Another hint here is to
describe the change in an actor’s activities at the same time as executing the USE
statement, like

EVENT start_cleaning
 USE SCRIPT cleaning FOR george.
 "All of a sudden, George starts to clean the windows."
END EVENT.

This makes the descriptions of changes to be shown when it takes place and the
description of the actor is always consistent. You can, of course, still have attributes
describing the actor’s state to customize the description of the actor on an even
more detailed level, but it generally suffices to describe an actor in terms of what
script he is executing.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 69696969

6.7.6.7.6.7.6.7. DDDDISTANT ISTANT ISTANT ISTANT EEEEVENTSVENTSVENTSVENTS
A slight problem with the feature that output is not visible unless the hero is
present, is that a description of an event might not always be presented to the
player.

EVENT explosion
 "A gigantic explosion fills the whole room with smoke
 and dust. Your ears ring from the loud noise. After
 a while cracks start to show in the ceiling,
 widening fast, stones and debris falling in
 increasing size and numbers until finally the
 complete roof falls down from the heavy explosion."
 MAKE LOCATION destroyed.
END EVENT.

If the hero isn’t at the location where the event is executed, he will never know
anything about what has happened. The solution is to create an event that goes of
where the hero is.

EVENT distant_explosion
 "Somewhere far away you can hear an explosion."
END EVENT.
...
IF HERO NEARBY THEN
 SCHEDULE distant_explosion AT HERO AFTER 0.
...

6.8.6.8.6.8.6.8. VVVVEHICLESEHICLESEHICLESEHICLES
The current version of Alan does not support actors being inside containers or
inside other actors, which could be a straight forward way to implement vehicles.
However, as the reader/player does not need to know how the output is generated
we can use a location and a row of events to substitute for the vehicle. Try the
following complete example:

SYNONYMS
 car = ferrari.

SYNTAX
 drive = drive.
 park = park.

SYNTAX l = l.

VERB l
 DOES
 LOOK.
END VERB.

LOCATION garage
END LOCATION.

LOCATION parking_lot NAME 'Large Parking Lot'
END LOCATION.

OBJECT car NAME little red sporty ferrari
 AT garage
 IS
 NOT running.
 HAS

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 70707070

 position 0.

 VERB enter
 DOES
 LOCATE hero AT inside_car.
 END VERB enter.

END OBJECT car.

LOCATION inside_car NAME 'Inside the Ferrari'
 DESCRIPTION
 "This sporty little red vehicle can really take you
 places..."

 EXIT out TO inside_car -- just a dummy, since we are
 -- going to change it below
 CHECK car IS NOT running
 ELSE "I think you should stop the car before
getting
 out..."
 DOES
 IF position OF car = 0 THEN
 LOCATE hero AT garage.
 ELSIF position OF car = 1 THEN
 LOCATE hero AT parking_lot.
 --- Etc.
 END IF.
 END EXIT.

 VERB drive
 CHECK car IS NOT running
 ELSE "You are already driving it!"
 DOES
 "You start the car and drive off."
 MAKE car running.
 SCHEDULE drive1 AFTER 1.
 END VERB drive.

 VERB park
 CHECK car IS running
 ELSE "You are not driving it!"
 DOES
 "You slow to a stop and turn the engine off."
 MAKE car NOT running.
 CANCEL drive1. CANCEL drive2. --- Etc.
 END VERB park.
END LOCATION inside_car.

EVENT drive1
 "You drive out from your garage and approach a large
parking lot."
 SET position OF car TO 1.
 LOCATE car AT parking_lot.
 SCHEDULE drive2 after 1.
END EVENT drive1.

EVENT drive2
 "You drive out from the parking lot and approach your
 own garage."
 SET position OF car TO 0.
 LOCATE car AT garage.
 SCHEDULE drive1 after 1.
END EVENT drive2.

START AT garage.

The main idea is that the player/reader is inside the car, and the events are executed
at this location thus emulating movement. It is possible to exchange the events for

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 71717171

script steps and the car object for an actor. However as the car object is not where
the hero is (’inside_car’) the output from the scripts will not be shown. There are
(at least) two different ways to deal with this (one involving attributes, the other
involving an extra object), but the solutions are left as an exercise to the reader!

Sincere thanks go to Walt (sandsquish@aol.com) for inspiring communication that
brought this example to life.

6.9.6.9.6.9.6.9. QQQQUESTIONS AND UESTIONS AND UESTIONS AND UESTIONS AND AAAANSWERSNSWERSNSWERSNSWERS
Sometimes it may be necessary to ask the player for an answer to some question.
One example is if you want to confirm an action. The following example delineates
one simple way to do this, which could be adopted for various circumstances.

ACTOR hero IS NOT quitting.
END ACTOR hero.

SYNTAX
 'quit' = 'quit'.
 yes = yes.

SYNONYMS
 y = yes.
 q = 'quit'.

VERB 'quit' DOES "Do you really want to give up?
 Type 'yes' to quit, or to carry on
 type your next command."
 MAKE hero quitting.
 SCHEDULE unquit AFTER 1.
END VERB 'quit'.

VERB yes CHECK hero IS quitting
 ELSE "That does not seem to answer any
question."
 DOES QUIT.
END VERB yes.

EVENT unquit MAKE hero NOT quitting.
END EVENT unquit.

Thanks to Tony O'Hagan (aoh@maths.nott.ac.uk) for this excellent idea.

6.10.6.10.6.10.6.10. FFFFLOATING LOATING LOATING LOATING OOOOBJEBJEBJEBJECTSCTSCTSCTS
Floating objects is a term used for objects that are available everywhere or at least at
many places. Usually they are available wherever the hero is.

Examples of floating objects are the air, the ground and such semi-abstract objects.
But sometimes you also need to make actual objects be floating objects such as parts
of the heroes body.

To create floating objects you can use a particular feature of containers, namely the
fact that they are always located where the hero is.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 72727272

Note: This only applies to containers that are pure containers, for objects and
actors that have the container property this does not apply of course. See
Containers on page 41 for a discussion.

So to have the hero’s body parts and the air and the sky to be available wherever the
hero goes you can use:

CONTAINER body_parts
END CONTAINER body_parts.

CONTAINER outdoor_things
END CONTAINER outdoor_things.

OBJECT right_arm NAME right arm IN bocy_parts ...
OBJECT head NAME head IN body_parts ...
OBJECT sky IN outdoor_things ...
OBJECT air IN outdoor_things ...

Of course you would not want the outdoor things to be available when you are
indoors, but this can be fixed in a way similar to the container contents trick shown
in Containers and Their Contents on page 66. Simply create a container object and
place it where the hero can never be:

OBJECT outdoor_things_storage AT limbo
 CONTAINER
END OBJECT outdoor_things_storage.

WHEN location IS outdoors =>
 EMPTY outdoor_things_storage IN outdoor_things.
WHEN location IS NOT outdoors =>
 EMPTY outdoor_things IN outdoor_things_storage.

And Voila’, every time the hero arrives at an outdoor location he will find the air
and the sky. And every time he enters a location that has the attribute outdoors
set to false he will not find them available.

Well, perhaps he would like to have the air available indoors too, but that is left as
an exercise for the reader...

6.11.6.11.6.11.6.11. DDDDARKNESS AND ARKNESS AND ARKNESS AND ARKNESS AND LLLLIGHT IGHT IGHT IGHT SSSSOURCESOURCESOURCESOURCES
A very common puzzle in old time adventures (so much so that it has possibly been
exploited beyond its potential) is the problem of dark locations and finding a
source of light.

This puzzle can be implemented in Alan in a rather general way by using a default
object attribute, a default location attribute and a few additions to the descriptions
of the dark locations and the look verb.

Object Attributes
 lightsource 0.
 Location Attributes
 lit.

This will give all objects the value of 0 of the attribute lightsource. Any
object that provide light should set this to something larger than zero. The attribute

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 73737373

might of course change value dynamically, e.g. when the lamp is lit and
extinguished. We can thus sum all the values of the attribute lightsource at a
location and if the sum is above zero there is some light provided. So the look verb
could be reworked to:

Verb 'look'
 Does
 If Sum Of lightsource Here = 0
 And Location Is Not lit Then
 "You cannot see anything without any light."
 Else
 Look.
 End If.
 End Verb 'look'.

Of course we must also modify the dark locations:

Location indoors
 Is
 Not lit.
 Description
 If Sum Of lightsource Here > 0 Then
 "This is usually a very dark room. But in this
light
 you can see..."
 Else
 "You can not see anything in the dark."
 End If.
 Exit out To outdoors.
End Location.

Location outdoors
 Description
 "Out here in the sun you can see everything."
 Exit 'in' To indoors.
End Location.

So for every location which should be dark we must add the above test to the
description clause.

There is however still a small problem with this solution. Objects available at the
location are visible (described) as you enter the location. This must be taken care of,
e.g. by moving all objects present to a limbo location (analogous to the container
contents trick described in section 6.5 on page 66) in the dark part of the IF
statement, and back in the ELSE clause.

Thanks goes to Thomas Ally (Thomas_Ally@freenet.richland.oh.us) for
prompting this solution.

6.12.6.12.6.12.6.12. DDDDISTANT ISTANT ISTANT ISTANT & I& I& I& IMAGINARY MAGINARY MAGINARY MAGINARY OOOOBJBJBJBJECTSECTSECTSECTS
A feature introduced in v2.7 made the following section almost obsolete. The new
feature is the ability to refer to distant objects and actors (see Syntax Definitions on
page 30 for a discussion on the omnipotent ’!’ indicator). I.e. the previous
restriction that the player could only refer to objects and actors at the same location
was removed. However there are instances where it may still be required to separate
the handling of an object when it is present and when it is not, therefore this section

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 74747474

gives a few examples of what can be done using some trickery with the mechanisms
of Alan.

Sometimes you need to make it possible for the player to refer to things either far
away, that are not really objects or that may be at many places at once. Examples of
these are a distant mountain that may be examined through a set of binoculars, the
melody in “whistle the melody”, and water or walls.

For objects that should be visible from a distance the easiest method is to introduce
a ‘shadow object’. This is a second object acting on behalf of, or representing, the
distant object at the locations where it should be possible to refer to it. For example:

LOCATION hills
 :
END LOCATION hills.

OBJECT mountain AT hills
 :
END OBJECT mountain.

LOCATION scenic_vista NAME Scenic Vista
END LOCATION scenic_vista.

OBJECT shadow_mountain
 NAME distant mountain AT scenic_vista
 DESCRIPTION
 "Far in the distance you can see the Pebbly
 Mountain raising towards the sky."
END OBJECT shadow_moutain.

This would allow for example at scenic_vista:

Scenic Vista.
 Far in the distance you can see the Pebbly Mountain
raising
 towards the sky.

> look at mountain through the binoculars
...

which would otherwise be impossible. If the mountain should be visible and
manipulable from a number of locations, you might implement one shadow object
for each location but this is a bit tedious if they are identical. One trick here is to
use something like the following rule:

WHEN hero AT scenic_vista OR hero AT hill_road =>
 LOCATE shadow_mountain AT hero.

This will ensure that whenever the hero moves to any of the places from where the
mountain is visible, the shadow_mountain is sure to follow. However, as the
rules are executed after the hero has moved, a better strategy might be to make the
shadow_mountain ‘silent’, i.e. to have no description. Instead the description
of it should be embedded in the description of the adjacent locations. Yet another
possibility would be to move the pseudo-object around using statements in the
exits, like

LOCATION scenic_vista NAME Scenic Vista
 EXIT east TO hills

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 75757575

 DOES
 LOCATE shadow_mountain AT hills.
 END EXIT east.
END LOCATION scenic_vista.

Objects that are always present, such as the air or the parts of the hero’s body, may
be treated like normal objects. I.e. they are defined as the objects they represent.
They are then placed in a container that is not an object, which makes the objects
always accessible, since containers (that are not objects) are considered to be where
the hero is (cf. the inventory). This is also a simple way to create other
compartments on the hero, such as a belt.

CONTAINER belt
 LIMIT count 2
 ELSE "You can’t fit more in your belt."
END CONTAINER belt.

VERB invent
 DOES
 LIST inventory.
 LIST belt.
END VERB invent.

CONTAINER pseudo
END CONTAINER pseudo.

OBJECT air IN pseudo
 VERB breathe
 :
 END VERB breathe.
END OBJECT air.

6.13.6.13.6.13.6.13. SSSSTRUCTURETRUCTURETRUCTURETRUCTURE
A good thing to do when designing an interactive fiction story is to separate the
geography from the story. In Alan you can use the include facility to structure your
Alan source. One approach could be to place the description of each location in a
separate file together with any objects that could be considered part of the scenery
or at least is not only a tool in a puzzle. These files can then be included in a ’map’
file, which in turn is included by the top-level file.

The story line can be divided into files too, one for each ’scene’. A scene being
comments describing the important things that are suppose to happen, any
prerequisites and objects, events, rules etc. which are specific for this part of the
story.

