Net wor k Wor ki ng Group David C. Pl umer
Request For Comments: 826 (DCP@M T- MO)
Novenber 1982

An Et hernet Address Resol ution Protoco
- - Or - -
Converting Network Protocol Addresses
to 48.bit Ethernet Address
for Transm ssion on
Et her net Har dwar e

Abst r act

The inplenentati on of protocol P on a sending host S decides,

t hrough protocol P's routing nechanism that it wants to transmit
to a target host T |ocated sone place on a connected piece of
10Mbit Ethernet cable. To actually transmt the Ethernet packet
a 48.bit Ethernet address nust be generated. The addresses of
hosts within protocol P are not always conpatible with the
correspondi ng Ethernet address (being different |engths or

val ues). Presented here is a protocol that all ows dynamc
distribution of the information needed to build tables to
translate an address A in protocol P s address space into a

48. bit Et hernet address.

Ceneral i zati ons have been nmade which all ow the protocol to be
used for non-10Mdit Ethernet hardware. Some packet radio
net wor ks are exanpl es of such hardware.

The protocol proposed here is the result of a great deal of

di scussion with several other people, nost notably J. Noe

Chi appa, Yogen Dal al, and James E. Kul p, and hel pful coments
from Davi d Moon.

[The purpose of this RFCis to present a nethod of Converting
Prot ocol Addresses (e.g., |P addresses) to Local Network
Addresses (e.g., Ethernet addresses). This is a issue of genera
concern in the ARPA Internet conmunity at this time. The

nmet hod proposed here is presented for your consideration and
comrent. This is not the specification of a Internet Standard.]

This protocol was originally designed for the DEC/ I ntel/ Xerox
10Mvit Ethernet. 1t has been generalized to allowit to be used
for other types of networks. Mich of the discussion will be
directed toward the 10Mbit Ethernet. Generalizations, where
applicable, will follow the Ethernet-specific discussion

DOD Internet Protocol will be referred to as Internet.

Nunmbers here are in the Ethernet standard, which is high byte
first. This is the opposite of the byte addressing of nmachi nes
such as PDP-11s and VAXes. Therefore, special care nust be taken
with the opcode field (ar$op) described bel ow

An agreed upon authority is needed to nmanage hardware name space
val ues (see below). Until an official authority exists, requests
shoul d be subnmitted to

David C. Pl umer

Synbolics, Inc.

243 Vassar Street

Canbri dge, Massachusetts 02139
Alternatively, network nmail can be sent to DCP@J T- MC.

The Probl em

The world is a jungle in general, and the networking gane
contributes many animals. At nearly every layer of a network
architecture there are several potential protocols that could be
used. For exanple, at a high level, there is TELNET and SUPDUP
for renote login. Sonewhere below that there is a reliable byte
stream protocol, which m ght be CHAGCS protocol, DOD TCP, Xerox
BSP or DECnet. Even closer to the hardware is the |ogica
transport layer, which nmight be CHAGS, DOD | nternet, Xerox PUP,
or DECnet. The 10Miit Ethernet allows all of these protocols
(and nore) to coexist on a single cable by nmeans of a type field
in the Ethernet packet header. However, the 10Moit Et hernet
requires 48.bit addresses on the physical cable, yet nost
protocol addresses are not 48.bits long, nor do they necessarily
have any relationship to the 48.bit Ethernet address of the
hardware. For exanple, CHACS addresses are 16.bits, DOD Internet
addresses are 32.bits, and Xerox PUP addresses are 8.bits. A
protocol is needed to dynamcally distribute the correspondences
bet ween a <protocol, address> pair and a 48. bit Ethernet address.

Moti vati on

Use of the 10Mbvit Ethernet is increasing as nore manufacturers
supply interfaces that conformto the specification published by
DEC, Intel and Xerox. Wth this increasing availability, nore
and nore software is being witten for these interfaces. There
are two alternatives: (1) Every inplenmentor invents his/her own
met hod to do sone form of address resolution, or (2) every

i mpl ement or uses a standard so that his/her code can be
distributed to other systens w thout need for nodification. This
proposal attenpts to set the standard.

