
Designing BIBTEX Styles

Oren Patashnik

February 8, 1988

5 Bibliography-style hacking

This document starts (and ends) with Section 5, because in reality it is the
final section of “BibTEXing” [4], the general documentation for BibTEX. But
that document was meant for all BibTEX users, while this one is just for style
designers, so the two are physically separate. Still, you should be completely
familiar with “BibTEXing”, and all references in this document to sections and
section numbers assume that the two documents are one.

This section, along with the standard-style documentation file btxbst.doc,
should explain how to modify existing style files and to produce new ones. If
you’re a serious style hacker you should be familiar with van Leunen [7] for
points of style, with Lamport [3] and Knuth [2] for formatting matters, and
perhaps with Scribe [6] for compatibility details. And while you’re at it, if you
don’t read the great little book by Strunk and White [5], you should at least
look at its entries in the database and the reference list to see how BibTEX
handles multiple names.

To create a new style, it’s best to start with an existing style that’s close
to yours, and then modify that. This is true even if you’re simply updating an
old style for BibTEX version 0.99 (I’ve updated four nonstandard styles, so I say
this with some experience). If you want to insert into a new style some function
you’d written for an old (version 0.98i) style, keep in mind that the order of
the arguments to the assignment (:=) function has been reversed. When you’re
finished with your style, you may want to try running it on the entire XAMPL.BIB
database to make sure it handles all the standard entry types.

If you find any bugs in the standard styles, or if there are things you’d like to
do with bibliography-style files but can’t, please complain to Oren Patashnik.

5.1 General description

You write bibliography styles in a postfix stack language. It’s not too hard
to figure out how by looking at the standard-style documentation, but this
description fills in a few details (it will fill in more details if there’s a demand
for it).

1



Basically the style file is a program, written in an unnamed language, that
tells BibTEX how to format the entries that will go in the reference list (hence-
forth “the entries” will be “the entry list” or simply “the list”, context permit-
ting). This programming language has ten commands, described in the next
subsection. These commands manipulate the language’s objects: constants,
variables, functions, the stack, and the entry list. (Warning: The terminology
in this documentation, chosen for ease of explanation, is slightly different from
BibTEX’s. For example, this documentation’s “variables” and “functions” are
both “functions” to BibTEX. Keep this in mind when interpreting BibTEX’s error
messages.)

There are two types of functions: built-in ones that BibTEX provides (these
are described in Section 5.3), and ones you define using either the MACRO or
FUNCTION command.

Your most time-consuming task, as a style designer, will be creating or
modifying functions using the FUNCTION command (actually, becoming familiar
with the references listed above will be more time consuming, but assume for
the moment that that’s done).

Let’s look at a sample function fragment. Suppose you have a string variable
named label and an integer variable named lab.width, and suppose you want
to append the character ‘a’ to label and to increment lab.width:

. . .

label "a" * ’label := % label := label * "a"

lab.width #1 + ’lab.width := % lab.width := lab.width + 1

. . .

In the first line, label pushes that variable’s value onto the stack. Next, the
"a" pushes the string constant ‘a’ onto the stack. Then the built-in function *

pops the top two strings and pushes their concatenation. The ’label pushes
that variable’s name onto the stack. And finally, the built-in function := pops
the variable name and the concatenation and performs the assignment. BibTEX
treats the stuff following the % as a comment in the style file. The second line
is similar except that it uses #1, with no spaces intervening between the ‘#’ and
the ‘1’, to push this integer constant.

The nonnull spacing here is arbitrary: multiple spaces, tabs, or newlines are
equivalent to a single one (except that you’re probably better off not having
blank lines within commands, as explained shortly).

For string constants, absolutely any printing character is legal between two
consecutive double quotes, but BibTEX here (and only here) treats upper- and
lower-case equivalents as different. Furthermore, spacing is relevant within a
string constant, and you mustn’t split a string constant across lines (that is, the
beginning and ending double quotes must be on the same line).

Variable and function names may not begin with a numeral and may not
contain any of the ten restricted characters on page 143 of the LATEX book, but

2



may otherwise contain any printing characters. Also, BibTEX considers upper-
and lower-case equivalents to be the same.

Integers and strings are the only value types for constants and variables
(booleans are implemented simply as 0-or-1 integers). There are three kinds of
variables:

global variables These are either integer- or string-valued, declared using an
INTEGERS or STRINGS command.

entry variables These are either integer- or string-valued, declared using the
ENTRY command. Each has a value for each entry on the list (example: a
variable label might store the label string you’ll use for the entry).

fields These are string-valued, read-only variables that store the information
from the database file; their values are set by the READ command. As with
entry variables, each has a value for each entry.