This strategy will both give you a better structure of your adventure as well as help
you design a better story, much like the storyboarding technique used in making
movies or plays.

6.14.6.14.6.14.6.14. DDDDEBUGGINGEBUGGINGEBUGGINGEBUGGING
To simplify the development of adventures written in the Alan language, the
interpreter Arun incorporates some features for debugging. There are a few
debugging switches available when starting the interpreter:

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 76767676

-l Create a log of the player commands

-t Enable trace mode

-s Enable single instruction trace

-d Enable debug mode

COMMAND LOGCOMMAND LOGCOMMAND LOGCOMMAND LOG

For various purposes, such as debugging, an actual log of the player commands can
be handy. Such a log is created if the option -l is given to the interpreter when
starting a game. The log file is created in the directory, which was current when the
interpreter was started, the name of the log file will be the same as the game with
the extension .log.log.log.log.

INTERPRETER AND INSTINTERPRETER AND INSTINTERPRETER AND INSTINTERPRETER AND INSTRUCTION TRACERUCTION TRACERUCTION TRACERUCTION TRACE

Trace mode can also act as an aid in debugging. It will print information about each
invocation of the instruction interpreter, making it easier to see which parts of the
code are being executed.

Single instruction trace will, in addition to the trace mode information, also trace
every single Acode instruction.

DEBUG MODEDEBUG MODEDEBUG MODEDEBUG MODE

Finally, debug mode will execute the start up sequence and then prompt for a debug
command with

ABUG>

Note: None of the above switches are effective unless the adventure was compiled
with the debug option set (see Options on page 26).

Abug may also be entered by typing the single command

> debug

during the execution of an Adventure that was compiled with the debug option.

A question mark or an ‘h’ will give a brief listing of the commands available in
Abug:

a Display a list of all actors.

c Display a list of all containers.

e Display a list of all events and their status.

g Go on. I.e. proceed by executing the next turn.
Abug
 will stop and prompt for a new command again before
 the player is next in turn.

l Display a list of all locations.

o Display a list of all objects.

q Quit the adventure (and Abug).

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 77777777

s Toggle single instruction trace.

t Toggle trace mode (off and on).

x Exit Abug, i.e. proceed without stopping.

The commands A, C, L and O may optionally be followed by a number. Abug will
then display detailed information about the entity requested, such as values of
attributes, its present location etc.

Currently there is no way to modify anything using Abug.

The following is a short excerpt from a debugging session (user input in bold face):

<Arun, Adventure Interpreter version 2.6 alpha>
<Version of 'saviour' is 2.6(0)a>
Welcome to the game of SAVIOUR!
[introductory text deleted for brevity]
ABUG> s
Step on.
ABUG> t
Trace on.
ABUG> g
> n
<EXIT 1 (n) from 22 (Outside The Tall Building),Executing:>

++
 dd9: PUSH 1
 dda: SCORE 1 (5)
 ddb: RETURN
--

<EXIT 1 (n) from 22 (Outside The Tall Building), Moving:>

++
 de4: PUSH 4
 de5: PUSH 6229
 de6: PRINT 6229, 4 "Hall"
 de7: RETURN
--
.

++
 de8: PUSH 158
 de9: PUSH 6235
 dea: PRINT 6235, 158 "Inside the entrance is a hallway full of
dust and pieces of the ceiling have fallen to the floor. At the west end
is a staircase, and to the south is the exit."
 deb: PUSH 1
 dec: DESCRIBE 1
++
 620: PUSH 30
 621: PUSH 1428
 622: PRINT 1428, 30 " To the east is a folding door."
 623: PUSH 6
 624: PUSH 1
 625: ATTRIBUTE 1, 6 (1)
 626: IF TRUE
 627: PUSH 13
 628: PUSH 1446
 629: PRINT 1446, 13 " It is closed."
 62a: ELSE
 62f: RETURN
--

 ded: RETURN
--

ABUG> a
ACTORS:
 17: Hero

ABUG> a 17
ACTOR 17 : Hero
 Location = 23 Hall
 Script = 0
 Step = 0
 Attributes =

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 78787878

ABUG> o
OBJECTS:
 1: door
 2: rats
 3: spool of computer tape
 4: old book
 5: 3 metre long ladder
 6: rather heavy computer terminal
 7: small coin
 8: birds nest
 9: set of rusty keys
 10: clock
 11: drawer
 12: desk
 13: dirty manual
 14: computer
 15: vending machine
 16: old mouldy candy bar

ABUG> o 6
OBJECT 6 : rather heavy computer terminal
 Location = 30 Terminal Room
 Attributes =
 1: 1 (takeable)
 2: 1 (readable)
 3: 0 (openable)
 4: 0 (startable)
 5: 1 (examinable)
 6: 0 (connected)
 7: 0 (showing_msg1)
 8: 0 (showing_msg2)

ABUG> q

Lines of ’+’ characters indicates the start of interpretation, thus they can be present
inside other single step traces (like the DESCRIBE in the example above).
Likewise lines of ’-’ indicates the return from one such level of interpretation.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 79797979

7.7.7.7. ADVENTURE CONSTRUCTIADVENTURE CONSTRUCTIADVENTURE CONSTRUCTIADVENTURE CONSTRUCTIONONONON
This chapter will give a few clues on how to be a successful adventure author,
because creating a good adventure is more like writing a book than writing a
program (although Alan can be viewed as a kind of programming language).

7.1.7.1.7.1.7.1. GGGGETTING AN ETTING AN ETTING AN ETTING AN IIIIDEADEADEADEA
As with a book, the success or failure depends on how intriguing the story is, how
hooked you can get the reader (in our case the player). So, the first step must be to
get a good idea. This may be hard or easy but with time you, like a good author,
learn to pick up ideas when you get them in ordinary every-day life, and store them
for later use.

A seemingly simple idea might also be developed into a good adventure if it is
placed in the correct setting and supplied with additional features, tricks and
problems.

When you have a good idea, try to refrain from typing it in directly in a text editor
and compile it with Alan. Instead, write the story down as if it were the story line
for a book or a movie. Where appropriate, insert hints on various diversions and
alternate paths that come to mind, but try to stay mainly with the main story from
beginning to the preferred end. Then, let a close friend read it.

7.2.7.2.7.2.7.2. EEEELABORATING THE LABORATING THE LABORATING THE LABORATING THE SSSSTORYTORYTORYTORY
After having rewritten the story line once or twice, start creating the scenery. If your
setting is small, you could draw a map of the locations needed, but a better way is
probably to make a list of major locations first (those essential to the story). For
each location note what important properties the location must have and which
objects are necessary (just as notes, don’t create the Alan declarations yet!). For each
object, make a small note on what the object is needed for (by the player!).

This may also be done using a scene-by-scene approach. By this we mean that the
story is segmented into scenes (and maybe also acts) like in a play. For each act and
scene you do the above. This makes it easier to get an overview over a larger
adventure.

I also suggest that you also create a story on a level above the actual game, at least in
your own mind. This story should explain why the game-world exists and thus give
a consistency to the text that you will present to the player. Nobody likes an
adventure without a cause. This story or world of ideas need not be revealed to the
player.

This also applies to the narrator, i.e. the imaginary person or creature that carries
out the conversation with the player. Create an image of him or it and stick to it.
Receiving comments about your (limited) progress in the game might be funny as
long as they are not out of character.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 80808080

7.3.7.3.7.3.7.3. IIIIMPLEMENTING ITMPLEMENTING ITMPLEMENTING ITMPLEMENTING IT
At last it is time to sit down at the terminal. Divide the adventure text into files
containing global verbs, the map (possibly divided further according to the scenes),
the actors (perhaps one file for each actor) and a main file including the other files.
This makes it easy to handle the adventure and you may also ask your friend to
participate in the development by giving him a few files to work on.

First, just declare the locations and connect them with exits. Do not work on the
“purple prose” descriptions yet. The Alan system supplies good defaults for
descriptions and so on so use these while developing the structure of the adventure.
Do not bother even with the details of making it impossible to pick up the
elephant, etc.

Play the adventure continuously during the development, but do not try the things
you plan to make impossible later. Just go through it according to the line you
planned the story to follow. A hint here is to use a separate file for the start section.
In this file you can easily set up the situation you wish to test while not having to
tire yourself by playing the adventure from the start every time.

7.4.7.4.7.4.7.4. PPPPOLISHING THE OLISHING THE OLISHING THE OLISHING THE AAAADVENTUREDVENTUREDVENTUREDVENTURE
So, now you have a working adventure, a bit bare bones, but still the story plays the
way you planned. Now it is time to insert all the nice descriptions, the limitations
and perhaps the extra things to divert and hinder the hero. Just be careful not to fall
into the locked-door-syndrome. Too many adventures have been tedious to play
because you need to find-key/get-key/unlock-door- with-key/open-door (anyway,
why do people go around locking doors and throwing away the keys). Think big.

Start by fixing the verbs so that they prohibit the impossible. Introduce as many
synonyms as you can think of, this makes the adventure so much more playable.

Create the location descriptions. Remember to use the same style in all your
descriptions; breaking out of style does not look good in the eyes of the ad-
venturous. The descriptions must give the player the correct image, the brain is still
the best graphic interface available, but they should also plant ideas in the player on
how to solve the problems you place before him.

Another thing to aim for is the feeling that a player gets when he somehow finds
information explaining things he has encountered earlier in the game. Here, as
always, it is good advice to ask a friend to read the texts and convey his or her
impressions (remember you know it all because you wrote it!).

Lastly fill in the adjectives for the objects, their descriptions and short descriptions
(if needed).

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 81818181

7.5.7.5.7.5.7.5. BBBBETA ETA ETA ETA TTTTESTINGESTINGESTINGESTING
Now you might think that you can start distributing your game. But, wait! As any
complex computer program it can have various kinds of bugs. Bugs in a work of
interactive fiction range from misspellings and grammar errors in your descriptions,
logic errors in your implementation of puzzles or events or omissions in the
descriptions of surroundings that make the player miss or misunderstand how to
act, to inconsistencies in the settings or story, plots that don’t work.

So how do you find these? Your only help are the beta testers. They are the people
that you now should consider first a first trial beta release of your game. They
should be people who you trust do give their honest opinion and also really play it
through to find any problems.

The beta testers will probably give you a long list of issues that you have to address
before the next release. Some of the issues are simple; others may affect the basis of
your story. You should seriously consider (and if possible discuss) such suggestions.

One aid in finding any problems in the playability of the game is to use the log file
facility of the interpreter (see Command Log on page 76) to produce a list of the
commands a player have used. This can greatly aid in spotting troublesome areas,
such as where the player is stuck and reverts to "guess-the- verb". This log can be
fed into the interpreter and will give you the exact game played.

After having collected all this information, considered which ones to act upon, and
implemented these, you should probably do this again (sigh!).

Now, at last, your adventure game is ready to meet its audience.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 82828282

A A A A RUNRUNRUNRUN----TIME MESSAGESTIME MESSAGESTIME MESSAGESTIME MESSAGES
This appendix describes the errors that may occur during the running of the
adventure, i.e. during interpretation of the generated Acode. There are two classes
of errors, player input response messages and system errors.

Input response errors are not fatal but abort the execution of the current player
command and discard the rest of the user input, which is a normal part of the
interaction between the player and the Alan run-time system. System errors are fatal
and abort the execution of the adventure.

A.1A.1A.1A.1 Input Response MessagesInput Response MessagesInput Response MessagesInput Response Messages
Various messages are printed for the benefit of the player. Most messages probably
come from the adventure itself, i.e. they where provided by the adventure author.
But there is a set of messages that can be given directly by the Arun interpreter.
They are presented below using the Alan STRING-format, i.e. containing the
special character combinations described in Output Statements on page 43. These
standard messages exist for all languages and the default value of the texts are
selected depending upon the setting of the language option.

The contents of any message may be modified using the MESSAGE statement (see
section 3.5 on page 30). The identifier on the first line of a message explanation is
the identifier that should be used in the MESSAGE statement to change the
contents of that message. The second line is the default English message text, and
finally a short explanation is given.

All messages are available in all supported languages but below the English message
texts are shown.

Note: Although the default values of the messages are static strings, it is possible to
create more dynamic messages as the MESSAGE statement allows any
statements not only strings, see Messages on page 30 for details.

WHAT,
 "I don't understand.",

The input did not follow any syntax the Arun parser knows about.

WHATALL,
 "I don't know what you mean by 'all'.",

The player input ALL, but the Arun parser could not find any objects or
actors that it could refer to.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 83838383

WHATIT,
 "I don't know what you mean by 'it'.",

IT may only be used when the previous command contained a reference to
one object or actor.

WHATTHEM,
 "I don't know what you mean by 'them'.",

THEM refers to the set of objects or actors mentioned in the previous
command. If there were no multiple parameters in the previous player
command, Arun will issue this message.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 84848484

MULTIPLE,
 "You can't refer to multiple objects with '$v'.",

The syntax for the indicated verb did not allow multiple parameters.