Definitions:

Define the following for referring to the values put in the TYPE
field of the Ethernet packet header:
et her _t ype$XEROX_PUP,
et her _t ype$DOD_| NTERNET,
et her _t ype$CHAGCS,
and a new one:
et her _t ype$ADDRESS RESOLUTI ON
Al so define the followi ng values (to be discussed |ater):
ares_Op$REQUEST (= 1, high byte transmitted first) and
ares_op$REPLY (= 2),
and
ares_hrd$Et hernet (= 1).

Packet format:

To comuni cate nappi ngs from <protocol, address> pairs to 48.bit
Et hernet addresses, a packet format that enbodi es the Address
Resol ution protocol is needed. The format of the packet foll ows.

Et hernet transm ssion |layer (not necessarily accessible to

t he user):

48.bit: Ethernet address of destination

48.bit: Ethernet address of sender

16.bit: Protocol type = ether_type$ADDRESS RESCLUTI ON

Et her net packet data:

16.bit: (ar$hrd) Hardware address space (e.g., Ethernet,
Packet Radi o Net.)

16.bit: (ar$pro) Protocol address space. For Ethernet
hardware, this is fromthe set of type
fields ether_typ$<protocol >.

8.bit: (ar$hln) byte length of each hardware address

8.bit: (ar$pln) byte length of each protocol address

16.bit: (ar$op) opcode (ares_op$REQUEST | ares_op$REPLY)

nbytes: (ar$sha) Hardware address of sender of this
packet, n fromthe ar$hin field.

nbytes: (ar$spa) Protocol address of sender of this
packet, mfromthe ar$pln field.

nbytes: (ar$tha) Hardware address of target of this
packet (if known).

nbytes: (ar$tpa) Protocol address of target.

Packet Generation:

As a packet is sent down through the network |ayers, routing
determines the protocol address of the next hop for the packet
and on which piece of hardware it expects to find the station
with the immedi ate target protocol address. 1In the case of the
10Mbit Et hernet, address resolution is needed and some | ower

| ayer (probably the hardware driver) nust consult the Address
Resol ution nodul e (perhaps inplenented in the Ethernet support
nmodul e) to convert the <protocol type, target protocol address>
pair to a 48.bit Ethernet address. The Address Resol uti on nodul e

tries to find this pair in a table. |If it finds the pair, it
gi ves the corresponding 48.bit Ethernet address back to the
caller (hardware driver) which then transnits the packet. If it

does not, it probably inforns the caller that it is throwing the
packet away (on the assunption the packet will be retransnitted
by a higher network |ayer), and generates an Ethernet packet with
a type field of ether_type$ADDRESS RESOLUTI ON. The Address

Resol uti on nbdul e then sets the ar$hrd field to

ares_hrd$Et hernet, ar$pro to the protocol type that is being
resolved, ar$hln to 6 (the nunber of bytes in a 48.bit Ethernet
address), ar$pln to the length of an address in that protocol
ar$op to ares_op$REQUEST, ar$sha with the 48.bit ethernet address
of itself, ar$spa with the protocol address of itself, and ar$tpa
with the protocol address of the machine that is trying to be
accessed. It does not set ar$tha to anything in particular,
because it is this value that it is trying to deternmine. It
could set ar$tha to the broadcast address for the hardware (al
ones in the case of the 10Miit Ethernet) if that makes it
conveni ent for sone aspect of the inplementation. It then causes
this packet to be broadcast to all stations on the Ethernet cable
originally determined by the routing nmechani sm

Packet Reception:

Wien an address resol ution packet is received, the receiving

Et hernet nodul e gives the packet to the Address Resol ution nodul e
whi ch goes through an algorithmsinilar to the foll ow ng.
Negati ve conditionals indicate an end of processing and a

di scardi ng of the packet.

