I nt ernet Engi neering Task Force (I ETF) M Bj orklund, Ed.
Request for Comments: 7950 Tail -f Systens
Cat egory: Standards Track August 2016
| SSN: 2070-1721

The YANG 1.1 Data Mbodel i ng Language

Abstract

YANG i s a data nodeling | anguage used to nodel configuration data,
state data, Renote Procedure Calls, and notifications for network
managenent protocols. This docunent describes the syntax and
semantics of version 1.1 of the YANG | anguage. YANG version 1.1 is a
mai nt enance rel ease of the YANG | anguage, addressing anbiguities and
defects in the original specification. There are a small nunber of
backward i nconpatibilities from YANG version 1. This docunent al so
specifies the YANG mappi ngs to the Network Configuration Protoco

(NETCONF) .

Status of This Meno
This is an Internet Standards Track docunent.

This docunent is a product of the Internet Engi neering Task Force
(IETF). It represents the consensus of the |IETF comunity. It has
recei ved public review and has been approved for publication by the
Internet Engineering Steering Group (IESG. Further information on
Internet Standards is available in Section 2 of RFC 7841.

I nformation about the current status of this docunent, any errata,

and how to provide feedback on it may be obtai ned at
http://ww. rfc-editor.org/info/rfc7950

Bj or kl und St andards Track [Page 1]

RFC 7950 YANG 1.1 August 2016

Copyright Notice

Copyright (c) 2016 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this document. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wi thout warranty as
described in the Sinplified BSD License.

Thi s docunent may contain material from|ETF Docunents or |ETF
Contributions published or made publicly avail abl e before Novenber
10, 2008. The person(s) controlling the copyright in sonme of this
material may not have granted the I ETF Trust the right to all ow

nodi fications of such material outside the | ETF Standards Process.
Wt hout obtaining an adequate |icense fromthe person(s) controlling
the copyright in such materials, this docunent may not be nodified
out side the | ETF Standards Process, and derivative works of it may
not be created outside the | ETF Standards Process, except to fornmat
it for publication as an RFC or to translate it into |anguages other
t han Engli sh.

Bj or kl und St andards Track [Page 2]

RFC 7950 YANG 1.1 August 2016

Tabl e of Contents

1

Introducti On 9
1.1. Summary of Changes from RFC 6020 10
Key VOrds ..o 12
Term NOl OgY ..o e 12
3.1. ANote on Exanples 16
YANG OV eI Vi W . ottt e e e e e e e e e e 16
4.1. Functional Overview 16
4.2, Language OVerVi Wt 18
4.2.1. Modules and Submobdules 18
4.2.2. Data Modeling BasicCs i, 19
4.2.3. Configuration and State Data 23
4.2.4. Built-In Types 24
4.2.5. Derived Types (typedef) 25
4.2.6. Reusable Node Groups (grouping) 25
4.2.7. ChOi CBS .ttt 27
4.2.8. Extending Data Models (augnent) 28
4.2.9. Qperation Definitions 29
4.2.10. Notification Definitions 31
Language CoNnCePt Sottt 32
5.1. Modules and Submodules 32
5.1.1. Inport and Include by Revision 33
5.1.2. Module Hierarchies 34
5.2, File Layout 36
5.3, XML NamBSPACES . . .ottt e 36
5.3. 1. YANG XML NamBSPaCEttt e 36
5.4. Resolving Gouping, Type, and Identity Nanes 37
5.5. Nested Typedefs and G oupings 37
5.6. CoNfOrmBaNCEe 38
5.6.1. Basic Behavior 38
5.6.2. Optional Features 38
5.6.3. Deviations 39
5.6.4. Announci ng Conformance Information in NETCONF 40
5.6.5. Inplenenting a Module 40
5.7. Datastore Modification i, 44
YANG SYNt aX ..ot e e e e 44
6.1. Lexical Tokenization 45
6.1.1. COMMBNLS ... e 45
6. 1. 2. TOKENS ... 45
6.1.3. QUOLTI NG ... 45
6.2, ldentifiers 47
6.2.1. ldentifiers and Their Namespaces 47
6. 3. StatemBNt S 48
6.3.1. Language EXtensions 48
6.4. XPath Evaluations 49
6.4.1. XPath Context 50
6.5. Schema Node ldentifier 54

Bj or kl und St andards Track [Page 3]

RFC 7950 YANG 1.1 August 2016

7. YANG Stat ement S 55
7.1. The "nmodul e" Statement 55
7.1.1. The nodule’s Substatenments 56
7.1.2. The "yang-version" Statement 57
7.1.3. The "nanespace" Statement 57
7.1.4. The "prefix" Statenent 57
7.1.5. The "inport" Statenent 58
7.1.6. The "include" Statenment 59
7.1.7. The "organization" Statement 60
7.1.8. The "contact" Statenment 60
7.1.9. The "revision" Statenment 60
7.1.10. Usage Exanple e 61

7.2. The "subrodul e" Statenment, 62
7.2.1. The subnodul e's Substatements 63
7.2.2. The "belongs-to" Statement 63
7.2.3. Usage Exanple 64

7.3. The "typedef" Statement 65
7.3.1. The typedef’'s Substatenents 65
7.3.2. The typedef’'s "type" Statenent 65
7.3.3. The "units" Statenent 65
7.3.4. The typedef’'s "default" Statement 66
7.3.5. Usage Exanple 66

7.4. The "type" Statement 66
7.4.1. The type’'s Substatenents 67

7.5. The "container" Statement i, 67
7.5.1. Containers with Presence 67
7.5.2. The container’'s Substatements 68
7.5.3. The "nust" Statement 69
7.5.4. The nmust’s Substatements 70
7.5.5. The "presence" Statenment 71
7.5.6. The container’s Child Node Statenents 71
7.5.7. XML Encoding Rules i 71
7.5.8. NETCONF <edit-config> Operations 72
7.5.9. Usage Exanple 72

7.6. The "leaf" Statement 73
7.6.1. The leaf’s Default Value 74
7.6.2. The leaf’s Substatenents 75
7.6.3. The leaf’'s "type" Statenent 75
7.6.4. The leaf’'s "default" Statenent 75
7.6.5. The leaf’s "mandatory" Statenent 76
7.6.6. XML Encoding Rules i 76
7.6.7. NETCONF <edit-config> Qperations 76
7.6.8. Usage Exanpl e e 77

7.7. The "leaf-list" Statenment 77
7.7.1. Odering 78
7.7.2. The leaf-list’s Default Values 79
7.7.3. The leaf-list’s Substatements 80
7.7.4. The leaf-list’s "default" Statenent 80

Bj or kl und St andards Track [Page 4]

RFC 7950

Bj or kl und

NENENENEN]

YANG 1.1 August 2016

7.7.5. The "min-elenents" Statenment 80
7.7.6. The "nmax-elenments" Statement 81
7.7.7. The "ordered-by" Statement 81
7.7.8. XML Encoding Rules i 82
7.7.9. NETCONF <edit-config> Qperations 82
7.7.10. Usage Exanple 83
The "list" Statement 84
7.8.1. The list’'s Substatenents 85
7.8.2. The list’s "key" Statement 85
7.8.3. The list’s "unique" Statement 86
7.8.4. The list’s Child Node Statenments 87
7.8.5. XML Encoding Rules 88
7.8.6. NETCONF <edit-config> Qperations 88
7.8.7. Usage Exanple 90
The "choice" Statement i 93
7.9.1. The choice’'s Substatenments 94
7.9.2. The choice’s "case" Statement 94
7.9.3. The choice’'s "default" Statement 96
7.9.4. The choice’s "mandatory" Statenment 98
7.9.5. XML Encoding Rules i 98
7.9.6. Usage Exanple 99
The "anydata" Statenment i, 100
7.10.1. The anydata’s Substatenents 100
7.10.2. XM. Encoding Rules 101
7.10.3. NETCONF <edit-config> Operations 101
7.10.4. Usage Exanple 101
The "anyxml " Statement i 102
7.11.1. The anyxml’'s Substatenments 103
7.11.2. XML Encoding Rules i 103
7.11.3. NETCONF <edit-config> Operations 103
7.11.4. Usage Exanple i 104
The "grouping" Statement 104
7.12.1. The grouping’ s Substatenents 105
7.12.2. Usage Exanple 105
The "uses"™ Statenment i 106
7.13.1. The uses’s Substatenents 106
7.13.2. The "refine" Statenment 106
7.13.3. XML Encoding Rules i 107
7.13.4. Usage Exanple 107
The "rpc" Statement 108
.14.1. The rpc’s Substatenments 109
.14.2. The "input" Statement 109
.14.3. The "output" Statement 110
.14. 4., NETCONF XML Encoding Rules 111
.14.5. Usage Exanple 112

St andards Track [Page 5]

RFC 7950 YANG 1.1 August 2016
7.15. The "action" Statement 113
7.15.1. The action’'s Substatenents 114
7.15.2. NETCONF XML Encoding Rules 114
7.15.3. Usage Exanple 115
7.16. The "notification" Statenment 116
7.16.1. The notification's Substatenents 117
7.16.2. NETCONF XM. Encoding Rules 117
7.16.3. Usage Exanple 118
7.17. The "augnent" Statement i 119
7.17.1. The augnent’s Substatenents 121
7.17.2. XML Encoding Rules i, 121
7.17.3. Usage Exanple e 122
7.18. The "identity" Statenment 124
7.18.1. The identity's Substatenents 124
7.18.2. The "base" Statement 124
7.18.3. Usage Exanple 125
7.19. The "extension" Statenment i, 126
7.19.1. The extension’s Substatements 126
7.19.2. The "argunent" Statement 127
7.19.3. Usage Exanple 127
7.20. Confornmance-Related Statements 128
7.20.1. The "feature" Statement 128
7.20.2. The "if-feature"” Statenent 130
7.20.3. The "deviation" Statement 131
7.21. CommDn Statements 134
7.21.1. The "config" Statenment 134
7.21.2. The "status" Statement 135
7.21.3. The "description" Statement 136
7.21.4. The "reference” Statenment 136
7.21.5. The "when" Statement 136

8. CONStrai Nt S ... 138
8.1. Constraints on Data0. i, 138
8.2. Configuration Data Mddifications 139
8.3. NETCONF Constraint Enforcenment Model 139
8.3.1. Payload Parsing i, 139
8.3.2. NETCONF <edit-config> Processing 140
8.3.3. Validation 141

9. BUi L t-1Nn TYPeS .o 141
9.1. Canonical Representation i 141
9.2. The Integer Built-In Types 142
9.2.1. Lexical Representation 142
9.2.2. Canonical Form.......... i 143
9.2.3. ResStricCtions e 143
9.2.4. The "range" Statement 143
9.2.5. Usage Exanple 144

Bj or kl und St andards Track [Page 6]

RFC 7950

9. 3.

Bj or kl und

> > > > >

OOLOOOJOOOHJOOOOOHJOOOOOJOOOHOOOOOOOHOOOOO

—

Lovooo

YANG 1.1 August 2016

e decimal 64 Built-1n Type 144
3.1. Lexical Representation 145
3.2. Canonical Form 145
3.3, ReStricCtions e 145
3.4. The "fraction-digits" Statenment 145
3.5. Usage Exanpl e ... e 146
e string Built-In Type 146
4.1. Lexical Representation 146
4.2. Canonical Form 147
4.3, ReStricCtions e 147
4.4. The "length" Statement 147
4.5, The "pattern"” Statenent 148
4.6. The "nodifier" Statenment 148
4.7. Usage Exanpl e 149
e boolean Built-In Type 150
5.1. Lexical Representation 150
5.2. Canonical Form 150
5.3, Restrictions, 150
e enuneration Built-In Type 150
6.1. Lexical Representation 150
6.2. Canonical Form 151
6.3. ReStricCtions 151
6.4. The "enunt Statenment 151
6.5. Usage Exanple i 152
e bits Built-In Type ... e 154
7.1, RestricCtions i, 154
7.2. Lexical Representation 154
7.3. Canonical Form 154
7.4. The "bit" Statement 155
7.5. Usage Exanple i e 156
e binary Built-In Type i 157
8.1. RestricCtions, 157
8.2. Lexical Representation 157
8.3. Canonical Form 157
e leafref Built-In Type 157
9.1, ResStricCtionst 158
9.2. The "path" Statenment 158
9.3. The "require-instance" Statenent 159
9.4. Lexical Representation 159
9.5. Canonical Form 159
9.6. Usage Exanple 159
he identityref Built-In Type 163
10.1. ReStricCtionst 163
10.2. The identityref’s "base" Statenent 163
10. 3. Lexical Representation 163
10. 4. Canonical Form 164
10.5. Usage Exanple 164
St andards Track [Page 7]

RFC 7950 YANG 1.1 August

10.

11.

13.

14.
15.

9.11. The enpty Built-In Type i
9.11.1. ResStricCtions
9.11. 2. Lexical Representation
9.11.3. Canonical Form
9.11.4. Usage Exanple

9.12. The union Built-In Type i
9.12.1. ReStricCtions
9.12.2. Lexical Representation
9.12.3. Canonical Form
9.12.4. Usage Exanple

9.13. The instance-identifier Built-In Type

9.13.1. ReStricCtions

9.13.2. Lexical Representation

9.13.3. Canonical Form

9.13.4. Usage Exanple

h FunCtions

10. 1. Function for Node Sets
10. 1.1, current () ...

10. 2. Function for Stringso,
10.2.1. re-match()

10.3. Function for the YANG Types "leafref" and

"instance-identifier"

10. 3. 1. deref () ..o

10. 4. Functions for the YANG Type "identityref"
10.4. 1. derived-from()
10.4.2. derived-fromor-self()
10.5. Function for the YANG Type "enuneration"
10.5.1. enumvalue()

10. 6. Function for the YANG Type "bits"
10.6. 1. bit-is-set() ...
Updating a Modul e e
Coexistence with YANG Version 1,
YN
13.1. Formal YINDefinition
13.1.1. Usage Exanple

YANG ABNF G ammar e
NETCONF Error Responses for YANG Related Errors

15.1. Error Message for Data That Violates a "unique"

St At EMBNt . .

15.2. Error Message for Data That Violates a

"max- el ements" Statenent

15.3. Error Message for Data That Violates a

"mn-elenents” Statenment

15.4. Error Message for Data That Violates a "nust

St At EMBNt .

15.5. Error Message for Data That Violates a

"require-instance" Statement

Bj or kl und St andards Track [Page 8]

RFC 7950 YANG 1.1 August 2016

15.6. Error Message for Data That Violates a Mandatory

"choice" Statement 212

15.7. Error Message for the "insert" Operation 212
16. TANA Considerati ONS e 213
17. Security ConsideratioOns 213
18. Ref reNCeS ... o e 214
18. 1. Normative References 214
18.2. Informative References 215
ACknow edgemmBent S 217
CoNt I BUL O S . 217
Aut hor’ s Addr eSS e 217

1. Introduction

YANG i s a data nodel i ng | anguage originally designed to node
configuration and state data mani pul ated by the Network Configuration
Prot ocol (NETCONF), NETCONF Renote Procedure Calls, and NETCONF
notifications [RFC6241]. Since the publication of YANG version 1

[RFC6020], YANG has been used or proposed to be used for other
protocols (e.g., RESTCONF [RESTCONF] and the Constrai ned Application
Prot ocol (CoAP) Managenent Interface (CoM) [CoM]). Further

encodi ngs ot her than XM. have been proposed (e.g., JSON [RFC7951]).

Thi s docunent describes the syntax and semantics of version 1.1 of
the YANG | anguage. It also describes how a data nodel defined in a
YANG nmodul e is encoded in the Extensible Markup Language (XM.) [XM]
and how NETCONF operations are used to manipul ate the data. O her
prot ocol s and encodi ngs are possible but are out of scope for this
speci fication.

In ternms of devel opi ng YANG data nodel s, [YANG Gui del i nes] provides
sonme gui del i nes and recomendati ons.

Note that this docunment does not obsol ete RFC 6020 [RFC6020].

Bj or kl und St andards Track [Page 9]

RFC 7950 YANG 1.1 August 2016

1.1

Summary of Changes from RFC 6020

Thi s docunent defines version 1.1 of the YANG | anguage. YANG
version 1.1 is a mmintenance rel ease of the YANG | anguage, addressing
anbiguities and defects in the original specification [RFC6020].

The followi ng changes are not backward conpatible with YANG
version 1.

(0]

Changed the rules for the interpretation of escaped characters in
doubl e-quoted strings. This is a backward-inconpatible change
from YANG version 1. Wen updating a YANG version 1 nodule to 1.1
and the nodul e uses a character sequence that is nowillegal, the
string nust be changed to match the new rules. See Section 6.1.3
for details.

An unquoted string cannot contain any single or double quote
characters. This is a backward-inconpati bl e change from YANG
version 1. Wen updating a YANG version 1 nodule to 1.1 and the
nmodul e uses such quote characters, the string nust be changed to
match the new rules. See Section 6.1.3 for details.

Made "when" and "if-feature"” illegal on list keys. This is a
backwar d-i nconpati bl e change from YANG version 1. \Wen updating a
YANG version 1 nodule to 1.1 and the nodul e uses these constructs,
they nmust be renoved to nmatch the new rul es.

Defined the legal characters in YANG nodul es. When updating a
YANG version 1 nodule to 1.1, any characters that are now ill egal
nust be renmoved. See Section 6 for details.

Made noncharacters illegal in the built-in type "string". This
change affects the runtinme behavior of YANG based protocols.

The follow ng additional changes have been done to YANG

(o]

(o]

Changed the YANG version from"1" to "1.1".
Made the "yang-version" statenent nandatory in YANG version "1.1".

Extended the "if-feature"” syntax to be a bool ean expressi on over
f eature nanes.

Allow "if-feature" in "bit", "enunt, and "identity".

Allow "if-feature" in "refine".

Bj or kl und St andards Track [Page 10]

RFC 7950 YANG 1.1 August 2016
o Allow "choice" as a shorthand "case" statenent (see
Section 7.9.2).

0 Added a new substatenment "nodifier" to the "pattern" statenent
(see Section 9.4.6).

o Alow"must" in "input", "output", and "notification".
o Allow "require-instance" in |leafref.

o Allow "description" and "reference” in "inmport"” and "include"
o Alowinports of nultiple revisions of a nodule.

o Allow "augnment" to add conditionally mandatory nodes (see
Section 7.17).

0 Added a set of new XM. Path Language (XPath) functions in
Section 10.

o CJarified the XPath context’'s tree in Section 6.4.1

o0 Defined the string value of an identityref in XPath expressions
(see Section 9.10).

o Cdarified what unprefixed names nean in leafrefs in typedefs (see
Sections 6.4.1 and 9.9. 2).

o0 Alowidentities to be derived frommnultiple base identities (see
Sections 7.18 and 9. 10).

o Allow enunerations and bits to be subtyped (see Sections 9.6
and 9.7).

o Alowleaf-lists to have default values (see Section 7.7.2).

o Allow non-uni que values in non-configuration leaf-lists (see
Section 7.7).

o0 Use syntax for case-sensitive strings (as per [RFC7405]) in the
gramar .

0 Changed the nodul e adverti sement nechani sm (see Section 5.6.4).
0 Changed the scoping rules for definitions in subnodules. A

subnodul e can now reference all definitions in all subnobdul es that
bel ong to the same nodul e, w thout using the "include" statenent.

Bj or kl und St andards Track [Page 11]

RFC 7950 YANG 1.1 August 2016

0 Added a new statenent "action", which is used to define operations
tied to data nodes.

o Alownotifications to be tied to data nodes.

0 Added a new data definition statenent "anydata" (see
Section 7.10), which is RECOMMENDED to be used instead of "anyxm"
when the data can be nodel ed in YANG

o Alowtypes "enpty" and "leafref" in unions.

o Allowtype "enpty" in a key.

0 Renoved the restriction that identifiers could not start with the
characters "xm".

The foll owi ng changes have been done to the NETCONF mappi ng:

0 A server advertises support for YANG 1.1 nodul es by using
ietf-yang-library [RFC7895] instead of listing them as
capabilities in the <hell o> nessage.

2. Key Wrds

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",

"SHOULD', "SHOULD NOT", "RECOMMENDED', "NOT RECOMVENDED', "MAY", and

"OPTIONAL" in this docunment are to be interpreted as described in

BCP 14 [RFC2119].

3. Term nol ogy
The following terns are used within this docunent:

0 action: An operation defined for a node in the data tree.

0 anydata: A data node that can contain an unknown set of nodes that
can be nodel ed by YANG except anyxnl.

o anyxnl: A data node that can contain an unknown chunk of XM. data.

0 augnent: Adds new schema nodes to a previously defined schema
node.

0 base type: The type fromwhich a derived type was derived, which
may be either a built-in type or another derived type.

0 built-in type: A YANG data type defined in the YANG | anguage, such
as uint32 or string.

Bj or kl und St andards Track [Page 12]

RFC 7950 YANG 1.1 August 2016

o choice: A schena node where only one of a nunber of identified
alternatives is valid.

o client: An entity that can access YANG defined data on a server,
over sone networ k managenent protocol

o confornmance: A neasure of how accurately a server follows a data
nodel .

0o container: An interior data node that exists in at npbst one
instance in the data tree. A container has no value, but rather a
set of child nodes.

o data definition statenent: A statenent that defines new data
nodes. One of "container", "leaf", "leaf-list", "list", "choice"
"case", "augnent", "uses", "anydata", and "anyxm ".

0 data nodel: A data nodel describes how data is represented and
accessed.

0 data node: A node in the schena tree that can be instantiated in a
data tree. One of container, leaf, leaf-list, list, anydata, and
anyxn .

0 data tree: An instantiated tree of any data nodel ed with YANG
e.g., configuration data, state data, conbined configuration and
state data, RPC or action input, RPC or action output, or
notification.

o derived type: Atype that is derived froma built-in type (such as
uint 32) or another derived type.

0 extension: An extension attaches non- YANG senmantics to statenents.
The "extension" statenent defines new statements to express these
semanti cs.

o feature: A nechanismfor marking a portion of the nodel as
optional. Definitions can be tagged with a feature nane and are
only valid on servers that support that feature.

0 grouping: A reusable set of schema nodes, which may be used
locally in the nodule and by other nodules that inport fromit.
The "grouping" statenent is not a data definition statenent and,
as such, does not define any nodes in the schema tree.

o identifier: A string used to identify different kinds of YANG
items by nane.

Bj or kl und St andards Track [Page 13]

RFC 7950 YANG 1.1 August 2016

o identity: A globally unique, abstract, and untyped nane.

0o instance identifier: A mechanismfor identifying a particular node
in a data tree.

o interior node: Nodes within a hierarchy that are not |eaf nodes.

o leaf: A data node that exists in at nost one instance in the data
tree. A leaf has a value but no child nodes.

o leaf-list: Like the | eaf node but defines a set of uniquely
identifiable nodes rather than a single node. Each node has a
val ue but no child nodes.

o list: An interior data node that may exist in multiple instances
in the data tree. A list has no value, but rather a set of child
nodes.

0 mandatory node: A nandatory node is one of:

* A leaf, choice, anydata, or anyxm node with a "mandatory"
statenent with the value "true"

* Alist or leaf-list node with a "nmin-el enents" statenent with a
val ue greater than zero

* A container node without a "presence" statement and that has at
| east one nandatory node as a child.

o nodul e: A YANG nodul e defines hierarchies of schema nodes. Wth
its definitions and the definitions it inports or includes from
el sewhere, a nodule is self-contained and "conpil abl e"

0 non-presence container: A container that has no neaning of its
own, existing only to contain child nodes.

0 presence container: A container where the presence of the
container itself carries sone neaning

o RPC. A Renote Procedure Call.
0 RPC operation: A specific Renpote Procedure Call
o schema node: A node in the schema tree. One of action, container

leaf, leaf-list, list, choice, case, rpc, input, output,
notification, anydata, and anyxn.

Bj or kl und St andards Track [Page 14]

RFC 7950 YANG 1.1 August 2016
0 schenma node identifier: A nmechanismfor identifying a particular
node in the schema tree.
0 schema tree: The definition hierarchy specified within a nodul e.

0 server: An entity that provides access to YANG defined data to a
client, over some network nmanagenent protocol

o server deviation: A failure of the server to inplenment a nodule
faithfully.

0 subnodul e: A partial nodule definition that contributes derived
types, groupings, data nodes, RPCs, actions, and notifications to
a nmodule. A YANG nodul e can be constructed from a nunber of
subnodul es

o top-level data node: A data node where there is no other data node
between it and a "nodul e" or "subnodul e" statenent.

0 uses: The "uses" statement is used to instantiate the set of
schenma nodes defined in a "grouping" statenment. The instantiated
nodes rmay be refined and augnented to tailor themto any specific
needs.

o value space: For a data type; the set of values pernitted by the
data type. For a leaf or leaf-list instance; the val ue space of
its data type

The following ternms are defined in [RFC6241]:

o configuration data

o configuration datastore

0 datastore

0 state data

When nodel ed with YANG a datastore is realized as an instantiated
data tree

When nodel ed with YANG a configuration datastore is realized as an
instantiated data tree with configuration data.

Bj or kl und St andards Track [Page 15]

RFC 7950 YANG 1.1 August 2016

3.1. A Note on Exanples

Thr oughout this docunment, there are many exanpl es of YANG statenents.
These exanpl es are supposed to illustrate certain features and are
not supposed to be conmplete, valid YANG nodul es.

4. YANG Overvi ew

This non-normative section is intended to give a high-1level overview
of YANG to first-tinme readers.

4.1. Functional Overview

YANG i s a | anguage originally designed to nodel data for the NETCONF
protocol. A YANG nodul e defines hierarchies of data that can be used
for NETCONF-based operations, including configuration, state data,
RPCs, and notifications. This allows a conplete description of all
data sent between a NETCONF client and server. Although out of scope
for this specification, YANG can al so be used with protocols other

t han NETCONF.

YANG nodel s the hierarchical organization of data as a tree in which
each node has a name, and either a value or a set of child nodes.
YANG provi des cl ear and conci se descriptions of the nodes, as well as
the interaction between those nodes.

YANG structures data nodels into nodul es and subnodul es. A nodul e
can inmport definitions fromother external nodules and can include
definitions from subnodul es. The hierarchy can be augnent ed,

all owi ng one nodule to add data nodes to the hierarchy defined in
anot her nodule. This augnentation can be conditional, w th new nodes
appearing only if certain conditions are net.

YANG dat a nodel s can describe constraints to be enforced on the data,
restricting the presence or value of nodes based on the presence or
val ue of other nodes in the hierarchy. These constraints are
enforceable by either the client or the server

YANG defines a set of built-in types and has a type nmechani smthrough
whi ch additional types may be defined. Derived types can restrict
their base type's set of valid val ues using nmechani snms |ike range or
pattern restrictions that can be enforced by clients or servers.

They can al so define usage conventions for use of the derived type,
such as a string-based type that contains a hostnane.

Bj or kl und St andards Track [Page 16]

RFC 7950 YANG 1.1 August 2016

YANG pernmits the definition of reusable groupings of nodes. The
usage of these groupings can refine or augnment the nodes, allowing it
to tailor the nodes to its particular needs. Derived types and
groupi ngs can be defined in one nodul e and used in either the sane
nmodul e or anot her nodule that inports it.

YANG dat a hi erarchy constructs include defining lists where |ist
entries are identified by keys that distinguish themfrom each ot her.
Such lists may be defined as either sorted by user or automatically
sorted by the system For user-sorted lists, operations are defined
for mani pulating the order of the list entries.

YANG nodul es can be translated into an equival ent XM. syntax call ed
YANG | ndependent Notation (YIN) (Section 13), allow ng applications
usi ng XML parsers and Extensible Styl esheet Language Transformations
(XSLT) scripts to operate on the nodels. The conversion from YANG to
YIN is semantically | ossless, so content in YIN can be round-tri pped
back into YANG

YANG i s an extensible | anguage, allow ng extensions to be defined by
st andar ds bodi es, vendors, and individuals. The statenent syntax

all ows these extensions to coexist with standard YANG statenents in a
natural way, while extensions in a YANG nodul e stand out sufficiently
for the reader to notice them

YANG resists the tendency to solve all possible problens, linmting
the probl em space to all ow expression of data nodels for network
managenent protocols such as NETCONF, not arbitrary XML documents or
arbitrary data nodel s.

To the extent possible, YANG naintains conpatibility with the Sinple
Net wor k Management Protocol’s (SNW's) SMv2 (Structure of Managenent
I nformati on version 2 [RFC2578] [RFC2579]). SMv2-based M B nodul es
can be automatically translated into YANG nodul es for read-only
access [RFC6643]. However, YANG is not concerned with reverse
translation from YANG to SM v2.

Bj or kl und St andards Track [Page 17]

RFC 7950 YANG 1.1 August 2016

4.2. Language Overvi ew

This section introduces some inportant constructs used in YANG t hat
will aid in the understanding of the | anguage specifics in later
secti ons.

4,.2.1. Modul es and Subnodul es

YANG data nodel s are defined in nodules. A nodule contains a
collection of related definitions.

A nodul e contains three types of statenents: nodul e header
statenents, "revision" statements, and definition statenents. The
nodul e header statenents describe the nodul e and give information
about the nodule itself, the "revision" statements give information
about the history of the nodule, and the definition statements are
the body of the nodul e where the data nodel is defined.

A server may inplenment a nunber of nodules, allowing nultiple views
of the sane data or nultiple views of disjoint subsections of the
server’'s data. Alternatively, the server may inplenent only one
nmodul e that defines all avail abl e data.

A nodul e may have portions of its definitions separated into
subnodul es, based on the needs of the nobdul e designer. The externa
view remai ns that of a single nodule, regardl ess of the presence or
size of its subnodul es

The "inport" statenment allows a nodule or subnobdule to reference
definitions defined in other nodules.

The "include" statenent is used in a nodule to identify each
subnodul e that belongs to it.

Bj or kl und St andards Track [Page 18]

RFC 7950 YANG 1.1 August 2016

4.2.2. Data Mdeling Basics
YANG defines four main types of data nodes for data nodeling. In
each of the foll owi ng subsections, the exanples show the YANG synt ax
as well as a corresponding XM. encodi ng. The syntax of YANG
statements is defined in Section 6. 3.

4.2.2.1. Leaf Nodes

A leaf instance contains sinple data |ike an integer or a string. It
has exactly one value of a particular type and no child nodes.

YANG Exanpl e:
| eaf host-nane {
type string;

description
"Hostnanme for this system";

}
XM. Encodi ng Exanpl e:

<host - nane>ny. exanpl e. conx/ host - name>
The "leaf" statenment is covered in Section 7.6.
4.2.2.2. Leaf-List Nodes
A leaf-list defines a sequence of values of a particular type.
YANG Exanpl e:
leaf-1ist domain-search {
type string;

description
"Li st of domain nanes to search.”

}

XM. Encodi ng Exanpl e:
<domai n- sear ch>hi gh. exanpl e. conx/ domai n- sear ch>
<domai n- sear ch>l ow. exanpl e. conx/ donmi n- sear ch>
<domai n- sear ch>ever ywher e. exanpl e. conk/ donai n- sear ch>

The "leaf-list" statenent is covered in Section 7.7.

Bj or kl und St andards Track [Page 19]

RFC 7950 YANG 1.1 August 2016

4,2.2.3. Container Nodes

A container is used to group related nodes in a subtree. A container
has only child nodes and no value. A container may contain any
nunber of child nodes of any type (leafs, lists, containers,
leaf-lists, actions, and notifications).

YANG Exanpl e:

cont ai ner system {
container login {
| eaf nessage {
type string;
description
"Message given at start of |ogin session.";

}
}
}

XML Encodi ng Exanpl e:
<syst ene
<l ogi n>
<nmessage>Good norni ng</ nessage>

</l ogi n>
</ systenp

The "container" statenent is covered in Section 7.5.

Bj or kl und St andards Track [Page 20]

RFC 7950 YANG 1.1 August 2016

4,2.2.4. List Nodes

A list defines a sequence of list entries. Each entry is like a
container and is uniquely identified by the values of its key leafs
if it has any key leafs defined. A list can define nultiple key

| eafs and nay contain any nunber of child nodes of any type
(including leafs, lists, containers, etc.).

YANG Exanpl e:

list user {
key "nane";
| eaf nane {
type string;

| eaf full-nane {
type string;

| eaf class {
type string;
}

}
XM. Encodi ng Exanpl e:

<user >
<nane>gl ocks</ name>
<full -name>Col di e Locks</full-nane>
<cl ass>i ntruder </ cl ass>

</ user >

<user >
<nane>snowey</ name>
<ful |l - nane>Snow Wi te</full - name>
<cl ass>free-| oader </ cl ass>

</ user>

<user >
<nane>r zel | </ nanme>
<ful | - name>Rapun Zel | </ full - nane>
<cl ass>t ower </ cl ass>

</ user>

The "list" statenment is covered in Section 7.8.

Bj or kl und St andards Track [Page 21]

RFC 7950 YANG 1.1 August 2016

4.2.2.5. Exanple Mdule
These statenents are conbined to define the nodul e:

/1l Contents of "exanple-system yang"
nodul e exanpl e- system {
yang-version 1.1;
nanespace "urn: exanpl e: systent;
prefix "sys";

organi zati on "Exanple Inc."
contact "joe@xanpl e.conf;
description
"The nodule for entities inplenenting the Exanple system";

revi sion 2007-06-09 {
description "lInitial revision.”

}

cont ai ner system {
| eaf host-nane {
type string;
description
"Hostnanme for this system";

}
| eaf -1ist domai n-search {
type string;
description
"List of domain nanmes to search.”
}

contai ner login {
| eaf nessage {
type string;
description
"Message given at start of |ogin session.";

Bj or kl und St andards Track [Page 22]

RFC 7950 YANG 1.1 August 2016

list user {
key "nane";
| eaf nane {
type string;

| eaf full-nane {
type string;

| eaf class {
type string;

}
}
}
}

4.2.3. Configuration and State Data

YANG can nodel state data, as well as configuration data, based on
the "config" statement. Wen a node is tagged with "config fal se"

its subhierarchy is flagged as state data. |If it is tagged with
"config true", its subhierarchy is flagged as configuration data.
Parent containers, lists, and key leafs are reported also, giving the

context for the state data.

In this exanple, two leafs are defined for each interface, a
configured speed and an observed speed.

list interface {
key "nane";
config true

| eaf nane {
type string;

| eaf speed {
type enuneration {
enum 10m
enum 100m
enum aut o;
}
}
| eaf observed-speed {
type uint32;
config fal se
}
}

Bj or kl und St andards Track [Page 23]

RFC 7950 YANG 1.1 August 2016

The "config" statement is covered in Section 7.21.1.
4.2.4. Built-In Types

YANG has a set of built-in types, simlar to those of many
progranm ng | anguages, but with sone differences due to special
requi renents of network managenent. The followi ng table summarizes
the built-in types discussed in Section 9:

o e e e e e e e ea oo o m e m e e e e e e e e e e e e e e emeaam o +
| Nane | Description

i o e e m e e e e e e e e e e e e e e e e o - +
| binary | Any binary data |
| bits | A set of bits or flags |
| bool ean | "true" or "fal se"

| deci mal 64 | 64-bit signed decimal nunber

| enpty | A leaf that does not have any val ue

| enunmeration | One of an enunerated set of strings

| identityref | Areference to an abstract identity

| instance-identifier | Areference to a data tree node

| int8 | 8-bit signed integer

| intl6 | 16-bit signed integer

| int32 | 32-bit signed integer

| int64 | 64-bit signed integer

| leafref | Areference to a | eaf instance

| string | A character string |
| uint8 | 8-bit unsigned integer

| uintl6 | 16-bit unsigned integer

| uint32 | 32-bit unsigned integer

| uint64 | 64-bit unsigned integer

| union | Choice of nmenber types

Fom e e e ek oo e e e e e e e e e e e aaa +

The "type" statenent is covered in Section 7.4.

Bj or kl und St andards Track [Page 24]

RFC 7950 YANG 1.1 August 2016

4.2.5. Derived Types (typedef)
YANG can define derived types frombase types using the "typedef"
statement. A base type can be either a built-in type or a derived
type, allowing a hierarchy of derived types
A derived type can be used as the argunent for the "type" statenent.
YANG Exanpl e:
typedef percent {

type uint8 {
range "0 .. 100";
}

}

| eaf conpleted {
type percent;
XM. Encodi ng Exanpl e:
<conpl et ed>20</ conpl et ed>
The "typedef" statenent is covered in Section 7.3.
4.2.6. Reusabl e Node Groups (grouping)
G oups of nodes can be assenbled into reusable collections using the
"groupi ng" statement. A grouping defines a set of nodes that are
instantiated with the "uses" statenent.
YANG Exanpl e:
groupi ng target {
| eaf address {
type inet:ip-address;
description "Target |IP address."
| eaf port {

type inet: port-nunber;
description "Target port nunber."

Bj or kl und St andards Track [Page 25]

RFC 7950 YANG 1.1 August 2016

cont ai ner peer {
cont ai ner destination {
uses target;
}
}

XM. Encodi ng Exanpl e:

<peer >
<destinati on>
<addr ess>2001: db8: : 2</ addr ess>
<port >830</ port >
</ destinati on>

</ peer >
The grouping can be refined as it is used, allow ng certain
statements to be overridden. In this exanple, the description is
refined:

cont ai ner connection {
cont ai ner source {
uses target {
refine "address" {
description "Source |IP address."
}
refine "port" {
description "Source port nunber."
}

}
}

cont ai ner destination {
uses target {
refine "address" {
description "Destination |IP address."
}
refine "port" {
description "Destination port number.";
}
}
}
}

The "grouping" statenent is covered in Section 7.12.