WANT,
 "I can't guess what you want to $v.",

The verb required a parameter.

NOUN,
 "You must supply a noun.",

The player started to specify an object or actor but only supplied the
adjectives.

AFTERBUT,
 "You must give an object after 'but'.",

In a command containing ALL BUT, the player must also give the ob-
ject or objects excluded.

BUTALL,
 "You can only use 'but' after 'all'.",

The words BUT and EXCEPT may only be used after ALL.

NOTMUCH,
 "That doesn't leave much to $v!",

The player used an ALL BUT construct which explicitly excluded
everything matched by the ALL.

WHICHONE,
 "I don't know which $1 you mean.",

There were multiple objects (or actors) that matched the description given by
the player. More adjectives are necessary to distinguish between them.

NOSUCH,
 "I can't see any $1 here.",

The player referred to an object or actor that was not present.

NOWAY,
 "You can't go that way.",

A directional word was used but there is no exit in that direction.

CANT0,
 "You can't do that.",

Somehow Arun found no verb body to execute. This may be a situation
overlooked by the author or the player may be trying to do something that is
not possible.

CANT,
 "You can't $v the $1.",

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 85858585

This is a variation of the above message.

SEEOBJECT1,
 "There is",

SEEOBJECTCOMMA,
 "$$, ",

SEEOBJECTAND,
 "and ",

SEEOBJECTEND,
 "here.",

These four messages are used to construct the default text for describing
objects present at the current location (unless they have a description clause,
in which case they are used instead). The message parts are used as in "There
is <article> <object>, <article> <object> and <article> <object> here."
The underlined parts are the ones in the messages and <article> and
<object> are inserted as appropriate.

SEEACTOR,
 "is here.",

The default message for presenting actors present, unless they present
themselves (have a description).

CONTAINS1,
 "The",

CONTAINS,
 "contains",

CONTAINSCOMMA,
 ", ",

CONTAINSAND,
 "and ",

CONTAINSEND,
 "$$.",

The four messages above are used to construct the default contents listing of
a container in much the same way as for the object listing above. The
messages are used according to the pattern "The <container> contains
<article> <object>, <article> <object> and <article> <object>."

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 86868686

EMPTY1,
 "The",

ISEMPTY,
 "is empty.",

The default messages for empty containers.

HAVESCORED,
 "You have scored",

SCOREOUTOF,
 "points out of",

Two parts of the default scoring message.

UNKNOWNWORD,
 "I don't know that word.",

MORE,
 "<More>",

The classic message when the screen is full. The player should press
RETURN to proceed.

AGAIN,
 "(again)",

This message is presented immediately after the location name if the location
has been visited before to give the player the information that he has visited
this location before (a good thing in some adventures). If you wish to disable
this set this message to an empty string.

SAVEWHERE,
 "Enter file name to save in",

When executing a SAVE the player can enter the name of the file to save in.
The name used in the previous SAVE is used as a default.

SAVEOVERWRITE,
 "That file already exists, overwrite (y) ? ",

If the save file already existed the player must confirm the overwrite.

SAVEFAILED,
 "Sorry, save failed.",

When executing a SAVE, the file system indicated some error, usually a write
protected directory or full disks.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 87878787

SAVEVERSION,
 "Sorry, the save file was created by a different
version.",

The save file found was created by a different version of the Alan interpreter.

SAVENAME,
 "Sorry, the save file did not contain a save for
this adventure.",

The indicated save file did not contain a save of this adventure.

RESTOREFROM,
 "Enter file name to restore from",

A RESTORE statement can restore from any named file. The previously
used file name is used as the default.

SAVEMISSING,
 "Sorry, could not open the save file.",

When executing a RESTORE, Arun could not find a save file with the
indicated name in the current directory.

QUITACTION,
 "Do you want to RESTART, RESTORE or QUIT ?",

The QUIT statement requests an action from the player.

Note: The possible answers are currently hard-wired into the interpreter, so
changing RESTART, RESTORE or QUIT will probably confuse the player!

DEFARTICLE,
 "a",

The indefinite article is needed for objects, objects which have none declared
(using the ARTICLE clause) will receive the default article. This is mainly
available for the ease of constructing adventures in unsupported languages.

A.2A.2A.2A.2 System ErrorsSystem ErrorsSystem ErrorsSystem Errors
System errors are errors caused by internal malfunctions. Mainly these are im-
plementation errors (aka. bugs!), but may (in some manner) also result from user
errors. The system error messages also have a purple prose style to fit in with your
game, e.g.:

As you enter the twilight zone of Adventures, you
stumble and fall to your knees. In front of you, you can
vaguely see the outlines of an Adventure that never was.

SYSTEM ERROR: Can’t open adventure code file.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 88888888

AUTHOR ERRORSAUTHOR ERRORSAUTHOR ERRORSAUTHOR ERRORS

The following system errors are in some sense caused by the Adventure author
(you).

Out of memory.

The adventure was so large that the interpreter could not allocate enough
dynamic memory for it. Try to finish other running applications (does not
work or is not possible on all systems), get more real memory, or complain to
the Alan implementors (see appendix 0, FUTURE DEVELOPMENTS on
page 117 for how to reach us).

Incompatible version of ACODE program.

The interpreter you are using have a different version than the Alan compiler
used to compile the adventure. Use a different Arun or recompile the
adventure with the matching compiler.

Note: the Arun switch ‘-d’ will, beside entering debug mode, also print the
version of both the Arun interpreter and the version of the Alan compiler
used to compile the adventure.

Recursive LOOK.

This message is shown when a LOOK statement is executed as a result of a
LOOK, i.e. a recursive LOOK! The LOOK statement should only be used in
global verb bodies, not in descriptions of LOCATIONs and OBJECTs as
there is a definite risk that it will be executed as the effect of a LOOK, either
explicit or implicit (by the hero entering that location!).

Locating something inside itself.

This means that an attempt to locate an object (that is a container) inside
itself has been made. This might happen if the adventure author has
neglected to check this in a verb like

put_in = ’put’ (o) ’in’ (c)

Non-existing parameter referenced.

A parameter that wasn’t available was referenced. This is probably due to
using a parameter shorthand such as $2 inside a string in a context where the
syntax was restricted to only one parameter. This may avoided by using the
SAY statement instead of the embedded string parameter references, which
would result in compile time checking avoiding the risk of having this happen
to the player.

Note: Parameter references embedded in strings are not currently checked during
compile time.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 89898989

Note: Embedded string references ($1, $o, etc.) is not guaranteed to be forward
compatible (i.e. it may be removed in future versions).

PLAYER ERRORSPLAYER ERRORSPLAYER ERRORSPLAYER ERRORS

Errors caused by incorrect arguments or file names.

Can’t open adventure code file.

Can’t open adventure data file.

The player attempted to run an adventure for which there were no code or
data file available, probably a misspelling.

Could not read all ACD code.

Checksum error in .ACD file (%1 instead of %2).

These two messages indicate problems in the adventure files. Possibly caused
by transfer problems of the .acd.acd.acd.acd and .dat.dat.dat.dat files which must be made in binary
mode.

IMPLEMENTOR ERRORSIMPLEMENTOR ERRORSIMPLEMENTOR ERRORSIMPLEMENTOR ERRORS

Any other text in a system error message is really a SYSTEM ERROR. Scribble
down the text and contact the implementors (see appendix 0, FUTURE
DEVELOPMENTS on page 117). If possible supply the source for your ad-
venture, a trace of the few last player commands (if possible with single step and
trace turned on, see Debugging on page 75).

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 90909090

B B B B ALAN LANGUAGE GRAMMAALAN LANGUAGE GRAMMAALAN LANGUAGE GRAMMAALAN LANGUAGE GRAMMARRRR

B.1B.1B.1B.1 DescriptionDescriptionDescriptionDescription
The Alan language is defined formally below using a BNF-form. This is a set of
rules defining exactly what constructs are legal in an Alan source. The rules are
numbered for easy reference.

The BNF form divides the structure of the input source into smaller parts (rules)
which in turn are defined by other rules. For example rule 1 says that an
ADVENTURE (in this case an Alan program) consists of options, units and a start
section. In rule 1 we can see that an adventure is defined to contain an
optional_options section, some units, and then the
start_section. Each is in turn defined further down in the rules.

The equal sign (=) may thus be read as “consists of” or “is defined as”. The
exclamation mark indicates a choice between the two different constructs, for
example in rule 6 through 8 one can see that an option may either be a single
identifier (ID), an identifier followed by another identifier or an identifier followed
by an integer. The semicolon indicates the end of the complete definition of the
symbol on the left hand side of the equal sign.

B.2B.2B.2B.2 Reserved wordsReserved wordsReserved wordsReserved words
The following is a complete list of all words reserved for special use in the Alan
language. Note that the reserved words can still be used as identifiers in a source file
provided that the rules described in Identifiers And Names on page 57 are
followed.

ACTOR
AFTER
AND
ARE
AT
ATTRIBUTES
BEFORE
BY
CANCEL
CHECK
CONTAINER
COUNT
DECREASE
DEPEND
DEPENDING
DESCRIBE
DESCRIPTION
DOES
ELSE
ELSIF
EMPTY
END
EVENT
EXIT
FOR
HAS
HEADER
HERE
IF
INCREASE
INTEGER

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 91919191

IS
ISA
LIMITS
LIST
LOCATE
LOCATION
LOOK
MAKE
MAX
MENTIONED
NAME
NEARBY
NOT
OBJECT
OF
ONLY
OPTIONS
OR
RANDOM
SAY
SCHEDULE
SCORE
SCRIPT
SET
START
STEP
STRING
SUM
SYNONYMS
SYNTAX
SYSTEM
THEN
TO
UNTIL
USE
VERB
VISITS
WHEN
WHERE

B.3B.3B.3B.3 Additional KeywordsAdditional KeywordsAdditional KeywordsAdditional Keywords
The following words are also keywords in the Alan language but may be used as
identifiers without requiring the use of single quotes.

ARTICLE
BETWEEN
CONTAINS
DEFAULT
IN
MESSAGE
ON
QUIT
RESTART
RESTORE
SAVE
WAIT

B.4B.4B.4B.4 The GrammarThe GrammarThe GrammarThe Grammar

 1. <adventure> = <optional_options> <units> <start>
 ;

 2. <optional_options> =
 3. ! 'OPTIONS' <options>
 ;

 4. <options> = <option>
 5. ! <options> <option>
 ;

 6. <option> = ID '.'
 7. ! ID ID '.'
 8. ! ID Integer '.'
 ;

 9. <units> = <unit>
 10. ! <units> <unit>
 ;

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 92929292

 11. <unit> = <default>
 12. ! <object_default>
 13. ! <location_default>
 14. ! <actor_default>
 15. ! <messages>
 16. ! <rule>
 17. ! <synonyms>
 18. ! <syntax>
 19. ! <verb>
 20. ! <location>
 21. ! <object>
 22. ! <container>
 23. ! <actor>
 24. ! <event>
 ;

 25. <default> = 'DEFAULT' 'ATTRIBUTES' <attributes>
 ;

 26. <location_default> = 'LOCATION' 'ATTRIBUTES' <attributes>
 ;

 27. <object_default> = 'OBJECT' 'ATTRIBUTES' <attributes>
 ;

 28. <actor_default> = 'ACTOR' 'ATTRIBUTES' <attributes>
 ;

 29. <attributes> = <attribute> '.'
 30. ! <attributes> <attribute> '.'
 ;

 31. <attribute> = ID
 32. ! 'NOT' ID
 33. ! ID <optional_minus> Integer
 34. ! ID STRING
 ;

 35. <synonyms> = 'SYNONYMS' <synonym_list>
 ;

 36. <synonym_list> = <synonym>
 37. ! <synonym_list> <synonym>
 ;

 38. <synonym> = <id_list> '=' ID '.'
 ;

 39. <messages> = 'MESSAGE' <message_list>
 ;

 40. <message_list> = <message>
 41. ! <message_list> <message>
 ;

 42. <message> = ID ':' <statements>
 ;

 43. <syntax> = 'SYNTAX' <syntax_list>
 ;

 44. <syntax_list> = <syntax_item>
 45. ! <syntax_list> <syntax_item>
 ;

 46. <syntax_item> = ID '=' <syntax_elements>
<optional_class_restrictions>
 ;

 47. <syntax_elements> = <syntax_element>
 48. ! <syntax_elements> <syntax_element>
 ;

 49. <syntax_element> = ID
 50. ! '(' ID ')' <optional_indicators>
;

 51. <optional_indicators> =
 52. ! <optional_indicators> <indicator>
 ;

 53. <indicator> = '*'
 54. ! '!'
 ;

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 93939393

 55. <optional_class_restrictions> = '.'
 56. ! 'WHERE' <class_restrictions>
 ;