?Do | have the hardware type in ar$hrd?
Yes: (al nost definitely)
[optionally check the hardware | ength ar$hln]
?Do | speak the protocol in ar$pro?
Yes:
[optionally check the protocol |ength ar$pln]
Merge_flag : = fal se
If the pair <protocol type, sender protocol address> is
already in ny translation table, update the sender
hardware address field of the entry with the new
information in the packet and set Merge flag to true.
?Am | the target protocol address?
Yes:

If Merge flag is false, add the triplet <protocol type,
sender protocol address, sender hardware address> to
the translation table.

?ls the opcode ares_op$REQUEST? (NOWI ook at the opcode!!)

Yes:

Swap hardware and protocol fields, putting the |oca
har dwar e and protocol addresses in the sender fields.
Set the ar$op field to ares_op$REPLY
Send the packet to the (new) target hardware address on
the sane hardware on which the request was received.

Notice that the <protocol type, sender protocol address, sender
hardware address> triplet is nmerged into the table before the
opcode is |l ooked at. This is on the assunption that comuncation
is bidirectional; if A has some reason to talk to B, then B will
probably have sone reason to talk to A Notice also that if an
entry already exists for the <protocol type, sender protoco
address> pair, then the new hardware address supersedes the old
one. Related Issues gives sonme notivation for this.

Generalization: The ar$hrd and ar$hin fields allow this protoco
and packet format to be used for non-10Miit Ethernets. For the
10Moi t Et hernet <arhrd, arhln> takes on the value <1, 6> For
ot her hardware networks, the ar$pro field may no | onger
correspond to the Ethernet type field, but it should be
associated with the protocol whose address resolution is being
sought .

Wy is it done this way??

Peri odi ¢ broadcasting is definitely not desired. |nmagine 100
wor kstations on a single Ethernet, each broadcasti ng address
resolution informati on once per 10 minutes (as one possible set
of parameters). This is one packet every 6 seconds. This is

al nost reasonabl e, but what use is it? The workstations aren’t
generally going to be talking to each other (and therefore have
100 useless entries in a table); they will be mainly talking to a
mai nfrane, file server or bridge, but only to a snmall nunber of
other workstations (for interactive conversations, for exanple).
The protocol described in this paper distributes information as
it is needed, and only once (probably) per boot of a nachi ne.

This format does not allow for nore than one resolution to be
done in the sane packet. This is for sinplicity. |If things were
mul ti pl exed the packet format woul d be considerably harder to

di gest, and nuch of the information could be gratuitous. Think
of a bridge that talks four protocols telling a workstation al
four protocol addresses, three of which the workstation wll
probably never use.

This format allows the packet buffer to be reused if a reply is
generated; a reply has the sane length as a request, and severa
of the fields are the sane.

The value of the hardware field (ar$hrd) is taken froma list for
this purpose. Currently the only defined value is for the 10Mit
Et hernet (ares_hrd$Ethernet = 1). There has been tal k of using
this protocol for Packet Radio Networks as well, and this wll
require another value as will other future hardware nedi uns that
wi sh to use this protocol

For the 10Mdit Ethernet, the value in the protocol field (ar$pro)
is taken fromthe set ether_type$. This is a natural reuse of
the assigned protocol types. Conbining this with the opcode
(ar$op) would effectively halve the nunmber of protocols that can
be resol ved under this protocol and woul d make a nonitor/debugger
nore conplex (see Network Monitoring and Debugging below). It is
hoped that we will never see 32768 protocols, but Mirphy nmade
some | aws which don’t allow us to nmake this assunption

In theory, the length fields (ar$hln and ar$pln) are redundant,
since the length of a protocol address should be determ ned by
the hardware type (found in ar$hrd) and the protocol type (found
in ar$pro). It is included for optional consistency checking,
and for network nonitoring and debuggi ng (see bel ow).