Bj or kl und St andards Track [Page 26]

RFC 7950 YANG 1.1 August 2016

4.2.7. Choices

YANG al l ows the data nodel to segregate inconpatible nodes into

di stinct choices using the "choice" and "case" statenments. The
"choi ce" statenent contains a set of "case" statenments that define
sets of schena nodes that cannot appear together. Each "case" may
contain multiple nodes, but each node nay appear in only one "case"
under a "choice".

The choi ce and case nodes appear only in the schema tree and not in
the data tree. The additional |evels of hierarchy are not needed
beyond the conceptual schema. The presence of a case is indicated by
the presence of one or nore of the nodes within it.

Since only one of the choice’ s cases can be valid at any time, when a
node fromone case is created in the data tree, all nodes from al
other cases are inplicitly deleted. The server handles the
enforcenent of the constraint, preventing inconpatibilities from
existing in the configuration

YANG Exanpl e:

cont ai ner food {
choi ce snack {
case sports-arena {
| eaf pretzel {

type enpty;

| eaf beer {
type enpty;

case late-night {
| eaf chocol ate {
type enuneration {
enum dar k
enum mi | k;
enum first-avail abl e;

Bj or kl und St andards Track [Page 27]

RFC 7950 YANG 1.1 August 2016

XM. Encodi ng Exanpl e:

<f ood>
<pretzel/>
<beer/ >

</ f ood>

The "choi ce" statenent is covered in Section 7.9.
4.2.8. Extending Data Mdel s (augnent)

YANG al l ows a nodule to insert additional nodes into data nodels,
i ncluding both the current nodule (and its subnodul es) and an
external nodule. This is useful, for exanple, for vendors to add
vendor-specific paraneters to standard data nodels in an

i nt eroper abl e way.

The "augnent" statenent defines the location in the data nodel
hi erarchy where new nodes are inserted, and the "when" statenent
defines the conditions when the new nodes are valid.

When a server inplenents a nodul e contai ning an "augnment" statenent,
that inplies that the server’s inplenentation of the augnented nodul e
contains the additional nodes.

YANG Exanpl e:

augrment /system | ogi n/user {
when "class != "wheel'";
leaf uid {
type uintl1l6 {
range "1000 .. 30000";
}
}
}

This exanple defines a "uid" node that is valid only when the user’s
"class" is not "wheel".

Bj or kl und St andards Track [Page 28]

RFC 7950 YANG 1.1 August 2016

I f a nodul e augnents anot her nodule, the XM. el enents that are added
to the encoding are in the nanespace of the augmenting nodule. For
exanple, if the above augnentation were in a nmodule with prefix
"other", the XM. would I ook IiKke:

XM. Encodi ng Exanpl e:

<user >
<nane>al i cews/ nane>
<full-name>Alice N Wonder!| and</ ful | - name>
<cl ass>dr op- out </ cl ass>
<ot her : ui d>1024</ ot her : ui d>

</ user >

The "augnent" statenent is covered in Section 7.17.
4.2.9. (Qperation Definitions

YANG al l ows the definition of operations. The operations’ nanes,

i nput paraneters, and output paraneters are nodel ed usi ng YANG dat a
definition statements. Operations on the top level in a nodule are
defined with the "rpc" statement. Operations can also be tied to a
container or list data node. Such operations are defined with the
"action" statenent.

YANG Exanpl e for an operation at the top | evel

rpc activate-software-i mage {
i nput {
| eaf i nmage-nanme {
type string;
}

out put {
| eaf status {
type string;

Bj or kl und St andards Track [Page 29]

RFC 7950 YANG 1.1 August

NETCONF XM. Exanpl e:

<rpc nessage-id="101"
xm ns="urn:ietf:paranms: xm : ns: netconf: base: 1. 0" >
<activate-software-i mage xm ns="http://exanpl e.conl systeni>
<i mage- nane>exanpl e- f w 2. 3</i mage- nane>
</ activate-software-inmge>
</rpc>

<rpc-reply message-id="101"
xm ns="urn:ietf:paranms: xm : ns: netconf: base: 1. 0">
<status xm ns="http://exanpl e. com systent >
The i mage exanple-fw2.3 is being installed.
</ st at us>
</rpc-reply>

YANG Exanpl e for an operation tied to a |list data node:

list interface {
key "nane";

| eaf nane {
type string;

action ping {
i nput {
| eaf destination {
type inet:ip-address;

}

out put {
| eaf packet-loss {

type uint8;

}

}

}
}

2016

Bj or kl und St andards Track [Page 30]

RFC 7950 YANG 1.1 August 2016

NETCONF XM. Exanpl e:

<rpc nessage-i d="102"
xm ns="urn:ietf:paranms: xm : ns: netconf: base: 1. 0" >
<action xm ns="urn:ietf:paranms: xm:ns:yang: 1">
<interface xm ns="http://exanpl e.conl systen' >
<name>et hl</ nane>
<pi ng>
<desti nati on>192. 0. 2. 1</ desti nati on>
</ pi ng>
</interface>
</ action>
</rpc>

<rpc-reply message-id="102"
xm ns="urn:ietf:paramnms: xm : ns: net conf: base: 1. 0"
xm ns: sys="http://exanpl e. con syst eni >
<sys: packet - | 0ss>60</ sys: packet -| oss>
</rpc-reply>

The "rpc" statenment is covered in Section 7.14, and the "action"
statenent is covered in Section 7.15.

4,2.10. Notification Definitions

YANG al l ows the definition of notifications. YANG data definition
statenents are used to nodel the content of the notification

YANG Exanpl e:

notification link-failure {
description
"Alink failure has been detected."
| eaf if-nane {
type leafref {
path "/interfacel/ nane";
}

}

| eaf if-adnin-status {
type admi n- st at us;

| eaf if-oper-status {
type oper-stat us;

Bj or kl und St andards Track [Page 31]

RFC 7950 YANG 1.1 August 2016

NETCONF XM. Exanpl e:

<notification
xm ns="urn:ietf:parans: netconf:capability:notification:1.0">
<event Ti me>2007- 09- 01T10: 00: 00Z</ event Ti me>
<link-failure xm ns="urn: exanpl e: syst enf >
<i f-nanme>so-1/2/3.0</if-name>
<i f-adm n-status>up</if-adnmn-status>
<i f - oper - st at us>down</i f - oper - st at us>
</link-failure>
</notification>

The "notification" statenent is covered in Section 7.16.
5. Language Concepts
5.1. Mbdul es and Subnpdul es

The nodule is the base unit of definition in YANG A nodul e defines
a single data nodel. A nodule can al so augnent an exi sting data
nodel w th additional nodes.

Subnodul es are partial nodules that contribute definitions to a
nodul e. A nodul e may include any nunber of subnodul es, but each
subnmodul e may bel ong to only one nodul e.

Devel opers of YANG nodul es and subnodul es are RECOMMENDED to choose
nanes for their nmodules that will have a | ow probability of colliding
with standard or other enterprise nodules, e.g., by using the
enterprise or organi zation nane as a prefix for the nodul e nane.
Wthin a server, all nodul e names MJST be uni que.

A nodul e uses the "include" statenent to list all its subnodules. A
nmodul e, or subnodul e bel onging to that nodule, can reference
definitions in the nodul e and all subnodul es included by the nodul e.

A nodul e or subnodul e uses the "inport" statenent to reference
external nmodules. Statenents in the nodule or subnobdul e can
reference definitions in the external nodul e using the prefix
specified in the "inport" statement.

For backward conpatibility with YANG version 1, a subnodul e MAY use
the "include" statenment to reference other submodules within its
modul e, but this is not necessary in YANG version 1.1. A subnodul e
can reference any definition in the nodule it belongs to and in all
subrodul es i ncluded by the nodule. A subnmodul e MUST NOT i ncl ude
different revisions of other subnodules than the revisions that its
nodul e i ncl udes.

Bj or kl und St andards Track [Page 32]

RFC 7950 YANG 1.1 August 2016

A nodul e or subnodul e MUST NOT incl ude subnodul es from ot her nodul es,
and a subnodul e MJUST NOT inport its own nodul e.

The "inport" and "include" statenents are used to nmake definitions
avai |l abl e from ot her nodul es

o For a nodule or subnpdule to reference definitions in an externa
nodul e, the external nodule MJST be inported

o A nodule MJST include all its subnodul es.

0 A nodul e, or subnodul e belonging to that nodul e, MAY reference
definitions in the nodul e and all subnodul es included by the
nodul e.

There MUST NOT be any circular chains of inports. For exanple, if
nmodul e "a" inports nodule "b", "b" cannot inport "a"

a .

When a definition in an external nodule is referenced, a locally
defined prefix MJST be used, followed by a colon (":") and then the
external identifier. References to definitions in the |ocal nodul e
MAY use the prefix notation. Since built-in data types do not bel ong
to any nodul e and have no prefix, references to built-in data types
(e.g., int32) cannot use the prefix notation. The syntax for a
reference to a definition is fornmally defined by the rule
"identifier-ref" in Section 14.

5.1.1. Inport and Include by Revision

Publ i shed nodul es evol ve i ndependently over time. |In order to allow
for this evolution, nodul es can be inported using specific revisions.
Initially, a nodule inports the revisions of other nodules that are
current when the nodule is witten. As future revisions of the

i mported nmodul es are published, the inporting nodule is unaffected
and its contents are unchanged. Wen the author of the nodule is
prepared to nove to the nost recently published revision of an

i mported nodul e, the nodule is republished with an updated "inport"
statenment. By republishing with the new revision, the authors
explicitly indicate their acceptance of any changes in the inported
nmodul e.

For subnodul es, the issue is related but sinpler. A nodule or
subnodul e that includes subnodul es may specify the revision of the

i ncl uded subnodul es. |f a subnodul e changes, any nodul e or subnodul e
that includes it by revision needs to be updated to reference the new
revi sion.

Bj or kl und St andards Track [Page 33]

RFC 7950 YANG 1.1 August 2016

For exanple, nodule "b" inports nodule "a"

modul e a {
yang-version 1.1;
nanespace "urn: exanpl e: a"
prefix "

a";
revision 2008-01-01 { ... }
grouping a {

leaf eh { }

}
}

nmodul e b {
yang-version 1.1;
nanespace "urn: exanpl e: b";
prefix "b";

import a {
prefix "p";
revi si on-date 2008-01-01
}

cont ai ner bee {
uses p:a;
}

}

When the author of "a" publishes a new revision, the changes may not
be acceptable to the author of "b". |If the newrevision is
acceptable, the author of "b" can republish with an updated revision
in the "inport" statenent.

If a nodule is not inported with a specific revision, it is undefined
whi ch revision is used.

5.1.2. Modul e Hi erarchies
YANG al | ows nodeling of data in nultiple hierarchies, where data may
have nore than one top-level node. Each top-level data node in a

nmodul e defines a separate hierarchy. Mdels that have nmultiple
top-1 evel nodes are sonetinmes conveni ent and are supported by YANG

Bj or kl und St andards Track [Page 34]

RFC 7950 YANG 1.1 August 2016

5.1.2.1. NETCONF XM. Encodi ng

NETCONF i s capable of carrying any XM. content as the payload in the
<config> and <data> el ements. The top-level nodes of YANG nodul es
are encoded as child elenents, in any order, within these el enents.
Thi s encapsul ati on guarantees that the correspondi ng NETCONF nessages
are always well-fornmed XM. docunents.

For exanple, an instance of:

nmodul e exanpl e-config {
yang-version 1.1;
nanespace "urn: exanpl e: config";
prefix "co";

contai ner system{ ... }
container routing { ... }

}
could be encoded i n NETCONF as:

<rpc nmessage-id="101"
xm ns="urn:ietf:paranms: xm : ns: net conf: base: 1. 0"
xm ns: nc="urn:ietf:parans: xn : ns: net conf: base: 1. 0" >
<edit-config>
<target>
<runni ng/ >
</target>
<confi g>
<syst em xm ns="ur n: exanpl e: confi g">
<l-- systemdata here -->
</ systenp
<routing xm ns="urn:exanpl e: config">
<l-- routing data here -->
</routing>
</ config>
</edit-config>
</rpc>

Bj or kl und St andards Track [Page 35]

RFC 7950 YANG 1.1 August 2016

5.2. File Layout

YANG nodul es and subnodul es are typically stored in files, one
"nodul e" or "subnodul e" statenment per file. The nane of the file
SHOULD be of the form

nodul e- or - subnodul e-nanme [' @ revision-date] (".yang’ / '.yin')

"modul e- or - subnodul e-nane" is the name of the nodul e or subnodul e,
and the optional "revision-date" is the |latest revision of the nodul e
or subnodul e, as defined by the "revision" statenent (Section 7.1.9).
The file extension ".yang" denotes that the contents of the file are
witten with YANG syntax (Section 6), and ".yin" denotes that the
contents of the file are witten with YIN syntax (Section 13).

YANG parsers can find inported nodul es and incl uded subnodul es via
this conventi on.

5.3. XM Nanespaces

Al'l YANG definitions are specified within a nodule. Each nodule is
bound to a distinct XML nanmespace [XM_- NAMES], which is a globally
uni que URI [RFC3986]. A NETCONF client or server uses the nanespace
during XM. encodi ng of data.

XML nanespaces for nodul es published in RFC streans [RFC4844] MJST be
assigned by | ANA; see Section 14 in [RFC6020].

XML nanespaces for private nodul es are assigned by the organization
owni ng the nodul e without a central registry. Nanespace URIs MJST be
chosen so they cannot collide with standard or other enterprise
nanespaces -- for exanple, by using the enterprise or organization
nane in the namespace

The "nanespace" statenent is covered in Section 7.1.3.
5.3.1. YANG XM. Nanespace
YANG defines an XML nanespace for NETCONF <edit-config> operations,

<error-info> content, and the <action> elenent. The nane of this
nanespace is "urn:ietf:paranms: xnl :ns:yang: 1".

Bj or kl und St andards Track [Page 36]

RFC 7950 YANG 1.1 August 2016

5.4. Resolving Gouping, Type, and ldentity Nanes

Groupi ng, type, and identity names are resolved in the context in

whi ch they are defined, rather than the context in which they are
used. Users of groupings, typedefs, and identities are not required
to inmport nodules or include subnbdules to satisfy all references
made by the original definition. This behaves like static scoping in
a conventional programi ng | anguage.

For exanple, if a nodule defines a grouping in which a type is
ref erenced, when the grouping is used in a second nodule, the type is
resolved in the context of the original nodule, not the second
nmodul e. There is no anmbiguity if both nodul es define the type

5.5. Nested Typedefs and G oupi ngs

Typedefs and groupi ngs nmay appear nested under many YANG statenents,
allowing these to be lexically scoped by the statenment hierarchy
under which they appear. This allows types and groupings to be
defined near where they are used, rather than placing themat the
top level of the hierarchy. The close proxinmity increases
readability.

Scoping also allows types to be defined without concern for naning
conflicts between types in different subnodul es. Type nanmes can be
specified w thout adding | eading strings designed to prevent name
collisions within | arge nodul es

Finally, scoping allows the nodul e author to keep types and groupings
private to their nodul e or subnodul e, preventing their reuse. Since
only top-level types and groupings (i.e., those appearing as
substatenents to a "nodul e" or "subnodul e" statenent) can be used
out si de the nodul e or subnodul e, the devel oper has nore control over
what pieces of their nopdule are presented to the outside world,
supporting the need to hide internal information and maintaining a
boundary between what is shared with the outside world and what is
kept private.

Scoped definitions MUST NOT shadow definitions at a higher scope. A
type or grouping cannot be defined if a higher level in the statenent
hi erarchy has a definition with a matching identifier

A reference to an unprefixed type or grouping, or one that uses the
prefix of the current nodule, is resolved by |locating the matching

"typedef" or "grouping" statement anong the i medi ate substatenents
of each ancestor statenent.

Bj or kl und St andards Track [Page 37]

RFC 7950 YANG 1.1 August 2016

5.6. Conformance

Conformance to a nodel is a neasure of how accurately a server
follows the nodel. Generally speaking, servers are responsible for

i npl ementing the nodel faithfully, allow ng applications to treat
servers that inplenent the nodel identically. Deviations fromthe
nodel can reduce the utility of the nbdel and increase the fragility
of applications that use it.

YANG nodel ers have three nechani sns for confornance:
o0 the basic behavior of the nodel
o optional features that are part of the nodel
0 deviations fromthe node
We will consider each of these in sequence.
5.6.1. Basic Behavior

The nodel defines a contract between a YANG based client and server;
this contract allows both parties to have faith that the other knows
the syntax and semantics behind the nodel ed data. The strength of
YANG lies in the strength of this contract.

5.6.2. Optional Features

In many nodels, the nodeler will allow sections of the nodel to be
conditional. The server controls whether these conditional portions
of the nodel are supported or valid for that particul ar server

For exanple, a syslog data nodel may choose to include the ability to
save logs locally, but the nodeler will realize that this is only
possible if the server has local storage. |If there is no |oca
storage, an application should not tell the server to save | ogs.

YANG supports this conditional nechani smusing a construct called
"feature". Features give the nodeler a nechanismfor naking portions
of the nodul e conditional in a manner that is controlled by the
server. The nodel can express constructs that are not universally
present in all servers. These features are included in the nodel
definition, allowing a consistent view and allow ng applications to

| earn which features are supported and tailor their behavior to the
server.

Bj or kl und St andards Track [Page 38]

RFC 7950 YANG 1.1 August 2016

A nodul e may decl are any nunber of features, identified by sinple
strings, and may make portions of the nodul e optional based on those
features. |If the server supports a feature, then the corresponding
portions of the nodule are valid for that server. |If the server
doesn’t support the feature, those parts of the nodule are not valid,
and applications should behave accordi ngly.

Features are defined using the "feature" statenment. Definitions in
the nodul e that are conditional to the feature are noted by the
"if-feature" statement.

Further details are available in Section 7.20.1.
5.6.3. Deviations

In an ideal world, all servers would be required to inplenment the
nodel exactly as defined, and deviations fromthe nodel would not be
allowed. But in the real world, servers are often not able or
designed to inplenent the nodel as witten. For YANG based
automation to deal with these server deviations, a nechani sm nust

exi st for servers to informapplications of the specifics of such
devi ati ons.

For exanple, a BGP nodule may all ow any nunber of BGP peers, but a
particul ar server nay only support 16 BGP peers. Any application
configuring the 17th peer will receive an error. VWile an error nay
suffice to let the application know it cannot add another peer, it
woul d be far better if the application had prior know edge of this
limtation and could prevent the user fromstarting down the path
that could not succeed.

Server deviations are declared using the "deviation" statenent, which
takes as its argument a string that identifies a node in the schema
tree. The contents of the statenent detail the manner in which the
server inplenentation deviates fromthe contract as defined in the
nodul e.

Further details are available in Section 7.20. 3.

Bj or kl und St andards Track [Page 39]

RFC 7950 YANG 1.1 August 2016

5.6.4. Announci ng Confornance I nformation in NETCONF

Thi s docunent defines the follow ng nmechani smfor announci ng
conformance information. Oher mechanisnms may be defined by future
speci fications.

A NETCONF server MJST announce the nodules it inplenments (see
Section 5.6.5) by inplenmenting the YANG nodul e "ietf-yang-1library"
defined in [RFC7895] and listing all inplenented nodules in the

"/ modul es- st at e/ nodul e" 1ist.

The server al so MJST advertise the followi ng capability in the
<hel | 0> nessage (line breaks and whitespaces are used for formatting
reasons only):

urn:ietf:parans: netconf:capability:yang-1library:1.0?
revi si on=<dat e>&nodul e- set -i d=<i d>

The paraneter "revision" has the sane value as the revision date of
the "ietf-yang-library" nodule inplenented by the server. This
par anet er MJST be present.

The paraneter "nodul e-set-id" has the sane value as the | eaf
"/ nmodul es- st ate/ nodul e-set-id" from"ietf-yang-library". This
paraneter MJST be present.

Wth this mechanism a client can cache the supported nodules for a
server and only update the cache if the "nodul e-set-id" value in the
<hel | 0> nmessage changes.

5.6.5. Inplenenting a Mdul e

A server inplenments a nodule if it inplements the nodule’s data
nodes, RPCs, actions, notifications, and deviations.

A server MJST NOT inplenent nore than one revision of a nodule.

If a server inplenents a nodule A that inports a nodule B, and A uses
any node fromB in an "augnment" or "path" statenment that the server
supports, then the server MJST inplenment a revision of nodule B that
has these nodes defined. This is regardless of whether nodule B is

i mported by revision or not.

Bj or kl und St andards Track [Page 40]

RFC 7950 YANG 1.1 August 2016

If a server inplenents a nodule A that inports a nodule C without
specifying the revision date of nmodule C and the server does not
implenent C (e.g., if Conly defines sone typedefs), the server MJST
list nodule Cin the "/nodul es-state/module” list from
"ietf-yang-library" [RFC7895], and it MJST set the |eaf
"conformance-type" to "inport" for this nodule.

If a server lists a nmobdule Cin the "/nodul es-state/ nodule” list from
"ietf-yang-library" and there are other nodules Ms listed that inport
C without specifying the revision date of nmodule C, the server MJIST
use the definitions fromthe nost recent revision of Clisted for
nodul es M.

The reason for these rules is that clients need to be able to know
the specific data nodel structure and types of all leafs and
leaf-lists inplemented in a server.

For exanple, with these nodul es:

nmodul e a {
yang-version 1.1;
nanespace "urn: exanpl e:a";
prefix "

a’;

import b {
revi sion-date 2015-01-01;
}

i mport c;
revi sion 2015-01-01;
feature foo;

augrment "/ b:x" {
if-feature foo;

leaf y {
type b: myenum
}
}

contai ner a {
| eaf x {
type c: bar;

Bj or kl und St andards Track [Page 41]

RFC 7950 YANG 1.1

nmodul e b {

}

yang-version 1.1;
nanespace "urn:exanpl e: b";
prefix "b";

revi sion 2015-01-01

t ypedef nyenum {
type enuneration {
enum zer o
}
}

cont ai ner x {

}

nodul e b {

}

yang-version 1.1;
nanespace "urn: exanpl e: b";
prefix "b";

revision 2015- 04- 04;
revision 2015-01-01

t ypedef nyenum {
type enuneration {
enum zero; // added in 2015-01-01
enum one; // added in 2015-04-04

}
}

container x { // added in 2015-01-01
container y; // added in 2015-04-04
}

nmodul e ¢ {

yang-version 1.1;
nanespace "urn: exanple:c";
prefix "

c

revision 2015-02-02;
typedef bar {

} o

Bj or kl und St andards Track

August 2016

[Page 42]

RFC 7950 YANG 1.1 August 2016

nmodul e ¢ {
yang-version 1.1;
nanespace "urn:exanple:c";
prefix "

c";
revi sion 2015-03-03;
revi sion 2015-02-02;

typedef bar {

}
}

A server that inplements revision "2015-01-01" of nodule "a" and
supports feature "foo" can inplenment revision "2015-01-01" or
"2015- 04- 04" of nodule "b". Since "b" was inported by revision, the
type of leaf "/b:x/a:y" is the sanme, regardl ess of which revision of
"b" the server inplenents.

A server that inplenents nodule "a" but does not support feature
"foo" does not have to inplenent nodule "b".

A server that inplenents revision "2015-01-01" of nodule "a"
pi cks any revision of nodule "c" and lists it in the
"/ nmodul es-state/ nodul e" list from"ietf-yang-1library"

The followi ng XM. encodi ng exanpl e shows valid data for the
"/ modul es-state/ modul e" list for a server that inplenments nodul e

a

<nmodul es-state

xm ns="urn:ietf:parans: xm:ns:yang:ietf-yang-library">
<nodul e-set -i d>eelecb017370caf d</ nodul e-set-i d>
<nodul e>

<nane>a</ nane>

<revi si on>2015- 01- 01</ r evi si on>

<namespace>ur n: exanpl e: a</ nanespace>

<f eat ur e>f oo</ f eat ur e>

<conf or mance-t ype>i npl enent </ conf or mance-t ype>
</ modul e>
<nodul e>

<nane>b</ name>

<revi si on>2015- 04- 04</ r evi si on>

<namespace>ur n: exanpl e: b</ nanespace>

<conf or mance-t ype>i npl enent </ conf or mance-t ype>
</ nodul e>

Bj or kl und St andards Track [Page 43]

RFC 7950 YANG 1.1 August 2016

<nodul e>
<nanme>c</ nane>
<revi si on>2015- 02- 02</ r evi si on>
<nanespace>ur n: exanpl e: c</ nanespace>
<conf or mance-t ype>i nport </ conf or mance- t ype>
</ modul e>
</ nodul es- st at e>

5.7. Datastore Mdification

Data nodels nmay allow the server to alter the configuration datastore
in ways not explicitly directed via network nanagenent protocol
messages. For exanple, a data nodel nmay define leafs that are

assi gned system generated val ues when the client does not provide
one. A formal mechani sm for specifying the circunstances where these
changes are allowed is out of scope for this specification

6. YANG Synt ax

The YANG syntax is similar to that of SMng [RFC3780] and programi ng
| anguages like C and C++. This Clike syntax was chosen specifically
for its readability, since YANG values the tine and effort of the
readers of nodels above those of nodules witers and YANG tool -chain
devel opers. This section introduces the YANG synt ax.

Legal characters in YANG nodul es are the Unicode and |1 SO | EC 10646
[1SO 10646] characters, including tab, carriage return, and line feed
but excluding the other CO control characters, the surrogate bl ocks,
and the noncharacters. The character syntax is formally defined by
the rule "yang-char" in Section 14.

YANG nodul es and subnodul es are stored in files using the UTF-8
[RFC3629] character encodi ng.

Lines in a YANG nodule end with a carriage return-line feed
conbination or with a line feed alone. A carriage return that is not
followed by a Iine feed nay only appear inside a quoted string
(Section 6.1.3). Note that carriage returns and |line feeds that
appear inside quoted strings becone part of the value of the string

wi t hout nodification; the value of a nulti-line quoted string
contains the sane formof |ine ends as those lines of the YANG
nodul e.

Bj or kl und St andards Track [Page 44]

RFC 7950 YANG 1.1 August 2016

6.1. Lexical Tokenization

YANG nodul es are parsed as a series of tokens. This section details
the rules for recognizing tokens froman input stream YANG

tokeni zation rules are both sinple and powerful. The sinmplicity is
driven by a need to keep the parsers easy to inplenent, while the
power is driven by the fact that nodel ers need to express their
nodel s in readabl e fornmats.

6.1.1. Conmment s

Comments are C++ style. A single line comment starts with "//" and
ends at the end of the Iine. A block comrent starts with "/*" and
ends with the nearest following "*/".

Note that inside a quoted string (Section 6.1.3), these character
pairs are never interpreted as the start or end of a coment.

6.1.2. Tokens

A token in YANGis either a keyword, a string, a semcolon (";"), or
braces ("{" or "}"). A string can be quoted or unquoted. A keyword
is either one of the YANG keywords defined in this document, or a
prefix identifier, followed by a colon (":"), followed by a | anguage
ext ensi on keyword. Keywords are case sensitive. See Section 6.2 for
a formal definition of identifiers.

6.1.3. Quoting

An unquoted string is any sequence of characters that does not
contain any space, tab, carriage return, or line feed characters, a
singl e or double quote character, a senmicolon (";"), braces ("{" or
"1"), or coment sequences ("//", "/[*", or "*[").

Note that any keyword can | egally appear as an unquoted string.

Wthin an unquoted string, every character is preserved. Note that
this neans that the backslash character does not have any specia
meani ng i n an unquoted string.

If a doubl e-quoted string contains a |ine break foll owed by space or
tab characters that are used to indent the text according to the
layout in the YANG file, this |eading whitespace is stripped fromthe
string, up to and including the colum of the starting double quote
character, or to the first non-whitespace character, whichever occurs
first. Any tab character in a succeeding line that nust be exam ned
for stripping is first converted into 8 space characters.

Bj or kl und St andards Track [Page 45]

RFC 7950 YANG 1.1 August 2016

If a doubl e-quoted string contains space or tab characters before a
line break, this trailing whitespace is stripped fromthe string.

A single-quoted string (enclosed within ' ') preserves each character
within the quotes. A single quote character cannot occur in a
singl e-quoted string, even when preceded by a backsl ash

Wthin a doubl e-quoted string (enclosed within " "), a backsl ash
character introduces a representation of a special character, which
depends on the character that imediately follows the backsl ash

\n new i ne

\t a tab character

\ " a doubl e quote

\\ a single backsl ash

The backsl ash MUST NOT be foll owed by any ot her character

If a quoted string is followed by a plus character ("+"), followed by
anot her quoted string, the two strings are concatenated into one
string, allowing nultiple concatenations to build one string.

Wi t espace, |ine breaks, and comments are all owed between the quoted
strings and the plus character.

I n doubl e-quoted strings, whitespace trinmmng is done before
substitution of backsl ash-escaped characters. Concatenation is
performed as the |ast step.

6.1.3.1. Quoting Exanples

The followi ng strings are equival ent:

hel |l o
"hel | 0"
"hel |l o

n hel "o ||| Ou
) hel) + ||| Ou

The foll owi ng exanpl es show sone special strings:

"\"" - string containing a double quote

. - string containing a double quote

"\n" - string containing a newine character
"\n” - string containing a backslash foll owed

by the character n

Bj or kl und St andards Track [Page 46]

RFC 7950 YANG 1.1 August 2016

The foll owi ng exanpl es show sone illegal strings:
"’’’ - a single-quoted string cannot contain single quotes
- a doubl e quote nust be escaped in a doubl e-quoted string

The follow ng strings are equival ent:

"first line
second |ine"

"first line\n" +" second |ine"
6.2. ldentifiers

Identifiers are used to identify different kinds of YANG itens by
nane. FEach identifier starts with an uppercase or | owercase ASCl
letter or an underscore character, followed by zero or nore ASCI
letters, digits, underscore characters, hyphens, and dots.

| mpl enent ati ons MUST support identifiers up to 64 characters in

| engt h and MAY support longer identifiers. ldentifiers are case
sensitive. The identifier syntax is formally defined by the rule
"identifier" in Section 14. ldentifiers can be specified as quoted

or unquot ed strings.
6.2.1. ldentifiers and Their Nanespaces

Each identifier is valid in a nanespace that depends on the type of
the YANG item being defined. All identifiers defined in a nanespace
MUST be uni que.

o All nodul e and subnodul e nanes share the sanme gl obal nodul e
i dentifier namespace.

o Al extension nanes defined in a nodule and its subnobdul es share
the sane extension identifier nanespace.

o Al feature nanes defined in a nodule and its subnpodul es share the
sane feature identifier nanespace

o Al identity names defined in a nodule and its subnodul es share
the sane identity identifier nanmespace.

0o Al derived type nanes defined within a parent node or at the top
| evel of the nodule or its subnodul es share the sanme type
identifier namespace. This nanespace is scoped to all descendant
nodes of the parent node or nodule. This nmeans that any
descendant node may use that typedef, and it MJST NOT define a
typedef with the sane nane.

Bj or kl und St andards Track [Page 47]

RFC 7950 YANG 1.1 August 2016

o All grouping nanes defined within a parent node or at the top
| evel of the nodule or its subnodul es share the sane grouping
identifier namespace. This nanespace is scoped to all descendant
nodes of the parent node or nodule. This nmeans that any
descendant node may use that grouping, and it MJUST NOT define a
grouping with the sanme nane.

o Al leafs, leaf-lists, lists, containers, choices, rpcs, actions,
notifications, anydatas, and anyxm s defined (directly or through
a "uses" statenent) within a parent node or at the top |evel of
the nmodule or its subnodul es share the sanme identifier nanmespace.
Thi s nanespace is scoped to the parent node or nodul e, unless the
parent node is a case node. |n that case, the nanespace is scoped
to the closest ancestor node that is not a case or choice node.

0 All cases within a choice share the sane case identifier
nanespace. This nanmespace is scoped to the parent choice node

Forward references are allowed in YANG
6.3. Statenents

A YANG nodul e contains a sequence of statenents. Each statenent
starts with a keyword, followed by zero or one argunent, followed by
either a semicolon (";") or a block of substatenents enclosed wthin
braces ("{ }"):

statement = keyword [argunent] (";" / "{" *statenent "}")
The argunent is a string, as defined in Section 6.1.2.
6.3.1. Language Extensions

A nodul e can introduce YANG extensions by using the "extension"
keyword (see Section 7.19). The extensions can be inported by other
nodul es with the "inport" statenent (see Section 7.1.5). Wen an

i mported extension is used, the extension’'s keyword MJUST be qualified
using the prefix with which the extension’s nodule was inported. |f
an extension is used in the nodule where it is defined, the
extension’s keyword MJUST be qualified with the prefix of this nodule.

The processing of extensions depends on whether support for those
extensions is clainmed for a given YANG parser or the tool set in
which it is enbedded. An unsupported extension appearing in a YANG
nmodul e as an unknown- st atenent (see Section 14) MAY be ignored in its
entirety. Any supported extensi on MIST be processed i n accordance

wi th the specification governing that extension

Bj or kl und St andards Track [Page 48]

RFC 7950 YANG 1.1 August 2016

Care nust be taken when defining extensions so that nodul es that use
t he extensions are neani ngful also for applications that do not
support the extensions.

6.4. XPath Eval uations

YANG relies on XML Path Language (XPath) 1.0 [XPATH] as a notation
for specifying many inter-node references and dependencies. An

i mpl ementation is not required to inplenent an XPath interpreter but
MUST ensure that the requirements encoded in the data nodel are
enforced. The manner of enforcement is an inplenentation decision
The XPath expressions MJST be syntactically correct, and all prefixes
used MJUST be present in the XPath context (see Section 6.4.1). An

i mpl enent ati on nay choose to inplenent them by hand, rather than
usi ng the XPath expression directly.

The data nodel used in the XPath expressions is the sane as that used
in XPath 1.0 [XPATH], with the sane extension for root node children
as used by XSLT 1.0 (see Section 3.1 in [XSLT]). Specifically, it
means that the root node may have any nunber of el enent nodes as its
chi I dren.

The data tree has no concept of docunent order. An inplenentation
needs to choose sone docunent order, but how it is done is an

i mpl enment ati on decision. This nmeans that XPath expressions in YANG
nmodul es SHOULD NOT rely on any specific docunent order

Nunmbers in XPath 1.0 are | EEE 754 [| EEE754-2008] doubl e-preci si on
floating-point values; see Section 3.5 in [XPATH . This neans that
sonme val ues of int64, uint64, and deci nal 64 types (see Sections 9.2
and 9.3) cannot be exactly represented in XPath expressions.

Theref ore, due caution shoul d be exercised when using nodes with
64-bit numeric values in XPath expressions. |In particular, nunerica
conparisons involving equality may yield unexpected results.

For exanple, consider the followi ng definition

leaf Ixiv {
type deci nal 64 {
fraction-digits 18;
}
nust . <= 10";

}

An instance of the "Ixiv" |eaf having the val ue of
10. 0000000000000001 wi Il then successfully pass validation

Bj or kl und St andards Track [Page 49]

RFC 7950 YANG 1.1 August 2016

6. 4.

1

All

XPat h Cont ext

YANG XPat h expressions share the foll ow ng XPath context

definition:

(0]

(0]

The set of nanespace declarations is the set of all "inport"
statenents’ prefix and nanespace pairs in the nodul e where the
XPat h expression is specified, and the "prefix" statement’s prefix
for the "nanespace" statenment’s URI

Names wit hout a nanespace prefix belong to the sane nanespace as
the identifier of the current node. |Inside a grouping, that
nanespace is affected by where the grouping is used (see

Section 7.13). Inside a typedef, that namespace is affected by
where the typedef is referenced. |f a typedef is defined and
referenced within a grouping, the nanespace is affected by where
the grouping is used (see Section 7.13).

The function library is the core function library defined in
[XPATH and the functions defined in Section 10.

The set of variable bindings is enpty.

The mechani sm for handling unprefixed nanes is adopted from XPath 2.0
[XPATH2. 0] and hel ps sinplify XPath expressions in YANG No

anmbi guity may ever arise, because YANG node identifiers are always
qualified names with a non-null nanespace URI.

The accessible tree depends on where the statement with the XPath
expression is defined:

(o]

If the XPath expression is defined in a substatenent to a data
node that represents configuration, the accessible tree is the
data in the datastore where the context node exists. The root
node has all top-level configuration data nodes in all nodul es as
chil dren.