 57. <class_restrictions> = <class_restriction>
 58. ! <class_restrictions> 'AND'
<class_restriction>
 ;

 59. <class_restriction> = ID 'ISA' <classes> 'ELSE' <statements>
 ;

 60. <classes> = <class_identifier>
 61. ! <classes> 'OR' <class_identifier>
 ;

 62. <class_identifier> = 'OBJECT'
 63. ! 'ACTOR'
 64. ! 'CONTAINER'
 65. ! 'INTEGER'
 66. ! 'STRING'
 67. ! 'CONTAINER' 'OBJECT'
 68. ! 'CONTAINER' 'ACTOR'
 ;

 69. <optional_verbs> =
 70. ! <optional_verbs> <verb>
 ;

 71. <verb> = <verb_header> <verb_body> <verb_tail>
 ;

 72. <verb_header> = 'VERB' <id_list>
 ;

 73. <verb_body> = <simple_verb_body>
 74. ! <verb_alternatives>
 ;

 75. <verb_alternatives> = <verb_alternative>
 76. ! <verb_alternatives> <verb_alternative>
 ;

 77. <verb_alternative> = 'WHEN' ID <simple_verb_body>
 ;

 78. <simple_verb_body> = <optional_checks> <optional_does>
 ;

 79. <verb_tail> = 'END' 'VERB' <optional_id> '.'
 ;

 80. <optional_checks> =
 81. ! 'CHECK' <statements>
 82. ! 'CHECK' <check_list>
 ;

 83. <check_list> = <check>
 84. ! <check_list> 'AND' <check>
 ;

 85. <check> = <expression> 'ELSE' <statements>
 ;

 86. <optional_does> =
 87. ! <does>
 ;

 88. <does> = 'DOES' <optional_qual> <statements>
 ;

 89. <location> = <location_header> <location_body> <location_tail>
 ;

 90. <location_header> = 'LOCATION' ID <optional_name>
 ;

 91. <location_body> =
 92. ! <location_body> <location_body_part>
 ;

 93. <location_body_part> = <description>
 94. ! <does>
 95. ! <is> <attributes>

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 94949494

 96. ! <exit>
 97. ! <verb>
 ;

 98. <location_tail> = 'END' 'LOCATION' <optional_id> '.'
 ;

 99. <optional_exits> =
100. ! <optional_exits> <exit>
 ;

101. <exit> = 'EXIT' <id_list> 'TO' ID <optional_exit_body> '.'
 ;

102. <optional_exit_body> =
103. ! <optional_checks> <optional_does> 'END'
'EXIT'
 <optional_id>
 ;

104. <object> = <object_header> <object_body> <object_tail>
 ;

105. <object_header> = 'OBJECT' ID <optional_where> <optional_names>
 <optional_where>
 ;

106. <object_body> =
107. ! <object_body> <object_body_part>
 ;

108. <object_body_part> = <properties>
109. ! <description>
110. ! <article>
111. ! <mentioned>
112. ! <is> <attributes>
113. ! <verb>
 ;

114. <object_tail> = 'END' 'OBJECT' <optional_id> '.'
 ;

115. <optional_attributes> =
116. ! <optional_attributes> <is> <attributes>
 ;

117. <is> = 'IS'
118. ! 'ARE'
119. ! 'HAS'
 ;

120. <optional_description> =
121. ! <description>
 ;

122. <description> = 'DESCRIPTION'
123. ! 'DESCRIPTION' <statements>
 ;

124. <article> = 'ARTICLE'
125. ! 'ARTICLE' <statements>
 ;

126. <mentioned> = 'MENTIONED' <statements>
 ;

127. <optional_name> =
128. ! <name>
 ;

129. <optional_names> =
130. ! <optional_names> <name>
 ;

131. <name> = 'NAME' <ids>
 ;

132. <properties> = 'CONTAINER' <container_body>
 ;

133. <container> = <container_header> <container_body> <container_tail>
 ;

134. <container_header> = 'CONTAINER' ID
 ;

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 95959595

135. <container_body> = <optional_limits> <optional_header>
<optional_empty>
 ;

136. <container_tail> = 'END' 'CONTAINER' <optional_id> '.'
 ;

137. <optional_limits> =
138. ! 'LIMITS' <limits>
 ;

139. <limits> = <limit>
140. ! <limits> <limit>
 ;

141. <limit> = <limit_attribute> 'THEN' <statements>
 ;

142. <limit_attribute> = <attribute>
143. ! 'COUNT' Integer
 ;

144. <optional_header> =
145. ! 'HEADER' <statements>
 ;

146. <optional_empty> =
147. ! 'ELSE' <statements>
 ;

148. <event> = <event_header> <statements> <event_tail>
 ;

149. <event_header> = 'EVENT' ID
 ;

150. <event_tail> = 'END' 'EVENT' <optional_id> '.'
 ;

151. <actor> = <actor_header> <actor_body> <actor_tail>
 ;

152. <actor_header> = 'ACTOR' ID <optional_where> <optional_names>
 <optional_where>
 ;

153. <actor_body> =
154. ! <actor_body> <actor_body_part>
 ;

155. <actor_body_part> = <properties>
156. ! <description>
157. ! <is> <attributes>
158. ! <verb>
159. ! <script>
 ;

160. <actor_tail> = 'END' 'ACTOR' <optional_id> '.'
 ;

161. <optional_actor_script> =
162. ! <optional_actor_script> <script>
 ;

163. <script> = 'SCRIPT' <integer_or_id> '.' <optional_description>
 <step_list>
 ;

164. <step_list> = <step>
165. ! <step_list> <step>
 ;

166. <step> = 'STEP' <statements>
167. ! 'STEP' 'AFTER' Integer <statements>
168. ! 'STEP' 'WAIT' 'UNTIL' <expression> <statements>
 ;

169. <rule> = 'WHEN' <expression> '=>' <statements>
 ;

170. <start> = 'START' <where> '.' <optional_statements>
 ;

171. <optional_statements> =

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 96969696

172. ! <statements>
 ;

173. <statements> = <statement>
174. ! <statements> <statement>
 ;

175. <statement> = <output_statement>
176. ! <special_statement>
177. ! <manipulation_statement>
178. ! <event_statement>
179. ! <assignment_statement>
180. ! <actor_statement>
181. ! <comparison_statement>
 ;

182. <output_statement> = STRING
183. ! 'DESCRIBE' <what> '.'
184. ! 'SAY' <expression> '.'
185. ! 'LIST' <what> '.'
 ;

186. <special_statement> = 'QUIT' '.'
187. ! 'LOOK' '.'
188. ! 'SAVE' '.'
189. ! 'RESTORE' '.'
190. ! 'RESTART' '.'
191. ! 'SCORE' <optional_integer> '.'
192. ! 'VISITS' Integer '.'
193. ! 'SYSTEM' STRING '.'
 ;

194. <manipulation_statement> = 'EMPTY' <what> <optional_where> '.'
195. ! 'LOCATE' <what> <where> '.'
 ;

196. <event_statement> = 'CANCEL' ID '.'
197. ! 'SCHEDULE' ID <optional_where> 'AFTER'
<expression>
 '.'
 ;

198. <assignment_statement> = 'MAKE' <what> <something> '.'
199. ! 'INCREASE' <attribute_reference>
 <optional_by_clause> '.'
200. ! 'DECREASE' <attribute_reference>
 <optional_by_clause> '.'
201. ! 'SET' <attribute_reference> 'TO'
<expression>
 '.'
 ;

202. <optional_by_clause> =
203. ! 'BY' <expression>
 ;

204. <comparison_statement> = <if_statement>
205. ! <depending_statement>
 ;

206. <if_statement> = 'IF' <expression> 'THEN' <statements>
 <optional_elsif_list> <optional_else_part> 'END'
'IF'
 '.'
 ;

207. <optional_elsif_list> =
208. ! <elsif_list>
 ;

209. <elsif_list> = 'ELSIF' <expression> 'THEN' <statements>
210. ! <elsif_list> 'ELSIF' <expression> 'THEN' <statements>
 ;

211. <optional_else_part> =
212. ! 'ELSE' <statements>
 ;

213. <depending_statement> = 'DEPENDING' 'ON' <primary> <depend_cases>
'END'
 'DEPEND' '.'
 ;

214. <depend_cases> = <depend_case>
215. ! <depend_cases> <depend_case>

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 97979797

 ;

216. <depend_case> = 'ELSE' <statements>
217. ! <right_hand_side> ':' <statements>
 ;

218. <actor_statement> = 'USE' 'SCRIPT' <integer_or_id>
<optional_for_actor>
 '.'
 ;

219. <optional_for_actor> =
220. ! 'FOR' ID
 ;

221. <expression> = <term>
222. ! <expression> 'OR' <term>
 ;

223. <term> = <factor>
224. ! <term> 'AND' <factor>
 ;

225. <factor> = <primary>
226. ! <primary> <right_hand_side>
 ;

227. <right_hand_side> = <optional_not> <where>
228. ! <binop> <primary>
229. ! <optional_not> <relop> <primary>
230. ! <is> <something>
231. ! <optional_not> 'CONTAINS' <factor>
232. ! <optional_not> 'BETWEEN' <factor> 'AND' <factor>
 ;

233. <primary> = <optional_minus> Integer
234. ! STRING
235. ! <what>
236. ! 'SCORE'
237. ! <aggregate> <where>
238. ! '(' <expression> ')'
239. ! <attribute_reference>
240. ! 'RANDOM' <primary> 'TO' <primary>
 ;

241. <aggregate> = 'COUNT'
242. ! 'SUM' 'OF' ID
243. ! 'MAX' 'OF' ID
 ;

244. <something> = <optional_not> ID
;

245. <what> = 'OBJECT'
246. ! 'LOCATION'
247. ! 'ACTOR'
248. ! ID
 ;

249. <optional_where> =
250. ! <where>
 ;

251. <where> = 'HERE'
252. ! 'NEARBY'
253. ! 'AT' <what>
254. ! 'IN' <what>
 ;

255. <binop> = '+'
256. ! '-'
257. ! '*'
258. ! '/'
 ;

259. <relop> = '<>'
260. ! '='
261. ! '=='
262. ! '>='
263. ! '<='
264. ! '>'
265. ! '<'
 ;

266. <optional_qual> =

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 98989898

267. ! 'BEFORE'
268. ! 'AFTER'
269. ! 'ONLY'
 ;

270. <optional_not> =
271. ! 'NOT'
 ;

272. <optional_id> =
273. ! ID
 ;

274. <ids> = ID
275. ! <ids> ID
 ;

276. <id_list> = ID
277. ! <id_list> ',' ID
 ;

278. <optional_integer> =
279. ! Integer
 ;

280. <optional_minus> =
281. ! '-'
 ;

282. <attribute_reference> = ID 'OF' <what>
 ;

283. <integer_or_id> = Integer
284. ! ID
 ;

285. ID = IDENT
286. ! 'DEFAULT'
287. ! 'ARTICLE'
288. ! 'MESSAGE'
289. ! 'QUIT'
290. ! 'SAVE'
291. ! 'RESTORE'
292. ! 'RESTART'
293. ! 'WAIT'
294. ! 'BETWEEN'
295. ! 'CONTAINS'
296. ! 'ON'
297. ! 'IN'
 ;

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 99999999

C C C C COMPILER ERROR MESSACOMPILER ERROR MESSACOMPILER ERROR MESSACOMPILER ERROR MESSAGESGESGESGES

C.1C.1C.1C.1 Format of messagesFormat of messagesFormat of messagesFormat of messages
This appendix describes the error messages generated by the Alan compiler. The
compiler presents the messages in the order of occurrence in the file. The offending
source line is always shown together with the message. The following example
illustrates a typical compiler output.

ZILexample.alan

 23. If barfoo Is foobared Then
 ====> 1
 1 310 E : Identifier 'barfoo' not defined.

 27. Exit north To Rumble.
 ====> 1
 1 310 E : Identifier 'rumble' not defined.

 28. Exit west To Tumble.
 =====> 1
 1 310 E : Identifier 'tumble' not defined.

 46.
 ====> 1
 1 101 E : 'START' 'HERE' '.' inserted.
 1 211 E : Adventure must start at a Location.

 5 error(s).
 No detected warnings.
 2 informational message(s).

The following information is available in the compiler listing:

• Message summary

• Message number and text

• Message indicator or pointer

• Line number and source text of that line

• File name

To change what messages to show and where output is directed refer to the options
and their descriptions in section Compiler Switches on page 110.

C.2C.2C.2C.2 Message explanationsMessage explanationsMessage explanationsMessage explanations
For each message, a short description of the error, possible causes etc. are given.
Each message reported also indicates the severity of that error. The message is

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 100100100100

supplemented with an indication of its severity. An informational message
(indicated by an I) simply gives some information to the user, a warning message
(W) indicates an error but the compilation still generates a valid output (although
not always what the user intended). Error messages (E) indicate errors that have
made it impossible to generate any output, but the compiler still continues to
process all input. Fatal (F) and system (S) messages always terminate the
compilation process immediately.