5.2 Commands

There are ten style-file commands: Five (ENTRY, FUNCTION, INTEGERS, MACRO,
and STRINGS) declare and define variables and functions; one (READ) reads in
the database information; and four (EXECUTE, ITERATE, REVERSE, and SORT)
manipulate the entries and produce output. Although the command names
appear here in upper case, BibTEX ignores case differences.

Some restrictions: There must be exactly one ENTRY and one READ command;
the ENTRY command, all MACRO commands, and certain FUNCTION commands (see
next subsection’s description of call.type$) must precede the READ command;
and the READ command must precede the four that manipulate the entries and
produce output.

Also it’s best (but not essential) to leave at least one blank line between
commands and to leave no blank lines within a command; this helps BibTEX
recover from any syntax errors you make.

You must enclose each argument of every command in braces. Look at the
standard-style documentation for syntactic issues not described in this section.
Here are the ten commands:

ENTRY Declares the fields and entry variables. It has three arguments, each a
(possibly empty) list of variable names. The three lists are of: fields, inte-
ger entry variables, and string entry variables. There is an additional field
that BibTEX automatically declares, crossref, used for cross referencing.
And there is an additional string entry variable automatically declared,
sort.key$, used by the SORT command. Each of these variables has a
value for each entry on the list.

EXECUTE Executes a single function. It has one argument, the function name.

3



FUNCTION Defines a new function. It has two arguments; the first is the func-
tion’s name and the second is its definition. You must define a function
before using it; recursive functions are thus illegal.

INTEGERS Declares global integer variables. It has one argument, a list of
variable names. There are two such automatically-declared variables,
entry.max$ and global.max$, used for limiting the lengths of string vari-
ables. You may have any number of these commands, but a variable’s
declaration must precede its use.

ITERATE Executes a single function, once for each entry in the list, in the list’s
current order (initially the list is in citation order, but the SORT command
may change this). It has one argument, the function name.

MACRO Defines a string macro. It has two arguments; the first is the macro’s
name, which is treated like any other variable or function name, and the
second is its definition, which must be double-quote-delimited. You must
have one for each three-letter month abbreviation; in addition, you should
have one for common journal names. The user’s database may override any
definition you define using this command. If you want to define a string
the user can’t touch, use the FUNCTION command, which has a compatible
syntax.

READ Dredges up from the database file the field values for each entry in the
list. It has no arguments. If a database entry doesn’t have a value for a
field (and probably no database entry will have a value for every field),
that field variable is marked as missing for the entry.

REVERSE Exactly the same as the ITERATE command except that it executes
the function on the entry list in reverse order.

SORT Sorts the entry list using the values of the string entry variable sort.key$.
It has no arguments.

STRINGS Declares global string variables. It has one argument, a list of variable
names. You may have any number of these commands, but a variable’s
declaration must precede its use.

5.3 The built-in functions

Before we get to the built-in functions, a few words about some other built-
in objects. There is one built-in string entry variable, sort.key$, which the
style program must set if the style is to do sorting. There is one built-in field,
crossref, used for the cross referencing feature described in Section 4. And
there are two built-in integer global variables, entry.max$ and global.max$,
which are set by default to some internal BibTEX constants; you should truncate

4



strings to these lengths before you assign to string variables, so as to not generate
any BibTEX warning messages.

There are currently 37 built-in functions. Every built-in function with a
letter in its name ends with a ‘$’. In what follows, “first”, “second”, and so
on refer to the order popped. A “literal” is an element on the stack, and it
will be either an integer value, a string value, a variable or function name, or
a special value denoting a missing field. If any popped literal has an incorrect
type, BibTEX complains and pushes the integer 0 or the null string, depending
on whether the function was supposed to push an integer or string.

> Pops the top two (integer) literals, compares them, and pushes the integer 1
if the second is greater than the first, 0 otherwise.

< Analogous.

= Pops the top two (both integer or both string) literals, compares them, and
pushes the integer 1 if they’re equal, 0 otherwise.

+ Pops the top two (integer) literals and pushes their sum.

- Pops the top two (integer) literals and pushes their difference (the first sub-
tracted from the second).

* Pops the top two (string) literals, concatenates them (in reverse order, that
is, the order in which pushed), and pushes the resulting string.