If the XPath expression is defined in a substatenent to a data

node that represents state data, the accessible tree is all state
data in the server, and the running configuration datastore. The
root node has all top-level data nodes in all nodules as children

If the XPath expression is defined in a substatenent to a
"notification" statement, the accessible tree is the notification
instance, all state data in the server, and the running
configuration datastore. |If the notification is defined on the
top level in a nodule, then the root node has the node

Bj or kl und St andards Track [Page 50]

RFC 7950 YANG 1.1 August 2016

representing the notification being defined and all top-level data
nodes in all nodules as children. Qherw se, the root node has
all top-level data nodes in all nmodules as children

o If the XPath expression is defined in a substatenent to an "input"”
statenent in an "rpc" or "action" statenent, the accessible tree
is the RPC or action operation instance, all state data in the
server, and the running configuration datastore. The root node
has top-level data nodes in all nodules as children
Additionally, for an RPC, the root node al so has the node
representing the RPC operation being defined as a child. The node
representing the operation being defined has the operation’s input
paraneters as children.

o |If the XPath expression is defined in a substatenent to an
"output" statenent in an "rpc" or "action" statenent, the
accessible tree is the RPC or action operation instance, all state
data in the server, and the running configuration datastore. The
root node has top-level data nodes in all nodul es as children
Additionally, for an RPC, the root node al so has the node
representing the RPC operation being defined as a child. The node
representing the operation being defined has the operation's
out put paranmeters as children

In the accessible tree, all leafs and leaf-lists with default val ues
in use exist (see Sections 7.6.1 and 7.7.2).

If a node that exists in the accessible tree has a non-presence
container as a child, then the non-presence container also exists in
the accessible tree.

The context node varies with the YANG XPath expression and is

specified where the YANG statenent with the XPath expression is
defi ned.

Bj or kl und St andards Track [Page 51]

RFC 7950 YANG 1.1

6.4.1.1. Exanples
G ven the foll ow ng nodul e:
nmodul e exanpl e-a {
yang-version 1.1;
namespace urn: exanpl e: a;
prefix a;

contai ner a {

list b {
key id;
leaf id {
type string;

notification down {
| eaf reason {
type string;

}

action reset {
i nput {
| eaf del ay {
type uint32;
}

out put {
| eaf result {
type string;

}
}
}
}

notification failure {
| eaf b-ref {
type leafref {
path "/a/b/id";
}
}
}
}

Bj or kl und St andards Track

August 2016

[Page 52]

RFC 7950 YANG 1.1 August 2016

and given the following data tree, specified in XM.:

<a xm ns="urn: exanpl e: a" >

<id>1</id>
</ b>

<id>2</id>
</ b>
</ a>

The accessible tree for a notification "down" on /a/b[id="2"] is:

<a xm ns="urn: exanpl e: a" >

<id>1</id>
</ b>

<i d>2</id>
<down>
<r eason>error </ reason>
</ down>
</ b>
</ a>
/'l possibly other top-level nodes here

The accessible tree for an action invocation of "reset" on
[a/b[id="1"] with the "when" paranmeter set to "10" woul d be:

<a xm ns="urn: exanpl e: a" >

<id>1</id>
<reset >
<del ay>10</ del ay>
</reset>
</ b>

<id>2</id>
</ b>
</ a>
/1 possibly other top-level nodes here

Bj or kl und St andards Track [Page 53]

RFC 7950 YANG 1.1 August 2016

The accessible tree for the action output of this action is:

<a xm ns="urn: exanpl e: a" >

<id>1</id>
<reset >
<resul t >ok</resul t>
</reset>
</ b>

<id>2</id>
</ b>
</ a>
/'l possibly other top-Ievel nodes here

The accessible tree for a notification "failure" could be:

<a xm ns="urn: exanpl e: a" >

<id>1</id>
</ b>

<id>2</id>
</ b>
</ a>
<failure>
<b-ref>2</b-ref>
</failure>
/1 possibly other top-level nodes here

6.5. Schema Node |dentifier

A schenma node identifier is a string that identifies a node in the
schema tree. It has two forms, "absolute" and "descendant", defined
by the rul es "absol ut e-schema- nodei d* and "descendant - schena- nodei d"
in Section 14, respectively. A schena node identifier consists of a
path of identifiers, separated by slashes ("/"). |In an absolute
schema node identifier, the first identifier after the |eading slash
is any top-level schema node in the local nodule or in an inported
nmodul e.

References to identifiers defined in external nodul es MUST be
qualified with appropriate prefixes, and references to identifiers
defined in the current nodule and its subnodul es MAY use a prefix.

For exanple, to identify the child node "b" of top-level node "a"
the string "/a/b" can be used.

Bj or kl und St andards Track [Page 54]

RFC 7950 YANG 1.1 August 2016

7. YANG Statenents
The followi ng sections describe all of the YANG statenents.

Note that even a statenment that does not have any substatenents
defined in YANG can have vendor-specific extensions as substatenents.
For exanple, the "description" statenent does not have any
substatements defined in YANG but the following is |egal

description "Some text." {
ex: docunentation-flag 5;
}

7.1. The "nodul e" Statenent

The "nodul e" statenment defines the nodul e’ s name and groups al
statements that belong to the nodul e together. The "nodul e"
statenent’s argunment is the nane of the nodule, followed by a bl ock
of substatenents that holds detailed nodule information. The nodul e
name is an identifier (see Section 6.2).

Names of nodul es published in RFC streans [RFC4844] MJUST be assi gned
by 1 ANA; see Section 14 in [RFC6020].

Private nodul e nanes are assigned by the organi zati on owni ng the
nmodul e without a central registry. See Section 5.1 for
recomendat i ons on how to nane nodul es

A nodul e typically has the foll owi ng | ayout:
nmodul e <nodul e- nane> {

/'l header information
<yang-ver si on statenent >
<nanespace st at enent >
<prefix statenent>

/1 linkage statenents
<i nport statenents>
<i ncl ude st at enent s>

/1 meta-information

<or gani zati on statenent >
<contact statenent>
<descri pti on statenent>
<ref erence statenent >

Bj or kl und St andards Track [Page 55]

RFC 7950 YANG 1.1

/1 revision history
<revi si on statenents>
/'l nodul e definitions
<ot her st atenments>

7.1.1. The nodul €' s Subst at enent s

S f S Fom e e e e e o oo
| substatenent | section | cardinality
RS Fomm e e o S
| anydata | 7.10 | 0..n

| anyxm | 7.11 | 0..n

| augnent | 7.17 | 0..n

| choice | 7.9 | 0..n

| contact | 7.1.8 | 0..1

| container | 7.5 | 0..n

| description | 7.21.3 | 0..1

| deviation | 7.20.3 | 0O0..n

| extension | 7.19 | 0..n

| feature | 7.20.12 | O..n

| grouping | 7.12 | 0..n

| identity | 7.18 | 0..n

| inport | 7.1.5 | 0..n

| include | 7.1.6 | 0..n

| Ieaf | 7.6 | 0..n

| leaf-1list | 7.7 | 0..n

| list | 7.8 | 0..n

| nanespace | 7.1.3 | 1

| notification | 7.16 | 0..n

| organization | 7.1.7 | 0..1

| prefix | 7.1.4 | 1

| reference | 7.22.4 | 0..1

| revision | 7.1.9 | 0..n

| rpc | 7.14 | 0..n

| typedef | 7.3 | 0..n

| uses | 7.13 | 0..n

| yang-version | 7.1.2 | 1
S f S Fom e e e e e o oo

Bj or kl und St andards Track

August 2016

[Page 56]

RFC 7950 YANG 1.1 August 2016

7.1.2. The "yang-version" Statenent

The "yang-version" statenment specifies which version of the YANG

| anguage was used in devel oping the nodule. The statenent’s argunent
is astring. It MJIST contain the value "1.1" for YANG nodul es
defined based on this specification

A nodul e or subnodul e that doesn’t contain the "yang-version"
statement, or one that contains the value "1", is devel oped for YANG
version 1, defined in [RFC6020].

Handl i ng of the "yang-version" statenent for versions other than
"1.1" (the version defined here) is out of scope for this
specification. Any docunent that defines a higher version will need
to define the backward conpatibility of such a higher version

For compatibility between YANG versions 1 and 1.1, see Section 12.
7.1.3. The "namespace" Statenent

The "nanmespace" statenent defines the XML nanmespace that all
identifiers defined by the nodule are qualified by in the XM
encodi ng, with the exception of identifiers for data nodes, action
nodes, and notification nodes defined inside a grouping (see

Section 7.13 for details). The argunment to the "nanespace" statenent
is the URI of the nanespace.

See al so Section 5. 3.
7.1.4. The "prefix" Statenent

The "prefix" statement is used to define the prefix associated with
the nmodul e and its nanespace. The "prefix" statement’s argunent is
the prefix string that is used as a prefix to access a nodule. The
prefix string MAY be used with the nodule to refer to definitions
contained in the nodule, e.g., "if:ifName". A prefix is an
identifier (see Section 6.2).

When used inside the "nodul e" statenent, the "prefix" statenent
defines the prefix suggested to be used when this nodule is inported.

To inprove readability of the NETCONF XML, a NETCONF client or server
that generates XM. or XPath that uses prefixes SHOULD use the prefix
defined by the nodule as the XM. nanespace prefix, unless there is a
conflict.

Bj or kl und St andards Track [Page 57]

RFC 7950 YANG 1.1 August 2016

When used inside the "inport" statenment, the "prefix" statenent
defines the prefix to be used when accessing definitions inside the

i mported nodule. When a reference to an identifier fromthe inported
modul e is used, the prefix string for the inported nodul e foll owed by
a colon (":") and the identifier is used, e.g., "if:iflndex". To

i nprove readability of YANG nodules, the prefix defined by a nodul e
SHOULD be used when the nodule is inported, unless there is a
conflict. If there is a conflict, i.e., tw different nodul es that
bot h have defined the sanme prefix are inported, at |east one of them
MUST be inported with a different prefix.

Al'l prefixes, including the prefix for the nodule itself, MJST be
uni que wi thin the nodul e or subnodul e.

7.1.5. The "inport" Statenent

The "inport" statenment nmakes definitions fromone nodul e avail abl e

i nsi de anot her nodul e or subnobdule. The argunent is the nane of the
nodul e to inport, and the statenent is foll owed by a bl ock of
substatenents that holds detailed inport information. Wen a nodule
is inported, the inporting nodule nay:

0 use any grouping and typedef defined at the top level in the
i nported nodul e or its subnodul es.

0 use any extension, feature, and identity defined in the inported
nmodul e or its subnodul es

0 use any node in the inported nodul e’s schema tree in "nust",
"path", and "when" statenents, or as the target node in "augnent"
and "devi ation" statenents.

The mandatory "prefix" substatenment assigns a prefix for the inported
nmodul e that is scoped to the inporting nodule or subnmodule. Miltiple
"inmport" statenents may be specified to inport fromdifferent

nodul es.

Wien the optional "revision-date" substatenment is present, any
typedef, grouping, extension, feature, and identity referenced by
definitions in the local nodule are taken fromthe specified revision
of the inported nodule. 1t is an error if the specified revision of
the inported nodul e does not exist. If no "revision-date"
substatenent is present, it is undefined fromwhich revision of the
nmodul e they are taken

Multiple revisions of the same nodul e can be inported, provided that
different prefixes are used.

Bj or kl und St andards Track [Page 58]

RFC 7950 YANG 1.1 August 2016

R [TS T +
| substatenent | section | cardinality
S [TS B +
| description | 7.22.3 | 0..1 |
| prefix | 7.1.4 | 1

| reference | 7.21.4 | 0..1 |
| revision-date | 7.1.5.1 | 0..1 |
R [TS S +

The inmport’s Substatenents
7.1.5.1. The inport’s "revision-date" Statenent

The inport’s "revision-date" statenent is used to specify the version
of the nodule to inport.

7.1.6. The "include" Statenent

The "include" statement is used to make content from a subnodul e
avai l abl e to that subnmodul e’ s parent nodule. The argunent is an
identifier that is the name of the subnodule to include. Mdules are
only allowed to include subnodul es that belong to that nodul e, as
defined by the "bel ongs-to" statenent (see Section 7.2.2).

When a nodul e includes a subnodule, it incorporates the contents of
t he subnodul e into the node hierarchy of the nodul e.

For backward conpatibility with YANG version 1, a subnodule is
all owed to include another subnodul e bel onging to the sane nodul e,
but this is not necessary in YANG version 1.1 (see Section 5.1).

Wien the optional "revision-date" substatement is present, the
specified revision of the subnodule is included in the nodule. It is
an error if the specified revision of the subnodul e does not exist.

If no "revision-date" substatenment is present, it is undefined which
revi sion of the subnodul e is included.

Mul tiple revisions of the sane subnodul e MUST NOT be i ncl uded.

T [S B TS +
| substatenent | section | cardinality

S [SR —-— S +
description	7.21.3	0..1
reference	7.21.4	0..1
revision-date	7.1.5.1] 0..1	
T [S B TS +

The includes’s Substatenents

Bj or kl und St andards Track [Page 59]

RFC 7950 YANG 1.1 August 2016

7.1.7. The "organi zation" Statenent

The "organi zation" statement defines the party responsible for this
modul e. The argunent is a string that is used to specify a textua

description of the organization(s) under whose auspices this nodul e
was devel oped.

7.1.8. The "contact" Statenent

The "contact" statenent provides contact information for the nodule.
The argunent is a string that is used to specify contact information
for the person or persons to whomtechnical queries concerning this

nmodul e shoul d be sent, such as their name, postal address, telephone
nurmber, and el ectronic nail address.

7.1.9. The "revision" Statenent

The "revision" statenent specifies the editorial revision history of
the nodule, including the initial revision. A series of "revision"
statenments detail the changes in the nodul e’'s definition. The
argument is a date string in the format "YYYY-MVDD', followed by a
bl ock of substatenents that holds detailed revision information. A
nmodul e SHOULD have at |east one "revision"” statenent. For every
published editorial change, a new one SHOULD be added in front of the

revi sions sequence so that all revisions are in reverse chronol ogi ca
or der.

7.1.9.1. The revision' s Substatenents

RS Fomm e e o S +
| substatenent | section | cardinality

oo e oo +
| description | 7.21.3 | 0..1 |
| reference | 7.22.4 | 0..1 |
B TS Fomm e e o B S +

Bj or kl und St andards Track [Page 60]

RFC 7950 YANG 1.1 August 2016

7.1.10. Usage Exanpl e
The foll owi ng exanple relies on [RFC6991].

nmodul e exanpl e- system {
yang-version 1.1;
nanespace "urn: exanpl e: systent;
prefix "sys";

i mport ietf-yang-types {

prefix "yang";

reference "RFC 6991: Conmon YANG Data Types"
}

i ncl ude exanpl e-types;

organi zati on "Exanple Inc."

cont act
"Joe L. User
Exanpl e I nc.

42 Anywhere Drive
Nowhere, CA 95134
USA

Phone: +1 800 555 0100
Emai | : j oe@xanpl e. cont';

description
"The nodule for entities inplenenting the Exanple system™";

revi sion 2007-06-09 {
description "lInitial revision."
}

[/l definitions follow...

Bj or kl und St andards Track [Page 61]

RFC 7950 YANG 1.1 August 2016

7.2. The "subnodul e" Statenent

Wiile the primary unit in YANGis a nodule, a YANG nodul e can itself
be constructed out of several subnodules. Subnodul es allow a nodul e
designer to split a conplex nodel into several pieces where all the
subnodul es contribute to a single nanmespace, which is defined by the
nodul e that includes the subnodul es.

The "subnodul e" statenent defines the subnodule’s name, and it groups
all statenents that belong to the subnodul e together. The
"subnodul e" statenent’s argunent is the nanme of the subnodul e

foll owed by a bl ock of substatenents that hol ds detail ed subnodul e
informati on. The subnodule nane is an identifier (see Section 6.2).

Names of subnodul es published in RFC streans [RFC4844] MUST be
assigned by | ANA; see Section 14 in [RFC6020].

Private subnodul e names are assi gned by the organi zati on owning the
subrmodul e without a central registry. See Section 5.1 for
reconmendati ons on how to name subnodul es.
A subrnodul e typically has the foll owing | ayout:

subnodul e <nodul e- name> {

<yang-versi on st at enent >

/1 nodule identification
<bel ongs-to st atenent >

/'l linkage statenents
<i nport statenents>

/1 meta-information

<or gani zati on st at enent >
<cont act statenent>
<descri pti on statenent >
<reference statenent>

/'l revision history
<revi sion statenents>

/1 nodul e definitions
<ot her statenents>

Bj or kl und St andards Track [Page 62]

RFC 7950 YANG 1.1 August 2016

7.2.1. The subnodul e’ s Substat enents

. I . +
| substatenent | section | cardinality

B TS Fomm e e o B S +
anydata	7.10	0..n
anyxm	7.11	0..n
augnent	7.17	0..n
belongs-to	7.2.2	1
choice	7.9	0..n
contact	7.1.8	0..1
container	7.5	0..n
description	7.21.3	0..1
deviation	7.20.3	0..n
extension	7.19	0..n
feature	7.20.12	O..n
grouping	7.12	0..n

identity	7.18	0..n
inport	7.1.5	0..n
include	7.1.6	0..n
Ieaf	7.6	0..n
leaf-1list	7.7	0..n

Iist	7.8	0..n
notification	7.16	0..n
organization	7.1.7	0..1
reference	7.21.4	0..1
revision	7.1.9	0..n
rpc	7.14	0..n
typedef	7.3	0..n
uses	7.13	0..n
yang-version	7.1.2	1
e N T N . +

7.2.2. The "bel ongs-to" Statenent

The "bel ongs-to" statenent specifies the nodule to which the
subnmodul e bel ongs. The argunent is an identifier that is the nane of
t he nodul e.

A subrodul e MUST only be included by either the nodule to which it
bel ongs or anot her subnodul e that bel ongs to that nodul e.

The mandatory "prefix" substatenment assigns a prefix for the nodule
to which the subrmodul e belongs. Al definitions in the nodul e that
t he subnodul e belongs to and all its subnbdul es can be accessed by

usi ng the prefix.

Bj or kl und St andards Track [Page 63]

RFC 7950 YANG 1.1 August 2016

oo e oo - +
| substatenent | section | cardinality |
o oo oo +
| prefix | 7.1.4 | 1 |
B TS Fomm e e o B S +

The bel ongs-to’s Subst at enent
7.2.3. Usage Exanple

subnodul e exanpl e-types {
yang-version 1.1;
bel ongs-to "exanpl e-systent {
prefix "sys";

}
i mport ietf-yang-types {
prefix "yang";
}
organi zation "Exanple Inc.";
cont act
"Joe L. User
Exanpl e I nc.

42 Anywhere Drive
Nowhere, CA 95134
USA

Phone: +1 800 555 0100
Enmai | : j oe@xanpl e. cont';

description
"Thi s subnodul e defines common Exanple types."”;

revision "2007-06-09" {
description "lInitial revision.";
}

[/ definitions follow...

Bj or kl und St andards Track [Page 64]

RFC 7950 YANG 1.1 August 2016

7.

7.

7.

7.

3. The "typedef" Statenent

The "typedef" statenent defines a new type that nay be used locally
in the nodul e or subnodul e, and by other nodules that inport fromit,
according to the rules in Section 5.5. The new type is called the
"derived type", and the type fromwhich it was derived is called the
"base type". Al derived types can be traced back to a YANG
built-in type

The "typedef" statenent’s argunent is an identifier that is the nane
of the type to be defined and MJUST be foll owed by a bl ock of
substatenents that holds detail ed typedef information

The name of the type MJUST NOT be one of the YANG built-in types. |If
the typedef is defined at the top level of a YANG nodul e or
subrmodul e, the nane of the type to be defined MJST be unique within
t he nodul e.

3.1. The typedef’s Substatenents

. I . +
| substatenent | section | cardinality

B TS Fomm e e o B S +
default	7.3.4	0..1
description	7.21.3	0..1
reference	7.21.4	0..1
status	7.21.2	0..1
type	7.3.2	1
units	7.3.3	0..1
RS Fomm e e o S +

3.2. The typedef’'s "type" Statenent

The "type" statenent, which MIST be present, defines the base type
fromwhich this type is derived. See Section 7.4 for details.

3.3. The "units" Statenent
The "units" statement, which is optional, takes as an argunent a

string that contains a textual definition of the units associated
with the type.

Bj or kl und St andards Track [Page 65]

RFC 7950 YANG 1.1 August 2016

7.3.4. The typedef’s "default" Statenent

The "default" statenent takes as an argunent a string that contains a
default value for the new type.

The val ue of the "default" statenent MJUST be valid according to the
type specified in the "type" statenent.

If the base type has a default value and the new derived type does
not specify a new default value, the base type’'s default value is
al so the default value of the new derived type

If the type's default value is not valid according to the new
restrictions specified in a derived type or |leaf definition, the
derived type or leaf definition MIUST specify a new default value
conmpatible with the restrictions.

7.3.5. Usage Exanple

typedef |isten-ipv4-address {
type inet:ipv4-address;
default "0.0.0.0";

}

7.4. The "type" Statenent

The "type" statenment takes as an argunent a string that is the nane
of a YANG built-in type (see Section 9) or a derived type (see
Section 7.3), followed by an optional block of substatenents that is
used to put further restrictions on the type.

The restrictions that can be applied depend on the type being

restricted. The restriction statements for all built-in types are
described in the subsections of Section 9.

Bj or kl und St andards Track [Page 66]

RFC 7950 YANG 1.1 August 2016

7.

7.

4.1. The type's Substatenents

|

|
enum
fraction-digits
I ength |
pat h |
pattern |
range |
require-instance
type |

.5. The "container" Statenment

The "container" statenment is used to define an interior data node in
the schema tree. It takes one argunent, which is an identifier

foll owed by a bl ock of substatements that holds detailed container

i nformati on.

A cont ai ner node does not have a value, but it has a list of child
nodes in the data tree. The child nodes are defined in the
cont ai ner’ s subst at enents.

5.1. Containers with Presence

YANG supports two styles of containers, those that exist only for
organi zing the hierarchy of data nodes and those whose presence in
the data tree has an explicit neaning.

In the first style, the container has no nmeaning of its own, existing
only to contain child nodes. In particular, the presence of the
contai ner node with no child nodes is semantically equivalent to the
absence of the container node. YANG calls this style a "non-presence
container". This is the default style.

For exanple, the set of scranbling options for Synchronous Opti cal
Net work (SONET) interfaces may be placed inside a "scranbling”
contai ner to enhance the organi zation of the configuration hierarchy
and to keep these nodes together. The "scranbling" node itself has
no neani ng, so renoving the node when it becones enpty relieves the
user fromperformng this task

Bj or kl und St andards Track [Page 67]

RFC 7950

In the second style,

some meani ng,

For configuration data,

YANG 1.1

representing a single bit of data.

August 2016

the presence of the container itself carries

the container acts as both a configuration

knob and a nmeans of organizing related configuration nodes. These
containers are explicitly created and del et ed.

YANG calls this style a "presence container", and it

usi ng the "presence" statenent,

is indicated

string indicating what the presence of the node neans.

For exanpl e,

the server using Secure SHel
SSHrel ated configuration knobs,

limts.

The "presence" statement (see Section 7.5.5)
semantics to the existence of the container

which takes as its argunent a text

an "ssh" container may turn on the ability to log into

7.5.2. The container’s Substatenents

Bj or kl und

______________ .
substatenent | section
______________ .
action | 7.15
anydat a | 7.10
anyxm | 7.11
choi ce | 7.9
config | 7.21.1
cont ai ner | 7.5
description | 7.21.3
groupi ng | 7.12
if-feature | 7.20.2

| eaf | 7.6

| eaf -1i st | 7.7

l'ist | 7.8

nmust | 7.5.3
notification | 7.16
presence | 7.5.5
ref erence | 7.21.4
st at us | 7.21.2

t ypedef | 7.3
uses | 7.13
when | 7.21.5
.............. Fom e e e - -

St andards Track

(SSH) but can al so contain any
such as connection rates or retry

is used to give
in the data tree

[Page 68]

RFC 7950 YANG 1.1 August 2016

7.5.3. The "nust" Statenent

The "must" statenent, which is optional, takes as an argunent a
string that contains an XPath expression (see Section 6.4). It is
used to formally declare a constraint on valid data. The constraint
is enforced according to the rules in Section 8.

Wien a datastore is validated, all "nmust" constraints are
conceptual | y eval uated once for each node in the accessible tree (see
Section 6.4.1).

Al such constraints MIUST evaluate to "true" for the data to be
val i d.

The XPath expression is conceptually evaluated in the follow ng
context, in addition to the definition in Section 6.4.1

o |If the "nust" statenent is a substatenent of a "notification"
statenent, the context node is the node representing the
notification in the accessible tree.

o If the "must" statenent is a substatenent of an "input" statenent,
the context node is the node representing the operation in the
accessible tree.

o |If the "nmust" statenent is a substatenent of an "output"
statement, the context node is the node representing the operation
in the accessible tree.

0 Oherwi se, the context node is the node in the accessible tree for
which the "nust" statenent is defined

The result of the XPath expression is converted to a bool ean val ue
using the standard XPath rul es.

Note that since all leaf values in the data tree are conceptually
stored in their canonical form (see Section 9.1), any XPath
conpari sons are done on the canonical val ue.

Al'so note that the XPath expression is conceptually evaluated. This
means that an inplenentati on does not have to use an XPath eval uat or
in the server. How the evaluation is done in practice is an

i mpl enent ati on deci si on.

Bj or kl und St andards Track [Page 69]

RFC 7950 YANG 1.1 August 2016

7.5.4. The nust’s Substatenents

I I . +
| substatenent | section | cardinality |
S Fomm e e o B S +
description	7.21.3	0..1
error-app-tag	7.5.4.2	0..1
error-nessage	7.5.4.1] 0..1	
reference	7.21.4	0..1
Fom e e e e e oo oo f S Fom e e e e e o oo +

7.5.4.1. The "error-nessage" Statenent

The "error-nessage" statenment, which is optional, takes a string as
an argunent. |If the constraint evaluates to "false", the string is
passed as <error-nmessage> in the <rpc-error> in NETCONF.

7.5.4.2. The "error-app-tag" Statenent

The "error-app-tag" statenent, which is optional, takes a string as
an argunent. |If the constraint evaluates to "false", the string is
passed as <error-app-tag> in the <rpc-error> i n NETCONF.

7.5.4.3. Usage Exanple of nust and error-nessage

contai ner interface {
I eaf ifType {
type enuneration {
enum et her net ;

enum at m
}
}
| eaf ifMIU {
type uint32;
}
nmust 'ifType != "ethernet" or ifMIU = 1500" {
error-nessage "An Ethernet MIU nust be 1500";
}
must 'ifType !'= "atm' or’

+ " (ifMIU <= 17966 and i fMIU >= 64)" {
error-nessage "An ATM MIU nust be 64 .. 17966";
}
}

Bj or kl und St andards Track [Page 70]

RFC 7950 YANG 1.1 August 2016

7.5.5. The "presence" Statenent

The "presence" statement assigns a neaning to the presence of a
container in the data tree. It takes as an argunent a string that
contains a textual description of what the node’ s presence neans.

If a container has the "presence" statenent, the container’s

exi stence in the data tree carries sonme neaning. O herw se, the
container is used to give sonme structure to the data, and it carries
no meaning by itself.

See Section 7.5.1 for additional infornmation
7.5.6. The container’s Child Node Statenents

Wthin a container, the "container", "leaf", "list", "leaf-list",
"uses", "choice", "anydata", and "anyxml " statenments can be used to
define child nodes to the contai ner

7.5.7. XM Encoding Rul es

A contai ner node is encoded as an XM. elenment. The elenment’s |oca
nane is the container’s identifier, and its nanespace is the nodule’s
XM. nanespace (see Section 7.1.3).

The container’s child nodes are encoded as subel enents to the
container element. |f the container defines RPC or action input or
out put paraneters, these subelements are encoded in the same order as
they are defined within the "container"” statenent. O herw se, the
subel enents are encoded in any order

Any whi t espace between the subelenents to the container is
insignificant, i.e., an inplenmentation MAY insert whitespace
characters between subel enents

If a non-presence container does not have any child nodes, the
contai ner may or nay not be present in the XM. encodi ng.

Bj or kl und St andards Track [Page 71]

RFC 7950 YANG 1.1 August 2016

7.5.8. NETCONF <edit-config> Operations

Cont ai ners can be created, deleted, replaced, and nodified through
<edit-config> by using the "operation" attribute (see Section 7.2 in
[RFC6241]) in the container’s XM el ement.

If a container does not have a "presence" statenent and the | ast
child node is deleted, the NETCONF server MAY del ete the container

When a NETCONF server processes an <edit-config> request, the
el ements of procedure for the container node are as foll ows:

o If the operation is "nerge" or "replace", the node is created if
it does not exist.

o If the operation is "create", the node is created if it does not
exist. If the node already exists, a "data-exists" error is
returned.

o If the operation is "delete", the node is deleted if it exists.
If the node does not exist, a "data-m ssing" error is returned.

7.5.9. Usage Exanple
G ven the follow ng container definition

cont ai ner system {
description
"Contai ns various system paraneters.”
cont ai ner services {
description
"Configure externally available services."
cont ai ner "ssh" {
presence "Enabl es SSH'
description
"SSH service-specific configuration.”
/'l more leafs, containers, and stuff here..
}
}
}

Bj or kl und St andards Track [Page 72]

RFC 7950 YANG 1.1 August 2016

A correspondi ng XM. i nstance exanpl e:

<systenr
<servi ces>
<ssh/ >
</ servi ces>
</ systenp

Since the <ssh> elenent is present, SSH is enabl ed.
To delete a container with an <edit-config>:

<rpc nessage-i d="101"
xm ns="urn:ietf:params: xm :ns:netconf: base: 1. 0"
xm ns: nc="urn:ietf:paranms: xm : ns: net conf: base: 1. 0" >
<edit-config>
<t arget >
<runni ng/ >
</target>
<confi g>
<syst em xm ns="ur n: exanpl e: confi g">
<servi ces>
<ssh nc:operation="del ete"/>
</ services>
</ systenp
</ config>
</ edit-config>
</rpc>

7.6. The "leaf" Statenent
The "leaf" statenent is used to define a | eaf node in the schemn
tree. It takes one argument, which is an identifier, followed by a
bl ock of substatenents that holds detailed | eaf infornation
A | eaf node has a value, but no child nodes, in the data tree.
Conceptually, the value in the data tree is always in the canonica
form (see Section 9.1).

A leaf node exists in zero or one instance in the data tree.

The "leaf" statenent is used to define a scalar variable of a
particular built-in or derived type.

Bj or kl und St andards Track [Page 73]

RFC 7950 YANG 1.1 August 2016

7.6.1. The leaf’s Default Val ue

The default value of a leaf is the value that the server uses if the
| eaf does not exist in the data tree. The usage of the default val ue
depends on the leaf’s closest ancestor node in the schema tree that
is not a non-presence container (see Section 7.5.1):

o |f no such ancestor exists in the schema tree, the default val ue
MJUST be used.

0 Oherwise, if this ancestor is a case node, the default value MJST
be used if any node fromthe case exists in the data tree or the
case node is the choice's default case, and if no nodes from any
other case exist in the data tree.

0 Oherw se, the default value MJST be used if the ancestor node
exists in the data tree.

In these cases, the default value is said to be in use.

Note that if the leaf or any of its ancestors has a "when" condition
or "if-feature" expression that evaluates to "false", then the
default value is not in use.

When the default value is in use, the server MJST operationally
behave as if the leaf was present in the data tree with the default
val ue as its val ue.

If aleaf has a "default" statenent, the leaf’s default value is the
value of the "default" statenent. Oherwise, if the leaf’s type has
a default value and the leaf is not mandatory, then the leaf’'s
default value is the type's default value. 1In all other cases, the
| eaf does not have a default val ue.

Bj or kl und St andards Track [Page 74]

RFC 7950 YANG 1.1 August 2016

7.6.2. The leaf’s Substatenents

. I . +
| substatenent | section | cardinality

B TS Fomm e e o B S +
config	7.21.1	0..1
default	7.6.4	0..1
description	7.21.3	0..1
if-feature	7.20.2	0..n
mandatory	7.6.5	0..1
must	7.5.3	0..n

reference	7.21.4	0..1
status	7.21.2	0..1
type	7.6.3	1
units	7.3.3	0..1
when	7.21.5	0..1
B TS Fomm e e o B S +

7.6.3. The leaf’s "type" Statenent

The "type" statement, which MJST be present, takes as an argunent the
nane of an existing built-in or derived type. The optiona
substatenents specify restrictions on this type. See Section 7.4 for
detail s.

7.6.4. The leaf’'s "default" Statenent

The "default" statenent, which is optional, takes as an argunent a
string that contains a default value for the |eaf.

The val ue of the "default" statenent MJUST be valid according to the
type specified in the leaf’s "type" statenent.

The "default" statenent MJUST NOT be present on nodes where
"mandatory" is "true"

The definition of the default value MUST NOT be marked with an
"if-feature" statement. For exanple, the following is illegal:

| eaf color {

type enuneration {
enum blue { if-feature blue; }

default blue; // illegal - enumvalue is conditiona

}

Bj or kl und St andards Track [Page 75]

RFC 7950 YANG 1.1 August 2016

7.

7.

7.

6.5. The leaf’s "nmandatory" Statenent

The "mandatory" statenent, which is optional, takes as an argunent
the string "true" or "false" and puts a constraint on valid data. |If
not specified, the default is "fal se"

If "mandatory" is "true", the behavior of the constraint depends on
the type of the leaf’s closest ancestor node in the schena tree that
is not a non-presence container (see Section 7.5.1):

o If no such ancestor exists in the schema tree, the | eaf MJST
exi st.

o0 Oherwise, if this ancestor is a case node, the |leaf MJST exist if
any node fromthe case exists in the data tree.

0 Oherwise, the leaf MJUST exist if the ancestor node exists in the
data tree.

This constraint is enforced according to the rules in Section 8.
6.6. XM Encoding Rul es

A | eaf node is encoded as an XM. elenent. The elenent’s |ocal nane
is the leaf's identifier, and its nanespace is the nodul e’'s XM

nanespace (see Section 7.1.3).

The value of the | eaf node is encoded to XM. according to the type
and is sent as character data in the el enent.

See Section 7.6.8 for an exanpl e.
6.7. NETCONF <edit-config> Operations

When a NETCONF server processes an <edit-config> request, the
el ements of procedure for the | eaf node are as foll ows:

o |If the operation is "nerge" or "replace", the node is created if
it does not exist, and its value is set to the value found in the

XM. RPC dat a

o If the operation is "create", the node is created if it does not
exist. |If the node already exists, a "data-exists" error is
returned.

o If the operation is "delete", the node is deleted if it exists.
If the node does not exist, a "data-m ssing"” error is returned.

Bj or kl und St andards Track [Page 76]

RFC 7950 YANG 1.1 August 2016

7.6.8. Usage Exanple

Gven the following "leaf" statenent, placed in the previously
defined "ssh" container (see Section 7.5.9):

| eaf port {
type inet: port-nunber;
default 22;
description
"The port to which the SSH server listens."
}

A correspondi ng XM. i nstance exanpl e:
<port >2022</ port >
To set the value of a leaf with an <edit-config>

<rpc nessage-i d="101"
xm ns="urn:ietf:params: xm :ns:netconf: base: 1. 0"
xm ns: nc="urn:ietf:paranms: xm : ns: net conf: base: 1. 0" >
<edit-config>
<t arget >
<runni ng/ >
</target>
<confi g>
<syst em xm ns="ur n: exanpl e: confi g">
<servi ces>
<ssh>
<port >2022</ port >
</ ssh>
</ services>
</ syst enp
</ config>
</edit-config>
</rpc>

7.7. The "leaf-list" Statenent
Where the "leaf" statenent is used to define a sinple scalar variable
of a particular type, the "leaf-list" statenent is used to define an
array of a particular type. The "leaf-list" statenent takes one
argunent, which is an identifier, followed by a bl ock of
substatenments that holds detailed leaf-list information.

In configuration data, the values in a leaf-list MJST be unique.

Bj or kl und St andards Track [Page 77]

RFC 7950 YANG 1.1 August 2016

The definitions of the default val ues MJUST NOT be nmarked with an
"if-feature" statenent.

Conceptual ly, the values in the data tree MJST be in the canonica
form (see Section 9.1).

7.7.1. Odering

YANG supports two styles for ordering the entries within lists and
leaf-lists. In many lists, the order of list entries does not inpact
the inplementation of the list’s configuration, and the server is
free to sort the list entries in any reasonable order. The
"description" string for the list nmay suggest an order to the server
i mpl ementor. YANG calls this style of list "systemordered"; such
lists are indicated with the statement "ordered-by systent.

For exanple, a list of valid users would typically be sorted
al phabetically, since the order in which the users appeared in the
configuration would not inpact the creation of those users’ accounts.

In the other style of lists, the order of list entries matters for
the inplenmentation of the list’s configuration and the user is
responsi ble for ordering the entries, while the server maintains that
order. YANG calls this style of list "user ordered"; such lists are
indicated with the statenment "ordered-by user”

For exanple, the order in which packet filter entries are applied to
incomng traffic may affect how that traffic is filtered. The user
woul d need to decide if the filter entry that discards all TCP
traffic should be applied before or after the filter entry that
allows all traffic fromtrusted interfaces. The choice of order
woul d be cruci al

YANG provides a rich set of facilities within NETCONF' s <edit-config>
operation that allows the order of list entries in user-ordered lists
to be controlled. List entries nay be inserted or rearranged,
positioned as the first or last entry in the list, or positioned
before or after another specific entry.

The "ordered-by" statement is covered in Section 7.7.7.

Bj or kl und St andards Track [Page 78]

RFC 7950 YANG 1.1 August 2016

7.7.2. The leaf-list’s Default Val ues

The default values of a leaf-list are the values that the server uses
if the leaf-list does not exist in the data tree. The usage of the
default val ues depends on the leaf-list’s closest ancestor node in
the schema tree that is not a non-presence container (see

Section 7.5.1):

o |f no such ancestor exists in the schena tree, the default val ues
MUST be used.

o0 Oherwise, if this ancestor is a case node, the default val ues
MUST be used if any node fromthe case exists in the data tree or
the case node is the choice’'s default case, and if no nodes from
any other case exist in the data tree.