The message descriptions below may also contain the special insertion markers ‘%n’
(where n is a digit), which indicate that text will be inserted at that point in the
message during compile time, e.g. the offending identifier or a file name.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 101101101101

100 Parsing resumed here.

A severe syntax error was discovered. Some input was skipped. This error
message marks the place where the parsing was restarted.

101 %1 inserted.

A syntax error was discovered and one or more symbols inserted in the input
in an attempt to recover.

102 %1 deleted.

A syntax error was discovered and one or more symbols were skipped from
the input in an attempt to recover.

103 %1 replaced by %2.

A syntax error was discovered and one or more symbols were replaced by one
or more other symbols in an attempt to recover.

104 Severe syntax error, construct ignored.

An intricate syntax error was discovered. A complete construct was skipped
in an attempt to recover.

105 Syntax error, couldn’t recover.

106 Parse stack overflow.

107 Parse table error.

108 Parsing terminated.

Alan compiler implementation errors. Should not occur!

150 Unterminated STRING.

An opening double quote was not terminated by a closing quote before end
of file. Error message points to the opening quote. Remember STRINGs
may cover several lines.

151 File name missing for $INCLUDE directive.

An include directive was given but no file was indicated. The complete file
name must be given according to the rules in section Files on page 59.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 102102102102

198 Could not open output file '%1' for writing.

The indicated output file could not be opened, probably because the
directory did not exist or the file or directory was write-protected.

199 Adventure source file (%1) not found.

The source file given on the command line did not exist. The Alan compiler
adds the .alan.alan.alan.alan extension to the file name given, if it did not include a period.

201 Mismatched block identifier, ’%1’ assumed.

The identifier following a terminating END did not match the one given at
the beginning of the construct. This indicates an illegal nesting or a missed
END IF. The identifier indicates to which block the END is assumed to
belong.

202 Multiple usage of direction ’%1’ in this EXIT.

203 Multiple definition of EXIT ’%1’ in this location.

The directional word indicated was used more than once, either in the same,
or different exit declaration from the location. This is contradictory and not
legal.

204 Multiple definition of %1 DEFAULTS. Ignored.

Only one declaration of default attributes per type is allowed. The second
declaration is ignored.

205 Multiple usage of ’%1’ in this VERB definition.

When specifying actions for multiple verbs in the same declaration, the
indicated word occurred twice.

206 Multiple definition of SYNTAX for %1.

More than one syntax definition for the same verb was found. This is an
error. You should remove the offending one.

207 VERB ’%1’ is not defined.

A SYNTAX construct defined the syntax for a verb that was never defined.

208 ’%1’ is not a VERB.

The identifier on the left hand side of a SYNTAX definition was defined as
something that was not a VERB.

209 First element in a SYNTAX must be a player word.

The definition of a SYNTAX construct may not start with a parameter. The
first word must be a player word so as to distinguish it from other forms of
input.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 103103103103

210 Action qualification not allowed here.

The BEFORE, AFTER and ONLY qualifiers may not be used in a DOES-
clause in this context.

211 Adventure must start at a Location.

You specified a where expression in the START section that did not
specify an explicit location. The start section specifies where the hero starts
and must be a LOCATION.

212 Syntax parameter ’%1’ overrides symbol.

The SYNTAX definition valid in this context defined a symbol that is the
same as an entity (object, location or actor). The syntax parameter will take
precedence.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 104104104104

213 Verb alternatives not allowed here.

You may only specify different verb body alternatives within objects. The
global verb body and the verb body in the location may not have alternatives.

214 Parameter not defined in syntax for ’%1’.

The identifier given as the selector in a verb body alternative was not defined
in the syntax for that verb.

215 Syntax not compatible with syntax for ’%1’.

To be able to use the same body for different verbs by supplying them in a
comma-separated list in the verb header they must all be compatible. This
means that they have the same number of parameters and the parameters have
the same names. Otherwise conflicts will arise when figuring out which
parameter to use.

216 Parameter ’%1’ multiply defined in this SYNTAX.

The parameter was defined more than once in the same SYNTAX definition.

217 Only one multiple parameter allowed for each syntax.
 This one ignored.

To be able to use multiple parameters in a player command only one
parameter may be marked as referring to multiple objects or actors using
ALL or conjugations. This is a warning, the syntax will be as if the first
multiple marker was the only one.

218 Multiple definition of attribute ’%1’.

The indicated attribute name was defined more than once in the same
context (default attribute list or within the same entity). Remove one
definition.

220 Multiple definition of ’%1’.

The indicated word has multiple, and possibly different, definitions.

221 Multiple class restriction for parameter ’%1’.

The same parameter occurred more than once in the list of class restriction in
the same SYNTAX definition.

222 Identifier ’%1’ in class definition is not a parameter.

Only the parameters in the syntax may be referenced in the class-restricting
clause of a SYNTAX definition.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 105105105105

230 No syntax defined for this verb, assumed ’%1 (object)’.

This message is a warning to indicate that the default syntax handling has
been used.

310 Identifier ’%1’ not defined.

The indicated word was never defined. It must be declared either as a
location, an object, a container, an actor or an event.

311 Must refer to %1.

The construct indicated does not refer to the correct kind of item, the
message indicates which kind of item was expected.

312 Parameter not uniquely defined as %1, which is
required.

In certain contexts it is necessary to refer to a particular type of entity, e.g. the
IN expression must refer to a container or an object with the container
property. If the reference (the WHAT part) is a parameter identifier, this
parameter must be restricted to be of the required type by use of parameter
restrictions (such as ‘WHERE c ISA CONTAINER’).

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 106106106106

315 Attribute not defined for ’%1’.

The indicated attribute is not defined for the particular object, location or
actor. It must either be a default attribute or be locally declared.

318 Entity ’%1’ is not a Container.

The referenced entity (object or actor) was not declared to have the container
property, although the context required a container.

320 Word ’%1’ belongs to multiple word classes (%2 and %3).

A word was declared as to belong to different word classes such as noun,
verb, adjective etc. Only multiple declarations that may lead to unexpected
behaviour are reported, usually because of limitations in the current
implementation. Generally it is allowed to declare a word e.g. as both an
adjective and a noun.

321 Synonym target word ’%1’ not defined.

To define a synonym its target word (the word on the left side of the equal
sign) must be defined as a proper word elsewhere in the source.

322 Word ’%1’ already defined as a synonym.

A word may not be declared as a synonym for different target words.

330 Wrong types of expression. Must be of %1 type.

In an expression, a value or an expression was used that had a type that was
not allowed. The message indicates the correct type.

331 Incompatible types in %1.

The two values in an expression with a binary operator did not have
compatible types, or the value used in a SET statement was not type
compatible with the referenced attribute.

332 Type of local attribute must match default attribute.

An attribute declared locally (within an object, actor or location) that has the
same name as a default attribute, has to have the same type (boolean, integer
or string).

333 The word ’%1’ is defined as a synonym as well as of
 another word class.

Synonyms must be words not defined elsewhere.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 107107107107

400 Script not defined for Actor ’%1’.

No script with the indicated identity was defined for the actor.

401 Actor reference required outside Actor specification.

Inside an actor specification it is permissible to leave out the actor reference
in a USE statement in which case the surrounding actor is assumed. Outside
actor specifications, the actor reference must always be supplied.

402 An Actor can’t be inside a Container.

The LOCATE statement tried to locate an actor inside a container. This is
not allowed.

403 Script number multiply defined for Actor ’%1’.

The indicated number was used for more than one script for the same actor.

404 Attribute to %1 must be a default attribute.

To reference attributes for OBJECT, LOCATION and ACTOR the attribute
used must be a default attribute, as all objects, locations or actors must have
it.

405 The class of a parameter used in %1 must be uniquely
defined.

In some statements the class of the identifier must be determined during
compile time. This is, for example, the case in MAKE and SET statements.

406 A parameter defined as Container have no default
attributes.

A parameter that was restricted to containers do not have any default
attributes. Actors, objects and locations have separate sets of default
attributes. In order to refer to an attribute on a parameter it must be re-
stricted to one of these classes. If the parameter also requires the container
property, use CONTAINER ACTOR or CONTAINER OBJECT.

407 Attribute in LIMITS must be a default attribute.

All objects must have the attribute that a limit is to test.

408 Attributes in %1 must be of boolean type.

The attribute referenced in the indicated context must be a boolean attribute.

409 No parameter defined in this context.

No parameter is defined in the context where a reference to OBJECT was
made. Parameters are only defined within checks and bodies of verbs, so the
use of OBJECT (an obsolete construct, use the parameter identifier instead)
is also restricted to those contexts. See Run-time Contexts on page 61.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 108108108108

410 A parameter may not be used in %1.

In certain statements a parameter may not be used at all.

411 %1 ignored for Actor ’hero’.

It is allowed to redefine the predefined actor HERO (the player). This makes
it possible to define local attributes and descriptions for the hero. However
any definition of scripts or initial location is ignored (the script is supplied by
the player in his input and the initial location is defined in the START
section).

412 ’ACTOR’ is not allowed inside events.

In events no actor is active. This means that no reference to the active actor
can be made. See Run-time Contexts on page 61.

413 Expression in %1 must be of integer type.

The context required a numeric expression.

414 Invalid initial location for %1.

The initial location specified was not valid.

415 Invalid Where specification in %1 statement.

The statement indicated does not allow the WHERE specification used.

416 Interval of size 1 in RANDOM expression.

This message informs that the interval in a RANDOM statement was just one
single value, resulting in always returning the same value, not very random.

417 Comparing two constant entities will always yield the
same result.

The expression compared two identifiers none of which was a parameter.
This will always give the same result. This is probably an error, but the
message is still a warning as it gives a perfectly running adventure (but,
perhaps not what you intended?).

418 Aggregate is only allowed on integer type attributes.

The aggregates MAX and SUM can only perform their calculation on integers.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 109109109109

419 Expression in %1 must be of integer or string type.

In the indicated context only integer and string type expressions may be used.

501 LOCATION ’%1’ has no EXITs.

In case the hero is located at the indicated location he may not be able to
escape from that location. This may be intentional (as for a limbo location or
a location with magic words to use as an escape) but the warning is presented
as a reminder.

600 Multiple use of option ’%1’, ignored.

The indicated option was used more than once, this occurrence is ignored
and the previous setting used.

601 Unknown option, ’%1’.

A word was given in the option section that was not the name of an option.

602 Illegal value for option ’%1’.

The indicated option does not allow the value used.

997 SYSTEM ERROR: %1

A severe implementation dependent error has occurred (a bug!). Please report.

998 Feature not implemented in %1.

The combination of some syntactically correct but semantically tricky
constructs is not yet implemented. Please report.

999 No Adventure generated.

When an error is detected this informational message is given to indicate that
no executable adventure was output.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 110110110110

D D D D HOW TO USE THE SYSTEHOW TO USE THE SYSTEHOW TO USE THE SYSTEHOW TO USE THE SYSTEMMMM

D.1D.1D.1D.1 CompilingCompilingCompilingCompiling
This version of the Alan Adventure Development System is a traditional batch
compiler. This means that the actual development system is a compiler that reads
text files created using any normal text editor. To compile an adventure use the
following command in a command shell:

alan <adventure>

where <adventure> is the name of the main file containing your adventure source
text. The compiler will add an extension, “.alan”“.alan”“.alan”“.alan” (or “.ala”“.ala”“.ala”“.ala” on PCs), if none is
supplied. The option ----helphelphelphelp will give a brief help on other options to the compiler.

The output from the compiler, alanalanalanalan, is two files, an adventure code file adadadad----
ventureventureventureventure.acd .acd .acd .acd and an adventure data file, adventureadventureadventureadventure.dat.dat.dat.dat.

D.2D.2D.2D.2 Compiler SwitchesCompiler SwitchesCompiler SwitchesCompiler Switches
The compiler supports the following switches:

• ----charsetcharsetcharsetcharset select the character set of the input files. This can be handy when you get
a source file written on another platform, or for Windows where you edit in a
Windows editor (ISO characters) and use the compiler in a DOS window (DOS
characters). The option should be followed with one of the keywords isoisoisoiso, macmacmacmac or
dosdosdosdos

• ----verboseverboseverboseverbose print compiler version and other verbose messages

• ----warningswarningswarningswarnings show warning messages from the compilation process

• ----infosinfosinfosinfos show informational messages from the compilation process

• ----includeincludeincludeinclude add a directory to the search path for included files (see Files on page 59
for details on the includeincludeincludeinclude directive). This switch can be used multiple times, each
adding a new directory

• ----fullfullfullfull give a complete listing of the source on the screen

• ----height <n>height <n>height <n>height <n> use page height <n> (lines) when producing list files

• ----width <n>width <n>width <n>width <n> use page width <n> (columns) when producing list files

• ----debugdebugdebugdebug include debugging information in the produced adventure files (same as
the debug option, see Options on page 26)

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 111111111111

• ----packpackpackpack encode and compress the text data (same as the pack option, see Options on
page 26)

----summarysummarysummarysummary produce a summary about number of actors, size of adventure files,
timing information etc.