The opcode is to determne if this is a request (which may cause
areply) or areply to a previous request. 16 bits for this is
overkill, but a flag (field) is needed.

The sender hardware address and sender protocol address are
absol utely necessary. It is these fields that get put in a
transl ati on table.

The target protocol address is necessary in the request form of
t he packet so that a machi ne can determ ne whether or not to

enter the sender information in a table or to send a reply. It
is not necessarily needed in the reply formif one assunes a
reply is only provoked by a request. It is included for

conpl et eness, network nonitoring, and to sinplify the suggested
processing al gorithm descri bed above (which does not | ook at the
opcode until AFTER putting the sender information in a table).

The target hardware address is included for conpl eteness and
network monitoring. It has no neaning in the request form since
it is this nunber that the nachine is requesting. Its neaning in
the reply formis the address of the nachi ne naking the request.
In sone inplenentations (which do not get to ook at the 14. byte
et hernet header, for exanple) this nay save sone register
shuffling or stack space by sending this field to the hardware
driver as the hardware destinati on address of the packet.

There are no paddi ng bytes between addresses. The packet data
shoul d be viewed as a byte streamin which only 3 byte pairs are
defined to be words (arhrd, arpro and ar$op) which are sent
nost significant byte first (Ethernet/PDP-10 byte style).

Net wor k noni tori ng and debuggi ng:

The above Address Resol ution protocol allows a nmachine to gain
know edge about the higher level protocol activity (e.g., CHACS
Internet, PUP, DECnet) on an Ethernet cable. It can deternine
whi ch Et hernet protocol type fields are in use (by value) and the
protocol addresses within each protocol type. In fact, it is not
necessary for the nonitor to speak any of the higher |eve
protocol s involved. It goes sonething like this:

When a nonitor receives an Address Resol ution packet, it always
enters the <protocol type, sender protocol address, sender

hardware address> in a table. 1t can determine the Iength of the
hardware and protocol address fromthe ar$hln and ar$pln fields
of the packet. |If the opcode is a REPLY the nonitor can then

throw t he packet away. |If the opcode is a REQUEST and the target
prot ocol address matches the protocol address of the nonitor, the
moni tor sends a REPLY as it normally would. The nonitor will
only get one nmapping this way, since the REPLY to the REQUEST
will be sent directly to the requesting host. The nonitor could
try sending its own REQUEST, but this could get two nmonitors into
a REQUEST sending | oop, and care nust be taken

Because the protocol and opcode are not conbined into one field,
the nonitor does not need to know whi ch request opcode is
associated with which reply opcode for the sane hi gher |evel
protocol. The length fields should also give enough information
to enable it to "parse" a protocol addresses, although it has no
know edge of what the protocol addresses nean.

A working inplenentation of the Address Resol ution protocol can

al so be used to debug a non-working inplementation. Presunably a
hardware driver will successfully broadcast a packet with Ethernet
type field of ether_type$ADDRESS RESCLUTI ON. The format of the
packet may not be totally correct, because initia

i npl enent ati ons may have bugs, and tabl e nanagenent may be
slightly tricky. Because requests are broadcast a nonitor wll
recei ve the packet and can display it for debugging if desired.

Let there exist nmachines X and Y that are on the same 10Mit

Et hernet cable. They have Ethernet address EA(X) and EA(Y) and
DOD I nternet addresses IPA(X) and I PA(Y) . Let the Ethernet type
of Internet be ET(1P). Machine X has just been started, and
sooner or later wants to send an Internet packet to nmachine Y on
the sane cable. X knows that it wants to send to I PA(Y) and
tells the hardware driver (here an Ethernet driver) IPA(Y). The
driver consults the Address Resolution nodule to convert <ET(IP),
I PA(Y)> into a 48.bit Ethernet address, but because X was just

started, it does not have this information. It throws the
I nternet packet away and instead creates an ADDRESS RESOLUTI ON
packet with

(ar$hrd) = ares_hrd$Et her net

(ar$pro) = ET(IP)

(ar$hln) = I engt h(EA(X))

(ar$pln) = length(1PA(X))

(ar$op) = ares_op$REQUEST

(ar$sha) = EA(X)

(ar$spa) = I PA(X)

(ar$tha) = don’t care

(ar$tpa) = I PACY)

and broadcasts this packet to everybody on the cable.