0 Oherw se, the default values MJST be used if the ancestor node
exists in the data tree.

In these cases, the default values are said to be in use.

Note that if the leaf-list or any of its ancestors has a "when"
condition or "if-feature" expression that evaluates to "fal se", then
the default values are not in use.

Wien the default values are in use, the server MJST operationally
behave as if the leaf-list was present in the data tree with the
default values as its val ues.

If aleaf-list has one or nore "default"” statenents, the leaf-list’s
default values are the values of the "default" statenents, and if the
leaf-list is user ordered, the default values are used in the order
of the "default" statenents. Oherwise, if the leaf-list’s type has
a default value and the leaf-list does not have a "m n-el enents"
statement with a value greater than or equal to one, then the
leaf-list’s default value is one instance of the type' s default

value. In all other cases, the leaf-list does not have any default
val ues.

Bj or kl und St andards Track [Page 79]

RFC 7950 YANG 1.1 August 2016

7.

7.

7.

7.3. The leaf-list’s Substatenents

. I . +
| substatenent | section | cardinality

B TS Fomm e e o B S +
config	7.21.1	0..1
default	7.7.4	0..n
description	7.21.3	0..1
if-feature	7.20.2	0..n
max-elements	7.7.6	0..1
mn-elements	7.7.5	0..1
rmnust	7.5.3	0..n

ordered-by	7.7.7	0..1
reference	7.21.4	0..1
status	7.21.2	0..1
type	7.4	1
units	7.3.3	0..1
when	7.21.5	0..1
e N N +

7.4. The leaf-list's "default" Statenent

The "default" statenent, which is optional, takes as an argunent a
string that contains a default value for the leaf-list.

The val ue of the "default" statenent MJUST be valid according to the
type specified in the leaf-list’s "type" statement.

The "default” statenent MJUST NOT be present on nodes where
"mn-elenents" has a value greater than or equal to one

7.5. The "nin-elenents" Statenent

The "min-el ements" statenent, which is optional, takes as an argunent
a non-negative integer that puts a constraint on valid list entries.
A valid leaf-list or list MUST have at |least nmin-elenments entries.

If no "mn-elenments" statenent is present, it defaults to zero

The behavi or of the constraint depends on the type of the leaf-list’s
or list’s closest ancestor node in the schema tree that is not a

non- presence contai ner (see Section 7.5.1):

o |f no such ancestor exists in the schena tree, the constraint is
enf or ced.

0 Oherwise, if this ancestor is a case node, the constraint is
enforced if any other node fromthe case exists.

Bj or kl und St andards Track [Page 80]

RFC 7950 YANG 1.1 August 2016

0 Oherwise, it is enforced if the ancestor node exists.

The constraint is further enforced according to the rules in
Section 8.

7.7.6. The "max-el enents" Statenent

The "max-el ements" statenent, which is optional, takes as an argunent
a positive integer or the string "unbounded", which puts a constraint
on valid list entries. Awvalid leaf-list or list always has at nost
max- el enents entries.

If no "max-el enments" statenent is present, it defaults to
"unbounded".

The "max-el ements" constraint is enforced according to the rules in
Section 8.

7.7.7. The "ordered-by" Statenent

The "ordered-by" statenment defines whether the order of entries
within a list are determned by the user or the system The argunent
is one of the strings "systeni or "user". [If not present, ordering
defaults to "systent.

This statenment is ignored if the list represents state data, RPC
out put paranmeters, or notification content.

See Section 7.7.1 for additional infornmation
7.7.7.1. ordered-by system

The entries in the list are ordered according to an order determ ned
by the system The "description" string for the list nay suggest an
order to the server inplenentor. |If not, an inplenentation is free
to order the entries in any order. An inplenentation SHOULD use the
sanme order for the sane data, regardless of how the data were
created. Using a determnistic order will nake conparisons possible
using sinple tools like "diff".

This is the default order.

7.7.7.2. ordered-by user
The entries in the list are ordered according to an order defined by
the user. In NETCONF, this order is controlled by using special XM

attributes in the <edit-config> request. See Section 7.7.9 for
details.

Bj or kl und St andards Track [Page 81]

RFC 7950 YANG 1.1 August 2016

7.7.8. XM Encoding Rul es

A leaf-list node is encoded as a series of XM elenments. Each
element’s local nanme is the leaf-list’s identifier, and its namespace
is the nodule’s XML nanespace (see Section 7.1.3).

The val ue of each leaf-list entry is encoded to XM. according to the
type and is sent as character data in the el enent.

The XML el enents representing leaf-list entries MJUST appear in the
order specified by the user if the leaf-list is "ordered-by user”
otherwi se, the order is inplenentation dependent. The XM el enents
representing leaf-list entries MAY be interleaved with elenments for
siblings of the leaf-list, unless the leaf-list defines RPC or action
i nput or output paraneters.

See Section 7.7.10 for an exanple.
7.7.9. NETCONF <edit-config> Operations

Leaf-l1ist entries can be created and del eted, but not nodifi ed,
t hrough <edit-config>, by using the "operation" attribute in the
leaf-list entry’s XM el enent.

In an "ordered-by user" leaf-list, the attributes "insert" and

"val ue" in the YANG XML nanespace (Section 5.3.1) can be used to
control where in the leaf-list the entry is inserted. These can be
used during "create" operations to insert a new leaf-list entry, or
during "nmerge" or "replace" operations to insert a new |leaf-1list
entry or nove an exi sting one.

The "insert" attribute can take the values "first", "last", "before"
and "after". |If the value is "before" or "after", the "val ue"
attribute MJST al so be used to specify an existing entry in the
leaf-1ist.

If no "insert" attribute is present in the "create" operation, it
defaults to "last".

If several entries in an "ordered-by user" leaf-list are nodified in
the sane <edit-config> request, the entries are nodified one at a
tinme, in the order of the XM. elenments in the request.

In a <copy-config> or in an <edit-config> with a "replace" operation

that covers the entire leaf-list, the leaf-list order is the sane as
the order of the XML elenents in the request.

Bj or kl und St andards Track [Page 82]

RFC 7950 YANG 1.1 August 2016

When a NETCONF server processes an <edit-config> request, the
el ements of procedure for a leaf-list node are as foll ows:

o If the operation is "merge" or "replace", the leaf-list entry is
created if it does not exist.

o |If the operation is "create", the leaf-list entry is created if it
does not exist. |If the leaf-list entry already exists, a
"data-exi sts" error is returned.

o If the operation is "delete", the entry is deleted fromthe
leaf-list if it exists. |If the leaf-list entry does not exist, a

"data-m ssing" error is returned.

7.7.10. Usage Exanple

leaf-1ist allowuser {
type string;
description
"Alist of user nane patterns to allow";
}

A correspondi ng XM i nstance exanpl e:

<al | ow user >al i ce</ al | ow user >
<al | ow user >bob</ al | ow user >

To create a new elenent in this list, using the default <edit-config>
operation "merge"

<rpc nessage-i d="101"
xm ns="urn:ietf:params: xm :ns:netconf: base: 1. 0"
xm ns: nc="urn:ietf:paranms: xm : ns: net conf: base: 1. 0" >
<edit-config>
<t arget >
<runni ng/ >
</target>
<confi g>
<syst em xm ns="ur n: exanpl e: confi g">
<servi ces>
<ssh>
<al | owuser>eric</al | ow user>
</ ssh>
</ services>
</ syst enp
</ config>
</edit-config>
</rpc>

Bj or kl und St andards Track [Page 83]

RFC 7950 YANG 1.1 August 2016

G ven the follow ng ordered-by user leaf-I|ist:

| eaf -1ist cipher {
type string;
or der ed- by user;
description
"A list of ciphers."”;
}

The following woul d be used to insert a new ci pher "blowfish-cbc"
after "3des-cbc":

<rpc nessage-i d="102"
xm ns="urn:ietf:params: xm :ns:netconf: base: 1. 0"
xm ns: nc="urn:ietf:parans: xm : ns: net conf: base: 1. 0"
xm ns: yang="urn:ietf:paranms: xm:ns:yang: 1">
<edit-config>
<target >
<runni ng/ >
</target>
<confi g>
<system xm ns="ur n: exanpl e: confi g">
<servi ces>
<ssh>
<ci pher nc: operation="create"
yang:insert="after"
yang: val ue="3des- cbc" >bl owf i sh-cbc</ ci pher >
</ ssh>
</ services>
</ systenp
</ config>
</ edit-config>
</rpc>

7.8. The "list" Statenent

The "list" statement is used to define an interior data node in the
schema tree. A list node may exist in nmultiple instances in the data
tree. Each such instance is known as a list entry. The "list"

statenment takes one argument, which is an identifier, followd by a
bl ock of substatenents that holds detailed |ist information

Alist entry is uniquely identified by the values of the list’'s keys,
i f defined.

Bj or kl und St andards Track [Page 84]

RFC 7950 YANG 1.1 August 2016

7.8.1. The list’s Substatenents

o oo - oo +
| substatenent | section | cardinality
B TS Fomm e e o B S +
action 15
anydat a 10
anyxni 11
choi ce 9
config 21.1
cont ai ner 5
description 21.3
groupi ng 12
if-feature 20.2
key 2
| eaf
| eaf -1i st
list

max- el enent s
m n-el enent s
nust
notification
or der ed- by
ref erence

st at us

t ypedef

uni que

uses

when

WRNNEONN®NO®
N wao
(SN

= 00
w " (g
w

I n I
I n I
I n I
I n I
I 1 I
I n I
I 1 I
I n I
I n I
I 1 I
I n I
| 0..n I
| 0..n I
I 1 I
I 1 I
I n I
I n I
I 1 I
I 1 I
I 1 I
I n I
I n I
I n I
I 1 I

.21.5

7.8.2. The list’'s "key" Statenent

The "key" statenment, which MJST be present if the list represents
configuration and MAY be present otherw se, takes as an argunent a
string that specifies a space-separated |list of one or nore |eaf
identifiers of this list. A leaf identifier MJST NOT appear nore
than once in the key. Each such leaf identifier MIST refer to a
child leaf of the list. The leafs can be defined directly in
substatenents to the list or in groupings used in the |ist.

The conbi ned values of all the leafs specified in the key are used to
uniquely identify a list entry. Al key |eafs MJST be given val ues
when a list entry is created. Thus, any default values in the key
leafs or their types are ignored. Any "mandatory" statenents in the
key | eafs are ignored.

Bj or kl und St andards Track [Page 85]

RFC 7950 YANG 1.1 August 2016

A leaf that is part of the key can be of any built-in or
derived type

Al'l key leafs in a list MIST have the sane value for their "config"
as the list itself.

The key string syntax is fornmally defined by the rule "key-arg" in
Section 14.

7.8.3. The list’s "unique" Statenent

The "uni que" statement is used to put constraints on valid Iist
entries. It takes as an argunent a string that contains a space-
separated |list of schema node identifiers, which MIUST be given in the
descendant form (see the rule "descendant-schena-nodei d" in

Section 14). Each such schema node identifier MIST refer to a | eaf.

If one of the referenced |leafs represents configuration data, then
all of the referenced | eafs MJST represent configuration data.

The "uni que" constraint specifies that the conbined values of all the
| eaf instances specified in the argunent string, including leafs wth
default val ues, MJST be unique within all list entry instances in
which all referenced | eafs exist or have default values. The
constraint is enforced according to the rules in Section 8.

The unique string syntax is forrmally defined by the rule "uni que-arg"
in Section 14.

7.8.3.1. Usage Exanple
Wth the following list:
list server {
key "nane";
uni que "ip port";
| eaf nane {
type string;

P
leaf ip {
type inet:ip-address;

| eaf port {
type inet: port-nunber;

Bj or kl und St andards Track [Page 86]

RFC 7950 YANG 1.1 August 2016

the follow ng configuration is not valid:

<server>
<nanme>snt p</ nane>
<i p>192.0. 2. 1</ i p>
<port >25</port>

</ server>

<server>
<name>ht t p</ nane>
<i p>192.0. 2. 1</i p>
<port >25</port >

</ server>

The followi ng configuration is valid, since the "http" and "ftp" |ist
entries do not have a value for all referenced |leafs and are thus not
taken into account when the "uni que" constraint is enforced:

<server>
<nanme>snt p</ nane>
<i p>192. 0. 2. 1</ i p>
<port >25</ port>

</ server>

<server>
<nane>ht t p</ nane>
<i p>192. 0. 2. 1</ i p>
</ server>

<server>
<nanme>ft p</ name>
<i p>192. 0. 2. 1</ i p>
</ server>

7.8.4. The list’s Child Node Statenents
Wthin alist, the "container", "leaf", "list", "leaf-list", "uses",

"choi ce", "anydata", and "anyxm " statenments can be used to define
child nodes to the list.

Bj or kl und St andards Track [Page 87]

RFC 7950 YANG 1.1 August 2016

7.

7.

8.5. XM Encodi ng Rul es

8.

Alist is encoded as a series of XML el enents, one for each entry in
the list. Each elenent’s local nanme is the list's identifier, and
its nanmespace is the nodule’s XML nanespace (see Section 7.1.3).
There is no XM el enent surrounding the Iist as a whole.

The list’s key nodes are encoded as subelenents to the list’'s
identifier element, in the same order as they are defined within the
"key" statenent.

The rest of the list’s child nodes are encoded as subel enents to the

list element, after the keys. |If the list defines RPC or action
i nput or output paraneters, the subel ements are encoded in the sane
order as they are defined within the "list" statement. O herw se,

t he subel ements are encoded in any order.

Any whitespace between the subelenments to the list entry is
insignificant, i.e., an inplenmentation MAY insert whitespace
characters between subel enents.

The XML el enents representing list entries MJST appear in the order
specified by the user if the list is "ordered-by user"; otherw se,
the order is inplenentation dependent. The XM el enents representing
list entries MAY be interleaved with elenents for siblings of the
list, unless the list defines RPC or action input or output
paraneters

6. NETCONF <edit-config> Operations

Li st entries can be created, deleted, replaced, and nodified through
<edit-config> by using the "operation" attribute in the list’'s XM
element. |In each case, the values of all keys are used to uniquely
identify a list entry. |If all keys are not specified for a |ist
entry, a "mssing-elenment” error is returned.

In an "ordered-by user" list, the attributes "insert" and "key" in
the YANG XML nanespace (Section 5.3.1) can be used to control where
inthe list the entry is inserted. These can be used during "create"
operations to insert a newlist entry, or during "merge" or "replace"
operations to insert a new list entry or nove an existing one.

The "insert" attribute can take the values "first", "last", "before"
and "after". If the value is "before" or "after", the "key"
attribute MJST al so be used, to specify an existing elenment in the
list. The value of the "key" attribute is the key predicates of the
full instance identifier (see Section 9.13) for the list entry.

Bj or kl und St andards Track [Page 88]

RFC 7950 YANG 1.1 August 2016

If no "insert" attribute is present in the "create" operation, it
defaults to "last".

If several entries in an "ordered-by user” list are nodified in the
same <edit-config> request, the entries are nodified one at a tine,
in the order of the XML elenents in the request.

In a <copy-config> or in an <edit-config> with a "replace" operation
that covers the entire list, the list entry order is the same as the
order of the XML elenents in the request.

When a NETCONF server processes an <edit-config> request, the
el ements of procedure for a list node are as foll ows:

o If the operation is "merge" or "replace", the list entry is
created if it does not exist. |If the list entry already exists
and the "insert" and "key" attributes are present, the list entry
is noved according to the values of the "insert" and "key"
attributes. |If the list entry exists and the "insert" and "key"
attributes are not present, the list entry is not noved.

o If the operation is "create", the list entry is created if it does
not exist. |If the list entry already exists, a "data-exists"
error is returned.

o If the operation is "delete", the entry is deleted fromthe Iist

if it exists. |If the list entry does not exist, a "data-ni ssing"
error is returned.

Bj or kl und St andards Track [Page 89]

RFC 7950 YANG 1.1 August 2016

7.8.7. Usage Exanple
G ven the following list:

list user {
key "nane";
config true
description
"This is a list of users in the system";

| eaf nane {
type string;

}
| eaf type {
type string;

| eaf full-nane {
type string;

}
A correspondi ng XM_ i nstance exanpl e:

<user >

<nane>f r ed</ nane>

<t ype>admi n</type>

<full-nanme>Fred Flintstone</full-nane>
</ user>

Bj or kl und St andards Track [Page 90]

RFC 7950 YANG 1.1 August

To create a new user "barney":

<rpc nessage-id="101"
xm ns="urn:ietf:paramnms: xm : ns: net conf: base: 1. 0"
xm ns: nc="urn:ietf:parans: xnm : ns: net conf: base: 1. 0" >
<edit-config>
<t arget >
<runni ng/ >
</target>
<confi g>
<system xm ns="ur n: exanpl e: confi g">
<user nc:operation="create">
<nane>bar ney</ name>
<t ype>admi n</type>
<ful | - name>Bar ney Rubbl e</ful | - name>
</ user>
</ syst enp
</ config>
</edit-config>
</rpc>

To change the type of "fred" to "superuser":

<rpc nessage-i d="102"
xm ns="urn:ietf:parans: xm : ns: net conf: base: 1. 0"
xm ns: nc="urn:ietf:paranms: xm : ns: net conf: base: 1. 0" >
<edi t-config>
<t arget >
<runni ng/ >
</target>
<confi g>
<syst em xm ns="ur n: exanpl e: confi g">
<user >
<name>f r ed</ nane>
<t ype>superuser</type>
</ user>
</ systenp
</ config>
</ edit-config>
</rpc>

2016

Bj or kl und St andards Track [Page 91]

RFC 7950 YANG 1.1 August 2016

G ven the follow ng ordered-by user list:

list user {
description
"This is a list of users in the system"”;
or der ed- by user;
config true

key "first-nanme surnane"

| eaf first-name {
type string;

| eaf surnane {
type string;

}
| eaf type {
type string;

}

The following woul d be used to insert a new user "barney rubble"
after the user "fred flintstone"

<rpc nessage-i d="101"
xm ns="urn:ietf:params: xm :ns:netconf: base: 1. 0"
xm ns: nc="urn:ietf:parans: xm : ns: net conf: base: 1. 0"
xm ns: yang="urn:ietf:paranms: xm:ns:yang: 1">
<edit-config>
<target >
<runni ng/ >
</target>
<confi g>
<system xm ns="ur n: exanpl e: confi g"
xm ns: ex="urn: exanpl e: confi g">
<user nc:operation="create"
yang:insert="after"
yang: key="[ex: first-name="fred’]
[ex:surname="flintstone']">
<first-nane>barney</first-name>
<sur nane>r ubbl e</ sur nane>
<t ype>adm n</type>
</ user>
</ systenp
</ config>
</edit-config>
</rpc>

Bj or kl und St andards Track [Page 92]

RFC 7950 YANG 1.1 August 2016

The following woul d be used to nove the user "barney rubble" before
the user "fred flintstone"

<rpc nessage-i d="102"
xm ns="urn:ietf:paranms: xm : ns: net conf: base: 1. 0"
xm ns: nc="urn:ietf:parans: xnl : ns: net conf: base: 1. 0"
xm ns: yang="urn:ietf:parans: xn :ns:yang: 1">
<edi t-config>
<target>
<runni ng/ >
</target>
<confi g>
<syst em xm ns="ur n: exanpl e: confi g"
xm ns: ex="ur n: exanpl e: config">
<user nc:operation="nmerge"
yang: i nsert="bef ore"
yang: key="[ex: nane='fred’]
[ex:surname="flintstone']">
<first-nane>barney</first-nanme>
<sur nane>r ubbl e</ sur nane>
</ user >
</ syst enp
</ config>
</edit-config>
</rpc>

7.9. The "choice" Statenent

The "choi ce" statenent defines a set of alternatives, only one of
which may be present in any one data tree. The argunent is an
identifier, followed by a bl ock of substatenents that hol ds detail ed
choice information. The identifier is used to identify the choice
node in the schema tree. A choice node does not exist in the data
tree.

A choi ce consists of a nunber of branches, each defined with a "case"
substatenent. Each branch contai ns a nunber of child nodes. The
nodes from at nost one of the choice' s branches exist at the same
tinme.

Since only one of the choice’s cases can be valid at any tine in the
data tree, the creation of a node fromone case inplicitly del etes
all nodes fromall other cases. |If a request creates a node froma
case, the server will delete any existing nodes that are defined in
ot her cases inside the choice.

Bj or kl und St andards Track [Page 93]

RFC 7950 YANG 1.1 August 2016

7.9.1. The choice s Substatenents

. I . +
| substatenent | section | cardinality

B TS Fomm e e o B S +
anydata	7.10	0..n
anyxm	7.11	0..n
case	7.9.2	0..n
choice	7.9	0..n
config	7.22.12	0..1
container	7.5	0..n
default	7.9.3	0..1
description	7.21.3	0..1
if-feature	7.20.2	0..n
Ieaf	7.6	0..n
leaf-1list	7.7	0..n

Iist	7.8	0..n
mandatory	7.9.4	0..1
reference	7.21.4	0..1
status	7.21.2	0..1
when	7.21.5	0..1
S f S Fom e e e e e o oo +

7.9.2. The choice s "case" Statenment

The "case" statement is used to define branches of the choice. It
takes as an argunment an identifier, followed by a bl ock of
substatenents that holds detail ed case i nformati on

The identifier is used to identify the case node in the schema tree.
A case node does not exist in the data tree.

Wthin a "case" statenent, the "anydata", "anyxm ", "choice"
"container", "leaf", "list", "leaf-list", and "uses" statenents can
be used to define child nodes to the case node. The identifiers of
all these child nodes MJUST be unique within all cases in a choice.
For exanple, the following is illegal

choi ce interface-type { /1 This exanple is illegal YANG
case a {
| eaf ethernet { ... }
}

case b {
container ethernet { ...}
}

Bj or kl und St andards Track [Page 94]

RFC 7950

As a short hand,

ulistu

identifier of the child node.

YANG 1.1

August 2016

the "case" statenment can be onmitted if the branch
contains a single "anydata", "anyxm ", "choice", "container", "leaf",
, or "leaf-list" statement. |In this case, the case node stil
exists in the schema tree, and its identifier is the sane as the

MUST al ways explicitly include case node identifiers.

exanpl

e:

choi ce interface-type {
contai ner ethernet { ... }

}

is equivalent to:

choi ce interface-type {
case et hernet {
contai ner ethernet { ... }

}
}

The case identifier MJST be unique within a choice.

7.9.2.1.

Bj or kl und

The case’s Substatenents

______________ o
substatenent | section | cardinality
.............. e
anydat a | 7.10 | 0..n

anyxni | 7.11 | 0..n

choi ce | 7.9 | 0..n

cont ai ner | 7.5 | 0..n
description | 7.21.3 | 0..1
if-feature | 7.20.2 | 0..n

| eaf | 7.6 | 0..n

| eaf -1i st | 7.7 | 0..n

list | 7.8 | 0..n

ref erence | 7.21.4 | 0..1

stat us | 7.21.2 | 0..1

uses | 7.13 | 0..n

when | 7.21.5 | 0..1
______________ e

St andards Track

Schema node identifiers (Section 6.5)

The foll ow ng

[Page 95]

RFC 7950 YANG 1.1 August 2016

7.9.3. The choice's "default" Statenment

The "default" statenment indicates if a case should be considered as
the default if no child nodes fromany of the choice s cases exist.
The argunent is the identifier of the default "case" statenent. |If
the "default" statenent is nissing, there is no default case.

The "default" statenent MJUST NOT be present on choi ces where
"mandatory" is "true"

The default case is only inportant when considering the "defaul t"
statenents of nodes under the cases (i.e., default values of |eafs
and leaf-lists, and default cases of nested choices). The default
val ues and nested default cases under the default case are used if
none of the nodes under any of the cases are present.

There MUST NOT be any mandatory nodes (Section 3) directly under the
default case

Default values for child nodes under a case are only used if one of
the nodes under that case is present or if that case is the default
case. |If none of the nodes under a case are present and the case is
not the default case, the default values of the cases’ child nodes
are ignored.

Bj or kl und St andards Track [Page 96]

RFC 7950 YANG 1.1 August 2016

In this exanple, the choice defaults to "interval", and the default
value will be used if none of "daily", "time-of-day", or "manual" are
present. If "daily" is present, the default value for "time-of-day"
wi |l be used.

contai ner transfer {
choi ce how {
default interval
case interval {
| eaf interval {
type uint 16;
uni ts mnutes;
defaul t 30;

}

case daily {
| eaf daily {

type enpty;

| eaf tine-of-day {
type string;
uni ts 24-hour-cl ock
default "O01.00";

}
}

case manual {
| eaf manual {

type enpty;

Bj or kl und St andards Track [Page 97]

RFC 7950 YANG 1.1 August 2016

7.9.4. The choice's "nandatory" Statenent
The "mandatory" statenent, which is optional, takes as an argunent
the string "true" or "false" and puts a constraint on valid data. |If
"mandatory" is "true", at |east one node fromexactly one of the
choi ce’ s case branches MJST exi st.
If not specified, the default is "fal se"
The behavi or of the constraint depends on the type of the choice’s
cl osest ancestor node in the schema tree that is not a non-presence
contai ner (see Section 7.5.1):

o |f no such ancestor exists in the schena tree, the constraint is
enf or ced.

0 Oherwise, if this ancestor is a case node, the constraint is
enforced if any other node fromthe case exists.

o0 Oherwise, it is enforced if the ancestor node exi sts.

The constraint is further enforced according to the rules in
Section 8.

7.9.5. XM Encoding Rul es
The choice and case nodes are not visible in XM.
The child nodes of the selected "case" statenent MJST be encoded in
the sane order as they are defined in the "case" statenent if they

are part of an RPC or action input or output paranmeter definition
O herwi se, the subel ements are encoded in any order

Bj or kl und St andards Track [Page 98]

RFC 7950 YANG 1.1 August 2016

7.9.6. Usage Exanple
G ven the follow ng choice:

cont ai ner protocol {
choi ce nane {
case a {
| eaf udp {
type enpty;
}

case b {
leaf tcp {

type enpty;

}
}
}

A correspondi ng XM i nstance exanpl e:

<pr ot ocol >
<tcp/>
</ prot ocol >

To change the protocol from TCP to UDP

<rpc nessage-id="101"
xm ns="urn:ietf:paranms: xm : ns: net conf: base: 1. 0"
xm ns: nc="urn:ietf:parans: xn : ns: net conf: base: 1. 0" >
<edit-config>
<target>
<runni ng/ >
</target>
<confi g>
<syst em xm ns="ur n: exanpl e: confi g">
<pr ot ocol >
<udp nc:operation="create"/>
</ pr ot ocol >
</ syst enp
</ config>
</edit-config>
</rpc>

Bj or kl und St andards Track [Page 99]

RFC 7950 YANG 1.1 August 2016

7.10. The "anydata" Statenent

The "anydata" statenent defines an interior node in the schema tree.
It takes one argunent, which is an identifier, followed by a bl ock of
substatenents that holds detail ed anydata information

The "anydata" statenent is used to represent an unknown set of nodes
that can be nodel ed with YANG except anyxm, but for which the data
nodel is not known at nodule design time. It is possible, though not
required, for the data nodel for anydata content to become known

t hrough protocol signaling or other neans that are outside the scope
of this docunent.

An exanpl e of where anydata can be useful is a list of received
notifications where the specific notifications are not known at
design tine.

An anydat a node cannot be augnented (see Section 7.17).

An anydata node exists in zero or one instance in the data tree.

An inplenentation may or may not know the data nodel used to nodel a
specific instance of an anydata node.

Since the use of anydata limts the mani pulation of the content, the
"anydat a" statenment SHOULD NOT be used to define configuration data.

7.10.1. The anydata’'s Substatenents

RS Fomm e e o S +
| substatenent | section | cardinality

. N T N +
config	7.21.1	0..1
description	7.21.3	0..1
if-feature	7.20.2	0..n
mandatory	7.6.5	0..1
nmust	7.5.3	0..n
reference	7.21.4	0..1
status	7.21.2	0..1
when	7.21.5	0..1
B TS Fomm e e o B S +

Bj or kl und St andards Track [Page 100]

RFC 7950 YANG 1.1 August 2016

7.10.2. XM Encodi ng Rul es

An anydata node is encoded as an XM. elenent. The elenent’s |oca
nane is the anydata's identifier, and its nanespace is the nodule’'s
XML nanespace (see Section 7.1.3). The value of the anydata node is
a set of nodes, which are encoded as XM. subel enents to the anydata
el ement .

7.10.3. NETCONF <edit-config> Qperations

An anydata node is treated as an opaque chunk of data. This data can
be nodified in its entirety only.

Any "operation" attributes present on subel ements of an anydata node
are ignored by the NETCONF server.

When a NETCONF server processes an <edit-config> request, the
el ements of procedure for the anydata node are as foll ows:

o |If the operation is "nerge" or "replace", the node is created if
it does not exist, and its value is set to the subel enents of the
anydata node found in the XM. RPC dat a.

o If the operation is "create", the node is created if it does not
exist, and its value is set to the subel enents of the anydata node
found in the XM. RPC data. |f the node already exists, a
"data-exi sts" error is returned.

o If the operation is "delete”, the node is deleted if it exists.
If the node does not exist, a "data-mi ssing" error is returned.

7.10.4. Usage Exanpl e
G ven the follow ng "anydata" statenent:
list |ogged-notification {
key ti ne;
leaf tine {
type yang: dat e-and-ti ne;

anydat a dat a;

Bj or kl und St andards Track [Page 101]

RFC 7950 YANG 1.1 August 2016

The following is a valid encoding of such a list instance:

<l ogged-noti fi cati on>
<ti me>2014-07-29T13: 43: 12Z</ti ne>
<dat a>
<notification
xm ns="urn:ietf:parans: xm:ns:netconf:notification:1. 0">
<event Ti mne>2014-07-29T13: 43: 01Z</ event Ti me>
<event xm ns="urn: exanpl e: event ">
<event - cl ass>faul t </ event - cl ass>
<reporting-entity>
<car d>Et her net 0</ car d>
</reporting-entity>
<severity>nmaj or</severity>
</ event >
</notification>
</ dat a>
</l ogged-noti ficati on>

7.11. The "anyxm " Statenent
The "anyxm " statenment defines an interior node in the schema tree.
It takes one argunent, which is an identifier, followed by a bl ock of
substatenents that holds detail ed anyxml infornation
The "anyxm " statenment is used to represent an unknown chunk of XM..
No restrictions are placed on the XM.. This can be useful, for
exanple, in RPC replies. An exanple is the <filter> paranmeter in the
<get-confi g> operation i n NETCONF
An anyxml node cannot be augnented (see Section 7.17).
An anyxm node exists in zero or one instance in the data tree.

Since the use of anyxml limts the manipulation of the content, the
"anyxm " statenent SHOULD NOT be used to define configuration data.

It should be noted that in YANG version 1, "anyxm " was the only

statement that coul d nodel an unknown hierarchy of data. In many
cases, this unknown hierarchy of data is actually nodeled in YANG
but the specific YANG data nodel is not known at design time. In

these situations, it is RECOWENDED to use "anydata" (Section 7.10)
i nstead of "anyxm ".

Bj or kl und St andards Track [Page 102]

RFC 7950 YANG 1.1 August 2016

7.11.1. The anyxml’'s Substatenents

. I . +
| substatenent | section | cardinality

B TS Fomm e e o B S +
config	7.21.1	0..1
description	7.21.3	0..1
if-feature	7.20.2	0..n
mandatory	7.6.5	0..1
must	7.5.3	0..n
reference	7.21.4	0..1
status	7.21.2	0..1
when	7.21.5	0..1
. N T N . +

7.11.2. XM Encodi ng Rul es

An anyxml node is encoded as an XM. el enent. The elenent’s |oca
nane is the anyxm's identifier, and its nanespace is the nodule’s
XML nanespace (see Section 7.1.3). The value of the anyxm node is
encoded as XML content of this elenent.

Note that any XML prefixes used in the encoding are |ocal to each
i nstance encoding. This neans that the same XM. nay be encoded
differently by different inplenentations.

7.11.3. NETCONF <edit-config> Qperations

An anyxm node is treated as an opaque chunk of data. This data can
be nodified in its entirety only.

Any "operation" attributes present on subelenments of an anyxm node
are ignored by the NETCONF server.

When a NETCONF server processes an <edit-config> request, the
el ements of procedure for the anyxml node are as foll ows:

o |If the operation is "nerge" or "replace", the node is created if
it does not exist, and its value is set to the XM. content of the
anyxm node found in the XM. RPC dat a.

o If the operation is "create", the node is created if it does not
exist, and its value is set to the XM. content of the anyxm node
found in the XM. RPC data. |f the node already exists, a
"data-exi sts" error is returned.

o If the operation is "delete”, the node is deleted if it exists.
If the node does not exist, a "data-mi ssing"” error is returned.

Bj or kl und St andards Track [Page 103]

RFC 7950 YANG 1.1 August 2016

7.11.4. Usage Exanpl e
G ven the follow ng "anyxm " statenent:
anyxml htm -info;
The following are two valid encodi ngs of the sane anyxm val ue:
<htm -i nf o>

<p xm ns="http://ww. w3. org/ 1999/ xhtm " >
This is <enpvery</enr cool

</ p>
</htm -info>
<htnl -i nfo>

<x:p xmns:x="http://ww. w3. org/ 1999/ xhtm ">
This is <x:enmpvery</x:en> cool
</ x: p>
</ htm -info>

7.12. The "grouping" Statenent

The "grouping" statenment is used to define a reusable bl ock of nodes,
which may be used locally in the nodul e or subnodul e, and by ot her
nodul es that inmport fromit, according to the rules in Section 5.5.
It takes one argunent, which is an identifier, followed by a bl ock of
substatenments that holds detail ed grouping information

The "grouping" statenment is not a data definition statenent and, as
such, does not define any nodes in the schema tree.

A grouping is like a "structure" or a "record"” in conventiona
programi ng | anguages.

Once a grouping is defined, it can be referenced in a "uses"
statenent (see Section 7.13). A grouping MJST NOT reference itself,
neither directly nor indirectly through a chain of other groupings.

If the grouping is defined at the top |level of a YANG nodul e or
subrmodul e, the grouping’ s identifier MJST be unique within the
nodul e.

A grouping is nore than just a mechanismfor textual substitution

it also defines a collection of nodes. Ildentifiers appearing inside
the grouping are resolved relative to the scope in which the grouping
is defined, not where it is used. Prefix mappings, type nanes,
groupi ng nanmes, and extension usage are evaluated in the hierarchy

Bj or kl und St andards Track [Page 104]

RFC 7950

wher e

YANG 1.1

the "groupi ng" statenent appears.

For extensions,

August 2016

this neans

that extensions defined as direct children to a "groupi ng" statenent

are ap
Not e t
its hi
it can

7.12.1.

7.12. 2.

i mpo
pr
}

grou

plied to the grouping itself.

hat if a grouping defines an action or a notification node in

erarchy, then it cannot be used in al

not be used in an rpc definition

The grouping’ s Substatenents

B TS Fomm e e o
| substatenment | section
e N
| action | 7.15

| anydata | 7.10

| anyxm | 7.11

| choice | 7.9

| container | 7.5

| description | 7.21.3

| grouping | 7.12

| Ieaf | 7.6

| leaf-1list | 7.7

| Iist | 7.8

| notification | 7.16

| reference | 7.21.4

| status | 7.21.2

| typedef | 7.3

| uses | 7.13

B TS Fomm e e o

Usage Exanpl e

rt ietf-inet-types {
efix "inet";

pi ng endpoi nt {

cont exts.

For exanpl e,

See Sections 7.15 and 7. 16.

description "A reusabl e endpoi nt group."

le

le

Bj or kl und

af ip {
type inet:ip-address;

af port {
type inet: port-nunber;

St andards Track

[Page 105]

RFC 7950 YANG 1.1 August 2016

7.13. The "uses" Statenent

The "uses" statenment is used to reference a "grouping" definition
It takes one argunent, which is the name of the grouping.

The effect of a "uses" reference to a grouping is that the nodes
defined by the grouping are copied into the current schena tree and
are then updated according to the "refine" and "augnent" statenents.

The identifiers defined in the grouping are not bound to a nanespace
until the contents of the grouping are added to the schenma tree via a
"uses" statenent that does not appear inside a "grouping" statenent,
at which point they are bound to the nanespace of the current nodul e.

7.13.1. The uses’s Substatenents

B TS Fomm e e o B S +
| substatenent | section | cardinality

ook [TS T +
augnent	7.17	0..n
description	7.21.3	0..1
if-feature	7.20.2	0..n
reference	7.21.4	0..1
refine	7.13.2	0..n
status	7.21.2	0..1
when	7.21.5	0..1
o e e [TS B +

7.13.2. The "refine" Statenent

Sonme of the properties of each node in the grouping can be refined
with the "refine" statement. The argunment is a string that
identifies a node in the grouping. This node is called the refine's
target node. If a node in the grouping is not present as a target
node of a "refine" statement, it is not refined and thus is used
exactly as it was defined in the grouping.

The argument string is a descendant scherma node identifier (see
Section 6.5).