• ----dumpdumpdumpdump print the internal form (developers use only)

Giving an extra hyphen before the option reverses its meaning, e.g. --------warnwarnwarnwarningsingsingsings
means don’t show warnings. Switches may be abbreviated.

D.3D.3D.3D.3 Running the AdventureRunning the AdventureRunning the AdventureRunning the Adventure
To play the generated adventure the Alan interpreter, arunarunarunarun, is executed with the
adventure name as a parameter.

arun <adventure>

No extension on the adventure name is allowed.

If the interpreter program is copied to a different name it will look for code and
data files with the same name. Any parameters or switches will be ignored. For
example, by copying the arunarunarunarun program to adventureadventureadventureadventure the interpreter will, when
started under the new name, directly look for the files advenadvenadvenadventure.acdture.acdture.acdture.acd and
adventure.daadventure.daadventure.daadventure.datttt. The three files adventureadventureadventureadventure, adventure.acdadventure.acdadventure.acdadventure.acd and adventure.datadventure.datadventure.datadventure.dat thus
makes a complete game package which is easy to start using the single command:

> adventure

D.4D.4D.4D.4 Interpreter SwitchesInterpreter SwitchesInterpreter SwitchesInterpreter Switches
The interpreter supports the following switches:

----vvvv print the version of the interpreter

----dddd print the version of interpreter and enter debug mode

----iiii ignore CRC and version errors in the adventure files

----tttt trace sections executed

----ssss show single instruction trace

----llll log all player command in a log-file in the current directory

In later versions an interactive development environment is envisioned but this is
still far away. So you have to be content with the debugging support described in
Debugging on page 75 for now.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 112112112112

E E E E SYSTEM DETAILSSYSTEM DETAILSSYSTEM DETAILSSYSTEM DETAILS
A complete Alan system should contain a compiler and an interpreter. They are
normally called alanalanalanalan and arunarunarunarun respectively, but depending on the environment may
have different names, such as alan.exealan.exealan.exealan.exe.

The Alan system is delivered packaged in different ways depending of the platform.
On each platform the ’standard’ way of packing software has been attempted. Seek
local wisdom or look at the FTP-site ftp.gmd.de where the Interactive Fiction
Archives are located for info.

Alan has been ported to many platforms (try the Alan Home Pages at
http://welcome.to/alan-if for latest info). Below follows some very specific
information for some of the platforms.

AMIGAAMIGAAMIGAAMIGA

The Alan compiler requires more than the standard stack size (4096), a size of
20000 has been used without trouble.

The Alan interpreter arunarunarunarun supports Workbench-start-up through double- clicking
on the Arun-icon. The tooltype WINDOW is supported to make it possible to
select the window in which the adventure should be run. If a console handler device
such as NEWCON: in 1.3 or the normal CON: in 2.x and above history and
command line editing is available.

UNIXUNIXUNIXUNIX

On UNIX systems command history, recall and editing is available.

PCPCPCPC

In the PC environment Alan and Arun are command shell programs. This means
that it needs an MS-DOS console to run. In this case it is most convenient to have
the programs in your command path. Refer to your MS-DOS manuals for info on
how to do this.

In a Windows environment you can associate the extensions .ala.ala.ala.ala and .acd.acd.acd.acd with the
programs Alan and Arun respectively. This will enable compiling and running by
double clicking on the files.

E.1E.1E.1E.1 Portability of GamesPortability of GamesPortability of GamesPortability of Games
The adventure files produced by the Alan compiler is compatible across all
supported platforms. This means that by copying the binary .acd.acd.acd.acd and .dat.dat.dat.dat files to
another machine they should be possible to interpret by an interpreter on that new
machine without any changes. Note however that the files must be transferred in

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 113113113113

binary mode (where applicable). All characters are automatically converted to the
native set allowing multi-national characters to be presented correctly even on
machines that do not support the IS0 8859-1 standard. This is of course restricted
to characters having a representation in the current native character set.

It is a strong goal to achieve complete portability of the games to be able to provide
games for all supported platforms without re-compilation. Game authors should
take this into serious consideration when designing games and not use any system
specific characters, character combinations or special commands that may be
available on some systems.

Portability will not extend to different versions of the system. Changes in the game
file format can occur between versions. Conversion tools may be available, older
interpreter versions can be requested.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 114114114114

F F F F VERSION DIFFERENCESVERSION DIFFERENCESVERSION DIFFERENCESVERSION DIFFERENCES

VERSION 2.8VERSION 2.8VERSION 2.8VERSION 2.8

A number of bug fixes have been performed in this release, mainly various problems
with syntax declarations and named scripts.

A new statement has been introduced. The DEPENDING ON statement is an
improved version of the common switch/case statement available in many other
languages.

Two new expression types have also been introduced. The CONTAINS expressions
performs sub-string containment tests, and the BETWEEN expression makes it easy
to test if a value is within a specified, consecutive, range.

SCHEDULE and RANDOM now accepts general expressions instead of only lit-
erals.

VERSION 2.7VERSION 2.7VERSION 2.7VERSION 2.7

This version introduces the following radical improvements:

• objects no longer need be present to be used in a player command, the normal
case is still that they are required to be present but this default behaviour can
now be overridden using omnipotent indicator in the syntax clause.

• general attributes are now available, i.e. attributes that all objects, actors and
actors have can be declared using the new DEFAULT ATTRIBUTES clause.

• objects and actors can now have multiple names giving the opportunity for
synonyms for entities and not only for words.

Multiple minor improvements has also been made, e.g. free order of declaration of
initial location and names, ’,’ can now be used as a conjunction in player input, a
new RESTART statement, the MESSAGE clause now accepts general statements
(not only strings) and named actor scripts.

VERSION 2.6VERSION 2.6VERSION 2.6VERSION 2.6

The 2.6 interpreter will run 2.5 games, but the 2.6 compiler can not generate 2.5
games. So upgrading to 2.6 will create games only playable with 2.6 interpreters,
but you can keep old games and still play them.

User definition of run-time messages is now possible.

Removed the indefinite article from the default messages. Instead introduced the
ARTICLE slot in objects which will be used (if present) before producing the
MENTIONED message (which may be constructed automatically). If no article is

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 115115115115

declared a default is supplied ("a" if using english). This means that some tricks
that have been used to somewhat remedy the article problem ('a' was always used!),
don't work any more. Remove all 'a', 'an' etc. from the texts and names in the Alan
source (usually in the MENTIONED slot and possibly in the HEADER for
containers), and introduce the ARTICLE "an" declaration on objects that require
it (those whos name start with a vowel sound). For objects that doesn't need an
article define an empty ARTICLE clause.

It also means that there is now a new reserved word ARTICLE.

It is also now possible to define the ARTICLE, MENTIONED and DESCRIP-
TION on objects in any order.

VERSION 2.5VERSION 2.5VERSION 2.5VERSION 2.5

String quotes (") within strings are now allowed, if doubled ("Charlie said
""Hello!"""). The same goes for single quotes (’) within quoted identifiers.
 (Luis Torres <let@reef.cis.ufl.edu>)

Multiple default attribute sections simplifies using general include files as the
default attributes can be distributed across the complete adventure source.

The new VISITS statement replaces the previous option with the same name,
allowing setting of the visits variable during run-time.

The compiler now generates completely cross-platform compatible adventure files,
including multi-national character sets, which are converted automatically to be
presented correctly on any supported platform.

If the interpreter is renamed it will automatically load adventure files (.acd.acd.acd.acd and .dat.dat.dat.dat)
with the same name.
 (Jeff Harrison <harrison@mprgate.mpr.ca>)

The QUIT statement prints a restart question which may be answered affirmative,
in which the game is reloaded and restarted, or negative in which case the adventure
is terminated.
 (Byron Montgomerie <byron@saturn.cs.mun.ca>)

SAVE and RESTORE now prompts for a filename so multiple save files can be
used by the player.
 (Luis Torres <let@reef.cis.ufl.edu>)

Multiplication and division can now be performed using the ’*’ and ’/’ operators
respectively.
 (Robert Yoke-Loong Foo <af685@freenet.carleton.ca>)

VERVERVERVERSION 2.4SION 2.4SION 2.4SION 2.4

Actors may now be containers (allows for making them carry things). The class
indications in the syntax declarations have been enhanced to account for this also.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 116116116116

You can now restrict parameters to all entities having the container property, only
actors having it, or only objects having it (see Syntax Definitions on page 30, and
Containers on page 41 for details).

String comparison normally ignores the case of characters (the new operator ‘==’
does exact matching) (see Binary operators on page 52).

The statements to increase or decrease values are now called INCREASE and
DECREASE (instead of INCREMENT and DECREMENT).

An optional description has been introduced on actor scripts, giving a possibility to
create descriptions that are directly coupled to the activities of the actor (refer to
Actors on page 43).

The QUIT statement now does not print any scores. This has to be made explicitly.
Also the identifier SCORE is now allowed in expressions, representing the current
value of scores collected so far.

Containers are now listed in a more natural way; the old format of one item per line
has been replaced by concatenating them into a natural sentence, like:

You are carrying a box, a ball and a lightbulb.

This might require a change to the HEADER declaration of containers.

VERSION 2.3VERSION 2.3VERSION 2.3VERSION 2.3

String and integer literals are introduced in the player input and in the syntax
declarations. Attributes may now also be strings. No incompatibilities should occur.

VERSION 2.0VERSION 2.0VERSION 2.0VERSION 2.0

In version 2, the concept of syntax is introduced. A programmer may allow different
and more complex input from the player, not just the simple verb/ object type used
in version 1. However, the default mechanism is still this simpler form of input so
very little needs to be changed when converting to version 2. This also follows the
spirit of Alan; it means that syntax is not strictly necessary unless you want to do
something extra. For player input following the simple verb/object syntax there is
nothing you have to do.

Another difference is the improvement in the definition of synonyms. First, the
order of definition is different, you should now supply all the synonyms first and
then the word they are synonyms for. This will probably require some rewriting of
your Alan programs, but it is the more logical way to specify synonyms. Also,
synonyms are now allowed anywhere in the program, so it is now possible to group
global verb definitions, syntax definitions and synonyms for the same verb together
(and perhaps place them in a separate include file).

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 117117117117

G G G G FUTURE DEVELOPMENTSFUTURE DEVELOPMENTSFUTURE DEVELOPMENTSFUTURE DEVELOPMENTS
As Alan is an application-oriented language, i.e. it is designed to fit a particular
application domain perfectly (in this case adventure authoring), it is dependent on
adventure authors requirements and ideas for its further evolution. So please let us
know!

email: thomas.nilsson@progindus.se
 gorfo@ida.liu.se

postage: Thomas Nilsson phone: Int. +46 13 651 12
 Junovägen 12 Nat. 013 - 651 12
 S-590 74 LJUNGSBRO
 SWEDEN

 Göran Forslund phone: Int. +46 13 13 39 91
 Vallmogatan 22 Nat. 013 - 13 39 91
 S-582 46 LINKÖPING
 SWEDEN

The Alan Home Pages on the Internet can be found at
 http://welcome.to/alan-if

Here are some ideas of things we are thinking about:

• Definition of common attributes, verb definitions etc. through in-
troduction of a class structure.

• Definition of interaction with actors, perhaps through some kind of
pattern matching sub-language using string literals.

• Background pictures

• Sound

• ...

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 118118118118

H H H H REFERENCESREFERENCESREFERENCESREFERENCES
[Ada80][Ada80][Ada80][Ada80] Scott Adams : Pirate’s Adventure; BYTE December 1980, pp 192-212
 An article describing the history behind the Scott Adam’s adventures,
particularly the Pirate’s Adventure. Also includes BASIC source for the adventure,
consisting mostly of DATA-statements.

[Bla80][Bla80][Bla80][Bla80] Marc S. Blank, S. W. Galley : How to Fit a Large Program Into a
Small Machine; Creative Computing July 1980, pp 80-87
 A good article on the internals of the Z-interpreter, the pseudo-
machine created by Infocom for creating and running adventures. As always from
the hands of the Infocom men, also very good reading.

[Bet87][Bet87][Bet87][Bet87] David Betz : An Adventure Authoring System; BYTE May 1987, pp
125-135
 A description of a system similar to Alan, AdvSys, consisting of a
special purpose language, a compiler and an interpreter for it. At last the term
authoring is used instead of programming. The system is available through various
PD-sources such as Fred Fish, BIX etc.