Machine Y gets this packet, and deternines that it understands
the hardware type (Ethernet), that it speaks the indicated
protocol (Internet) and that the packet is for it
((ar$tpa)=IPA(Y)). It enters (probably replacing any existing
entry) the information that <ET(IP), IPA(X)> maps to EA(X). It
then notices that it is a request, so it swaps fields, putting
EA(Y) in the new sender Ethernet address field (ar$sha), sets the
opcode to reply, and sends the packet directly (not broadcast) to
EA(X). At this point Y knows how to send to X, but X still
doesn’t know how to send to Y.

Machi ne X gets the reply packet fromY, forns the map from
<ET(IP), IPA(Y)> to EA(Y), notices the packet is a reply and
throws it away. The next time X's Internet nodule tries to send
a packet to Y on the Ethernet, the translation will succeed, and
the packet will (hopefully) arrive. If Y s Internet nodule then
wants to talk to X, this will also succeed since Y has renenbered
the information from X s request for Address Resol ution.

Rel at ed i ssue:

It may be desirable to have table aging and/or tineouts. The
i mpl enentation of these is outside the scope of this protocol
Here is a nore detail ed description (thanks to MOON@CRC@M T- MC) .

If a host noves, any connections initiated by that host wll
work, assuming its own address resolution table is cleared when
it noves. However, connections initiated to it by other hosts
will have no particular reason to know to discard their old
address. However, 48.bit Ethernet addresses are supposed to be
uni que and fixed for all time, so they shouldn’t change. A host
could "nove" if a host nane (and address in sone other protocol)
were reassigned to a different physical piece of hardware. Al so,
as we know from experience, there is always the danger of
incorrect routing infornmation accidentally getting transmitted

t hrough hardware or software error; it should not be allowed to
persist forever. Perhaps failure to initiate a connection should
i nformthe Address Resolution nodule to delete the information on
the basis that the host is not reachabl e, possibly because it is
down or the old translation is no longer valid. O perhaps
receiving of a packet froma host should reset a tineout in the
address resolution entry used for transnmtting packets to that
host; if no packets are received froma host for a suitable
length of tine, the address resolution entry is forgotten. This
may cause extra overhead to scan the table for each incom ng
packet. Perhaps a hash or index can nmake this faster

The suggested al gorithm for receiving address resol ution packets
tries to lessen the tinme it takes for recovery if a host does
move. Recall that if the <protocol type, sender protoco
address> is already in the translation table, then the sender
har dwar e address supersedes the existing entry. Therefore, on a
perfect Ethernet where a broadcast REQUEST reaches all stations
on the cable, each station will be get the new hardware address.

Another alternative is to have a daenon performthe timeouts.
After a suitable tine, the daenon considers renoving an entry.

It first sends (with a small nunber of retransm ssions if needed)
an address resol ution packet with opcode REQUEST directly to the
Et hernet address in the table. If a REPLY is not seen in a short
anount of tinme, the entry is deleted. The request is sent
directly so as not to bother every station on the Ethernet. Just
forgetting entries will likely cause useful infornmation to be
forgotten, which nust be regai ned.

Since hosts don’t transnit information about anyone other than

t hensel ves, rebooting a host will cause its address mapping table
to be up to date. Bad information can't persist forever by being
passed around from nachine to machine; the only bad infornation
that can exist is in a machine that doesn’'t know that some ot her
machi ne has changed its 48.bit Ethernet address. Perhaps
manual |y resetting (or clearing) the address mapping table will
suffice.

This issue clearly needs nore thought if it is believed to be
important. It is caused by any address resolution-like protocol