The follow ng refinements can be done:

o A leaf or choice node nay get a default value, or a new default
value if it already had one.

o0 Aleaf-list node may get a set of default values, or a new set of

default values if it already had defaults; i.e., the set of
refined default val ues replaces the defaults already given

Bj or kl und St andards Track [Page 106]

RFC 7950 YANG 1.1 August 2016

0 Any node nay get a specialized "description" string.
0 Any node nay get a specialized "reference" string.
0 Any node may get a different "config" statenent.

o A leaf, anydata, anyxm, or choice node nay get a different
"mandat ory" stat enent.

0 A container node may get a "presence" statenent.

o Aleaf, leaf-list, list, container, anydata, or anyxml node nay
get additional "nmust" expressions.

o0 Aleaf-list or list node may get a different "mn-el enents" or
"max- el enents" statenent.

o Aleaf, leaf-list, list, container, choice, case, anydata, or
anyxnml node nay get additional "if-feature" expressions.

0 Any node can get refined extensions, if the extension allows
refinement. See Section 7.19 for details.

7.13.3. XM Encodi ng Rul es
Each node in the grouping is encoded as if it was defined inline,
even if it is inported from another nodule with another XM
nanespace.

7.13.4. Usage Exanpl e

To use the "endpoint" grouping defined in Section 7.12.2 in a
definition of an HTTP server in sone other nodule, we can do:

i mport exanpl e-system {
prefix "sys";
}

cont ai ner http-server {
| eaf nane {
type string;

uses sys: endpoi nt;

}

Bj or kl und St andards Track [Page 107]

RFC 7950 YANG 1.1 August 2016

A correspondi ng XM. i nstance exanpl e:

<htt p-server>
<nane>ext er n- web</ nane>
<i p>192.0. 2. 1</i p>
<port >80</ port>

</ http-server>

If port 80 should be the default for the HITP server, a default can
be added:

contai ner http-server {
| eaf nane {
type string;

uses sys: endpoint {
refine port {
default 80;
}

}
}

If we want to define a list of servers and each server has "ip" and
"port" as keys, we can do:

list server {
key "ip port";

| eaf nane {
type string;

uses sys: endpoi nt;

}

The following is an error:

contai ner http-server {
uses sys: endpoi nt;

leaf ip { /Il illegal - same identifier "ip" used tw ce
type string;

7.14. The "rpc" Statenent

The "rpc" statement is used to define an RPC operation. It takes one
argunent, which is an identifier, followed by a bl ock of

substatenents that holds detailed rpc information. This argunent is
the name of the RPC

Bj or kl und St andards Track [Page 108]

RFC 7950 YANG 1.1 August 2016

The "rpc" statenent defines an rpc node in the schema tree. Under
the rpc node, a scherma node with the name "input" and a scherma node
with the name "output" are al so defined. The nodes "input" and
"output" are defined in the nodul e s nanespace.

7.14.1. The rpc’s Substatenents

oo [TS S +
| substatenent | section | cardinality
S f S Fom e e e e e o oo +
| description | 7.21.3 | 0..1 |
| grouping | 7.12 | 0..n

if-feature	7.20.2	0..n
input	7.14.2	0..1
out put	7.14.3	0..1
reference	7.22.4	0..1
status	7.212.2	0..1
typedef	7.3	0..n
ook [TS T +

7.14.2. The "input" Statenent

The "input" statement, which is optional, is used to define input
paraneters to the operation. It does not take an argunent. The
substatenents to "input" define nodes under the operation’s input
node.

If aleaf in the input tree has a "mandatory" statement with the
value "true", the leaf MJST be present in an RPC invocation

If aleaf in the input tree has a default value, the server MJST use

this value in the sanme cases as those described in Section 7.6.1. In
these cases, the server MJST operationally behave as if the | eaf was

present in the RPC invocation with the default value as its val ue.

If aleaf-list in the input tree has one or nore default val ues, the
server MUST use these values in the sane cases as those described in
Section 7.7.2. In these cases, the server MJST operationally behave
as if the leaf-list was present in the RPC invocation with the
default values as its val ues.

Since the input tree is not part of any datastore, all "config"
statenents for nodes in the input tree are ignored.

I f any node has a "when" statenment that would evaluate to "fal se"
then this node MUST NOT be present in the input tree.

Bj or kl und St andards Track [Page 109]

RFC 7950 YANG 1.1 August 2016

7.14.2.1. The input’'s Substatenents

. I . +
| substatenent | section | cardinality

B TS Fomm e e o B S +
anydata	7.10	0..n	
anyxm	7.11	0..n	
choice	7.9	0..n	
container	7.5	0..n	
grouping	7.12	0..n	
	eaf	7.6	0..n
leaf-list	7.7	0..n	
I'ist	7.8	0..n	
rust	7.5.3	0..n	
typedef	7.3	0..n	
uses	7.13	0..n	
B TS Fomm e e o B S +

7.14.3. The "output" Statenent

The "output" statenment, which is optional, is used to define output
paraneters to the RPC operation. It does not take an argunment. The
substatenents to "output” define nodes under the operation’s output
node.

If aleaf in the output tree has a "mandatory" statenent with the
val ue "true", the | eaf MJUST be present in an RPC reply.

If aleaf in the output tree has a default value, the client MJST use
this value in the same cases as those described in Section 7.6.1. In
these cases, the client MJST operationally behave as if the | eaf was
present in the RPC reply with the default value as its val ue.

If aleaf-list in the output tree has one or nore default values, the
client MIUST use these values in the sane cases as those described in

Section 7.7.2. |In these cases, the client MJST operationally behave

as if the leaf-list was present in the RPC reply with the default

val ues as its val ues.

Since the output tree is not part of any datastore, all "config"
statements for nodes in the output tree are ignored.

| f any node has a "when" statenent that would evaluate to "fal se"
then this node MJUST NOT be present in the output tree.

Bj or kl und St andards Track [Page 110]

RFC 7950 YANG 1.1 August 2016

7.14.3.1. The output’s Substatenents

. I . +
| substatenent | section | cardinality

B TS Fomm e e o B S +
anydata	7.10	0..n	
anyxm	7.11	0..n	
choice	7.9	0..n	
container	7.5	0..n	
grouping	7.12	0..n	
	eaf	7.6	0..n
leaf-list	7.7	0..n	
I'ist	7.8	0..n	
rust	7.5.3	0..n	
typedef	7.3	0..n	
uses	7.13	0..n	
B TS Fomm e e o B S +

7.14.4. NETCONF XM. Encodi ng Rul es

An rpc node is encoded as a child XML el enent to the <rpc> el ement,
as designated by the substitution group "rpcQperation” in [RFC6241].
The element’s local nanme is the rpc’s identifier, and its namespace
is the nodul e’ s XM. nanespace (see Section 7.1.3).

| nput paranmeters are encoded as child XML el enents to the rpc node’s
XML elenent, in the sane order as they are defined within the "input"
st at enent .

If the RPC operation invocation succeeded and no out put paraneters
are returned, the <rpc-reply> contains a single <ok/> el enent defined
in [RFC6241]. |If output paraneters are returned, they are encoded as
child elenents to the <rpc-reply> el enent defined in [RFC6241], in
the sane order as they are defined within the "output" statenent.

Bj or kl und St andards Track [Page 111]

RFC 7950 YANG 1.1 August

7.14.5. Usage Exanpl e

The foll owi ng exanpl e defines an RPC operation

nmodul e exanpl e-rock {
yang-version 1.1;
nanespace "urn: exanpl e: rock";
prefix "rock";

rpc rock-the-house {
i nput {
| eaf zip-code {
type string;
}
}
}
}

A correspondi ng XM. i nstance exanple of the conplete rpc and
rpc-reply:

<rpc nmessage-id="101"
xm ns="urn:ietf:paranms: xm : ns: netconf: base: 1. 0">
<rock-t he-house xm ns="urn: exanpl e: rock" >
<zi p- code>27606- 0100</ zi p- code>
</ rock-t he-house>
</rpc>

<rpc-reply nmessage-id="101"
xm ns="urn:ietf:parans: xm : ns: netconf: base: 1. 0" >
<ok/ >
</rpc-reply>

2016

Bj or kl und St andards Track [Page 112]

RFC 7950 YANG 1.1 August 2016

7.15. The "action" Statenent

The "action" statement is used to define an operation connected to a
specific container or list data node. It takes one argunent, which
is an identifier, followed by a block of substatenents that hol ds
detailed action information. The argunent is the nane of the action

The "action" statenent defines an action node in the schena tree.
Under the action node, a schena node with the nanme "input" and a
schema node with the name "output" are al so defined. The nodes
"input" and "output” are defined in the nodul e s nanespace.

An action MJST NOT be defined within an rpc, another action, or a
notification, i.e., an action node MJST NOT have an rpc, action, or a
notification node as one of its ancestors in the schema tree. For
exanple, this neans that it is an error if a grouping that contains
an action sonmewhere in its node hierarchy is used in a notification
definition.

An action MJUST NOT have any ancestor node that is a |list node w thout
a "key" statement.

Since an action cannot be defined at the top level of a nodule or in
a "case" statenent, it is an error if a grouping that contains an
action at the top of its node hierarchy is used at the top level of a
nodul e or in a case definition.

The di fference between an action and an rpc is that an action is tied
to a node in the datastore, whereas an rpc is not. \When an action is
i nvoked, the node in the datastore is specified along with the name
of the action and the input paraneters.

Bj or kl und St andards Track [Page 113]

RFC 7950 YANG 1.1 August 2016

7.15.1. The action’s Substatenents

. I . +
| substatenent | section | cardinality

B TS Fomm e e o B S +
| description | 7.21.3 | 0..1 |
| grouping | 7.12 | 0..n

if-feature	7.20.2	0..n
input	7.14.2	0..1
out put	7.14.3	0..1
reference	7.21.4	0..1
status	7.21.2	0..1
typedef	7.3	0..n
e N T N . +

7.15.2. NETCONF XM. Encodi ng Rul es

Wien an action is invoked, an elenent with the |ocal nanme "action" in
t he nanespace "urn:ietf:parans: xnl:ns:yang: 1" (see Section 5.3.1) is

encoded as a child XML elenent to the <rpc> elenent defined in

[RFC6241], as designated by the substitution group "rpcQperation” in

[RFC6241] .

The <action> elenent contains a hierarchy of nodes that identifies
the node in the datastore. It MJST contain all containers and |ist
nodes in the direct path fromthe top |level down to the list or
contai ner containing the action. For lists, all key leafs MJST al so
be included. The innernost container or list contains an XM el enent
that carries the nane of the defined action. Wthin this el enent,
the input paraneters are encoded as child XM. el enents, in the sane
order as they are defined within the "input" statenent.

Only one action can be invoked in one <rpc> If nore than one action
is present in the <rpc> the server MIST reply with a "bad-el enent”
<error-tag> in the <rpc-error>.

If the action operation invocation succeeded and no output paraneters
are returned, the <rpc-reply> contains a single <ok/> elenment defined
in [RFC6241]. |If output paraneters are returned, they are encoded as
child elenents to the <rpc-reply> el enment defined in [RFC6241], in
the sane order as they are defined within the "output" statenent.

Bj or kl und St andards Track [Page 114]

RFC 7950 YANG 1.1 August 2016

7.15.3. Usage Exanpl e

The foll owi ng exanpl e defines an action to reset one server at a
server farm

nodul e exanpl e-server-farm{
yang-version 1.1;
nanespace "urn: exanpl e: server-farnt;
prefix "sfarnt;

i mport ietf-yang-types {

prefix "yang";
}
list server {
key nane;
| eaf nane {
type string;
action reset {
i nput {
| eaf reset-at {
type yang: dat e-and-ti ne;
mandat ory true
}
out put {
| eaf reset-finished-at {
type yang: dat e-and-ti ne;
mandat ory true
}
}
}
}
}

Bj or kl und St andards Track [Page 115]

RFC 7950 YANG 1.1 August 2016

A correspondi ng XM. i nstance exanple of the conplete rpc and
rpc-reply:

<rpc nmessage-id="101"
xm ns="urn:ietf:parans: xm : ns: netconf: base: 1. 0">
<action xm ns="urn:ietf:parans: xn :ns:yang: 1">
<server xm ns="urn: exanpl e: server-farm' >
<name>apache- 1</ nanme>
<reset >
<reset - at >2014- 07-29T13: 42: 00Z</ reset - at >
</reset>
</ server>
</ action>
</rpc>

<rpc-reply message-id="101"
xm ns="urn:ietf:paranms: xm : ns: netconf: base: 1. 0">
<reset-finished-at xm ns="urn: exanpl e: server-farni>
2014-07-29T13: 42: 127
</reset-finished-at>
</rpc-reply>

7.16. The "notification"” Statenent

The "notification" statenent is used to define a notification. It
takes one argunent, which is an identifier, followed by a bl ock of
substatenents that holds detailed notification information. The
"notification" statenent defines a notification node in the schemn
tree.

A notification can be defined at the top |level of a nodule, or
connected to a specific container or list data node in the schema
tree.

A notification MIUST NOT be defined within an rpc, action, or another
notification, i.e., a notification node MUST NOT have an rpc, action
or a notification node as one of its ancestors in the schema tree.

For exanple, this nmeans that it is an error if a grouping that
contains a notification sonewhere in its node hierarchy is used in an
rpc definition.

A notification MUST NOT have any ancestor node that is a list node
wi t hout a "key" statenent.

Since a notification cannot be defined in a "case" statenent, it is

an error if a grouping that contains a notification at the top of its
node hierarchy is used in a case definition

Bj or kl und St andards Track [Page 116]

RFC 7950 YANG 1.1 August 2016

If aleaf in the notification tree has a "nandatory" statenment with
the value "true", the | eaf MJUST be present in a notification
i nstance.

If aleaf in the notification tree has a default value, the client
MJUST use this value in the sane cases as those described in

Section 7.6.1. |In these cases, the client MJST operationally behave
as if the leaf was present in the notification instance with the
default value as its val ue.

If aleaf-list in the notification tree has one or nore default

val ues, the client MJST use these values in the sane cases as those
described in Section 7.7.2. In these cases, the client MJST
operationally behave as if the leaf-list was present in the
notification instance with the default values as its val ues.

Since the notification tree is not part of any datastore, all
"config" statenents for nodes in the notification tree are ignored.

7.16.1. The notification’s Substatenents

S f S Fom e e e e e o oo +
| substatenent | section | cardinality
RS Fomm e e o S +
anydata	7.10	0..n
anyxm	7.11	0..n
choice	7.9	0..n
container	7.5	0..n
description	7.21.3	0..1
grouping	7.12	0..n

| if-feature | 7.20.2 | 0..n |
| Ieaf | 7.6 | 0..n |
| leaf-list | 7.7 | 0..n

| Iist | 7.8 | 0..n |
| must | 7.5.3 | 0..n

reference	7.21.4	0..1
status	7.21.2	0..1
typedef	7.3	0..n
uses	7.13	0..n
S f S Fom e e e e e o oo +

7.16.2. NETCONF XM. Encodi ng Rul es

A notification node that is defined on the top level of a nodule is
encoded as a child XML el enent to the <notification> elenment defined
in "NETCONF Event Notifications" [RFC5277]. The elenent’s |ocal nane
is the notification's identifier, and its nanespace is the nodule’s
XM. nanespace (see Section 7.1.3).

Bj or kl und St andards Track [Page 117]

RFC 7950 YANG 1.1 August 2016

When a notification node is defined as a child to a data node, the
<notification> elenment defined in [RFC5277] contains a hierarchy of
nodes that identifies the node in the datastore. |t MJST contain al
containers and list nodes fromthe top level down to the list or
contai ner containing the notification. For lists, all key l|eafs MJST
al so be included. The innernost container or list contains an XM

el enent that carries the nane of the defined notification

The notification's child nodes are encoded as subel enments to the
notification node’s XM_ el ement, in any order.

7.16.3. Usage Exanpl e

The foll owi ng exanpl e defines a notification at the top level of a
nodul e:

nmodul e exanpl e-event {
yang-version 1.1;
nanespace "urn: exanpl e: event";
prefix "

ev

notification event {
| eaf event-class {

type string;
}

| eaf reporting-entity {
type instance-identifier;
}

| eaf severity {
type string;

}
}

A correspondi ng XM_ i nstance exanple of the conplete notification

<notification
xm ns="urn:ietf:parans: xm:ns:netconf:notification:1. 0">
<event Ti mre>2008- 07- 08T00: 01: 00Z</ event Ti me>
<event xml ns="urn: exanpl e: event ">
<event - cl ass>f aul t </ event - cl ass>
<reporting-entity>
/ex:interface[ex: name=" Et hernet Q']
</reporting-entity>
<severity>nmmj or</severity>
</ event >
</notification>

Bj or kl und St andards Track [Page 118]

RFC 7950 YANG 1.1 August 2016

The followi ng exanple defines a notification in a data node:

nodul e exanpl e-i nterface-nodul e {
yang-version 1.1;
nanespace "urn: exanpl e:interface-nodul e"
prefix "if";

container interfaces {
list interface {
key "nane";
| eaf nane {
type string;

notification interface-enabled {
| eaf by-user {
type string;

A corresponding XM_ i nstance exanple of the conplete notification

<notification
xm ns="urn:ietf:parans: xm:ns:netconf:notification:1. 0">
<event Ti ne>2008- 07- 08T00: 01: 00Z</ event Ti ne>
<i nterfaces xm ns="urn: exanpl e: i nterface-nodul e">
<interface>
<nane>et hl</ nane>
<i nterface-enabl ed>
<by- user >f r ed</ by- user >
</interface-enabl ed>
</interface>
</interfaces>
</notification>

7.17. The "augnent" Statenent

The "augnent" statenent allows a nodul e or subnmodule to add to a
schema tree defined in an external nodule, or in the current nodul e
and its subnodules, and to add to the nodes froma grouping in a
"uses" statenent. The argunent is a string that identifies a node in
the schema tree. This node is called the augnent’s target node. The
target node MJUST be either a container, list, choice, case, input,
output, or notification node. It is augnented with the nodes defined
in the substatenents that foll ow the "augnent" statenent.

Bj or kl und St andards Track [Page 119]

RFC 7950 YANG 1.1 August 2016

The argunent string is a schema node identifier (see Section 6.5).
If the "augment" statenment is on the top level in a nodule or
subnodul e, the absolute form (defined by the rule

"absol ut e- schema- nodei d" in Section 14) of a schema node identifier
MUST be used. |If the "augnent” statement is a substatenent to the
"uses" statenent, the descendant form (defined by the rule
"descendant - scherma- nodei d" in Section 14) MJST be used.

If the target node is a container, list, case, input, output, or
notification node, the "container"”, "leaf", "list", "leaf-list",
"uses"”, and "choice" statenments can be used within the "augnent"”
st at ement .

If the target node is a container or list node, the "action" and
"notification" statenments can be used within the "augnent" statenent.

If the target node is a choice node, the "case" statement or a
short hand "case" statenent (see Section 7.9.2) can be used within the
"augnment" statenent.

The "augnment" statenment MJST NOT add nultiple nodes with the sane
nane fromthe same nodule to the target node

I f the augnentation adds nandatory nodes (see Section 3) that
represent configuration to a target node in another nodule, the
augrment ati on MJST be nmade conditional with a "when" statenent. Care
nmust be taken when defining the "when" expression so that clients
that do not know about the augmenting nodul e do not break

In the following exanple, it is OKto augnent the "interface" entry
with "nandatory-| eaf" because the augnentation depends on support for
"some-newiftype". The old client does not know about this type, so
it would never select this type and would therefore not be adding a
mandat ory data node

nodul e exanpl e- augnent {
yang-version 1.1;
nanespace "urn: exanpl e: augnment"”;
prefix nynod;

inmport ietf-interfaces {
prefix if;

}

identity some-newiftype {
base if:interface-type
}

Bj or kl und St andards Track [Page 120]

RFC 7950 YANG 1.1 August 2016
augrment "/if:interfaces/if:interface" {
when ' derived-fromor-self(if:type, "nynod:sone-newiftype")’

| eaf mandatory-I|eaf ({
mandat ory true

type string;
}
}
}
7.17.1. The augnent’s Substatenents

ook [TS T +
| substatenent | section | cardinality

o e e [TS B +
action	7.15	0..n
anydata	7.10	0..n
anyxm	7.11	0..n
case	7.9.2	0..n
choice	7.9	0..n
container	7.5	0..n
description	7.21.3	0..1
if-feature	7.20.2	0..n
Ieaf	7.6	0..n
leaf-1list	7.7	0..n
Iist	7.8	0..n
notification	7.16	0..n
reference	7.22.4	0..1
status	7.212.2	0..1
uses	7.13	0..n
when	7.21.5	0..1
oo [TS S +

7.17.2. XM Encodi ng Rul es
Al'l data nodes defined in the "augnent" statenent are defined as XM
el ements in the XM. nanespace of the nodul e where the "augnent"” is
speci fi ed.

When a node is augnmented, the augnenting child nodes are encoded as
subel enents to the augnented node, in any order

Bj or kl und St andards Track [Page 121]

RFC 7950 YANG 1.1 August 2016

7.17.3. Usage Exanpl e
I n namespace urn:exanpl e:interface-nodul e, we have:

contai ner interfaces {
list ifEntry {
key "iflndex";

| eaf iflndex {
type uint32;

}
| eaf ifDescr {
type string;

}
| eaf ifType {
type iana:lfType;

}
leaf ifMu {
type int32;

}
}

Then, in nanespace urn:exanpl e:dsO, we have

i mport exanpl e-interface-nodul e {
prefix "if";

augrment "/if:interfaces/if:ifEntry" {
when "if:ifType="ds0' ";
| eaf dsOChannel Nunber {
type Channel Nunber;

Bj or kl und St andards Track [Page 122]

RFC 7950 YANG 1.1 August 2016

A correspondi ng XM. i nstance exanpl e:

<i nterfaces xm ns="urn: exanpl e: i nt erface-nodul e"
xm ns: dsO="ur n: exanpl e: ds0" >
<i fEntry>
<i fl ndex>1</ifl ndex>
<i f Descr>Fl i nt stone I nc Ethernet A562</ifDescr>
<i f Type>et her net Csnmacd</i f Type>
<i f M u>1500</ifM u>
</[ifEntry>
<i fEntry>
<i fl ndex>2</i fl ndex>
<i f Descr>Fl i nt stone | nc DSO</i f Descr>
<i f Type>dsO</i f Type>
<dsO0: dsOChannel Nunber >1</ ds0: dsOChannel Nunber >
</[ifEntry>
</interfaces>

As anot her exanpl e, suppose we have the choice defined in
Section 7.9.6. The follow ng construct can be used to extend the
protocol definition:

augnment /ex: systeni ex: protocol /ex: nanme {

case c {
| eaf smtp {
type enpty;
}

}

A correspondi ng XM. i nstance exanpl e:

<ex:systenp
<ex: pr ot ocol >
<ex:tcp/>
</ ex: protocol >
</ ex: systenp

or

<ex: systenp
<ex: pr ot ocol >
<ot her:sntp/>
</ ex: protocol >
</ ex: systenr

Bj or kl und St andards Track [Page 123]

RFC 7950 YANG 1.1 August 2016

7.18. The "identity" Statenent

The "identity" statement is used to define a new globally unique,
abstract, and untyped identity. The identity’s only purpose is to
denote its nanme, semantics, and existence. An identity can be either
defined fromscratch or derived fromone or nore base identities

The identity's argunent is an identifier that is the nane of the
identity. It is followed by a block of substatenents that holds
detailed identity information

The built-in datatype "identityref" (see Section 9.10) can be used to
reference identities within a data nodel

7.18.1. The identity's Substatenents

S [S B TS +
| substatenent | section | cardinality

[[SR —-— S +
base	7.18.2	0..n
description	7.21.3	0..1
if-feature	7.20.2	0O0..n
reference	7.22.4	0..1
status	7.22.2	0..1
[[SR —-— S +

7.18.2. The "base" Statenent

The "base" statenent, which is optional, takes as an argunent a
string that is the nanme of an existing identity, from which the new
identity is derived. |If no "base" statenent is present, the identity
is defined fromscratch. |If nultiple "base" statenents are present,
the identity is derived fromall of them

If a prefix is present on the base nanme, it refers to an identity
defined in the nodule that was inported with that prefix, or the

| ocal nodule if the prefix matches the | ocal nodule’'s prefix.

O herwise, an identity with the matching nane MUST be defined in the
current nmodul e or an included subnodul e.

An identity MJUST NOT reference itself, neither directly nor
indirectly through a chain of other identities.

Bj or kl und St andards Track [Page 124]

RFC 7950 YANG 1.1 August 2016

The derivation of identities has the follow ng properties:

o It isirreflexive, which neans that an identity is not derived
fromitself.

o It is transitive, which neans that if identity Bis derived fromA
and Cis derived fromB, then Cis also derived fromA

7.18.3. Usage Exanpl e

nmodul e exanpl e-crypt o- base {
yang-version 1.1;
nanespace "urn: exanpl e: crypt o- base"
prefix "crypto";

identity crypto-alg {
description
"Base identity fromwhich all crypto algorithns
are derived.";

}

identity symmetric-key {
description
"Base identity used to identify symetric-key crypto
al gorithms.";
}

identity public-key {
description
"Base identity used to identify public-key crypto
al gorithms.";

}

nmodul e exanpl e-des {
yang-version 1.1;
nanespace "urn: exanpl e: des"
prefix "des";

i mport "exanpl e-crypto-base" {
prefix "crypto";
}

identity des {
base "crypto: crypto-alg"
base "crypto:synmetric-key";
description "DES crypto algorithm?";
}

Bj or kl und St andards Track [Page 125]

RFC 7950 YANG 1.1 August 2016

identity des3 {
base "crypto: crypto-al g"
base "crypto: synmetric-key";
description "Triple DES crypto algorithm?™";
}
}

7.19. The "extension" Statenent

The "extension" statenent allows the definition of new statenents
wi thin the YANG | anguage. This new statenment definition can be
i nported and used by ot her nodul es.

The "extension" statenment’s argunent is an identifier that is the new
keyword for the extension and nust be followed by a bl ock of
substatenents that holds detailed extension information. The purpose
of the "extension" statenment is to define a keyword so that it can be
i nported and used by ot her nodul es.

The extension can be used like a normal YANG statenent, with the
statement nane followed by an argunment if one is defined by the
"extension" statenent, and an optional block of substatenents. The
statement’s nane is created by conmbining the prefix of the nodule in
whi ch the extension was defined, a colon (":"), and the extension's
keyword, with no interleaving whitespace. The substatenents of an
extension are defined by the "extension" statenment, using somne
nmechani sm out si de the scope of this specification. Syntactically,

t he substatements MJST be YANG statenents, including extensions
defined using "extension" statements. YANG statenments in extensions
MUST follow the syntactical rules in Section 14.

An extension can allow refinenent (see Section 7.13.2) and devi ations
(Section 7.20.3.2), but the nechanismfor howthis is defined is
out side the scope of this specification

7.19.1. The extension’s Substatenents

oo [TS S +
| substatenent | section | cardinality

S f S Fom e e e e e o oo +
argument	7.19.2	0..1
description	7.21.3	0..1
reference	7.21.4	0..1
status	7.21.2	0..1
o e e [TS B +

Bj or kl und St andards Track [Page 126]

RFC 7950 YANG 1.1 August 2016

7.19.2. The "argunent" Statenent

The "argunent" statenment, which is optional, takes as an argunent a

string that is the name of the argunent to the keyword. |If no
"argument” statenment is present, the keyword expects no argunment when
it is used.

The argunent’s name is used in the YIN mapping, where it is used as
an XML attribute or element nane, depending on the argunent’s
"yin-element" statenent.

7.19.2.1. The argunent’s Substat enent

oo [T S +
| substatenent | section | cardinality

S S Fom e e e e e o oo +
| yin-elemrent | 7.19.2.2 | 0..1 |
RS Fomm e - S +

7.19.2.2. The "yin-elenent" Statenent

The "yin-element"” statenment, which is optional, takes as an argunent
the string "true"” or "false". This statenment indicates whether the

argunent is napped to an XML elenent in YINor to an XM. attribute
(see Section 13).

If no "yin-element" statenment is present, it defaults to "fal se"

7.19.3. Usage Exanple
To define an extension:

nodul e exanpl e- ext ensi ons {
yang-version 1.1;

ext ensi on c-define {

description

"Takes as an argument a nane string.
Makes the code generator use the given name
in the #define.";

argunent "nane",

}
}

Bj or kl und St andards Track [Page 127]

RFC 7950 YANG 1.1 August 2016

To use the extension:

nmodul e exanpl e-interfaces {
yang-version 1.1;

i mport exanpl e- extensions {
prefix "nyext";
}

contai ner interfaces {

ﬁyéxt:c-define " MY_I NTERFACES";

}
}

7.20. Conformance- Rel at ed Statenents

This section defines statenents related to conformance, as descri bed
in Section 5.6.

7.20.1. The "feature" Statenent

The "feature" statenent is used to define a nmechani sm by which
portions of the schema are nmarked as conditional. A feature nane is
defined that can later be referenced using the "if-feature" statenent
(see Section 7.20.2). Scherma nodes tagged with an "if-feature"
statement are ignored by the server unless the server supports the
given feature expression. This allows portions of the YANG nodule to
be conditional based on conditions in the server. The nodel can
represent the abilities of the server within the nodel, giving a
richer nodel that allows for differing server abilities and roles.

The argunent to the "feature"” statenent is the nanme of the new
feature and follows the rules for identifiers in Section 6.2. This
nane is used by the "if-feature" statenent to tie the schena nodes to
the feature.

Bj or kl und St andards Track [Page 128]

RFC 7950 YANG 1.1 August 2016

In this exanple, a feature called "l ocal -storage" represents the
ability for a server to store syslog nessages on | ocal storage of
some sort. This feature is used to make the "local -storage-limt'

| eaf conditional on the presence of sone sort of local storage. |If
the server does not report that it supports this feature, the

"l ocal -storage-linmt" node is not supported.

nmodul e exanpl e-sysl og {
yang-version 1.1;

feature | ocal -storage {
description
"This feature neans that the server supports |loca
storage (nenory, flash, or disk) that can be used to
store syslog nessages."

}

cont ai ner syslog {
| eaf local-storage-limt {
if-feature | ocal -storage
type uint 64;
units "Kkil obyte"
config fal se
description
"The anount of |ocal storage that can be
used to hold sysl og nessages."
}
}
}

The "if-feature" statenent can be used in many places within the YANG
syntax. Definitions tagged with "if-feature" are ignored when the
server does not support that feature.

A feature MJUST NOT reference itself, neither directly nor indirectly
through a chain of other features

In order for a server to support a feature that is dependent on any
other features (i.e., the feature has one or nore "if-feature"
substatenents), the server MIJST al so support all the dependent

f eat ures.

Bj or kl und St andards Track [Page 129]

RFC 7950 YANG 1.1 August 2016

7.20.1.1. The feature’'s Substatenents

. I . +
| substatenent | section | cardinality

B TS Fomm e e o B S +
description	7.21.3	0..1
if-feature	7.20.2	0..n
reference	7.21.4	0..1
status	7.21.2	0..1
S f S Fom e e e e e o oo +

7.20.2. The "if-feature" Statenent

The "if-feature" statenent nakes its parent statenent conditional
The argunent is a bool ean expression over feature names. In this
expression, a feature nanme evaluates to "true" if and only if the
feature is supported by the server. The parent statenent is

i mpl enent ed by servers where the bool ean expression eval uates to

"true".

The if-feature bool ean expression syntax is formally defined by the
rule "if-feature-expr" in Section 14. Parentheses are used to group
expressions. \Wen the expression is evaluated, the order of
precedence is (highest precedence first): grouping (parentheses),
"not", "and", "or".

If a prefix is present on a feature nanme in the bool ean expression
the prefixed nanme refers to a feature defined in the nodul e that was
inmported with that prefix, or the local nodule if the prefix matches
the Il ocal nodule’'s prefix. Oherwise, a feature with the matching
name MJST be defined in the current nodule or an included subnodul e.

Aleaf that is a list key MUST NOT have any "if-feature" statements.

Bj or kl und St andards Track [Page 130]

RFC 7950 YANG 1.1 August 2016

7.20.2.1. Usage Exanpl e

In this exanple, the container "target" is inplemented if either the
"out bound-tls" or "outbound-ssh" feature is supported by the server.

contai ner target {
i f-feature "outbound-tls or outbound-ssh";

}

The foll owi ng exanpl es are equival ent:
if-feature "not foo or bar and baz";
if-feature "(not foo) or (bar and baz)";

7.20.3. The "deviation" Statenent

The "devi ation" statenent defines a hierarchy of a nodule that the
server does not inplement faithfully. The argunment is a string that
identifies the node in the schema tree where a deviation fromthe
nmodul e occurs. This node is called the deviation's target node. The
contents of the "deviation" statenent give details about the
devi at i on.

The argument string is an absolute scherma node identifier (see
Section 6.5).

Devi ati ons define the way a server or class of servers deviate froma
standard. This nmeans that deviations MJUST never be part of a
publ i shed standard, since they are the nechani smfor |earning how

i mpl ement ations vary fromthe standards

Server deviations are strongly di scouraged and MJST only be used as a
|l ast resort. Telling the application how a server fails to follow a
standard is no substitute for inplenenting the standard correctly. A
server that deviates froma nodule is not fully conpliant with the
nodul e.

However, in some cases, a particular device may not have the hardware
or software ability to support parts of a standard nodule. Wen this
occurs, the server nmakes a choice to either treat attenpts to
configure unsupported parts of the nodule as an error that is
reported back to the unsuspecting application or ignore those

i nconmi ng requests. Neither choice is acceptable.

Bj or kl und St andards Track [Page 131]

RFC 7950 YANG 1.1 August 2016

I nstead, YANG al |l ows servers to docunent portions of a base nodul e
that are not supported, or that are supported but with different
syntax, by using the "deviation" statenent.

After applying all deviations announced by a server, in any order
the resulting data nodel MJST still be valid.

7.20.3.1. The deviation's Substatenments

S [TS B TS +
| substatenent | section | cardinality

[[R S +
| description | 7.21.3 | 0..1 |
| deviate | 7.20.3.2 | 1..n

| reference | 7.21.4 | 0..1 |
S [TS B TS +

7.20.3.2. The "deviate" Statenment

The "devi ate" statenent defines how the server’s inplenentation of
the target node deviates fromits original definition. The argunent
is one of the strings "not-supported", "add", "replace", or "delete"

The argunent "not-supported" indicates that the target node is not
i mpl emented by this server.

The argunent "add" adds properties to the target node. The
properties to add are identified by substatenents to the "deviate"
statement. |If a property can only appear once, the property MJST NOT
exi st in the target node.

The argunent "replace" replaces properties of the target node. The
properties to replace are identified by substatements to the
"deviate" statement. The properties to replace MIST exist in the
target node

The argunent "del ete" del etes properties fromthe target node. The
properties to delete are identified by substatements to the "del ete"
statement. The substatement’s keyword MUST match a correspondi ng
keyword in the target node, and the argunent’s string MJST be equa
to the correspondi ng keyword' s argunent string in the target node.

Bj or kl und St andards Track [Page 132]

RFC 7950 YANG 1.1 August 2016

| config

| default

| mandatory

| max-el ements
| mn-elenments
| must

| type

| unique

| units

1 |
n |
1 |
.1 |
.1 |
n |
1 |
n |
1 |

The devi ate’s Substatenents

If the target node has a property defined by an extension, this
property can be deviated if the extension allows deviations. See
Section 7.19 for details.

7.20.3.3. Usage Exanpl e

In this exanple, the server is informng client applications that it
does not support the "daytine" service in the style of RFC 867.

nodul e exanpl e-devi ati ons {
yang-version 1.1;
nanespace "urn: exanpl e: devi ati ons"
prefix nd;

i mport exanpl e- base {
prefix base;
}

devi ati on /base: system base: dayti me {
devi at e not - support ed;

}
-

A server woul d advertise both nmodul es "exanpl e-base"” and
"exanpl e- devi ati ons"

Bj or kl und St andards Track [Page 133]

RFC 7950 YANG 1.1 August 2016

The followi ng exanple sets a server-specific default value to a |eaf
that does not have a default val ue defi ned:

devi ati on /base: system base: user/ base: type {
deviate add {
default "admin"; // new users are 'admin’ by default
}
}

In this exanple, the server limts the nunmber of nanme servers to 3:

devi ati on / base: systen base: nane- server {
devi ate repl ace {
max- el enents 3;
}
}

If the original definition is:

cont ai ner system {
nmust "daytinme or tinme";

}

a server mght renove this "nmust" constraint by doing:

devi ati on /base: system {
deviate delete {
must “"daytime or tinme";
}
}

7.21. Common Statenents

Thi s section defines substatenents commpn to several other
st atenents.

7.21.1. The "config" Statenent

The "config" statenment takes as an argunent the string "true" or
"false". If "config" is "true", the definition represents
configuration. Data nodes representing configuration are part of
configuration datastores.

If "config" is "false", the definition represents state data. Data

nodes representing state data are not part of configuration
dat ast or es.

Bj or kl und St andards Track [Page 134]

RFC 7950 YANG 1.1 August 2016

If "config" is not specified, the default is the sane as the parent
schena node’s "config" value. |f the parent node is a case node, the
value is the same as the case node’s parent choi ce node.

If the top node does not specify a "config" statenent, the default is
"true".