[Bra84][Bra84][Bra84][Bra84] A. J. Bradbury : Adventure Games for the Commodore 64; Granada
Publishing 1984, ISBN 0-246- 12412-1
 A good book, especially on the topic of adventure writing
methodology. Carries the concept of storyboarding a bit further than [Gra83]. Also
contains interspersed utilities and modules (in C64 BASIC) and a small adventure,
“The Case of the Lost Adventure”.

[Bri84][Bri84][Bri84][Bri84] Tony Bridge, Richard Williams : Sinclair QL Adventures; Sunshine
Books 1984, ISBN 0-946408-66-1
 Contains a few good chapters on adventures and reviews of some
games of the classical text-type, but then goes on to present the listing of a fairly
uninteresting “adventure generator” for a menu-driven Dungeon And Dragons
inspired (much fighting, strength scoring and banes and such) kind of adventures
games.

[Buc87][Buc87][Buc87][Buc87] Mary Ann Buckles : Interactive Fiction as Literature; BYTE May
1987, pp 135-142
 A very interesting article discussing the literary heritage of adventure
games and their future in that perspective.

[Fic86][Fic86][Fic86][Fic86] Erik Fichtelius : Nu kommer det svenska äventyrsspelet!; Upp&Ner, nr
2 1986
 A swedish article describing the famous swedish “Stuga” game, created
around 1980, which at that time was available for the PC.

[Gra83][Gra83][Gra83][Gra83] Mike Grace : Commodore 64 Adventures; Sunshine Books 1983,
ISBN 0-946408-11-4
 A fairly good book on playing and writing adventure games, written by
an beginner programmer. Strictly BASIC programming but contains many good

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 119119119119

ideas to borrow. Includes some short sections on methods and mentions the concept
of storyboarding. Contains a type-in adventure (“Nightmare Planet”) for the C64.

[Geu85][Geu85][Geu85][Geu85] A.F. de Geus, J.H. Jongejan, A.M. Koelmans : Adventure Description
Language; Sigma Press 1985, ISBN 1-85058-011-1
 Describes an assembler-like Adventure Language for the BBC Micro,
and uses its design as a vehicle for briefly describing a few basic computer science
techniques (e.g. grammars, hashing, huffman coding and graph theory). Source (in
ADL!) for “Red Button” and “Long Forgotten Arabia” adventures plus complete
source for the “scanner”, “interpreter” and “editor” for ADL. Note: this is not the
better known ADL by Ross Cunniff.

[Goe93][Goe93][Goe93][Goe93] Phil Goetz : Interactive Fiction; Dept. of Computer Science, SUNY,
Buffalo NY 14260, USA
 Interesting paper setting out to define the term interactive fiction. Also
discusses history and future of IF, and various media it may use.

[Gra87][Gra87][Gra87][Gra87] David Graves : Second Generation Adventure Games; Journal of
Computer Game Design, Volume 1, number 2 (August 1987), pp 4-7
 An article describing many of the more fundamental concepts
(conceptual and implementational) of interactive fiction of today, such as object
orientation, natural language, text generation and goal orientation.

[G[G[G[Gra88]ra88]ra88]ra88] David Graves : Bringing Characters to Life; Journal of Computer
Game Design, Volume 2, number 2 (December 1988), pp 10-11
 Describes the role and implementation of artificial personalities in
interactive fiction. This feature is seldom implemented in main stream interactive
fiction but would probably give greater depth to the non- player characters in the
story.

[Gra91][Gra91][Gra91][Gra91] David Graves : Plot Automation; Journal of Computer Game Design,
Volume 5, number 1 (October 1991), pp 10-12
 The interesting idea of automatically creating a plot from the
personalities and goals of the actors in the story is presented and discussed.

[Het84][Het84][Het84][Het84] Tony Hetherington : Adventure Games; Personal Computer World,
January 1984 (October 1991), pp 17-26
 Introductory discussion on what makes a good adventure, text vs.
graphic, then some reviews on current games, e.g. The Hobbit and Snowball.

[Has80][Has80][Has80][Has80] Greg Hassett : How to write An Adventure; Creative Computing July
1980, pp 88-90
 A short superficial article containing nothing that can’t be found
elsewhere.

[Leb79][Leb79][Leb79][Leb79] P. David Lebling, Mark S. Blank, Timothy A. Andersson : ZORK - A
Computerized Fantasy Simulation Game; IEEE Computer, April 1979
 An interesting article describing the inner workings and motivations
behind ZORK by the men who (almost) started it all....

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 120120120120

[Leb80][Leb80][Leb80][Leb80] P. David Lebling : ZORK and the Future of Computerized Fantasy
Simulations; BYTE December 1980, pp 172-182
 Lebling again describes the Zork world and machine. This article adds
discussions on various implications of continuing to development, such as
intelligent actors and communication with them, how far to take the parsing of
natural language and how careful you must be before adding another feature in the
games universe.

[Lid80][Lid80][Lid80][Lid80] Bob Liddil : On the Road to Adventure; BYTE December 1980, pp
158-170
 Some tips for playing and reviews of number of not so famous
adventures (by Adams, Hassett, Programmer’s Guild and Mad Hatter).

[Mit86][Mit86][Mit86][Mit86] David Mitchell : An adventure in programming techniques; Addison-
Wesley 1986, ISBN 0-201-15030-1
 An excellent book covering almost every aspect of adventure playing
and writing. As the title suggests adventure writing is taken as the goal for
presenting various programming techniques, but still with the problems of writing
and designing adventures as the primary issue. A bible for adventurers.

[McG84][McG84][McG84][McG84] Gary McGath : COMPUTE!’s Guide To Adventure Games;
COMPUTE! Books 1984, ISBN 0-942386- 67-1
 An excellent book, its primary merit is the reviews of most of the
Infocom adventures, all Scott Adam’s and a bunch of various other adventure games
available and popular in 1984. Also contains a field guide for adventurers and a
short discussion on how to program your own games. Includes source (in various
dialects of BASIC!) for “Tower Of Mystery”. The concluding chapter on the future
of adventure games is most intriguing and may serve as a source for inspiration
when trying to push its limits.

[Owe83][Owe83][Owe83][Owe83] Peter Owens : Adventures in Learning; Popular Computing, December
1983, pp. 147-150
 An article discussing how computer games, adventures in particular,
can be used in education and their potential effect of learning people to think.

[Sca81][Sca81][Sca81][Sca81] Peter D. Scargill : Adven-80, An Advanced Adventure Development
System; Dr. Dobb’s Journal, Number 61 (November 1981)
 An interesting predecessor, assembler like in structure with a lot of
”magic numbers”, but was probably a good system at the time.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 121121121121

I I I I EXAMPLE ADVENTUREEXAMPLE ADVENTUREEXAMPLE ADVENTUREEXAMPLE ADVENTURE
This section contains a small example of how an adventure can be written in Alan.
The emphasis has not been on the ultimate features of the language. Instead it is
intended to show how much functionality can be achieved by just a few hundred
lines of code.

-- This is an example of an adventure written in ALAN using almost
-- nothing of the more advanced features.

-- The story is not much: You have lost your memory and stumble around
-- on a narrow path in the middle of the jungle. To the north the path
-- takes you to a river and to the south to a clearing where a tiger
-- blocks your way. The only way to get past the tiger is to eat a
-- certain kind of fungus, which works as tiger repellant (a clue about
-- this can be found in your notebook). The fungus can only be found
-- by climbing the vine hanging down over the path. When you have
-- succeded in getting past the tiger the game gets to a happy ending.

LOCATION Path

 DESCRIPTION
 "You are standing on a barely visible path in the middle of nowhere.
 The path looks like it's been walked by bare feet (or rather paws)
for
 many a year. From the small amount of light reaching the ground here
 I should say the path runs in almost straight north/south direction.
 On both sides of the path is the deepest, darkest jungle you've ever
 seen. I really wouldn't recommend going that way. The path itself
 isn't much of a place to hold on to either. You get the impression
 that the vegetation is trying hard to recapture even this tiny part
 of land. The trees on both sides seems to come closer and there are
 vines hanging down almost touching your head."

 EXIT north TO bank.
 EXIT south TO clearing.
 EXIT east, west TO jungle.
END LOCATION.

LOCATION Bank

 DESCRIPTION
 "The path ends here on the south side of a wide river. On the ground
 you can see lots of paw prints (some pretty big ones, too). The
obvious
 guess is naturally that this is a common place for the wild animals
to
 stop by for a drink or two (and maybe a bite too). The river itself
 doesn't seem to be too dangerous - it's neither too wide nor too
rapid -
 but those logs with a pair of eyes give you second thoughts."

 EXIT north, swim TO river.
 EXIT south TO path.
 EXIT east, west TO jungle.
END LOCATION.

LOCATION Trees

 DESCRIPTION
 "You have now ended up high above the ground in the middle of the
 trees and vines. The vegetation is so thick up here that it seems
 almost like a green floor."

 EXIT down TO path.
END LOCATION.

LOCATION River

 DESCRIPTION
 "Defying the obvious horrors of the river you try for the northern
 river bank. One crocodile immediately chops your left foot of, but

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 122122122122

 you makes it almost to the middle of the river before another
merciful
 crocodile finishes you off."
 QUIT.

END LOCATION.

LOCATION Clearing

 DESCRIPTION
 "Here the jungle opens up a bit and the path takes you straight into
 a clearing. The path seems to continue on the south side of the
 clearing some fifty paces away."

 EXIT north TO path.
 EXIT east, west TO jungle.
 EXIT south TO camp
 CHECK hero IS repelling
 ELSE "The tiger opens its big mouth and lets out a terrifying
 growl. Apparently it won't let you pass."
 DOES
 "When you approaches the tiger it looks confused. Then it
 really takes in your smell. It suddenly bolts, turns and
 takes off into the jungle."
 LOCATE tiger AT nowhere.
 END EXIT.
END LOCATION.

LOCATION Jungle

 DESCRIPTION
 "Now you've really done it. Didn't I tell you NOT to enter the
jungle."

 EXIT north, south, east, west TO jungle DOES
 "Stumbling around in the jungle trying to make your way through
 the damp vegetation that almost seems to reach out for you,
 you suddenly stumble onto a snake, which disapprove very clearly
 of you stepping on it. One bite in the leg and you have had it."
 QUIT.
 END EXIT.
END LOCATION.

LOCATION Camp

 DESCRIPTION
 "Here is the scattered parts of what ones was the camp of your
 expedition. The sight of it makes your memory come back. When
 you were attacked last night of a herd of wild elephants everyone
 fled in panic. You yourself ran straight into a tree and must
 have lost both conciousness and memory. 'Well, hope the computer
 still works.' you think. 'I think I stick to computer adventures,
 at least for the immediate future.'"
 QUIT.
END LOCATION.

LOCATION nowhere

-- The location for disappearing objects.
END LOCATION.

OBJECT Tiger AT Clearing
 DESCRIPTION
 "An enormous tiger is standing here blocking your way."
END OBJECT.

OBJECT Notebook IN inventory
 DESCRIPTION
 "The book is called 'The Jungle Book: Tricks and Tips'. It
 also has your name on it."

 VERB Take DOES
 LOCATE OBJECT IN inventory.
 "Taken!"
 END VERB.

 VERB Drop DOES
 LOCATE OBJECT HERE.
 "Dropped!"

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 123123123123

 END VERB.

 VERB Read DOES
 "You open the book and glance over the notes. It is really
 a very strange mixture. Something about a tree you shouldn't
 hide under when it rains, 'cause some kind of bugs will start
 falling of its leaves, something else about a certain kind of
 fungus, which grows up among the vines and when eaten is a
 strong tiger repellant and something about how to make a fire
 from wet moss. Here are page after page of useful hints of
 how to survive in the jungle, all in your own hand writing."
 END VERB.
END OBJECT.

OBJECT Vine AT Path
 DESCRIPTION
 "A particulary long and thick vine is hanging down just beside
 you."

 VERB climb DOES
 "The vine is quite slippery, but you still manage to climb
 well into the trees."
 LOCATE HERO AT Trees.
 END VERB.
END OBJECT.

OBJECT Fungus AT Trees
 DESCRIPTION
 "Some kind of vaguely familiar fungus is growing here on a vine."

 VERB Take DOES
 LOCATE OBJECT IN inventory.
 "Taken!"
 END VERB.

 VERB Drop DOES
 LOCATE OBJECT HERE.
 "The fungus immediately clings to a new vine."
 END VERB.

 VERB eat DOES
 "You try a bit of the fungus. It doesn't taste bad although it
 isn't that delicious either. You swallow the rest of it almost
 without chewing. After a short while a strange odour starts
 perspiring from your body."
 LOCATE fungus AT nowhere.
 MAKE hero repelling.
 END VERB.
END OBJECT.

SYNTAX take_inventory = 'inventory'.

SYNONYMS i = 'inventory'.

VERB take_inventory DOES
 LIST inventory.
END VERB.

SYNTAX 'look' = 'look'.

SYNONYMS l = 'look'.