:= Pops the top two literals and assigns to the first (which must be a global or
entry variable) the value of the second.

add.period$ Pops the top (string) literal, adds a ‘.’ to it if the last non‘}’
character isn’t a ‘.’, ‘?’, or ‘!’, and pushes this resulting string.

call.type$ Executes the function whose name is the entry type of an en-
try. For example if an entry is of type book, this function executes the
book function. When given as an argument to the ITERATE command,
call.type$ actually produces the output for the entries. For an entry
with an unknown type, it executes the function default.type. Thus you
should define (before the READ command) one function for each standard
entry type as well as a default.type function.

change.case$ Pops the top two (string) literals; it changes the case of the
second according to the specifications of the first, as follows. (Note: The
word ‘letters’ in the next sentence refers only to those at brace-level 0,
the top-most brace level; no other characters are changed, except perhaps
for “special characters”, described in Section 4.) If the first literal is the
string ‘t’, it converts to lower case all letters except the very first character
in the string, which it leaves alone, and except the first character following

5



any colon and then nonnull white space, which it also leaves alone; if it’s
the string ‘l’, it converts all letters to lower case; and if it’s the string ‘u’,
it converts all letters to upper case. It then pushes this resulting string. If
either type is incorrect, it complains and pushes the null string; however,
if both types are correct but the specification string (i.e., the first string)
isn’t one of the legal ones, it merely pushes the second back onto the
stack, after complaining. (Another note: It ignores case differences in the
specification string; for example, the strings t and T are equivalent for the
purposes of this built-in function.)

chr.to.int$ Pops the top (string) literal, makes sure it’s a single character,
converts it to the corresponding ASCII integer, and pushes this integer.

cite$ Pushes the string that was the \cite-command argument for this entry.

duplicate$ Pops the top literal from the stack and pushes two copies of it.

empty$ Pops the top literal and pushes the integer 1 if it’s a missing field or a
string having no non-white-space characters, 0 otherwise.

format.name$ Pops the top three literals (they are a string, an integer, and a
string literal). The last string literal represents a name list (each name
corresponding to a person), the integer literal specifies which name to
pick from this list, and the first string literal specifies how to format this
name, as explained in the next subsection. Finally, this function pushes
the formatted name.

if$ Pops the top three literals (they are two function literals and an integer
literal, in that order); if the integer is greater than 0, it executes the second
literal, else it executes the first.

int.to.chr$ Pops the top (integer) literal, interpreted as the ASCII inte-
ger value of a single character, converts it to the corresponding single-
character string, and pushes this string.

int.to.str$ Pops the top (integer) literal, converts it to its (unique) string
equivalent, and pushes this string.

missing$ Pops the top literal and pushes the integer 1 if it’s a missing field,
0 otherwise.

newline$ Writes onto the bbl file what’s accumulated in the output buffer. It
writes a blank line if and only if the output buffer is empty. Since write$

does reasonable line breaking, you should use this function only when you
want a blank line or an explicit line break.

6



num.names$ Pops the top (string) literal and pushes the number of names the
string represents—one plus the number of occurrences of the substring
“and” (ignoring case differences) surrounded by nonnull white-space at
the top brace level.

pop$ Pops the top of the stack but doesn’t print it; this gets rid of an unwanted
stack literal.

preamble$ Pushes onto the stack the concatenation of all the @PREAMBLE strings
read from the database files.

purify$ Pops the top (string) literal, removes nonalphanumeric characters ex-
cept for white-space characters and hyphens and ties (these all get con-
verted to a space), removes certain alphabetic characters contained in the
control sequences associated with a “special character”, and pushes the
resulting string.

quote$ Pushes the string consisting of the double-quote character.

skip$ Is a no-op.

stack$ Pops and prints the whole stack; it’s meant to be used for style designers
while debugging.

substring$ Pops the top three literals (they are the two integers literals len
and start, and a string literal, in that order). It pushes the substring of
the (at most) len consecutive characters starting at the startth character
(assuming 1-based indexing) if start is positive, and ending at the −startth
character from the end if start is negative (where the first character from
the end is the last character).

swap$ Swaps the top two literals on the stack.

text.length$ Pops the top (string) literal, and pushes the number of text char-
acters it contains, where an accented character (more precisely, a “special
character”, defined in Section 4) counts as a single text character, even if
it’s missing its matching right brace, and where braces don’t count as text
characters.

text.prefix$ Pops the top two literals (the integer literal len and a string lit-
eral, in that order). It pushes the substring of the (at most) len consecutive
text characters starting from the beginning of the string. This function
is similar to substring$, but this one considers a “special character”,
even if it’s missing its matching right brace, to be a single text character
(rather than however many ASCII characters it actually comprises), and
this function doesn’t consider braces to be text characters; furthermore,
this function appends any needed matching right braces.