If a node has "config" set to "false", no node underneath it can have
"config" set to "true"

7.21.2. The "status" Statenent

The "status" statenment takes as an argunent one of the strings
"current", "deprecated", or "obsolete".

o "current" neans that the definition is current and valid.

0 "deprecated" indicates an obsolete definition, but it pernits
new continued inplenentation in order to foster interoperability
with ol der/existing inplenmentations.

0 "obsolete" neans that the definition is obsolete and SHOULD NOT be
i npl ement ed and/or can be renoved from i npl enent ati ons.

If no status is specified, the default is "current".

If a definition is "current", it MJST NOT reference a "deprecated" or
"obsol ete" definition within the sane nodul e.

If a definition is "deprecated”, it MJST NOT reference an "obsol ete"
definition within the same nodul e.

For exanple, the following is illegal

typedef ny-type {
status deprecated;
type int32;

| eaf ny-leaf ({

status current;

type ny-type; // illegal, since ny-type is deprecated
}

Bj or kl und St andards Track [Page 135]

RFC 7950 YANG 1.1 August 2016

7.21.3. The "description" Statenent

The "description" statement takes as an argument a string that
contai ns a human-readabl e textual description of this definition

The text is provided in a | anguage (or |anguages) chosen by the
nodul e devel oper; for the sake of interoperability, it is RECOMMENDED
to choose a | anguage that is wi dely understood anong the comunity of
network administrators who will use the nodul e.

7.21.4. The "reference" Statenent

The "reference" statenent takes as an argunent a string that is a
human- r eadabl e cross-reference to an external docunent -- either
anot her nodul e that defines related managenent information or a
docunent that provides additional information relevant to this
definition.

For exanple, a typedef for a "uri" data type could |ook like:

typedef uri {
type string;
ref erence
"RFC 3986: Uniform Resource ldentifier (URI): Generic Syntax";

}
7.21.5. The "when" Statenent

The "when" statenent nakes its parent data definition statenent
conditional. The node defined by the parent data definition
statenent is only valid when the condition specified by the "when"
statement is satisfied. The statenent’s argument is an XPath
expression (see Section 6.4), which is used to fornmally specify this
condition. |If the XPath expression conceptually evaluates to "true"
for a particular instance, then the node defined by the parent data
definition statement is valid; otherwise, it is not.

Aleaf that is a list key MIUST NOT have a "when" statenent.

If a key leaf is defined in a grouping that is used in a list, the
"uses" statenment MJUST NOT have a "when" statenent.

See Section 8.3.2 for additional information.

Bj or kl und St andards Track [Page 136]

RFC 7950 YANG 1.1 August 2016

The XPath expression is conceptually evaluated in the foll ow ng
context, in addition to the definition in Section 6.4.1

(0]

If the "when" statement is a child of an "augnment" statenent, then
the context node is the augnent’s target node in the data tree, if
the target node is a data node. Oherw se, the context node is
the cl osest ancestor node to the target node that is also a data
node. |If no such node exists, the context node is the root node.
The accessible tree is tentatively altered during the processing
of the XPath expression by renoving all instances (if any) of the
nodes added by the "augnent" statement.

If the "when" statenent is a child of a "uses", "choice", or
"case" statenent, then the context node is the closest ancestor
node to the node with the "when" statenent that is also a data
node. |If no such node exists, the context node is the root node.
The accessible tree is tentatively altered during the processing
of the XPath expression by renoving all instances (if any) of the
nodes added by the "uses", "choice", or "case" statenent.

If the "when" statenent is a child of any other data definition
statement, the accessible tree is tentatively altered during the
processi ng of the XPath expression by replacing all instances of
the data node for which the "when" statement is defined with a
singl e dumy node with the same nane, but with no value and no
children. |If no such instance exists, the dumy node is
tentatively created. The context node is this dunmy node.

The result of the XPath expression is converted to a bool ean val ue
using the standard XPath rul es.

If the XPath expression references any node that al so has associ at ed
"when" statenents, those "when" expressions MJST be eval uated first.
There MUST NOT be any circul ar dependenci es anbng "when" expressions.

Note that the XPath expression is conceptually evaluated. This nmeans
that an i npl enentation does not have to use an XPath evaluator in the
server. The "when" statenent can very well be inplenmented with
specially witten code.

Bj or kl und St andards Track [Page 137]

RFC 7950 YANG 1.1 August 2016

8. Constraints

8.1. Constraints on Data
Several YANG statenments define constraints on valid data. These
constraints are enforced in different ways, depending on what type of
data the statenent defines.

o |If the constraint is defined on configuration data, it MJST be
true in a valid configuration data tree

o |If the constraint is defined on state data, it MJST be true in a
valid state data tree.

o |f the constraint is defined on notification content, it MJST be
true in any notification data tree.

o If the constraint is defined on RPC or action input paraneters, it
MUST be true in an invocation of the RPC or action operation

o |If the constraint is defined on RPC or action output paraneters,
it MUST be true in the RPC or action reply.

The following properties are true in all data trees:

o Al leaf data values MJST match the type constraints for the |eaf,
i ncluding those defined in the type’'s "range", "length", and
"pattern" properties.

o Al key leafs MIUST be present for all list entries.

0 Nodes MUST be present for at nobst one case branch in all choices.

0 There MUST be no nodes tagged with "if-feature" present if the
"if-feature" expression evaluates to "false" in the server

0 There MUST be no nodes tagged with "when" present if the "when"
condition evaluates to "false" in the data tree.

The followi ng properties are true in a valid data tree:
o Al "must" constraints MJST evaluate to "true"

o Al referential integrity constraints defined via the "path"
statement MJST be satisfied.

o All "unique" constraints on |lists MJST be sati sfied.

Bj or kl und St andards Track [Page 138]

RFC 7950 YANG 1.1 August 2016

The "mandatory" constraint is enforced for |eafs and choi ces,
unl ess the node or any of its ancestors has a "when" condition or
"if-feature" expression that evaluates to "fal se"

The "m n-el ements” and "nax-el ements” constraints are enforced for
lists and leaf-lists, unless the node or any of its ancestors has
a "when" condition or "if-feature" expression that evaluates to
"fal se".

The running configuration datastore MJST al ways be valid.

8. 2.

8. 3.

Configuration Data Mdifications

If a request creates configuration data nodes under a choice, any
exi sting nodes fromother case branches in the data tree are
del eted by the server.

If a request nodifies a configuration data node such that any
node’ s "when" expression becones fal se, then the node in the data
tree with the "when" expression is deleted by the server.

NETCONF Constrai nt Enforcenent Mbdel

For configuration data, there are three wi ndows when constraints MJST

be
o}
o}

(o]

enf or ced:
during parsing of RPC payl oads
during processing of the <edit-config> operation

during validation

Each of these scenarios is considered in the follow ng sections.

8.3. 1.

Payl oad Parsing

When content arrives in RPC payloads, it MJST be well-formed XM,
following the hierarchy and content rul es defined by the set of
nodel s the server inplenents.

(0]

If a |leaf data value does not match the type constraints for the

| eaf, including those defined in the type’'s "range", "length", and
"pattern" properties, the server MIST reply with an
"invalid-value" <error-tag> in the <rpc-error> and with the
error-app-tag (Section 7.5.4.2) and error-nmessage

(Section 7.5.4.1) associated with the constraint, if any exist.

Bj or kl und St andards Track [Page 139]

RFC 7950 YANG 1.1 August 2016

(o]

8.3. 2.

If all keys of a list entry are not present, the server MJST reply
with a "mssing-elenent" <error-tag> in the <rpc-error>.

If data for nore than one case branch of a choice is present, the
server MIUST reply with a "bad-elenent” <error-tag> in the
<rpc-error>.

If data for a node tagged with "if-feature" is present and the
"if-feature" expression evaluates to "false" in the server, the
server MJUST reply with an "unknown-el enent" <error-tag> in the
<rpc-error>.

If data for a node tagged with "when" is present and the "when"
condition evaluates to "false", the server MIUST reply with an
"unknown- el ement"” <error-tag> in the <rpc-error>.

For insert handling, if the values for the attributes "before" and
"after" are not valid for the type of the appropriate key |eafs,
the server MUST reply with a "bad-attribute" <error-tag> in the
<rpc-error>.

If the attributes "before" and "after" appear in any el ement that
is not alist whose "ordered-by" property is "user", the server
MUST reply with an "unknown-attribute" <error-tag> in the
<rpc-error>.

NETCONF <edi t-config> Processing

After the inconmng data is parsed, the NETCONF server perforns the
<edi t-config> operation by applying the data to the configuration
datastore. During this processing, the followi ng errors MJST be

det ect ed:

0 Delete requests for non-exi stent data.

0 Create requests for existent data.

o lInsert requests with "before” or "after” parameters that do not
exi st.

o Modification requests for nodes tagged with "when", and the "when"

condition evaluates to "false". 1In this case, the server MJST
reply with an "unknown-el enent" <error-tag> in the <rpc-error>.

Bj or kl und St andards Track [Page 140]

RFC 7950 YANG 1.1 August 2016

8.3.3. Validation

When datastore processing is conplete, the final contents MJST obey
all validation constraints. This validation processing is perforned

at differing times according to the datastore. |If the datastore is
"runni ng" or "startup", these constraints MJST be enforced at the end
of the <edit-config> or <copy-config> operation. |f the datastore is

"candi date", the constraint enforcenent is delayed until a <conmt>
or <validate> operation takes place.

9. Built-In Types

YANG has a set of built-in types, simlar to those of nany
programi ng | anguages, but with sone differences due to specia
requi renents fromthe managenent informati on nodel

Additional types may be defined that are derived fromthose built-in
types or fromother derived types. Derived types may use subtyping
to fornmally restrict the set of possible val ues.

The different built-in types and their derived types allow different
ki nds of subtyping, nanmely length and regul ar expression restrictions
of strings (Sections 9.4.4 and 9.4.5) and range restrictions of
nuneric types (Section 9.2.4).

The lexical representation of a value of a certain type is used in
the XML encodi ng and when specifying default values and nunerica
ranges i n YANG nodul es.

9.1. Canonical Representation

For nost types, there is a single canonical representation of the
type’'s values. Sone types allow multiple |exical representations of
the sane value; for exanple, the positive integer "17" can be
represented as "+17" or "17". |Inplenentati ons MJIST support al

| exi cal representations specified in this docunent.

Wien a server sends XM.-encoded data, it MJST use the canonical form
defined in this section. Oher encodings may introduce alternate
representations. Note, however, that values in the data tree are
conceptual ly stored in the canonical representation as defined in
this section. |In particular, any XPath expression evaluations are
done using the canonical formif the data type has a canonical form
If the data type does not have a canonical form the format of the
val ue MUST match the data type's lexical representation, but the
exact format is inplenentati on dependent.

Bj or kl und St andards Track [Page 141]

RFC 7950 YANG 1.1 August 2016

Sonme types have a |l exical representation that depends on the
encodi ng, e.g., the XML context in which they occur. These types do
not have a canonical form

9.2. The Integer Built-In Types

The integer built-in types are int8, intl6, int32, int64, uint8,
uint16, uint32, and uint64. They represent signed and unsi gned
integers of different sizes:

int8 represents integer values between -128 and 127, inclusively.

intlé represents integer values between -32768 and 32767,
i nclusively.

int32 represents integer values between -2147483648 and 2147483647,
i ncl usively.

int64 represents integer val ues between -9223372036854775808 and
9223372036854775807, inclusively.

uint8 represents integer values between 0 and 255, inclusively.
uintl6 represents integer values between 0 and 65535, inclusively.

uint32 represents integer values between 0 and 4294967295,
i nclusively.

uint64 represents integer values between 0 and 18446744073709551615,
i nclusively.

9.2.1. Lexical Representation

An integer value is lexically represented as an optional sign ("+" or
"-"), followed by a sequence of decimal digits. |If no signis
specified, "+" is assuned.

For conveni ence, when specifying a default value for an integer in a
YANG nodul e, an alternative |exical representation can be used that
represents the value in a hexadecimal or octal notation. The
hexadeci mal notation consists of an optional sign ("+" or "-"),

foll owed by the characters "0x", followed by a nunber of hexadeci ma
digits where letters nmay be uppercase or |owercase. The octa
notati on consists of an optional sign ("+" or "-"), followed by the
character "0", followed by a nunber of octal digits.

Bj or kl und St andards Track [Page 142]

RFC 7950 YANG 1.1 August 2016

Note that if a default value in a YANG nodul e has a | eadi ng zero
("0"), it is interpreted as an octal nunber. In the XM encoding, an
integer is always interpreted as a deci mal nunber, and | eading zeros
are all oned.

Exanpl es:
/'l 1egal values
+4711 /1 legal positive value
4711 /'l legal positive val ue
-123 /1 legal negative val ue
Oxf 00f /1l legal positive hexadeci mal val ue
- Oxf /'l legal negative hexadeci nal val ue
052 /1 legal positive octal value
/1 illegal values
-1 /1 illegal internediate space

9.2.2. Canonical Form

The canonical form of a positive integer does not include the sign
"+". Leading zeros are prohibited. The value zero is represented
as "0".

9.2.3. Restrictions

Al integer types can be restricted with the "range" statenent
(Section 9.2.4).

9.2.4. The "range" Statenent

The "range" statenent, which is an optional substatenment to the
"type" statenent, takes as an argunment a range expression string. It
is used to restrict integer and decimal built-in types, or types
derived fromthem

A range consists of an explicit value, or a |ower-inclusive bound,
two consecutive dots "..", and an upper-inclusive bound. Miltiple
val ues or ranges can be given, separated by "|". If nultiple values
or ranges are given, they all MJST be disjoint and MJST be in
ascending order. If a range restriction is applied to a type that is
al ready range-restricted, the new restriction MIST be equally
limting or nore linmting, i.e., raising the | ower bounds, reducing

t he upper bounds, renoving explicit values or ranges, or splitting
ranges into nultiple ranges with internedi ate gaps. Each explicit
val ue and range boundary val ue given in the range expressi on MJST

Bj or kl und St andards Track [Page 143]

RFC 7950 YANG 1.1 August 2016

match the type being restricted or be one of the special values "nin"
or "max". "min" and "nmax" nean the m ni num and nmaxi num val ues
accepted for the type being restricted, respectively.

The range expression syntax is formally defined by the rule
"range-arg" in Section 14.

9.2.4.1. The range’s Substatenents

Fom e e e e e oo oo f S Fom e e e e e o oo +
| substatenent | section | cardinality

S Fomm e e o S +
description	7.21.3	0..1
error-app-tag	7.5.4.2] 0..1	
error-nessage	7.5.4.1] 0..1	
reference	7.22.4	0..1
S Fomm e e o B S +

9.2.5. Usage Exanple

typedef ny-base-int32-type {
type int32 {
range "1..4 | 10..20"
}

}

typedef ny-typel {
type ny-base-int32-type {
/1l legal range restriction
range "11..nmax"; // 11..20
}
}

typedef ny-type2 {
type ny-base-int32-type {
/1 illegal range restriction
range "11..100";
}
}

9.3. The decinmal 64 Built-1n Type

The decinmal 64 built-in type represents a subset of the real nunbers,
whi ch can be represented by decinal numerals. The val ue space of
decimal 64 is the set of nunbers that can be obtained by nultiplying a
64-bit signed integer by a negative power of ten, i.e., expressible
as "i x 10M-n" where i is an integer64 and n is an integer between 1
and 18, inclusively.

Bj or kl und St andards Track [Page 144]

RFC 7950 YANG 1.1 August 2016

9.3.1. Lexical Representation

A decinal 64 value is lexically represented as an optional sign ("+"

or "-"), followed by a sequence of decinmal digits, optionally
followed by a period ('.’) as a decinal indicator and a sequence of
decinmal digits. |If no sign is specified, "+" is assuned.

9.3.2. Canonical Form

The canonical form of a positive deci mal 64 val ue does not include the
sign "+". The decimal point is required. Leading and trailing zeros
are prohibited, subject to the rule that there MIST be at |east one
digit before and after the decinmal point. The value zero is
represented as "0.0".

9.3.3. Restrictions

A decinal 64 type can be restricted with the "range" statenent
(Section 9.2.4).

9.3.4. The "fraction-digits" Statenent

The "fraction-digits" statenent, which is a substatenent to the
"type" statenent, MJST be present if the type is "deci nal 64". |t
takes as an argunent an integer between 1 and 18, inclusively. It
controls the size of the minimumdifference between val ues of a
deci nal 64 type by restricting the value space to nunbers that are
expressible as "i x 10"-n" where n is the fraction-digits argument.

Bj or kl und St andards Track [Page 145]

RFC 7950 YANG 1.1 August 2016

The following table lists the m ni num and naxi num val ues for each
fraction-digit val ue:

[TS B o +
| fraction-digit | mn | max |
S oo e e e e e e oo oo - o e e e oo oo o - +

1 -922337203685477580. 8 | 922337203685477580. 7

2 -92233720368547758. 08 | 92233720368547758. 07

3 -9223372036854775. 808 | 9223372036854775. 807

4 -922337203685477. 5808 | 922337203685477. 5807

5 -92233720368547. 75808 | 92233720368547. 75807

6 - 9223372036854, 775808 | 9223372036854. 775807

7 -922337203685. 4775808 | 922337203685. 4775807

8 -92233720368. 54775808 | 92233720368. 54775807

9 -9223372036. 854775808 | 9223372036. 854775807

10	-922337203. 6854775808	922337203. 6854775807

11 -92233720. 36854775808 92233720. 36854775807
12 -9223372. 036854775808 9223372. 036854775807
13 -922337. 2036854775808 922337. 2036854775807
14 -92233. 72036854775808 92233. 72036854775807
15 -9223.372036854775808 9223. 372036854775807
16 -922.3372036854775808 922.3372036854775807
17 -92.23372036854775808 92.23372036854775807
18 -9, 223372036854775808 9.223372036854775807
oo oo o e e oo +

9.3.5. Usage Exanple

typedef ny-decinmal {
type deci nal 64 {
fraction-digits 2;
range "1 .. 3.14 | 10 | 20..max";
}
}

9.4. The string Built-1n Type

The string built-in type represents human-readabl e strings in YANG
Legal characters are the Unicode and |1 SO | EC 10646 [I| SO. 10646]
characters, including tab, carriage return, and |line feed but
excluding the other CO control characters, the surrogate bl ocks, and
the noncharacters. The string syntax is fornally defined by the rule
"yang-string" in Section 14.

9.4.1. Lexical Representation

A string value is lexically represented as character data in the XM
encodi ng.

Bj or kl und St andards Track [Page 146]

RFC 7950 YANG 1.1 August 2016

9.4.2. Canonical Form

The canonical formis the same as the lexical representation. No
Uni code normalization of string values is perforned.

9.4.3. Restrictions

A string can be restricted with the "l ength" (Section 9.4.4) and
"pattern" (Section 9.4.5) statenments.

9.4.4. The "length" Statenent

The "l ength" statenment, which is an optional substatenent to the
"type" statement, takes as an argunent a |length expression string.
It is used to restrict the built-in types "string" and "binary" or
types derived fromthem

A "length" statenent restricts the nunber of Unicode characters in
the string.

A length range consists of an explicit value, or a |ower bound, two
consecutive dots "..", and an upper bound. Miltiple values or ranges
can be given, separated by "|". Length-restricting values MJST NOT
be negative. |If nultiple values or ranges are given, they all MJST
be disjoint and MJUST be in ascending order. |If a length restriction
is applied to a type that is already length-restricted, the new
restriction MIUST be equally limiting or nore linmting, i.e., raising
the | ower bounds, reducing the upper bounds, renoving explicit |ength
val ues or ranges, or splitting ranges into multiple ranges with
internedi ate gaps. A length value is a non-negative integer or one
of the special values "mn" or "max". "mn" and "max" mean the

m ni mum and maxi mum | engt hs accepted for the type being restricted,
respectively. An inplenentation is not required to support a length
val ue |l arger than 18446744073709551615.

The I ength expression syntax is fornmally defined by the rule
"l ength-arg" in Section 14.

9.4.4.1. The length’ s Substatenents

S Fomm e e o B S +
| substatenment | section | cardinality

R [TS T +
description	7.21.3	0..1
error-app-tag	7.5.4.2	0..1
error-nessage	7.5.4.1	0..1
reference	7.212.4	0..1
S Fomm e e o S +

Bj or kl und St andards Track [Page 147]

RFC 7950 YANG 1.1 August 2016

9.4.5. The "pattern" Statenent

9.4

9. 4.

Bj o

The "pattern" statement, which is an optional substatement to the
"type" statenent, takes as an argunent a regul ar expression string,
as defined in [XSD-TYPES]. It is used to restrict the built-in type
"string", or types derived from"string", to values that match the
pattern.

If the type has nultiple "pattern" statements, the expressions are
ANDed together, i.e., all such expressions have to match.

If a pattern restriction is applied to a type that is already
pattern-restricted, values nmust match all patterns in the base type
in addition to the new patterns.

.5.1. The pattern’s Substatenents

S Fomm e e o S +
| substatenent | section | cardinality

. N T N +
description	7.21.3	0..1
error-app-tag	7.5.4.2	0..1
error-nessage	7.5.4.1	0..1
nodifier	9.4.6	0..1
reference	7.21.4	0..1
. N T N . +

6. The "nodifier" Statenent

The "nodifier" statenent, which is an optional substatenent to the
"pattern" statement, takes as an argunent the string "invert-nmatch".

If a pattern has the "invert-match" nodifier present, the type is
restricted to values that do not match the pattern

rkl und St andards Track [Page 148]

RFC 7950 YANG 1.1 August 2016

9.4.7. Usage Exanple
Wth the follow ng typedef:

typedef ny-base-str-type {

type string {
length "1..255";

}
}

the followi ng refinement is |egal:

type ny-base-str-type {
/'l legal length refinenent
length "11 | 42..max"; // 11 | 42..255

}

and the following refinenent is illegal:
type ny-base-str-type {

Il illegal length refinenent
length "1..999";

}
Wth the foll ow ng type:

type string {
I ength "0..4";

pattern "[0-9’a—fA-F]*";
the followi ng strings match:

AB /'l 1egal
9A00 /1 |egal

and the follow ng strings do not natch:

00ABAB /Il illegal, too |ong
xx00 /1 illegal, bad characters

Bj or kl und St andards Track [Page 149]

RFC 7950 YANG 1.1 August

Wth the foll ow ng type:

type string {
length "1..max";

pattern '[a-zA-Z][a-zA-Z0-9\-_.]*";
pattern "[xX][mM[IL].* {

nodi fier invert-nmatch;

}
}

the follow ng string matches:
enabl ed /1 |egal
and the followi ng strings do not match:

10- mbi t /1 illegal, starts with a nunber
xm -elenent // illegal, starts with illegal sequence

9.5. The boolean Built-In Type
The bool ean built-in type represents a bool ean val ue.
9.5.1. Lexical Representation

The lexical representation of a boolean value is a string with a
val ue of "true" or "false". These values MJST be in | owercase

9.5.2. Canonical Form

The canonical formis the sane as the | exical representation
9.5.3. Restrictions

A bool ean cannot be restricted.
9.6. The enuneration Built-1In Type

The enuneration built-in type represents values froma set of
assi gned nanes.

9.6.1. Lexical Representation

2016

The lexical representation of an enunmeration value is the assigned

name string.

Bj or kl und St andards Track [Page

150]

RFC 7950 YANG 1.1 August 2016

9.6.2. Canonical Form
The canonical formis the assigned nane string.
9.6.3. Restrictions

An enuneration can be restricted with one or nore "enunt
(Section 9.6.4) statements, which enunerate a subset of the val ues
for the base type

9.6.4. The "enuni Statenent

The "enunt' statenent, which is a substatenent to the "type"
statement, MJUST be present if the type is "enuneration". It is
repeatedly used to specify each assigned name of an enuneration type.
It takes as an argunment a string that is the assigned name. The
string MJUST NOT be zero-length and MJUST NOT have any | eadi ng or
trailing whitespace characters (any Unicode character with the
"White Space" property). The use of Unicode control codes SHOULD be
avoi ded.

The statenment is optionally followed by a bl ock of substatenents that
hol ds detail ed enum i nformation

Al'l assigned nanes in an enunerati on MJUST be uni que.

When an existing enunmeration type is restricted, the set of assigned
nanes in the new type MJST be a subset of the base type's set of
assigned nanmes. The value of such an assigned name MJUST NOT be
changed.

9.6.4.1. The enunis Substatenents

S f S Fom e e e e e o oo +
| substatenent | section | cardinality

RS Fomm e e o S +
description	7.21.3	0..1
if-feature	7.20.2	0..n
reference	7.21.4	0..1
status	7.22.2	0..1
val ue	9.6.4.2	0..1
RS Fomm e e o S +

Bj or kl und St andards Track [Page 151]

RFC 7950 YANG 1.1 August 2016

9.6.4.2. The "val ue" Statenent

The "val ue" statement, which is optional, is used to associate an

i nteger value with the assigned nanme for the enum This integer

val ue MUST be in the range -2147483648 to 2147483647, and it MJST be
uni que within the enuneration type.

If a value is not specified, then one will be autonatically assigned.
If the "enunt substatenent is the first one defined, the assigned
value is zero (0); otherw se, the assigned value is one greater than
the current highest enumvalue (i.e., the highest enum val ue,

inmplicit or explicit, prior to the current "enunt substatenent in the
parent "type" statenent).

Note that the presence of an "if-feature" statenent in an "enuni
statement does not affect the automatically assigned val ue.

If the current highest value is equal to 2147483647, then an enum
val ue MUST be specified for "enuni substatenents follow ng the one
with the current highest val ue.

When an existing enunmeration type is restricted, the "val ue"
statement MJST either have the sanme value as in the base type or not
be present, in which case the value is the sane as in the base type.

9.6.5. Usage Exanple

| eaf nyenum {
type enuneration {
enum zer o
enum one;
enum seven {
val ue 7;
}
}
}

The lexical representation of the leaf "nmyenunm with
val ue "seven" is:

<nyenunrseven</ nyenunp

Bj or kl und St andards Track [Page 152]

RFC 7950 YANG 1.1

Wth the foll owi ng typedef:

t ypedef ny-base-enuneration-type {
type enuneration {
enum white {
val ue 1;

enum yel | ow {
val ue 2;

enum red {
val ue 3;
}
}
}

the follow ng refinement is |egal

type ny-base-enuneration-type {
/1 1egal enumrefinenment
enum yel | ow,
enum red {
val ue 3;
}

}

and the following refinement is illegal

type ny-base-enuneration-type {

/1 illegal enumrefinenent
enum yel | ow {

value 4; // illegal value change
enum bl ack; // illegal addition of new name

Bj or kl und St andards Track

August 2016

[Page 153]

RFC 7950 YANG 1.1 August 2016

The foll owi ng exanpl e shows how an "enum' can be tagged with
"if-feature", making the value legal only on servers that advertise
the corresponding feature:

type enuneration {
enum tcp;
enum ssh {
if-feature ssh;
}
enumtls {
if-feature tls;
}
}

9.7. The bits Built-In Type

The bits built-in type represents a bit set. That is, a bits value
is a set of flags identified by small integer position nunbers
starting at 0. Each bit nunber has an assi gned nane.

When an existing bits type is restricted, the set of assigned nanes
in the new type MJST be a subset of the base type's set of assigned
nanes. The bit position of such an assigned name MJUST NOT be
changed.

9.7.1. Restrictions

A bits type can be restricted with the "bit" (Section 9.7.4)
st at enent .

9.7.2. Lexical Representation
The |l exical representation of the bits type is a space-separated |ist
of the nanes of the bits that are set. A zero-length string thus
represents a value where no bits are set.

9.7.3. Canonical Form
In the canonical form the bit values are separated by a single space

character and they appear ordered by their position (see
Section 9.7.4.2).

Bj or kl und St andards Track [Page 154]

RFC 7950 YANG 1.1 August 2016

9.7.4. The "bit" Statenent

The "bit" statenment, which is a substatenent to the "type" statenent,

MUST be present if the type is "bits". It is repeatedly used to
specify each assigned nanmed bit of a bits type. It takes as an
argunent a string that is the assigned nanme of the bit. It is

followed by a bl ock of substatenents that holds detailed bit
information. The assigned name follows the same syntax rules as an
identifier (see Section 6.2).

Al'l assigned nanes in a bits type MJST be uni que.

9.7.4.1. The bit’s Substatenents

. I . +
| substatenent | section | cardinality

B TS Fomm e e o B S +
description	7.21.3	0..1
if-feature	7.20.2	0..n
position	9.7.4.2	0..1
reference	7.21.4	0..1
status	7.22.2	0..1
B TS Fomm e e o B S +

9.7.4.2. The "position" Statenent

The "position" statenment, which is optional, takes as an argunent a
non- negati ve integer value that specifies the bit’s position within a
hypot hetical bit field. The position value MIST be in the range 0 to
4294967295, and it MJST be unique within the bits type.

If a bit position is not specified, then one will be automatically
assigned. If the "bit" substatement is the first one defined, the
assigned value is zero (0); otherw se, the assigned value is one
greater than the current highest bit position (i.e., the highest bit
position, inplicit or explicit, prior to the current "bit"
substatenent in the parent "type" statenent).

Note that the presence of an "if-feature" statenent in a "bit"
statenment does not affect the automatically assigned position

If the current highest bit position value is equal to 4294967295,
then a position value MJST be specified for "bit" substatenents
following the one with the current highest position val ue.

When an existing bits type is restricted, the "position" statenent

MUST either have the sane value as in the base type or not be
present, in which case the value is the same as in the base type

Bj or kl und St andards Track [Page 155]

RFC 7950 YANG 1.1 August 2016

9.7.5. Usage Exanple

G ven the follow ng typedef and |eaf:

typedef nybits-type {
type bits {
bit disable-nagle {
position O;
}

bit auto-sense-speed {
position 1;
}

bit ten-nmb-only {
position 2;
}

}
}

| eaf nybits {
type nybits-type
default "auto-sense-speed"

}

The | exical representation of this leaf with bit val ues di sabl e-nagl e
and ten-nb-only set woul d be:

<nybi t s>di sabl e- nagl e ten-nb-onl y</ nybits>
The followi ng exanpl e shows a | egal refinenent of this type

type nybits-type {
/1 legal bit refinenent
bit di sabl e-nagle {
position O;
}
bit auto-sense-speed {
position 1;
}
}

Bj or kl und St andards Track [Page 156]

RFC 7950 YANG 1.1 August 2016

and the following refinenent is illegal

type nybits-type {

/1 illegal bit refinenment
bit disabl e-nagle {
position 2; // illegal position change
bit hundred-nb-only; // illegal addition of new nane
}
9.8. The binary Built-1n Type
The binary built-in type represents any binary data, i.e., a sequence
of octets.

9.8.1. Restrictions

A binary type can be restricted with the "length" (Section 9.4.4)
statenent. The length of a binary value is the nunber of octets it
cont ai ns.

9.8.2. Lexical Representation

Bi nary values are encoded with the base64 encodi ng schene (see
Section 4 in [RFC4648]).

9.8.3. Canonical Form

The canonical formof a binary value follows the rules of "Base 64
Encodi ng" in [RFC4648].

9.9. The leafref Built-In Type

The leafref built-in type is restricted to the value space of some

| eaf or leaf-list node in the schema tree and optionally further
restricted by correspondi ng i nstance nodes in the data tree. The
"pat h" substatement (Section 9.9.2) is used to identify the referred
| eaf or leaf-list node in the schema tree. The val ue space of the
referring node is the val ue space of the referred node.

If the "require-instance" property (Section 9.9.3) is "true", there
MJUST exist a node in the data tree, or a node with a default value in
use (see Sections 7.6.1 and 7.7.2), of the referred schema tree | eaf
or leaf-list node with the sane value as the leafref value in a valid
data tree.

Bj or kl und St andards Track [Page 157]

RFC 7950 YANG 1.1 August 2016

If the referring node represents configuration data and the
"require-instance" property (Section 9.9.3) is "true", the referred
node MJST al so represent configuration

There MUST NOT be any circular chains of |eafrefs.

If the leaf that the leafref refers to is conditional based on one or
nore features (see Section 7.20.2), then the leaf with the | eafref
type MJUST al so be conditional based on at |east the sane set of

feat ures.

9.9.1. Restrictions

A leafref can be restricted with the "require-instance" statenent
(Section 9.9.3).

9.9.2. The "path" Statenent

The "path" statenent, which is a substatenent to the "type'
statenment, MJUST be present if the type is "leafref”". It takes as an
argunent a string that MJST refer to a leaf or leaf-1list node.

The syntax for a path argunment is a subset of the XPath abbreviated
syntax. Predicates are used only for constraining the values for the
key nodes for list entries. Each predicate consists of exactly one
equality test per key, and nultiple adjacent predicates MAY be
present if a list has multiple keys. The syntax is fornally defined
by the rule "path-arg" in Section 14.

The predicates are only used when nore than one key reference is
needed to uniquely identify a leaf instance. This occurs if a list
has nmultiple keys or a reference to a |leaf other than the key in a
list is needed. |In these cases, nultiple leafrefs are typically
specified, and predicates are used to tie themtogether.

The "path" expression evaluates to a node set consisting of zero,
one, or nore nodes. |If the "require-instance" property is "true"
this node set MJUST be non-enpty.

The "path" XPath expression is conceptually evaluated in the
followi ng context, in addition to the definition in Section 6.4.1

o If the "path" statenent is defined within a typedef, the context
node is the leaf or leaf-list node in the data tree that
ref erences the typedef.

0 Oherwi se, the context node is the node in the data tree for which
the "path" statenent is defined.

Bj or kl und St andards Track [Page 158]

RFC 7950 YANG 1.1 August 2016

9.9.3. The "require-instance" Statenent

The "require-instance" statement, which is a substatenent to the
"type" statenent, MAY be present if the type is "instance-identifier"
or "leafref”. It takes as an argunent the string "true" or "false"
If this statenent is not present, it defaults to "true"

If "require-instance" is "true", it neans that the instance being

referred to MUST exist for the data to be valid. This constraint is
enforced according to the rules in Section 8.

If "require-instance" is "false", it nmeans that the instance being
referred to MAY exist in valid data.

9.9.4. Lexical Representation

A leafref value is lexically represented the sane way as the leaf it
references represents its val ue.

9.9.5. Canonical Form

The canonical formof a leafref is the same as the canoni cal form of
the leaf it references.

9.9.6. Usage Exanple
Wth the following |ist:

list interface {
key "nane";
| eaf nane {
type string;

| eaf adm n-status {
type adm n- st at us

list address {
key " i pll ;
leaf ip {
type yang:i p- address;

Bj or kl und St andards Track [Page 159]

RFC 7950 YANG 1.1 August 2016

the following leafref refers to an existing interface:

| eaf mgnt-interface {
type leafref {
path "../interface/name";
}

}
An exanpl e of a correspondi ng XM. sni ppet:

<interface>
<nane>et hO</ nane>
</interface>
<interface>
<nane>| o</ name>
</interface>

<ngm -i nterface>et hO</ ngnt-i nterface>
The following leafrefs refer to an existing address of an interface:

cont ai ner default-address {

| eaf ifnanme {

type leafref {
path "../../interface/ nane";

}

}

| eaf address {
type leafref {

path "../../interface[nane = current()/../ifnane]"
+ "/address/ip";

Bj or kl und St andards Track [Page 160]

RFC 7950 YANG 1.1 August

An exanpl e of a correspondi ng XM. sni ppet:

<interface>
<nane>et h0</ nane>
<admi n- st at us>up</ adm n- st at us>
<addr ess>
<i p>192.0. 2. 1</i p>
</ addr ess>
<addr ess>
<i p>192.0. 2. 2</i p>
</ addr ess>
</interface>
<interface>
<nane>| o</ nanme>
<admi n- st at us>up</ admi n- st at us>
<addr ess>
<i p>127.0.0. 1</ i p>
</ addr ess>
</interface>

<def aul t - addr ess>

<i f nane>et hO</ i f name>

<addr ess>192. 0. 2. 2</ addr ess>
</ def aul t - addr ess>

The following list uses a leafref for one of its keys. This is
simlar to a foreign key in a rel ational database.

list packet-filter {
key "if-name filter-id"
| eaf if-nane {
type leafref {
path "/interfacel/ nane"

}

}

leaf filter-id {
type uint32;

2016

Bj or kl und St andards Track [Page 161]

RFC 7950 YANG 1.1 August 2016

An exanpl e of a correspondi ng XM. sni ppet:

<interface>
<nane>et h0</ nane>
<admi n- st at us>up</ adm n- st at us>
<addr ess>
<i p>192.0. 2. 1</i p>
</ addr ess>
<addr ess>
<i p>192.0. 2. 2</i p>
</ addr ess>
</interface>

<packet-filter>
<i f-name>et hO</i f - nane>
<filter-id>l</filter-id>

</ packet-filter>
<packet-filter>
<i f - name>et hO</i f - nane>
<filter-id>2</filter-id>

</ packet-filter>

The following notification defines two leafrefs to refer to an
exi sting adni n- st at us:

notification link-failure {
| eaf if-nane {
type leafref {
path "/interfacel/ nane";

}

| eaf adm n-status {
type leafref {
path "/interface[nane = current()/../if-name]"
+ "/adm n-status"

Bj or kl und St andards Track [Page 162]

RFC 7950 YANG 1.1 August 2016

An exanpl e of a corresponding XML notification

<notification
xm ns="urn:ietf:paranms: xm :ns:netconf:notification:1. 0">
<event Ti me>2008- 04- 01T00: 01: 00Z</ event Ti me>
<link-failure xm ns="urn: exanpl e: syst enf >
<i f - nane>et h0</i f - name>
<admi n- st at us>up</ adm n- st at us>
</link-failure>
</notification>

9.10. The identityref Built-In Type

The identityref built-in type is used to reference an existing
identity (see Section 7.18).