VERB 'look' DOES
 LOOK.
END VERB.

SYNTAX 'quit' = 'quit'.

SYNONYMS q = 'quit'.

VERB 'quit' DOES
 QUIT.
END VERB.

-- NOTE ! It is NOT necessary to declare the actor Hero (which is the
-- player himself). But IF you want to make in possible to give
-- the Hero certain attributes, THEN you have to declare it.

ACTOR Hero

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 124124124124

 IS NOT repelling.
END ACTOR.

START AT path.
 "$p'Oh, my head. It hurts. Why am I out here when I've got this kind
 of headache? And where is 'here'? And who am I?'"

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 125125125125

J J J J COPYING CONDITIONSCOPYING CONDITIONSCOPYING CONDITIONSCOPYING CONDITIONS
The Alan Adventure Development System is now REGISTER-WARE. This
means that for use of the system you are only required to register. This is done
preferably through a simple email, but postal mail will also do, and is free.

Copies of the documentation and executables can also be received from the
ThoNi&GorFo Adventure Factories, henceforth called The Factories, through
email for free on request. Requesting delivery through email will automatically
register the receiver.

A copy of these conditions must accompany any copy of the Alan System.

J.1J.1J.1J.1 DistributionDistributionDistributionDistribution
The Alan System is mainly distributed through electronic mail. This distribution is
free. Uploads to FTP sites and BBS are allowed, provided that the distribution
package is uploaded in its original form, and download from there is of course also
free.

Physical media, such as disk or tape, may be supported depending on plat- form. A
requirement is that the requester supplies appropriate media. The cost for physical
media distribution may vary.

J.2J.2J.2J.2 DocumentationDocumentationDocumentationDocumentation
The documentation is copyrighted by The Factories. Copying is allowed provided
it is distributed as a whole, or quoted accompanied with appropriate references.

J.3J.3J.3J.3 ExecutablesExecutablesExecutablesExecutables
The Alan system contains two executable programs, the compiler Alan and the
interpreter Arun.

Distribution of the interpreter alone or together with game data produced by the
compiler is allowed without restrictions or royalty claims provided appropriate
references and acknowledgment accompanies the game in documentation or
program output. In addition a description of the game, its plot and major features,
and/or the game itself (preferably in source) should be donated to The Factories.
The Factories agree to any copying or copyright restrictions placed on such a game.

The compiler may not be used, other than for evaluation or trial purposes, without
registering with The Factories.

Registered users will receive free notification of updates, new platforms sup- ported,
information on commercially or otherwise released games and other information
supplied by other users or The Factories.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 126126126126

J.4J.4J.4J.4 RegistrationRegistrationRegistrationRegistration
Registration is free and preferably made through a simple email message. Re-
questing a distribution through email will automatically register the requestor.

Registration can be done with an email on the Alan Home Pages at
http://welcome.to/alan-if.

J.5J.5J.5J.5 SourceSourceSourceSource
The source is not in the public domain but can be acquired for porting to new
platforms and technologies and support of such ports The source will not be
released for other purposes.

J.6J.6J.6J.6 ExamplesExamplesExamplesExamples
The Factories would appreciate any example adventures or solutions to problems to
improve the documentation and user support. However Alan source marked as an
example will be considered not copyrighted and may or may not be used, as a whole
or in part, in the Alan documentation or distributed in other forms by decision of
The Factories.

This will also add to the suite of test data and therefore improve the quality of
future releases as well as allow us to find and document any incompatibilities. If you
also enclose a solution we can automate the testing even further. The Factories will
not redistribute your game without your written permission.

J.7J.7J.7J.7 Versions, compatibility and supportVersions, compatibility and supportVersions, compatibility and supportVersions, compatibility and support
The Alan System is versioned using a three level number coding schema, indicating
version number, release and correction respectively. Major differences in the
language or the introduction of many new features will be indicated by an
increment of the version number. Minor changes to the language and introduction
of features are indicated by an increment of the release number. Bug fixes will
increase the correction number.

Any adventure files and interpreters having the same version and release numbers
will be compatible. Adventure files are also compatible across all supported
platforms. This includes character sets, the intent being to correctly present any
multinational character on any system. Thus complete coverage of the supported
platforms from a single development machine can be achieved.

As the Alan System is a non-profit project user support may vary. To maximise
probability of handling, error reports should be sent to The Factories (preferably by
email) and include source, version of compiler and interpreter as well as a detailed
description of how to reproduce the error and its symptoms.

Releases and corrections will be issued on irregular intervals.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 127127127127

J.8J.8J.8J.8 Executive SummaryExecutive SummaryExecutive SummaryExecutive Summary
So, in short, the interpreter Arun and any game produced using the Alan Sys- tem is
yours. You may sell or copy it as you like, and as you need the interpreter to run the
game it may be copied freely too. The Arun interpreter may also be uploaded on
BBS'es or FTP-sites to allow players to download an interpreter for his platform
and use that to run your game.

The documentation and examples are free to copy or place on any BBS'es or FTP-
sites if their contents are not changed.

To use the Alan compiler you must register.

Distribution on disks or tape may cost depending on the media. A floppy disc
distribution is free, provided you supply the disk (we’ll pay the return postage).

If you create a game using the Alan System we’d like to see it. Send us a copy
(preferably in source) and any documentation or a description of the game and its
novel features.

Short games or samples of Alan source are most welcome as examples that we might
use and distribute to other users. Sending an example means you waive all rights to
it. Examples add to the suite of test data and thus helps further improve the quality
of the system.

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 128128128128

K K K K INDEXINDEXINDEXINDEX

AAAA
Abug 76
actor 17
ACTOR 21, 43

in what specifications 53
actors

execution context 62
hints about 66
moving 62

adjective 39
AFTER qualifier 35
aggregate

MAX 56
SUM 56

ALL 31, 34, 40, 61, 82, 84
alternatives, verb 35
AND 31, 60
article 40
Arun 75, 82, 112
AT 53
attributes 20, 55, 63

boolean 27
default 27
numeric 28
of actors 44
of locations 37
of objects 40
string 28

BBBB
BEFORE qualifier 35
BETWEEN 55
binary operators 55
BNF 90
boolean attributes 27
BUT 61, 84

CCCC
CANCEL statement 50
character combinations, in strings 46
character sets 27
CHECK 34

in exits 38, 62
in verbs 21

check, unconditional 34
checks

execution order 36
common verbs 65
concatenation, in player commands 60
CONTAINER 41
container property

of actors 43
of objects 39

containers

closing 66
hints about 65

containment operator 55
CONTAINS 55
contexts of execution 61
COUNT 56

in limits 42

DDDD
Debug option 27
debugging 75
DECREASE statement 51
default

attributes 27, 65
syntax 24, 32

DEPENDING ON statement 52
DESCRIBE statement 41, 47
DESCRIPTION

of actor scripts 44, 67
of actors 44
of locations 18, 37

descriptions
execution context 61

DOES
in exits 62
in locations 38, 62
in verbs 34

doors, hints about 65
double quotes 58

EEEE
EMPTY statement 50
comparisons 55
EVENT 43
events

execution context 62
hints about 68

EVERYTHING 61
EXCEPT 61, 84
execution contexts 61
execution of an adventure 60
EXIT 18, 38, 62
expression types 54
expressions 54

logical 54

FFFF
formatting characters 46
formatting, of output 46

HHHH
HEADER 42
HERE 53
hero 45, 62

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 10101010

IIII
identifiers

case translation of 57
lexical definition 57
quoted 57

IF statement 20, 51, 64
IN 53
include

construct 58
files 58, 65
switch 111

INCREASE statement 51
indicator 31
multiple indicator 31
indicator, omnipotent 31, 61, 73
Infocom 14, 15
inventory 42
IT 60, 83

LLLL
Language option 26
languages 82
Length option 27
LIMITS 42

execution of 42, 50
LIST statement 47
literals 54
LOCATE statement 20, 49
locating inside containers 42, 50
location 16, 18
LOCATION 37

in what specification 53
logical expressions 54
logical operators 54
LOOK statement 48

MMMM
MAKE statement 20, 51
map 16
MAX aggregate 56
MENTIONED 40
multinational characters 27
multiple indicator 31, 61
multiple parameters 60, 61

NNNN
NAME

of actors 43
of locations 37, 57
of objects 39

NEARBY 53
noun 39
numbers

lexical definition 58
numeric attributes 28

OOOO
object 16

shadow object
shadow 73

OBJECT 19, 38
in what specifications 53

omnipotent indicator 31, 73
omnipotent indicator 61
ONLY qualifier 35
operator

string containment 55
operators

binary 55
logical 54
relational 55

options 26
output statements 46

PPPP
Pack option 27
parameter 24, 32

classes 32
referencing 61

player commands 60
presence, of parameters 61

QQQQ
qualifiers, verb 34, 35
QUIT statement 48
quoted identifier 57
quotes

double 58
single 58
string 58

RRRR
RANDOM 54
relational operators 55
RESTORE statement 48
restriction, of parameters 24, 32
rules

executing 45
execution context 62

SSSS
SAVE statement 48
SAY statement 47
SCHEDULE statement 50
SCORE statement 48
SCRIPT 44
scripts

description of 44
SET statement 20, 51
single quotes 58
spacing, in strings 58
start section 26, 46
statements

CANCEL 50
DECREASE 51
DEPENDING ON 52
DESCRIBE 47

Alan Language ManualAlan Language ManualAlan Language ManualAlan Language Manual

 11111111

EMPTY 50
IF 51
INCREASE 51
LIST 47
LOCATE 49
LOOK 48
MAKE 51
output from 46
QUIT 48
RESTORE 48
SAVE 48
SAY 47
SCHEDULE 50
SCORE 48
SET 51
USE 52
VISITS 49

STEP 45
step, executing the last 45
string

attributes 28
comparisons 55
special character combinations 46

STRING 19, 46
string quotes 58
strings

lexical definition 58
spacing 58

SUM aggregate 56
SYNONYMS 29
SYNTAX 24, 30

syntax, default 24, 32

TTTT
text formatting 46
THEM 61, 83
THEN 60
types of expressions 54

UUUU
unconditional check 34
USE statement 44, 52

V,WV,WV,WV,W
verb 17

alternative 35
execution context 61
execution order 23, 24, 36
qualifiers 34, 35
reusing common 65

VERB 21, 29, 33
global 22
in location 22
in object 22

what specifications 53
rules 45
where specification 52
Width option 27
VISITS statements 49

	INTRODUCTION
	TUTORIAL
	What Is An Adventure?
	Elements Of Adventures
	Alan Fundamentals
	The Map
	The Objects
	The Verbs
	The Actors

	Alan Language Description
	The Location Construct
	The Object Construct
	The Actor Construct
	The Verb Construct
	The Syntax Construct

	THE LANGUAGE
	An Adventure
	Options
	Attributes And Default Attributes
	Synonyms
	Messages
	Syntax Definitions
	Verbs
	Verb Alternatives
	Verb Qualification

	Locations
	Objects
	Containers
	Events
	Actors
	Rules
	Start Section
	Statements
	Output Statements
	Special Statements
	Manipulation Statements
	Event Statements
	Assignment Statements
	Conditional Statements
	Actor Statements

	WHERE Specifications
	WHAT Specifications
	Expressions
	Types Of Expressions
	Literal Values
	Logical Expressions
	Binary Operators
	Relational Operators
	The Value Of Attributes
	The Whereabouts Of An Entity
	Aggregates

	LEXICAL DEFINITIONS
	Comments
	Identifiers And Names
	Numbers
	Strings
	Files

	EXECUTION OF AN ADVENTURE
	A Turn Of Events
	Player Input
	Run-time Contexts
	Moving Actors

	HINTS AND TIPS
	Use of Attributes
	Descriptions
	Common Verbs
	Doors
	Containers and Their Contents
	Actors
	Distant Events
	Vehicles
	Questions and Answers
	Floating Objects
	Darkness and Light Sources
	Distant & Imaginary Objects
	Structure
	Debugging

	ADVENTURE CONSTRUCTION
	Getting an Idea
	Elaborating the Story
	Implementing it
	Polishing the Adventure
	Beta Testing

	RUN-TIME MESSAGES
	Input Response Messages
	System Errors

	ALAN LANGUAGE GRAMMAR
	Description
	Reserved words
	Additional Keywords
	The Grammar

	COMPILER ERROR MESSAGES
	Format of messages
	Message explanations

	HOW TO USE THE SYSTEM
	Compiling
	Compiler Switches
	Running the Adventure
	Interpreter Switches

	SYSTEM DETAILS
	Portability of Games

	VERSION DIFFERENCES
	FUTURE DEVELOPMENTS
	REFERENCES
	EXAMPLE ADVENTURE
	COPYING CONDITIONS
	Distribution
	Documentation
	Executables
	Registration
	Source
	Examples
	Versions, compatibility and support
	Executive Summary

	INDEX