7



top$ Pops and prints the top of the stack on the terminal and log file. It’s
useful for debugging.

type$ Pushes the current entry’s type (book, article, etc.), but pushes the null
string if the type is either unknown or undefined.

warning$ Pops the top (string) literal and prints it following a warning message.
This also increments a count of the number of warning messages issued.

while$ Pops the top two (function) literals, and keeps executing the second
as long as the (integer) literal left on the stack by executing the first is
greater than 0.

width$ Pops the top (string) literal and pushes the integer that represents its
width in some relative units (currently, hundredths of a point, as specified
by the June 1987 version of the cmr10 font; the only white-space character
with nonzero width is the space). This function takes the literal literally;
that is, it assumes each character in the string is to be printed as is,
regardless of whether the character has a special meaning to TEX, except
that “special characters” (even without their right braces) are handled
specially. This is meant to be used for comparing widths of label strings.

write$ Pops the top (string) literal and writes it on the output buffer (which
will result in stuff being written onto the bbl file when the buffer fills up).

Note that the built-in functions while$ and if$ require two function literals
on the stack. You get them there either by immediately preceding the name of
a function by a single quote, or, if you don’t feel like defining a new function
with the FUNCTION command, by simply giving its definition (that is, giving
what would be the second argument to the FUNCTION command, including the
surrounding braces). For example the following function fragment appends the
character ‘a’ if the string variable named label is nonnull:

. . .

label "" =

’skip$

{ label "a" * ’label := }

if$

. . .

A function whose name you quote needn’t be built in like skip$ above—it may,
for example, be a field name or a function you’ve defined earlier.

5.4 Name formatting

What’s in a name? Section 4 pretty much describes this. Each name consists of
four parts: First, von, Last, and Jr; each consists of a list of name-tokens, and

8



any list but Last’s may be empty for a nonnull name. This subsection describes
the format string you must supply to the built-in function format.name$.

Let’s look at an example of a very long name. Suppose a database entry [1]
has the field

author = "Charles Louis Xavier Joseph de la Vall{\’e}e Poussin"

and suppose you want this formatted “last name comma initials”. If you use the
format string

"{vv~}{ll}{, jj}{, f}?"

BibTEX will produce

de~la Vall{\’e}e~Poussin, C.~L. X.~J?

as the formatted string.
Let’s look at this example in detail. There are four brace-level 1 pieces to

this format string, one for each part of a name. If the corresponding part of
a name isn’t present (the Jr part for this name), everything in that piece is
ignored. Anything at brace-level 0 is output verbatim (the presumed typo ‘?’
for this name is at brace-level 0), but you probably won’t use this feature much.

Within each piece a double letter tells BibTEX to use whole tokens, and a
single letter, to abbreviate them (these letters must be at brace-level 1); every-
thing else within the piece is used verbatim (well, almost everything—read on).
The tie at the end of the von part (in {vv~}) is a discretionary tie—BibTEX
will output a tie at that point if it thinks there’s a need for one; otherwise it
will output a space. If you really, really, want a tie there, regardless of what
BibTEX thinks, use two of them (only one will be output); that is, use {vv~~}.
A tie is discretionary only if it’s the last character of the piece; anywhere else
it’s treated as an ordinary character.

BibTEX puts default strings between tokens of a name part: For whole tokens
it uses either a space or a tie, depending on which one it thinks is best, and for
abbreviated tokens it uses a period followed by either a space or a tie. However
it doesn’t use this default string after the last token in a list; hence there’s no
period following the ‘J’ for our example. You should have used

"{vv~}{ll}{, jj}{, f.}"

to get BibTEX to produce the same formatted string but with the question mark
replaced by a period. Note that the period should go inside the First-name piece,
rather than where the question mark was, in case a name has no First part.

If you want to override BibTEX’s default between-token strings, you must
explicitly specify a string. For example suppose you want a label to contain
the first letter from each token in the von and Last parts, with no spaces; you
should use the format string

9



"{v{}}{l{}}"

so that BibTEX will produce ‘dlVP’ as the formatted string. You must give a
string for each piece whose default you want overridden (the example here uses
the null string for both pieces), and this string must immediately follow either
the single or double letter for the piece. You may not have any other letters at
brace-level 1 in the format string.

References

[1] Charles Louis Xavier Joseph de la Vallée Poussin. A strong form of the
prime number theorem, 19th century.

[2] Donald E. Knuth. The TEXbook. Addison-Wesley, 1984.

[3] Leslie Lamport. LATEX: A Document Preparation System. Addison-Wesley,
1986.

[4] Oren Patashnik. BibTEXing. Documentation for general BibTEX users,
8 February 1988.

[5] William Strunk, Jr. and E. B. White. The Elements of Style. Macmillan,
third edition, 1979.

[6] Unilogic, Ltd., Pittsburgh. Scribe Document Production System User Man-
ual, April 1984. Chapter twelve and appendices E8 through E10 deal with
bibliographies.

[7] Mary-Claire van Leunen. A Handbook for Scholars. Knopf, 1979.

10