9.10.1. Restrictions
An identityref cannot be restricted.
9.10.2. The identityref’s "base" Statenent

The "base" statenent, which is a substatenent to the "type"
statenent, MJUST be present at |east once if the type is
"identityref". The argunent is the nane of an identity, as defined
by an "identity" statement. |If a prefix is present on the identity
nane, it refers to an identity defined in the nodul e that was
imported with that prefix. GOherwise, an identity with the matching
nane MJST be defined in the current nodule or an included subnodul e.

Valid values for an identityref are any identities derived from al
the identityref’s base identities. On a particular server, the valid
val ues are further restricted to the set of identities defined in the
nmodul es i npl enmented by the server.

9.10.3. Lexical Representation

An identityref is lexically represented as the referred identity’'s
qualified name as defined in [XM.-NAMES]. If the prefix is not
present, the nanespace of the identityref is the default namespace
in effect on the elenent that contains the identityref val ue.

When an identityref is given a default value using the "default"
statement, the identity nane in the default value MAY have a prefix.
If a prefix is present on the identity name, it refers to an identity
defined in the nmodule that was inported with that prefix, or the
prefix for the current nodule if the identity is defined in the

Bj or kl und St andards Track [Page 163]

RFC 7950 YANG 1.1 August 2016

current nodule or one of its subnodules. QOherwi se, an identity with
t he mat chi ng name MUST be defined in the current nodule or one of its
subnodul es

The string value of a node of type "identityref" in a "must" or
"when" XPath expression is the referred identity’'s qualified nane
with the prefix present. |f the referred identity is defined in an

i mported nodule, the prefix in the string value is the prefix defined
in the corresponding "inport" statement. Oherwi se, the prefix in
the string value is the prefix for the current nodul e.

9.10.4. Canonical Form

Since the |l exical formdepends on the XML context in which the val ue
occurs, this type does not have a canonical form

9.10.5. Usage Exanple

Wth the identity definitions in Section 7.18.3 and the foll ow ng
nodul e:

nmodul e exanpl e-ny-crypto {
yang-version 1.1;
nanespace "urn: exanpl e: ny-crypto"
prefix nt;

i mport "exanpl e-crypto-base" {
prefix "crypto"
}

identity aes {
base "crypto: crypto-al g"
}

| eaf crypto {
type identityref {
base "crypto:crypto-alg"

}
}
cont ai ner aes-paraneters {
when "../crypto = 'nt:aes’"
}

}

Bj or kl und St andards Track [Page 164]

RFC 7950 YANG 1.1 August 2016
the following is an exanple of how the leaf "crypto" can be encoded,
if the value is the "des3" identity defined in the "des" nodul e:

<crypto xm ns: des="urn: exanpl e: des" >des: des3</ crypt 0>

Any prefixes used in the encoding are | ocal to each instance
encodi ng. This nmeans that the sane identityref nay be encoded
differently by different inplenentations. For exanple, the follow ng
exanpl e encodes the sane | eaf as above:

<crypto xm ns: x="ur n: exanpl e: des" >x: des3</ crypt o>

If the "crypto" leaf’'s value is instead "aes", defined in the
"exanpl e-ny-crypto" nodule, it can be encoded as:

<crypto xm ns: nc="urn: exanpl e: ny-crypt o">nt: aes</ crypt o>
or, using the default nanespace:
<crypt o>aes</ crypt o>
9.11. The enpty Built-1n Type

The enpty built-in type represents a | eaf that does not have any
value; it conveys information by its presence or absence.

An enpty type cannot have a default val ue.
9.11.1. Restrictions

An enpty type cannot be restricted.
9.11.2. Lexical Representation

Not applicabl e.
9.11.3. Canonical Form

Not applicabl e.

Bj or kl und St andards Track [Page 165]

RFC 7950 YANG 1.1 August 2016

9.11.4. Usage Exanpl e
Wth the follow ng |eaf:
| eaf enabl e-qos {

type enpty;
}

the following is an exanple of a valid encoding if the |eaf exists:
<enabl e- qos/ >
9.12. The union Built-1In Type

The union built-in type represents a value that corresponds to one of
its menber types.

When the type is "union", the "type" statenent (Section 7.4) MJST be

present. It is repeatedly used to specify each nenber type of the
union. It takes as an argunent a string that is the name of a
nmenber type

A menber type can be of any built-in or derived type.

When generating an XML encodi ng, a value is encoded according to the
rul es of the nmenber type to which the value bel ongs. When
interpreting an XM. encoding, a value is validated consecutively

agai nst each nmenber type, in the order they are specified in the
"type" statenment, until a match is found. The type that matched wl|l
be the type of the value for the node that was validated, and the
encoding is interpreted according to the rules for that type.

Any default value or "units" property defined in the nenber types is
not inherited by the union type.

9.12.1. Restrictions

A uni on cannot be restricted. However, each nenber type can be
restricted, based on the rules defined in Section 9.

9.12.2. Lexical Representation

The | exical representation of a union is a value that corresponds to
the representation of any one of the nenber types.

Bj or kl und St andards Track [Page 166]

RFC 7950 YANG 1.1 August 2016

9.12.3. Canonical Form

The canonical formof a union value is the sane as the canonical form
of the nmenber type of the val ue.

9.12.4. Usage Exanpl e
The following is a union of an int32 and an enuneration
type union {
type int32;

type enuneration {
enum "unbounded"

}
}
Care nmust be taken when a nmenber type is a | eafref where the
"require-instance" property (Section 9.9.3) is "true". |If a leaf of

such a type refers to an existing instance, the |leaf’'s val ue nust be
revalidated if the target instance is deleted. For exanple, with the
followi ng definitions:

list filter {
key nane;
| eaf nane {
type string;

}

| eaf outbound-filter {
type union {
type leafref {
path "/filter/name";
}
type enuneration {
enum default-filter;
}
}
}

assune that there exists an entry in the filter list with the nane
"http" and that the outbound-filter |eaf has this val ue:

<filter>
<name>ht t p</ nane>
</[filter>
<out bound-filter>http</outbound-filter>

Bj or kl und St andards Track [Page 167]

RFC 7950 YANG 1.1 August 2016

If the filter entry "http" is renoved, the outbound-filter leaf’s

val ue doesn’t match the leafref, and the next nenber type is checked.
The current value ("http") doesn’'t match the enuneration, so the
resulting configuration is invalid.

If the second nmenber type in the union had been of type "string"
i nstead of an enuneration, the current value would have matched, and
the resulting configuration would have been vali d.

9.13. The instance-identifier Built-In Type

The instance-identifier built-in type is used to uniquely identify a
particul ar instance node in the data tree.

The syntax for an instance-identifier is a subset of the XPath
abbrevi ated syntax, formally defined by the rule
"instance-identifier"” in Section 14. It is used to uniquely identify
a node in the data tree. Predicates are used only for specifying the
val ues for the key nodes for list entries, a value of a leaf-Ilist
entry, or a positional index for a list wthout keys. For
identifying list entries with keys, each predicate consists of one
equality test per key, and each key MJST have a correspondi ng
predicate. If a key is of type "enpty", it is represented as a
zero-length string ("").

If the leaf with the instance-identifier type represents
configuration data and the "require-instance" property

(Section 9.9.3) is "true", the node it refers to MIUST al so represent
configuration. Such a leaf puts a constraint on valid data. Al
such | eaf nodes MJST reference existing nodes or leaf or leaf-Ilist
nodes with their default value in use (see Sections 7.6.1 and 7.7.2)
for the data to be valid. This constraint is enforced according to
the rules in Section 8.

The "instance-identifier” XPath expression is conceptual ly eval uated
in the following context, in addition to the definition in

Section 6.4.1:

0 The context node is the root node in the accessible tree.

9. 13. 1. Restrictions

An instance-identifier can be restricted with the "require-instance"
statement (Section 9.9.3).

Bj or kl und St andards Track [Page 168]

RFC 7950 YANG 1.1 August 2016

9.13.2. Lexical Representation
An instance-identifier value is lexically represented as a string.
Al'l node nanes in an instance-identifier value MIST be qualified with
explicit namespace prefixes, and these prefixes MIST be declared in
the XML nanespace scope in the instance-identifier’'s XM el enent.
Any prefixes used in the encoding are local to each instance
encoding. This nmeans that the same instance-identifier may be
encoded differently by different inplenentations.

9.13.3. Canonical Form

Since the |l exical formdepends on the XML context in which the val ue
occurs, this type does not have a canonical form

9.13.4. Usage Exanple

The following are exanples of instance identifiers:

/* instance-identifier for a container */
/ ex: systeni ex: servi ces/ ex: ssh

/* instance-identifier for a leaf */
/ ex: systent ex: servi ces/ ex: ssh/ ex: port

/* instance-identifier for a list entry */
/ ex: systeni ex: user[ex: nane="fred']

/* instance-identifier for aleaf inalist entry */
[ex:systent ex: user[ex: nane="fred]/ex:type

/* instance-identifier for alist entry with two keys */
[ex:systenfex:server[ex:ip="192.0.2.1"][ex:port="80"]

/*

nstance-identifier for a list entry where the second
key ("enabled") is of type "enmpty" */
/ ex: systeni ex: service[ex: nane='foo’][ex: enabl ed=""]

/* instance-identifier for a leaf-list entry */
/ ex: systent ex: servi ces/ ex: ssh/ ex: ci pher[.="bl owfi sh-cbc’]

/* instance-identifier for a list entry wthout keys */
/ ex: stats/ex:port[3]

Bj or kl und St andards Track [Page 169]

RFC 7950 YANG 1.1 August 2016

10.

10.

10.

10.

10.

10.

XPat h Functi ons
Thi s docunent defines two generic XPath functions and five YANG
type-specific XPath functions. The function signatures are specified
with the syntax used in [XPATH].
1. Function for Node Sets
1.1. current()

node-set current()

The current() function takes no input paraneters and returns a node
set with the initial context node as its only nenber.

1.1.1. Usage Exanple
Wth this list:

list interface {
key "nane";

| eaf enabl ed {
type bool ean;

}
-

the following | eaf defines a "nmust" expression that ensures that the
referred interface is enabl ed:

| eaf outgoing-interface {
type leafref {
path "/interface/ name";
}

nmust '/interface[nane=current()]/enabled = "true"’

}
2. Function for Strings
2.1. re-match()
bool ean re-match(string subject, string pattern)
The re-match() function returns "true" if the "subject" string

mat ches the regul ar expression "pattern"; otherwise, it returns
"fal se".

Bj or kl und St andards Track [Page 170]

RFC 7950 YANG 1.1 August 2016

The re-match() function checks to see if a string matches a given
regul ar expression. The regular expressions used are the XM. Scherma
regul ar expressions [XSD-TYPES]. Note that this includes inplicit
anchoring of the regular expression at the head and tail.
10.2.1.1. Usage Exanple
The expression:
re-match("1.22.333", "\d{1,3}\.\d{1,3}\.\d{1,3}")
returns "true"
To count all logical interfaces called ethO.<nunber>, do:
count (/interface[re-match(nanme, "ethO\.\d+")])
10.3. Function for the YANG Types "leafref" and "instance-identifier"
10.3.1. deref()

node- set deref (node-set nodes)

The deref () function follows the reference defined by the first node
i n docunent order in the argunent "nodes" and returns the nodes it
refers to.

If the first argunment node is of type "instance-identifier", the
function returns a node set that contains the single node that the
instance identifier refers to, if it exists. |[If no such node exists,
an enpty node set is returned.

If the first argunment node is of type "leafref", the function returns
a node set that contains the nodes that the leafref refers to.
Specifically, this set contains the nodes selected by the leafref’s
"path" statenent (Section 9.9.2) that have the same val ue as the
first argunent node.

If the first argunment node is of any other type, an enpty node set is
r et ur ned.

Bj or kl und St andards Track [Page 171]

RFC 7950 YANG 1.1 August 2016

10.3.1.1. Usage Exanple

list interface {
key "nane type";
leaf nane { ... }
leaf type { ... }
| eaf enabled {
type bool ean;

}
contai ner ngnt-interface {
| eaf nane {
type leafref {
path "/interface/ name";
}
}
| eaf type {
type leafref {
path "/interface[name=current()/../nanme]/type"
must 'deref(.)/../enabled = "true"’ {
error-nessage
"The managenent interface cannot be disabled."
}
}
}

10.4. Functions for the YANG Type "identityref"
10.4.1. derived-from)
bool ean derived-from node-set nodes, string identity)

The derived-from() function returns "true" if any node in the
argunent "nodes" is a node of type "identityref" and its value is an
identity that is derived from (see Section 7.18.2) the identity
"identity"; otherwise, it returns "fal se"

The paraneter "identity" is a string matching the rule
"identifier-ref" in Section 14. |If a prefix is present on the
identity, it refers to an identity defined in the nodul e that was
imported with that prefix, or the local nodule if the prefix matches

the I ocal nodule’s prefix. |If no prefix is present, the identity
refers to an identity defined in the current nodule or an included
subnodul e.

Bj or kl und St andards Track [Page 172]

RFC 7950 YANG 1.1 August 2016

10.4.1.1. Usage Exanple

nmodul e exanpl e-interface {
yang-version 1.1;

idéntity i nterface-type

identity ethernet {
base interface-type
}

identity fast-ethernet {
base et hernet;
}

identity gigabit-ethernet {
base et hernet;
}

list interface {
key nane;
iééf type {
type identityref {
base interface-type

}
}

}

augrment "/interface" {
when ' derived-from(type, "exif:ethernet")’;
/'l generic Ethernet definitions here

}

Bj or kl und St andards Track [Page 173]

RFC 7950 YANG 1.1 August 2016

10.

10.

10.

10.

4.2. derived-fromor-self()
bool ean derived-fromor-sel f(node-set nodes, string identity)

The derived-fromor-self() function returns "true" if any node in the
argunent "nodes" is a node of type "identityref" and its value is an
identity that is equal to or derived from (see Section 7.18.2) the
identity "identity"; otherwise, it returns "fal se"

The paraneter "identity" is a string matching the rule
"identifier-ref” in Section 14. |If a prefix is present on the
identity, it refers to an identity defined in the nodul e that was
imported with that prefix, or the local nodule if the prefix matches
the I ocal nodule’'s prefix. |If no prefix is present, the identity
refers to an identity defined in the current nodule or an included
subnodul e.

4.2.1. Usage Exanpl e
The nmodul e defined in Section 10.4.1.1 night al so have:

augrment "/interface" {
when ’derived-fromor-self(type, "exif:fast-ethernet");
/1l Fast-Ethernet-specific definitions here

}

5. Function for the YANG Type "enuneration"
5.1. enumval ue()
nunber enuntval ue(node-set nodes)

The enum val ue() function checks to see if the first node in docunent
order in the argunent "nodes" is a node of type "enumeration" and
returns the enunis integer value. |If the "nodes" node set is enpty
or if the first node in "nodes" is not of type "enuneration", it
returns NaN (not a nunber).

Bj or kl und St andards Track [Page 174]

RFC 7950 YANG 1.1 August 2016

10.5.1.1. Usage Exanple
Wth this data nodel:
list alarm {
iééf severity {

type enuneration {
enum cl eared {

val ue 1;
P
enum i ndeterni nate {
val ue 2;
P
enum m nor {
val ue 3;
} .
enum war ni ng {
val ue 4;
P
enum maj or {
val ue 5;
P
enumcritical {
val ue 6;
}

}
}
}

the followi ng XPath expression selects only alarns that are of
severity "mjor" or higher:

[al arnf enum val ue(severity) >= 5]
10.6. Function for the YANG Type "bits"
10.6.1. Dbit-is-set()
bool ean bit-is-set(node-set nodes, string bit-nane)
The bit-is-set() function returns "true" if the first node in

docunent order in the argunent "nodes" is a node of type "bits" and
its value has the bit "bit-name" set; otherwise, it returns "fal se"

Bj or kl und St andards Track [Page 175]

RFC 7950 YANG 1.1 August 2016

10.

11.

6.1.1. Usage Exanple
If an interface has this |eaf:

| eaf flags {
type bits {
bit UP;
bit PROM SCUQUS
bit DI SABLED;
}
}

the followi ng XPath expression can be used to select all interfaces
with the UP flag set:

linterface[bit-is-set(flags, "UP")]
Updating a Modul e

As experience is gained with a nodule, it nmay be desirable to revise
that nmodul e. However, changes to published nodul es are not all owed
if they have any potential to cause interoperability problens between
a client using an original specification and a server using an
updat ed specification

For any published change, a new "revision" statement (Section 7.1.9)
MJUST be included in front of the existing "revision" statements. |If
there are no existing "revision" statenments, then one MJST be added
to identify the new revision. Furthernore, any necessary changes
MUST be applied to any netadata statenents, including the

"organi zati on" and "contact" statenents (Sections 7.1.7 and 7.1.8).

Note that definitions contained in a nodule are available to be

i mported by any ot her nodule and are referenced in "inport"
statements via the nodul e nanme. Thus, a nodul e name MJST NOT be
changed. Furthernore, the "nanespace" statenent MJST NOT be changed,
since all XM elenents are qualified by the nanmespace.

bsol ete definitions MIUST NOT be renoved from published nodul es,
since their identifiers may still be referenced by other nodul es.

Bj or kl und St andards Track [Page 176]

RFC 7950 YANG 1.1 August 2016

A definition in a published nodule nay be revised in any of the
foll owi ng ways:

(0]

An "enuneration" type may have new enuns added, provided the old
enuns’ s val ues do not change. Note that inserting a new enum
before an existing enumor reordering existing enuns will result
in new val ues for the existing enuns, unless they have explicit
val ues assigned to them

A "bits" type may have new bits added, provided the old bit
positions do not change. Note that inserting a new bit before an
existing bit or reordering existing bits will result in new
positions for the existing bits, unless they have explicit
positions assigned to them

A "range", "length", or "pattern" statement may expand the all owed
val ue space.

A "default" statenment nay be added to a | eaf that does not have a
default value (either directly or indirectly through its type).

A "units" statenment may be added.
"reference" statenent may be added or updat ed.

must" statenment nmay be renoved or its constraint rel axed

"when" statenent nmay be renoved or its constraint rel axed

> > > >

"mandat ory" statenent nay be renoved or changed from"true" to
‘fal se".

A "mn-el emrents" statenent nmay be renoved, or changed to require
fewer el enents.

A "max-el enents" statenent nay be renoved, or changed to all ow
nore el ements.

A "description" statenment may be added or changed wi t hout changi ng
the senmantics of the definition

A "base" statenent nay be added to an "identity" statenent.

A "base" statenent may be renoved froman "identityref" type
provided there is at | east one "base" statenent |eft.

New t ypedefs, groupings, rpcs, notifications, extensions,
features, and identities nmay be added.

Bj or kl und St andards Track [Page 177]

RFC 7950 YANG 1.1 August 2016

0 New data definition statenents nay be added if they do not add
mandat ory nodes (Section 3) to existing nodes or at the top | eve
in a nodule or subnodule, or if they are conditionally dependent
on a new feature (i.e., have an "if-feature" statenment that refers
to a new feature).

0 A new "case" statenent nay be added

0 A node that represented state data nay be changed to represent
configuration, provided it is not mandatory (Section 3).

0o An "if-feature" statenment may be renoved, provided its node is not
mandat ory (Section 3).

0 A "status" statenent may be added, or changed from"current" to
"deprecated" or "obsolete", or changed from "deprecated" to
"obsol ete”.

0o A "type" statenent nay be replaced with another "type" statenent
t hat does not change the syntax or senmantics of the type. For
exanple, an inline type definition my be replaced with a typedef,
but an int8 type cannot be replaced by an int16, since the syntax
woul d change

0 Any set of data definition nodes may be replaced with another set
of syntactically and semantically equival ent nodes. For exanple,
a set of leafs may be replaced by a "uses" statement of a grouping
with the sanme | eafs.

0 A nodule may be split into a set of subnodul es or a subnodul e nmay
be renoved, provided the definitions in the nodule do not change
in any way other than those allowed here.

o The "prefix" statenment nmay be changed, provided all |ocal uses of
the prefix are al so changed

O herwise, if the senmantics of any previous definition are changed
(i.e., if a non-editorial change is made to any definition other than
t hose specifically allowed above), then this MJST be achi eved by a
new definition with a new identifier.

In statenents that have any data definition statenents as
substatenments, those data definition substatenments MJUST NOT be
reordered. |If new data definition statenents are added, they can be
added anywhere in the sequence of existing substatenents.

Bj or kl und St andards Track [Page 178]

RFC 7950 YANG 1.1 August 2016

12. Coexistence with YANG Version 1

A YANG version 1.1 nodul e MUST NOT include a YANG version 1
subnmodul e, and a YANG version 1 nodul e MJUST NOT i nclude a YANG
version 1.1 subnodul e.

A YANG version 1 nodul e or subnodul e MUST NOT inport a YANG
version 1.1 nodul e by revision.

A YANG version 1.1 nodul e or subnodul e MAY inmport a YANG version 1
nmodul e by revi sion.

If a YANG version 1 nodule A inports nodule B without revision and
nodul e B is updated to YANG version 1.1, a server MAY inplenent both
of these nodules (A and B) at the same tinme. In such cases, a
NETCONF server MJST advertise both nmodul es using the rules defined in
Section 5.6.4, and SHOULD advertise nodule A and the | atest revision
of nmodule B that is specified with YANG version 1 according to the
rul es defined in [RFC6020] .

This rule exists in order to allow inplenentations of existing YANG
version 1 nodul es together with YANG version 1.1 nodules. Wthout
this rule, updating a single nodule to YANG version 1.1 would have a
cascadi ng effect on nodules that inport it, requiring all of themto
al so be updated to YANG version 1.1, and so on

13. YIN

A YANG nodul e can be translated into an alternative XM.-based syntax
called YIN. The translated nodule is called a YIN nodule. This
section describes bidirectional mapping rules between the two
fornmats.

The YANG and YIN formats contain equivalent information using
different notations. The YIN notation enabl es devel opers to
represent YANG data nodels in XM. and therefore use the rich set of
XM.- based tools for data filtering and validation, autonated
generation of code and docunentation, and other tasks. Tools I|ike
XSLT or XM validators can be utilized.

The mappi ng between YANG and YI N does not nodify the information
content of the nodel. Conments and whitespace are not preserved.

Bj or kl und St andards Track [Page 179]

RFC 7950 YANG 1.1 August 2016

13.1. Formal YIN Definition

There is a one-to-one correspondence between YANG keywords and YI N
el ements. The local name of a YIN elenent is identical to the
correspondi ng YANG keyword. This nmeans, in particular, that the
docunent el enent (root) of a YIN docunent is always <nodul e> or
<subnodul e>.

YIN el ements corresponding to the YANG keywords belong to the
nanespace whose associated URl is
"urn:ietf:parans: xm :ns:yang:yin:1".

YI'N el ements correspondi ng to extensi on keywords belong to the
namespace of the YANG nodul e where the extension keyword is decl ared
via the "extension" statenent.

The nanes of all YIN elenents MJST be properly qualified with their
nanespaces (as specified above) using the standard nmechani sns of
[XML- NAMES], i.e., "xmns" and "xm ns: xxx" attri butes.

The argunent of a YANG statenment is represented in YIN as either an
XML attribute or a subel enent of the keyword elenent. Table 1
defines the mapping for the set of YANG keywords. For extensions,
the argunent mapping is specified within the "extension" statenent
(see Section 7.19). The following rules hold for argunents:

o If the argunent is represented as an attribute, this attribute has
no namespace.

o If the argunent is represented as an elenent, it is qualified by
the sane nanespace as its parent keyword el enent.

o If the argunent is represented as an elenment, it MJST be the first
child of the keyword el ement.

Subst atenents of a YANG statenent are represented as (additional)
children of the keyword elenent, and their relative order MIST be the
same as the order of substatenments in YANG

Comrents in YANG MAY be mapped to XM. conments.

Bj or kl und St andards Track [Page 180]

RFC 7950

Bj or kl und

action
anydat a
anyxni

ar gunent
augment

base

bel ongs-to
bi t

case

choi ce
config

cont act
cont ai ner
def aul t
description
devi at e

devi ation
enum
error-app-tag
error-nessage
ext ensi on
feature
fraction-digits
groupi ng
identity
if-feature

i mport

i ncl ude

i nput

key

| eaf

|l eaf-11i st

| ength

list

mandat ory
max- el enent s
m n-el enent s
nodi fi er
nodul e

nust
nanespace
notification
or der ed- by
organi zati on
out put

YANG 1.1

nane |
nane |
name |
nane |
t ar get - node
nane |
nmodul e |
nane |
name |
nane |
val ue |
t ext |
nane |
val ue |
t ext |
val ue |
t ar get - node
nane |
val ue |
val ue |
name |
nane |
val ue |
nane |
nane |
nane |
nodul e |
nodul e |
<no argunent >
val ue |
nane |
nane |
val ue |
nane |
val ue |
val ue |
val ue |
val ue |
nanme |
condition |
uri |
nane |
val ue |
t ext |
<no argunent >

St andards Track

August 2016

[Page 181]

RFC 7950 YANG 1.1

| path | val ue
| pattern | val ue
| position | val ue
| prefix | val ue
| presence | val ue
| range | val ue
| reference | text

| refine | target-node
| require-instance | value
| revision | date
| revision-date | date
| rpc | nane
| status | val ue
| subnodul e | nare
| type | nane
| typedef | nane
| unique | tag

| units | nane
| uses | nare
| val ue | val ue
| when | condition
| yang-version | val ue
| yin-el ement | val ue

August 2016

Tabl e 1: Mappi ng of Argunents of the YANG Statenents

13.1.1. Usage Exanple
The foll owi ng YANG nodul e:

nmodul e exanpl e-foo {
yang-version 1.1;
nanespace "urn: exanpl e: f oo"
prefix "foo";

i mport exanpl e- extensions {
prefix "nyext";
}

list interface {
key "nane";
| eaf nane {
type string;

Bj or kl und St andards Track

[Page 182]

RFC 7950 YANG 1.1 August 2016

leaf ntu {
type uint32;
description "The MIU of the interface.";
myext: c-define "MY_MIU';

}

}
}

where the extension "c-define" is defined in Section 7.19.3, is
translated into the following YIN

<nodul e nanme="exanpl e-f oo"
xm ns="urn:ietf:parans: xm:ns:yang:yin:1"
xm ns: f oo="ur n: exanpl e: f 00"
xm ns: nyext ="ur n: exanpl e: ext ensi ons" >

<nanespace uri ="urn: exanpl e: foo"/>
<prefix val ue="foo"/>

<i mport nodul e="exanpl e- ext ensi ons" >
<prefix val ue="nyext"/>
</inport >

<list nane="interface">
<key val ue="nane"/ >
<l eaf name="nane">
<type name="string"/>
</l eaf >
<l eaf nanme="ntu">
<type nane="ui nt32"/>
<descri pti on>
<text >The MIU of the interface.</text>
</ descri ption>
<nyext: c-define name="MW_MIU"/>
</l eaf >
</list>
</ nodul e>

Bj or kl und St andards Track [Page 183]

RFC 7950 YANG 1.1 August 2016

14. YANG ABNF G ammar

In YANG alnost all statenments are unordered. The ABNF grammar
[RFC5234] [RFC7405] defines the canonical order. To inprove nodul e
readability, it is RECOVWENDED that clauses be entered in this order.

Wthin the ABNF granmar, unordered statenents are nmarked with
conmment s.

This grammar assumes that the scanner replaces YANG comments with a
singl e space character.

<CODE BEG NS> file "yang. abnf"

nmodul e- st nt = optsep nodul e-keyword sep identifier-arg-str
opt sep
"{" stntsep
nodul e- header-stnts
I i nkage-stnts
nmeta-stnts
revision-stnts
body-stnts
"1" optsep

subnodul e- st nt = opt sep subnodul e-keyword sep identifier-arg-str
opt sep
"{" stntsep
subnodul e- header-stnts
I i nkage-stnts
nmeta-stnts
revision-stnts
body-stnts
"1" optsep

nmodul e- header-stnts = ;; these stnts can appear in any order
yang- ver si on- st nt
namespace- st nt
prefix-stnt

subnodul e- header-stnts =
;; these stnts can appear in any order
yang- ver si on- st nt
bel ongs-to-stnt

Bj or kl und St andards Track [Page 184]

RFC 7950

nmeta-stnts

I i nkage-stnts

revision-stnts =

body-stnts

dat a- def - st nt

yang- ver si on- st mt =

yang- ver si on-arg-str

yang- ver si on-arg

i mport-stnt

Bj or kl und

YANG 1.1 August 2016

;; these stnts can appear in any order
[organi zation-stnt]

[contact-stnt]

[description-stnt]

[reference-stnt]

;; these stnts can appear in any order
*inport-stnt
*incl ude- st nt

*revi sion-stnt

*(extension-stnt /
feature-stnt /
identity-stmt /
typedef-stnt /
groupi ng-stm /
dat a-def-stnt /
augrment -stnt /
rpc-stm /
notification-stnt /
devi ati on-stnt)

container-stm /
|l eaf-stnt /
leaf-list-stnt /
list-stnt /
choice-stnt /
anydata-stnt /
anyxnl -stnt /
uses-stnt

yang- ver si on- keyword sep yang-version-arg-str
stm end

< a string that matches the rule >
< yang-version-arg >

n 1. 1ll
i mport-keyword sep identifier-arg-str optsep
"{" stntsep
;; these stnts can appear in any order
prefix-stnt

[revision-date-stnt]
[description-stnt]
[reference-stnt]

"1" stntsep

St andards Track [Page 185]

RFC 7950

i ncl ude- st nt

nanespace- st nt

uri-str

prefix-stnt

bel ongs-to-stnt

or gani zati on-stnt
contact-stnt
description-stnt
reference-stnt
uni ts-stnt

revi si on-stnt

revi si on-date

revi si on-dat e- st nt

Bj or kl und

YANG 1.1 August 2016

i ncl ude-keyword sep identifier-arg-str optsep
("
"{" stntsep
;; these stnts can appear in any order
[revision-date-stnt]
[description-stnt]
[reference-stnt]
"1") stntsep

nanespace- keyword sep uri-str stntend

< a string that matches the rule >
< URl in RFC 3986 >

prefix-keyword sep prefix-arg-str stntend

bel ongs-t o- keyword sep identifier-arg-str
opt sep

"{" stntsep
prefix-stnt
"1" stntsep

organi zati on- keyword sep string stntend
cont act - keyword sep string stntend
description-keyword sep string stntend
ref erence- keyword sep string stntend
uni ts-keyword sep string stntend
revi si on-keyword sep revision-date optsep
("
"{" stntsep
;; these stnts can appear in any order
[description-stnt]
[reference-stnt]
"1") stntsep
date-arg-str

revi si on-dat e- keyword sep revision-date stntend

St andards Track [Page 186]

RFC 7950

ext ensi on-stmt

ar gument - st nt

yi n-el ement - st nt

yi n-el ement-arg-str

yi n-el ement-arg

identity-stnt

base- st nt

feature-stm

Bj or kl und

YANG 1.1 August 2016

ext ensi on-keyword sep identifier-arg-str optsep
("
"{" stntsep
;; these stnts can appear in any order
[argunent - st nt]
[status-stnt]
[description-stnt]
[reference-stnt]
"1") stntsep

argunent - keyword sep identifier-arg-str optsep
("

"{" stntsep
[yin-el enent-stnt]
"1") stntsep

yi n-el ement - keyword sep yin-elenent-arg-str
st nt end

< a string that matches the rule >
< yin-elenment-arg >

true-keyword / fal se-keyword

identity-keyword sep identifier-arg-str optsep
(";" 1
"{" stntsep
;; these stnts can appear in any order
*if-feature-stnt
*base- stmt
[status-stnt]
[description-stnt]
[reference-stnt]
"1") stntsep

base- keyword sep identifier-ref-arg-str
st nt end

feature-keyword sep identifier-arg-str optsep
("1
"{" stntsep
;; these stnts can appear in any order
*if-feature-stnt
[status-stnt]
[description-stnt]
[reference-stnt]
"1") stntsep

St andards Track [Page 187]

RFC 7950 YANG 1.1 August 2016

if-feature-stnt i f-feature-keyword sep if-feature-expr-str

st nt end

i f-feature-expr-str < a string that matches the rule >

< if-feature-expr >

i f-feature-expr = if-feature-term
[sep or-keyword sep if-feature-expr]

if-feature-term = if-feature-factor
[sep and-keyword sep if-feature-tern

i f-feature-factor not - keyword sep if-feature-factor /
"(" optsep if-feature-expr optsep ")" /

identifier-ref-arg

t ypedef - st nt = typedef-keyword sep identifier-arg-str optsep
"{" stntsep
;; these stnts can appear in any order
type-stnt

[units-stm]
[defaul t-stnt]
[status-stnt]
[description-stnt]
[reference-stnt]

"1" stntsep
type-stnt = type-keyword sep identifier-ref-arg-str optsep
("
"{" stntsep
[type-body-stnts]
"1") stntsep
type-body-stnts = nunerical -restrictions /

deci mal 64-speci fication /
string-restrictions /

enum speci fication /

| eaf ref-specification /

i dentityref-specification /

i nstance-identifier-specification /
bits-specification /

uni on-specification /

bi nary-specification

Bj or kl und St andards Track [Page 188]

RFC 7950 YANG 1.1 August 2016

nunerical -restrictions = [range-stnt]

range- st nt = range- keyword sep range-arg-str optsep

(" !

"{" stntsep
;; these stnts can appear in any order
[error-nessage-stnt]
[error-app-tag-stnt]
[description-stnt]
[reference-stnt]

"1") stntsep

deci nal 64-specification = ;; these stns can appear in any order
fraction-digits-stnt
[range- st nt]

fraction-digits-stm = fraction-digits-keywrd sep
fraction-digits-arg-str stntend

fraction-digits-arg-str = < a string that matches the rule >
< fraction-digits-arg >

fraction-digits-arg = ("1" ["0" / "1" ["2" ["3" ["4" |
"B/ "6 ["7" | "8"])
[om2n [M3 [va4r) ovB" [e [7" [8" ["9

string-restrictions = ;; these stnts can appear in any order
[l ength-stnt]
*pattern-stnt

| engt h-stnt = |l engt h-keyword sep length-arg-str optsep
("
"{" stntsep

;; these stnts can appear in any order
[error-nessage-stnt]
[error-app-tag-stnt]
[description-stnt]
[reference-stnt]

"1") stntsep

Bj or kl und St andards Track [Page 189]

RFC 7950

pattern-stnt =

nodi fier-stnt =

nodi fier-arg-str =

nodi fier-arg =
def aul t -stnt =
enum speci fication =

enunm st nt =

| eaf ref-specification

pat h- st nt =

require-instance-stnt

require-instance-arg-

require-instance-arg

Bj or kl und

YANG 1.1 August 2016

pattern-keyword sep string optsep

("

"{" stntsep
;; these stnts can appear in any order
[rmodi fier-stnt]
[error-nessage-stnt]
[error-app-tag-stnt]
[description-stnt]
[reference-stnt]

"1") stntsep

nodi fi er-keyword sep nodifier-arg-str stntend

< a string that matches the rule >
< nodifier-arg >

i nvert - mat ch- keywor d
defaul t-keyword sep string stntend
1*enum st nt

enum keyword sep string optsep

("1

"{" stntsep
;; these stnts can appear in any order
*if-feature-stnt
[val ue-stnt]
[status-stnt]
[description-stnt]
[reference-stnt]

"1") stntsep

;; these stnts can appear in any order
pat h- st nt

[require-instance-stnt]

pat h- keyword sep path-arg-str stntend

= require-instance-keywrd sep
require-instance-arg-str stntend

str = < a string that matches the rule >
< require-instance-arg >

= true-keyword / fal se-keyword

St andards Track [Page 190]

RFC 7950

YANG 1.1 August 2016

i nstance-identifier-specification =

[require-instance-stnt]

identityref-specification =

1*base- st nt

uni on-specification = 1*type-stnt

bi nary-specification = [l ength-stnt]

bits-specification

bit-stnt

posi tion-stnt

= 1*bit-stnt

= bit-keyword sep identifier-arg-str optsep
(";" 1
"{" stntsep
;; these stnts can appear in any order
*if-feature-stnt
[position-stnt]
[status-stnt]
[description-stnt]
[reference-stnt]
"1") stntsep

= position-keyword sep
posi tion-val ue-arg-str stntend

position-value-arg-str = < a string that natches the rule >

posi tion-val ue-arg
status-stnt

status-arg-str

status-arg

config-stnt

config-arg-str

config-arg

Bj or kl und

< position-value-arg >

non- negati ve-i nt eger - val ue
= status-keyword sep status-arg-str stntend

= < a string that matches the rule >
< status-arg >

= current-keyword /
obsol et e- keyword /
depr ecat ed- keywor d

= config-keyword sep
config-arg-str stntend

= < a string that matches the rule >
< config-arg >

= true-keyword / fal se-keyword

St andards Track [Page 191]

RFC 7950

mandat or y- st nt

mandat ory- arg-str

mandat ory-arg
presence-stnt

or der ed- by- st nt

ordered-by-arg-str

ordered-by-arg

must - st nt

error-message- st nt
error-app-tag-stnt

m n-el enent s-stmt

m n-val ue-arg-str

m n-val ue-arg

max- el enent s- st nt

max- val ue-arg-str

max- val ue-arg

Bj or kl und

YANG 1.1
mandat ory- keyword sep
mandat ory-arg-str stntend

< a string that matches the rule >
< mandatory-arg >

true-keyword / fal se-keyword
presence- keyword sep string stntend

or der ed- by- keyword sep
ordered-by-arg-str stntend

< a string that matches the rule >
< ordered-by-arg >

user - keyword / system keyword
nmust - keyword sep string optsep

("
"{" stntsep

;; these stnts can appear in any order

[error-nessage-stnt]
[error-app-tag-stnt]
[description-stnt]
[reference-stnt]
"1") stntsep
error-nessage- keyword sep string stntend
error-app-tag-keywrd sep string stntend

m n- el enent s- keyword sep
m n-val ue-arg-str stnend

< a string that matches the rule >
< mn-val ue-arg >

non- negat i ve-i nt eger-val ue

max- el enent s- keyword sep
max- val ue-arg-str stntend

< a string that matches the rule >
< max-val ue-arg >

unbounded- keyword /
posi tive-integer-val ue

St andards Track

August 2016

[Page 192]

RFC 7950

val ue- st nt

i nt eger-val ue-str

groupi ng- st nt

cont ai ner-stm

Bj or kl und

YANG 1.1 August 2016

val ue- keyword sep integer-val ue-str stntend

< a string that matches the rule >
< integer-value >

groupi ng- keyword sep identifier-arg-str optsep
("
"{" stntsep

;; these stnts can appear in any order
[status-stnt]

[description-stnt]

[reference-stnt]

*(typedef-stnt / grouping-stnt)

*dat a- def - st mt

*action-stnt

*notification-stnt

"1") stntsep

cont ai ner-keyword sep identifier-arg-str optsep
("
"{" stntsep

;; these stnts can appear in any order
[when-stnt]

*if-feature-stnt

*must - st nt

[presence-stnt]

[config-stnt]

[status-stnt]
[description-stnt]
[reference-stnt]

*(typedef-stnt / grouping-stnt)
*dat a- def - st mt

*action-stnt

*notification-stnt

"1") stntsep

St andards Track [Page 193]

RFC 7950 YANG 1.1 August 2016

| eaf -stm = |l eaf-keyword sep identifier-arg-str optsep
"{" stntsep
;; these stnts can appear in any order
[when-stnt]
*if-feature-stnt
type- st nt
[units-stnt]
*must - st nt
[defaul t-stnt]
[config-stnt]
[mandat ory-stnt]
[status-stnt]
[description-stnt]
[reference-stnt]

"1" stntsep
leaf-list-stnt = leaf-list-keyword sep identifier-arg-str optsep
"{" stntsep
;; these stnts can appear in any order
[when-stnt]

*if-feature-stnt
type-stnt stntsep
[units-stnt]
*must - st nt
*defaul t-stnt
[config-stnt]
[m n-el ement s-stnt]
[max- el ement s-stnt]
[order ed- by-stnt]
[status-stnt]
[description-stnt]
[reference-stnt]
"1" stntsep

Bj or kl und St andards Track [Page 194]

RFC 7950

list-stnt

key- st mt

key-arg-str

key-arg
uni que- st nt

uni que-arg-str

uni que- arg

Bj or kl und

YANG 1.1 August 2016

= list-keyword sep identifier-arg-str optsep
"{" stntsep
;; these stnts can appear in any order
[when-stnt]
*if-feature-stnt
*must - st nt
[key-stnt]
*uni que- st mt
[config-stnt]
[mn-el ements-stnt]
[max- el ement s-stnt]
[ordered- by-stnt]
[status-stnt]
[description-stnt]
[reference-stnt]
*(typedef-stnt / grouping-stnt)
1*dat a- def - st nt
*action-stnt
*notification-stm
"1" stntsep

= key-keyword sep key-arg-str stnmend

= < a string that matches the rule >
< key-arg >

= node-identifier *(sep node-identifier)
= uni que- keyword sep uni que-arg-str stntend

= < a string that matches the rule >
< uni que-arg >

= descendant - schena- nodei d
*(sep descendant - schenma- nodei d)

St andards Track [Page 195]

RFC 7950 YANG 1.1 August 2016

choi ce-stnt = choi ce-keyword sep identifier-arg-str optsep
("
"{" stntsep
;; these stnts can appear in any order
[when-stnt]

*if-feature-stnt

[defaul t-stnt]

[config-stnt]

[mandat ory-stnt]

[status-stnt]

[description-stnt]

[reference-stnt]

*(short-case-stnt / case-stnt)
"1") stntsep

short-case-stnt = choice-stnmt /
contai ner-stnt /
|l eaf-stnt /
leaf-list-stnt /
list-stnt /
anydata-stnt /
anyxm - stnt

case-stnt = case-keyword sep identifier-arg-str optsep
("
"{" stntsep
;; these stnts can appear in any order
[when-stnt]
*if-feature-stnt
[status-stnt]
[description-stnt]
[reference-stnt]
*dat a- def - st mt
"1") stntsep

Bj or kl und St andards Track [Page 196]

RFC 7950 YANG 1.1 August 2016

anydat a- st nt = anydat a- keyword sep identifier-arg-str optsep

("

"{" stntsep
;; these stnts can appear in any order
[when-stnt]
*if-feature-stnt
*must - st nt
[config-stnt]
[mandat ory-stnt]
[status-stnt]
[description-stnt]
[reference-stnt]

"1") stntsep

anyxm - stnt = anyxnm -keyword sep identifier-arg-str optsep
("1
"{" stntsep
;; these stnts can appear in any order
[when-stnt]
*if-feature-stnt
*must - st nt
[config-stnt]
[mandat ory-stnt]
[status-stnt]
[description-stnt]
[reference-stnt]

"1") stntsep
uses-stnt = uses-keyword sep identifier-ref-arg-str optsep
("
"{" stntsep
;; these stnts can appear in any order
[when-stnt]

*if-feature-stnt

[status-stnt]

[description-stnt]

[reference-stnt]

*refine-stm

*uses- augnent - st nt
"1") stntsep

Bj or kl und St andards Track [Page 197]

RFC 7950 YANG 1.1 August 2016

refine-stm = refine-keyword sep refine-arg-str optsep
"{" stntsep

;; these stnts can appear in any order
*if-feature-stnt
*must - st nt
[presence-stnt]
*defaul t-stnt
[config-stnt]
[mandat ory-stnt]
[mn-el ements-stnt]
[max- el ement s-stnt]
[description-stnt]
[reference-stnt]

"1" stntsep

refine-arg-str = < a string that matches the rule >
<refine-arg >

descendant - schenma- nodei d

refine-arg

uses- augnent - st nt augnent - keyword sep uses-augnent-arg-str optsep
"{" stntsep

;; these stnts can appear in any order

[when-stnt]

*if-feature-stnt

[status-stnt]

[description-stnt]

[reference-stnt]

1*(dat a-def-stnt / case-stnt /

action-stnt / notification-stnt)

"1" stntsep

uses-augnment-arg-str = < a string that matches the rule >
< uses-augnent-arg >

uses-augnent -arg = descendant - schena- nodei d

Bj or kl und St andards Track [Page 198]

RFC 7950

augnent - st nt

augnent -arg-str

augnent -arg

when- st nt

rpc-stnt

Bj or kl und

YANG 1.1 August 2016

augnent - keyword sep augnent-arg-str optsep
"{" stntsep

;; these stnts can appear in any order

[when-stnt]

*if-feature-stnt

[status-stnt]

[description-stnt]

[reference-stnt]

1*(dat a-def-stnmt / case-stnt /

action-stnt / notification-stnt)

"1" stntsep

< a string that matches the rule >
< augnent-arg >

absol ut e- schema- nodei d

when- keyword sep string optsep

("

"{" stntsep
;; these stnts can appear in any order
[description-stnt]
[reference-stnt]

"1") stntsep
rpc-keyword sep identifier-arg-str optsep
(ll;ll /

"{" stntsep

;; these stnts can appear in any order
*if-feature-stnt
[status-stnt]
[description-stnt]
[reference-stnt]
*(typedef-stnt / grouping-stnt)
[nput-stnt]
[out put-stnt]
"1") stntsep

St andards Track [Page 199]

RFC 7950 YANG 1.1 August 2016

action-stnt = action-keyword sep identifier-arg-str optsep
("
"{" stntsep

;; these stnts can appear in any order
*if-feature-stnt
[status-stnt]
[description-stnt]
[reference-stnt]
*(typedef-stnt / grouping-stnt)
[nput-stnt]
[out put-stnt]
"1") stntsep

i nput -stnt i nput - keyword opt sep
"{" stntsep
;; these stnts can appear in any order
*must - st nt
*(typedef-stnt / grouping-stnt)
1*dat a- def - st nt
"1" stntsep

out put - st nt = out put - keyword opt sep
"{" stntsep
;; these stnts can appear in any order
*must - st nt
*(typedef-stnt / grouping-stnt)
1*dat a- def - st nt
"1" stntsep

notification-stnt = notification-keyword sep

identifier-arg-str optsep

("

"{" stntsep
;; these stnts can appear in any order
*if-feature-stnt
*must - st nt
[status-stnt]
[description-stnt]
[reference-stnt]
*(typedef-stnt / grouping-stnt)
*dat a- def - st nt

"1") stntsep

Bj or kl und St andards Track [Page 200]

RFC 7950 YANG 1.1 August 2016

devi ati on-stnt = devi ation-keyword sep
devi ation-arg-str optsep
"{" stntsep
;; these stnts can appear in any order
[description-stnt]
[reference-stnt]
(devi at e- not - supported-stnt /
1*(devi at e-add-stnmt /
devi ate-repl ace-stnt /
devi ate-del ete-stnt))
"1" stntsep

devi ation-arg-str = < a string that matches the rule >
< deviation-arg >

devi ation-arg = absol ut e- schema- nodei d

devi at e-not - supported-stm =
devi at e- keyword sep
not - support ed- keyword-str stntend

devi at e- add- st nt = devi at e- keyword sep add- keyword-str optsep
("

"{" stntsep
;; these stnts can appear in any order
[units-stnt]
*must - st nt
*uni que- st mt
*defaul t-stnt
[config-stnt]
[mandat ory-stnt]
[min-el ements-stnt]
[max- el ement s-stnt]

"1") stntsep

devi ate-del ete-stnt = devi at e-keyword sep del et e-keyword-str optsep
("
"{" stntsep
;; these stnts can appear in any order
[units-stnt]
*must - st nt
*uni que- st nt
*defaul t-stnt
"1") stntsep

Bj or kl und St andards Track [Page 201]

RFC 7950 YANG 1.1 August 2016

devi ate-repl ace-stnt = devi at e-keyword sep repl ace- keyword-str optsep
("

"{" stntsep
;; these stnts can appear in any order
[type-stnt]
[units-stnt]
[defaul t-stnt]
[config-stnt]
[mandat ory-stnt]
[mn-el ements-stnt]
[max- el ement s-stnt]

"1") stntsep

not - support ed- keyword-str = < a string that matches the rule >
< not - support ed- keyword >

1
N

add- keyword-str a string that matches the rule >

add- keyword >

N

I
N

del et e- keywor d-str a string that matches the rule >

del et e- keyword >

N

1
N

repl ace- keyword-str a string that matches the rule >

repl ace- keyword >

N

;; represents the usage of an extension
unknown- st at enent = prefix ":" identifier [sep string] optsep
("1
"{" optsep
*((yang-stm / unknown-statenent) optsep)
"1") stntsep

yang- st mt = action-stm /
anydata-stmnt /
anyxm -stnt /
argunent-stnt /
augrment-stnt /
base-stnt /
bel ongs-to-stnt /
bit-stm /
case-stnt /
choi ce-stnt /
config-stnt /
contact-stnt /
contai ner-stnt /
default-stm /
description-stm /
devi at e- add-stnt /

Bj or kl und St andards Track [Page 202]

RFC 7950 YANG 1.1 August 2016

devi ate-del ete-stnt /
devi at e- not - supported-stnm /
devi ate-repl ace-stnt /
devi ation-stnt /
enumstnt /
error-app-tag-stnt /
error-nessage-stnt /
ext ension-stnt /
feature-stnm /
fraction-digits-stm /
groupi ng-stm /
identity-stnt /
if-feature-stnt /

i mport-stm /

i nclude-stnt /

i nput-stnt /

key-stnt /
leaf-list-stnt /

| eaf -stnmt /

| engt h-stnt /
list-stnt /

mandat ory-stm /
max- el enents-stnt /
mn-el enents-stnt /
nodi fier-stm /

nodul e-stnt /
nmust-stnt /
nanespace-stnm /
notification-stnt /
ordered-by-stnt /
organi zation-stnt /
out put-stnt /

pat h-stnt /
pattern-stnt /
position-stnt /
prefix-stm /
presence-stnt /
range-stnt /
reference-stnm /
refine-stnt /
require-instance-stnt /
revision-date-stnt /
revision-stn /
rpc-stm /
status-stnt /
subnodul e-stnt /
typedef-stnt /
type-stnt /

Bj or kl und St andards Track [Page 203]

RFC 7950 YANG 1.1 August 2016

uni que-stnm /
units-stnt /
uses-augment -stnt /
uses-stnt /

val ue-stm /
when-stnt /
yang-version-stnt /
yi n-el ement - st nt

;; Ranges

range-arg-str < a string that matches the rule >

< range-arg >

range-arg range-part *(optsep "|" optsep range-part)

range- part range- boundary

[optsep ".." optsep range-boundary]

range- boundary nm n- keyword / max- keyword /

i nt eger-val ue / deci nmal -val ue
7, Lengths

< a string that matches the rule >
< length-arg >

| engt h-arg-str

| engt h-arg | ength-part *(optsep "|" optsep |length-part)

| engt h- part | engt h- boundary

[optsep ".." optsep | ength-boundary]

| engt h- boundary nm n- keyword / max- keyword /

non- negati ve-i nt eger - val ue

;. Date

dat e-arg-str < a string that matches the rule >

< date-arg >

4DDAT "-" 2DIG T "-" 2DIGA T

date-arg
;; Schema Node Ildentifiers

schena- nodei d = absol ut e-schema-nodei d /
descendant - schenmn- nodei d

absol ut e-schenma-nodeid = 1*("/" node-identifier)

Bj or kl und St andards Track [Page 204]

RFC 7950

YANG 1.1 August 2016

descendant - schema- nodei d =

node-identifier

node-i dentifier
[absol ut e- schera- nodei d]

[prefix ":"] identifier

;; Instance ldentifiers

i nstance-identifier

key- predi cate

key- predi cat e- expr

| eaf-1ist-predicate

| eaf -1i st-predicate-

pos
quot ed-string
;; leafref path

pat h-arg-str

pat h-arg
absol ut e-path
rel ative-path

descendant - pat h

pat h- predi cate
pat h-equal i ty-expr

pat h- key- expr

Bj or kl und

expr ="

1*("/" (node-identifier

[1*key-predicate /
leaf-list-predicate /
pos]))

"[" *WBP key- predicate-expr *WsP "]"
node-identifier *W5SP "=" *WSP quoted-string
"[" *WBP | eaf-1ist-predicate-expr *WsP "]
*WSP quot ed-string

"[" *WBP positive-integer-value *WsP "]"

(DQUOTE string DQUOTE) / (SQUOTE string SQUOTE)

< a string that matches the rule >
< path-arg >
absol ute-path / relative-path
1*("/" (node-identifier *path-predicate))
1*("../") descendant-path

node-identifier
[*pat h- predi cat e absol ut e- pat h]

"[" *WBP pat h-equality-expr *WsP "]"

node-identifier *WsP "=" *WBP pat h- key- expr

current-function-invocation *WsP "/" *W5P
rel - pat h- keyexpr
St andards Track [Page 205]

RFC 7950 YANG 1.1 August 2016

rel - pat h- keyexpr = 16(". " *WSP /" *\\BP)
*(node-identifier *WSP "/" *WSP)

node-i dentifier

;7 Keywords, using the syntax for case-sensitive strings (RFC 7405)

;; Statenent keywords

action- keyword %" action"
anydat a- keywor d %" anydat a"
anyxnl - keywor d %" anyxm "
ar gunent - keyword %" ar gunent "
augmnent - keywor d %" augnent "
base- keywor d %" base"

bel ongs-t o- keywor d %" bel ongs-to"
bi t - keyword %" bit"
case- keywor d %" case"
choi ce- keywor d %" choi ce"
confi g- keyword %" config"

cont act - keywor d

cont ai ner - keyword

def aul t - keyword
descri pti on- keyword
devi at e- keywor d

devi ati on- keywor d
enum keywor d
error-app-tag-keyword
error-nessage- keyword
ext ensi on- keywor d

f eat ur e- keyword

fraction-digits-keyword

gr oupi ng- keyword

%" contact™

%" cont ai ner"

%" defaul t"

%" description"
%" devi at e”

%" devi ati on"

%" enunt'

%" error-app-tag"”
%" error-nmessage”
%" ext ensi on"

%" feature”
%"fraction-digits"
%" groupi ng"

i dentity-keyword %"identity"

i f-feature-keyword %"if-feature"
i mport - keyword %"inport"

i ncl ude- keywor d %" 1 ncl ude”

i nput - keyword %" i nput"

key- keywor d %" key"

| eaf - keyword %"l eaf "

| eaf -1ist-keyword %"l eaf-1ist"
| engt h- keywor d %" 1 engt h"
I'ist-keyword %" list"

mandat or y- keywor d
max- el enent s- keywor d
n n- el enent s- keywor d
nodi fi er - keyword
nmodul e- keywor d
nmust - keywor d
nanespace- keyword

Bj or kl und

%" mandat or y"
%" max- el enent s"
%" m n-el enent s"
%" nodi fier"

%" nodul e"

9" nust "

%" nanespace"

St andards Track

[Page

206]

RFC 7950

notification-keyword
or der ed- by- keywor d
organi zati on- keyword
out put - keywor d

pat h- keywor d
pattern-keyword

posi tion-keyword
prefix-keyword
presence- keyword

r ange- keywor d

ref erence- keyword
refi ne-keyword

require-instance-keyword

revi si on- keyword

revi si on- dat e- keywor d

rpc- keyword

st at us- keywor d
subnodul e- keywor d

t ype- keyword

t ypedef - keyword

uni que- keywor d

uni t s- keyword

uses- keywor d

val ue- keyword

when- keywor d

yang- ver si on- keywor d
yi n- el enent - keywor d

;; other keywords

add- keyword
current-keyword

del et e- keywor d

depr ecat ed- keywor d
fal se- keyword

i nvert-mat ch- keyword
max- keywor d

m n- keywor d

not - support ed- keywor d

obsol et e- keyword
repl ace- keywor d
syst em keywor d
true-keyword
unbounded- keywor d
user - keywor d

Bj or kl und

YANG 1.1

%"notification"
%" or der ed- by"
%" organi zati on"
%" out put "

%" pat h"

%" pattern”

%" position"

%" prefix"

%" presence"

%" range"

%" reference”
%"refine"

%" require-instance"
%" revision"

%" revision-date"
%" rpc"
%" st at us"

%" subnodul e"
%"t ype"

%"t ypedef"
%" uni que"

%" units"

%" uses"

%" val ue"

%" when"

%" yang- ver si on"
%"yin-el enent”

%" add"
%"current”
%" del et e"

%" depr ecat ed"
%" f al se"

%" i nvert-match"
96" max"

%" m n"

%" not - supported"
96" obsol et e"

%" repl ace”

%" syst ent

98" true"

%" unbounded"
%" user"

St andards Track

August

[Page

2016

207]

RFC 7950 YANG 1.1 August 2016

and- keyword = 9" and"
or - keywor d = 9" or"
not - keywor d = %" not"

current-function-invocation = current-keyword *WsP " (" *WsP ")"

;;; Basic Rul es

prefix-arg-str < a string that matches the rule >

< prefix-arg >

prefix-arg = prefix
prefix = identifier
identifier-arg-str = < a string that matches the rule >

<identifier-arg >

identifier

identifier-arg

identifier (ALPHA / " _")

*(ALPHA / DIGT / " " ["-" [".")

identifier-ref-arg-str = < a string that matches the rule >
< identifier-ref-arg >

identifier-ref-arg identifier-ref

identifier-ref = [prefix ":"] identifier

string = < an unquoted string, as returned by >
< the scanner, that matches the rule >
< yang-string >

yang-string = *yang- char

Bj or kl und St andards Track [Page 208]

RFC 7950

any Uni code or
return,
;; characters, the surrogate
yang-char = %09 / 9%0A / %O

% E000- FDCF / ;
% FDFO- FFFD / ;
%10000- 1FFFD /
%20000- 2FFFD /
%30000- 3FFFD /
%40000- 4FFFD /
% 50000- 5FFFD /
% 60000- 6FFFD /
% 70000- 7FFFD /
%80000- 8FFFD / ;
%90000- 9FFFD /
% A0000- AFFFD /
% B0000- BFFFD / ;
% C0000- CFFFD /
% D0000- DFFFD /

% E0000- EFFFD /
%F0000- FFFFD /
%#100000- 10FFFD ;
= ("-"

i nt eger-val ue

YANG 1.1

| SO | EC 10646 character
and |ine feed but excluding the other CO control

bl ocks,

D/ %20
excl ude
excl ude
excl ude
excl ude
excl ude
excl ude
excl ude
excl ude
excl ude
excl ude
excl ude
excl ude
excl ude
excl ude
excl ude
excl ude
excl ude
excl ude
excl ude

i ncludi ng tab,

August 2016

carriage

and the noncharacters

- D7FF |

surrogat e bl ocks 9% D300- DFFF

nonchar acters
nonchar acters
nonchar acters
nonchar acters
nonchar acters
nonchar acters
nonchar acters
nonchar acters
nonchar acters
nonchar acters
nonchar acters
nonchar acters
nonchar acters
nonchar acters
nonchar acters
nonchar acters
nonchar acters
nonchar acters

non- negat i ve-i nt eger-val ue

non- negati ve-i nt eger - val ue

posi tive-integer-val ue

% FDDO- FDEF
9% FFFE- FFFF

9 1FFFE- 1FFFF

9 2FFFE- 2FFFF
9% 3FFFE- 3FFFF
% 4FFFE- 4FFFF
9% 5FFFE- 5FFFF
9% 6FFFE- 6FFFF
9% 7FFFE- 7FFFF
9% 8FFFE- 8FFFF
% 9FFFE- OFFFF
9% AFFFE- AFFFF
9% BFFFE- BFFFF
9% CFFFE- CFFFF
9 DFFFE- DFFFF

9 EFFFE- EFFFF
9% FFFFE- FFFFF
9% 10FFFE- 10FFFF

non- negati ve-int eger-val ue) /

"0" / positive-integer-value

(non-zero-digit *DIAT)

r eak)
separ at or

eak)

"{" stnmsep "}") stntsep

i ne-break / unknown-stat enent)

zero-integer-value = 1*DIAT

st end = optsep (";" /

sep = 1*(W8P / line-b
; uncondi tiona

opt sep = *(W8P / line-br

stnt sep = *(WsP /

l'i ne-break = CRLF / LF

non-zero-digit = %%31-39

deci nal - val ue

Bj or kl und

i nteger-value (".

St andards Track

zer o-i nt eger -val ue)

[Page 209]

RFC 7950

SQUOTE

;;; core rules from

ALPHA

CR

CRLF

DAT

DQUOTE

HTAB

LF

SP

<CODE ENDS>

Bj or kl und

YANG 1.1

W27
; single quote

RFC 5234

Ux41-5A /| 9%&61-7A
 AAZ] a-z

90D
; carriage return

CR LF

; Internet standard new i ne

% 30- 39
; 0-9

922
; doubl e quote

%09
; horizontal tab

%% 0A
; line feed

%20
; space

SP / HTAB
; whitespace

St andards Track

August 2016

[Page 210]

RFC 7950 YANG 1.1 August 2016

15.

15.

15.

15.

NETCONF Error Responses for YANG Rel ated Errors

A nurmber of NETCONF error responses are defined for error cases
related to the data nodel handling. |If the relevant YANG st at ement
has an "error-app-tag" substatenent, that overrides the default val ue
speci fi ed bel ow

1. Error Message for Data That Violates a "unique" Statenent
If a NETCONF operation would result in configuration data where a

"uni que" constraint is invalidated, the follow ng error MIST be
returned:

error-tag: operation-failed
error-app-tag: data-not-unique
error-info: <non-uni que>: Contains an instance identifier that

points to a |leaf that invalidates the "unique"
constraint. This elenent is present once for each
non- uni que | eaf.

The <non-uni que> elenment is in the YANG
nanespace ("urn:ietf:paranms: xm :ns:yang:1").

2. Error Message for Data That Violates a "nax-el enents" Statenent
If a NETCONF operation would result in configuration data where a
list or a leaf-list would have too many entries, the follow ng error
MUST be returned:

error-tag: operation-failed
error-app-tag: too-nany-elenents

This error is returned once, with the error-path identifying the list
node, even if there is nore than one extra child present.

3. FError Message for Data That Violates a "nin-el enents" Statenent
If a NETCONF operation would result in configuration data where a
list or a leaf-list would have too few entries, the followi ng error
MUST be returned:

error-tag: operation-failed
error-app-tag: too-fewelenents

This error is returned once, with the error-path identifying the list
node, even if there is nore than one child m ssing.

Bj or kl und St andards Track [Page 211]

RFC 7950 YANG 1.1 August 2016

15.

15.

15.

15.

4. Error Message for Data That Violates a "nust" Statenent

If a NETCONF operation would result in configuration data where the
restrictions inposed by a "nust" statement are violated, the
followi ng error MIST be returned, unless a specific "error-app-tag"
substatenent is present for the "nust" statenent.

error-tag: operation-failed
error-app-tag: rmust-violation

5. Error Message for Data That Violates a "require-instance"
St at enent

If a NETCONF operation would result in configuration data where a
| eaf of type "instance-identifier" or "leafref" marked with
require-instance "true" refers to an instance that does not exist,
the followi ng error MIST be returned:

error-tag: dat a- m ssi ng
error-app-tag: instance-required
error-path: Path to the instance-identifier or |leafref |eaf.

6. FError Message for Data That Violates a Mandatory "choice"
St at enent

If a NETCONF operation would result in configuration data where no
nodes exists in a nmandatory choice, the follow ng error MJST be
ret ur ned:

error-tag: dat a- m ssi ng

error-app-tag: mssing-choice

error-path: Path to the element with the nissing choice
error-info: <mi ssi ng- choi ce>: Contains the name of the nissing

mandat ory choi ce

The <mi ssing-choice> elenent is in the YANG
nanespace ("urn:ietf:parans: xm:ns:yang:1").

7. Error Message for the "insert" Operation

If the "insert"” and "key" or "value" attributes are used in an
<edit-config> for alist or leaf-list node and the "key" or "val ue"
refers to an instance that does not exist, the follow ng error MJST
be returned:

error-tag: bad-attribute
error-app-tag: mssing-instance

Bj or kl und St andards Track [Page 212]

RFC 7950 YANG 1.1 August 2016

16. | ANA Consi derati ons

Thi s docunent registers one capability identifier URN fromthe
"Networ k Configuration Protocol (NETCONF) Capability URNs" registry:

| ndex Capability ldentifier

:yang-library urn:ietf:parans: netconf:capability:yang-library:1.0
17. Security Considerations

Thi s docunent defines a | anguage with which to wite and read
descriptions of managenent information. The |anguage itself has no
security inpact on the Internet.

The sane considerations are relevant as those for the base NETCONF
protocol (see Section 9 in [RFC6241]).

Data nodel ed in YANG mi ght contain sensitive infornation. RPCs or
notifications defined in YANG m ght transfer sensitive information.

Security issues are related to the usage of data nodel ed i n YANG
Such issues shall be dealt with in docunments describing the data
nodel s and docunents about the interfaces used to nmani pul ate the
data, e.g., the NETCONF docunents.

Dat a nodel ed in YANG i s dependent upon

o the security of the transm ssion infrastructure used to send
sensitive information.

o the security of applications that store or rel ease such sensitive
i nformati on.

o adequate authentication and access control mechanisns to restrict
t he usage of sensitive data.

YANG parsers need to be robust with respect to mal formed docunents.
Readi ng nal f or med docunents from unknown or untrusted sources could
result in an attacker gaining the privileges of the user running the
YANG parser. In an extrene situation, the entire machine could be
conpr om sed

Bj or kl und St andards Track [Page 213]

RFC 7950

YANG 1.1 August 2016

18. References

18.1. Normati

[1SO. 10646]

[RFC2119]

[RFC3629]

[RFC3986]

[RFC4648]

[RFC5234]

[RFC5277]

[RFC6241]

[RFC7405]

[RFC7895]

Bj or kl und

ve References

I nternational O ganization for Standardization,
"Informati on Technol ogy - Universal Miltiple-Cctet Coded
Character Set (UCS)", |SO Standard 10646: 2014, 2014.

Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119,

DA 10.17487/ RFC2119, March 1997,
<http://ww.rfc-editor.org/info/rfc2119>.

Yergeau, F., "UTF-8, a transformation format of
| SO 10646", STD 63, RFC 3629, DO 10.17487/ RFC3629,
Novenber 2003, <http://www.rfc-editor.org/info/rfc3629>.

Berners-Lee, T., Fielding, R, and L. Masinter, "Uniform
Resource ldentifier (URI): Ceneric Syntax", STD 66,

RFC 3986, DO 10.17487/ RFC3986, January 2005,
<http://ww. rfc-editor.org/info/rfc3986>.

Josefsson, S., "The Basel6, Base32, and Base64 Data
Encodi ngs", RFC 4648, DO 10.17487/ RFCA648, Cctober 2006,
<http://ww.rfc-editor.org/info/rfc4648>.

Crocker, D., Ed., and P. Overell, "Augnented BNF for
Syntax Specifications: ABNF', STD 68, RFC 5234,

DA 10.17487/ RFC5234, January 2008,
<http://ww.rfc-editor.org/infol/rfc5234>,

Chisholm S. and H Trevino, "NETCONF Event
Notifications", RFC 5277, DO 10.17487/ RFC5277, July 2008,
<http://www. rfc-editor.org/info/rfc5277>.

Enns, R, Ed., Bjorklund, M, Ed., Schoenwael der, J., Ed.,
and A. Bierman, Ed., "Network Configuration Protocol
(NETCONF) ", RFC 6241, DA 10.17487/ RFC6241, June 2011,
<http://ww. rfc-editor.org/info/rfc6241>.

Kyzivat, P., "Case-Sensitive String Support in ABNF",
RFC 7405, DO 10.17487/ RFC7405, Decenber 2014,
<http://ww.rfc-editor.org/info/rfc7405>.

Bi erman, A., Bjorklund, M, and K Witsen, "YANG Mdul e

Li brary", RFC 7895, DO 10.17487/RFC7895, June 2016,
<http://ww.rfc-editor.org/info/rfc7895>.

St andards Track [Page 214]

RFC 7950

[XM]

[XML- NAVES]

[XPATH]

[XSD- TYPES]

YANG 1.1 August 2016

Bray, T., Paoli, J., Sperberg-MQeen, C, Maler, E, and
F. Yergeau, "Extensible Mrkup Language (XM.) 1.0 (Fifth
Edition)", WBC Recommendati on REC-xm -20081126,

Novenber 2008,

<https://ww. w3. or g/ TR/ 2008/ REC- xl - 20081126/ >.

Bray, T., Hollander, D., Layman, A, Tobin, R, and H
Thonpson, "Nanespaces in XML 1.0 (Third Edition)", Wrld
W de Web Consortium Reconmendati on REC- xml - nanes- 20091208,
Decenber 2009,

<htt p://ww. w3. or g/ TR/ 2009/ REC- xm - nanmes- 20091208>.

Cark, J. and S. DeRose, "XM. Path Language (XPath)
Version 1.0", Wrld Wde Wb Consortium Recommendati on
REC- xpat h- 19991116, Novenber 1999,

<ht t p: // wwv. W3. or g/ TR/ 1999/ REC- xpat h- 19991116>.

Biron, P. and A. Mal hotra, "XM. Schema Part 2: Datatypes
Second Edition", Wrld Wde Web Consortium Reconmendati on
REC- xnl schema- 2- 20041028, Cct ober 2004,

<ht t p: // ww. w3. or g/ TR/ 2004/ REC- xm schenma- 2- 20041028>.

18.2. Informative References

[CoM]

van der Stok, P. and A. Bierman, "CoAP Managenent
Interface", Work in Progress,
dr aft - vander st ok- core-com - 09, March 2016.

[| EEE754- 2008]

[RESTCONF]

[RFC2578]

Bj or kl und

| EEE, "I|EEE Standard for Floating-Point Arithmetic",

| EEE 754-2008, DA 10.1109/ | EEESTD. 2008. 4610935, 2008,
<http://standards.ieee.org/findstds/

st andar d/ 754- 2008. ht m >.

Bi erman, A, Bjorklund, M, and K Witsen, "RESTCONF
Protocol ", Wrk in Progress,
draft-ietf-netconf-restconf-16, August 2016.

McCl oghrie, K., Ed., Perkins, D., Ed., and J.

Schoenwael der, Ed., "Structure of Managenent |nformation
Version 2 (SMv2)", STD 58, RFC 2578,

DO 10.17487/ RFC2578, April 1999,

<http://ww. rfc-editor.org/info/rfc2578>.

St andards Track [Page 215]

RFC 7950 YANG 1.1 August 2016

[RFC2579] Md oghrie, K, Ed., Perkins, D., Ed., and J.
Schoenwael der, Ed., "Textual Conventions for SMv2",
STD 58, RFC 2579, DA 10.17487/ RFC2579, April 1999,
<http://ww. rfc-editor.org/info/rfc2579>.

[RFC3780] Strauss, F. and J. Schoenwael der, "SM ng - Next Generation
Structure of Managenent Information", RFC 3780,
DO 10.17487/ RFC3780, May 2004,
<http://ww. rfc-editor.org/info/rfc3780>.

[RFCA844] Daigle, L., Ed., and Internet Architecture Board, "The RFC
Series and RFC Editor", RFC 4844, DA 10.17487/ RFCA844,
July 2007, <http://ww.rfc-editor.org/info/rfc4844>,

[RFC6020] Bjorklund, M, Ed., "YANG - A Data Mbdeling Language for
the Network Configuration Protocol (NETCONF)", RFC 6020,
DA 10.17487/ RFC6020, Cctober 2010,
<http://ww.rfc-editor.org/info/rfc6020>.

[RFC6643] Schoenwael der, J., "Translation of Structure of Managenent
I nformation Version 2 (SMv2) MB Mdules to YANG
Modul es", RFC 6643, DO 10.17487/ RFC6643, July 2012,
<http://www. rfc-editor.org/info/rfc6643>.

[RFC6991] Schoenwael der, J., Ed., "Comon YANG Data Types",
RFC 6991, DO 10.17487/ RFC6991, July 2013,
<http://ww. rfc-editor.org/info/rfc6991>.

[RFC7951] Lhotka, L., "JSON Encodi ng of Data Mdel ed with YANG',
RFC 7951, DA 10.17487/ RFC7951, August 2016,
<http://ww.rfc-editor.org/info/rfc7951>.

[XPATH2. 0]
Berglund, A., Boag, S., Chanberlin, D., Fernandez, M,
Kay, M, Robie, J., and J. Sineon, "XM. Path Language
(XPath) 2.0 (Second Edition)", Wrld Wde Wb Consortium
Recommendat i on REC- xpat h20- 20101214, Decenber 2010,
<htt p://ww. w3. or g/ TR/ 2010/ REC- xpat h20-20101214>.

[XSLT] Cark, J., "XSL Transformations (XSLT) Version 1.0", Wrld
W de Wb Consortium Reconmendati on REC-xslt-19991116,
Novenber 1999,
<http://ww. w3. org/ TR/ 1999/ REC- xsl t - 19991116>.

[YANG Cui del i nes]
Bierman, A., "Quidelines for Authors and Reviewers of YANG
Dat a Mbdel Docunents”, Wirk in Progress,
draft-ietf-netnod-rfc6087bis-07, July 2016.

Bj or kl und St andards Track [Page 216]

RFC 7950 YANG 1.1 August 2016

Acknowl edgenent s

The editor wi shes to thank the follow ng individuals, who all

provi ded hel pful comments on various draft versions of this docunent:
Mehnmet Ersue, Washam Fan, Joel Hal pern, Per Hedel and, Leif Johansson,
Ladi sl av Lhotka, Lionel Mrand, Gerhard Miuenz, Peynan OM adi, Tom
Petch, Randy Presuhn, David Reid, Jernej Tuljak, Kent Watsen, Bert
W jnen, Robert WIlton, and Dale Wrley.

Contri butors

The follow ng people all contributed significantly to the initial
YANG docunent :

- Andy Bi erman (YumaWor ks)

- Bal azs Lengyel (Ericsson)

- David Partain (Ericsson)

- Juergen Schoenwael der (Jacobs University Brenen)
- Phil Shafer (Juniper Networks)

Aut hor’ s Addr ess

Martin Bjorklund (editor)
Tail -f Systens

Email: nmbj @ail-f.com

Bj or kl und St andards Track [Page 217]

