
Internet Engineering Task Force (IETF) C. Bao
Request for Comments: 7915 X. Li
Obsoletes: 6145 CERNET Center/Tsinghua University
Category: Standards Track F. Baker
ISSN: 2070-1721 Cisco Systems
 T. Anderson
 Redpill Linpro
 F. Gont
 Huawei Technologies
 June 2016

 IP/ICMP Translation Algorithm

Abstract

 This document describes the Stateless IP/ICMP Translation Algorithm
 (SIIT), which translates between IPv4 and IPv6 packet headers
 (including ICMP headers). This document obsoletes RFC 6145.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7915.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Bao, et al. Standards Track [Page 1]

RFC 7915 IPv4/IPv6 Translation June 2016

Table of Contents

 1. Introduction and Motivation 3
 1.1. IPv4-IPv6 Translation Model 3
 1.2. Applicability and Limitations 3
 1.3. Stateless vs. Stateful Mode 4
 1.4. Path MTU Discovery and Fragmentation 5
 2. Changes from RFC 6145 . 5
 3. Conventions . 5
 4. Translating from IPv4 to IPv6 6
 4.1. Translating IPv4 Headers into IPv6 Headers 7
 4.2. Translating ICMPv4 Headers into ICMPv6 Headers 9
 4.3. Translating ICMPv4 Error Messages into ICMPv6 13
 4.4. Generation of ICMPv4 Error Message 14
 4.5. Transport-Layer Header Translation 14
 4.6. Knowing When to Translate 15
 5. Translating from IPv6 to IPv4 15
 5.1. Translating IPv6 Headers into IPv4 Headers 17
 5.1.1. IPv6 Fragment Processing 19
 5.2. Translating ICMPv6 Headers into ICMPv4 Headers 19
 5.3. Translating ICMPv6 Error Messages into ICMPv4 22
 5.4. Generation of ICMPv6 Error Messages 23
 5.5. Transport-Layer Header Translation 23
 5.6. Knowing When to Translate 24
 6. Mapping of IP Addresses 24
 7. Special Considerations for ICMPv6 Packet Too Big 24
 8. Security Considerations 24
 9. References . 25
 9.1. Normative References 25
 9.2. Informative References 27
 Appendix A. Stateless Translation Workflow Example 30
 A.1. H6 Establishes Communication with H4 30
 A.2. H4 Establishes Communication with H6 32
 Acknowledgements . 33
 Authors’ Addresses . 33

Bao, et al. Standards Track [Page 2]

RFC 7915 IPv4/IPv6 Translation June 2016

1. Introduction and Motivation

 This document obsoletes [RFC6145].

 Readers of this document are expected to have read and understood the
 framework described in [RFC6144]. Implementations of this IPv4/IPv6
 translation specification MUST support one or more address mapping
 algorithms, which are defined in Section 6.

1.1. IPv4-IPv6 Translation Model

 The translation model consists of two or more network domains
 connected by one or more IP/ICMP translators (XLATs) as shown in
 Figure 1.

 --------- ---------
 // \\ // \\
 / +----+ \
 | |XLAT| | XLAT: IP/ICMP
 | IPv4 +----+ IPv6 | Translator
 | Domain | | Domain |
 | | | |
 \ | | /
 \\ // \\ //
 -------- ---------

 Figure 1: IPv4-IPv6 Translation Model

 The scenarios of the translation model are discussed in [RFC6144].

1.2. Applicability and Limitations

 This document specifies the translation algorithms between IPv4
 packets and IPv6 packets.

 As with [RFC6145], the translating function specified in this
 document does not translate any IPv4 options, and it does not
 translate IPv6 extension headers except the Fragment Header.

 The issues and algorithms in the translation of datagrams containing
 TCP segments are described in [RFC5382].

 Fragmented IPv4 UDP packets that do not contain a UDP checksum (i.e.,
 the UDP checksum field is zero) are not of significant use on the
 Internet, and in general will not be translated by the IP/ICMP
 translator (Section 4.5). However, when the translator is configured
 to forward the packet without a UDP checksum, the fragmented IPv4 UDP
 packets will be translated.

Bao, et al. Standards Track [Page 3]

RFC 7915 IPv4/IPv6 Translation June 2016

 Fragmented ICMP/ICMPv6 packets will not be translated by IP/ICMP
 translators.

 The IP/ICMP header translation specified in this document is
 consistent with requirements of multicast IP/ICMP headers. However,
 IPv4 multicast addresses [RFC5771] cannot be mapped to IPv6 multicast
 addresses [RFC3307] based on the unicast mapping rule [RFC6052]. An
 example of experiments of the multicast address mapping can be found
 in [RFC6219].

1.3. Stateless vs. Stateful Mode

 An IP/ICMP translator has two possible modes of operation: stateless
 and stateful [RFC6144]. In both cases, we assume that a system (a
 node or an application) that has an IPv4 address but not an IPv6
 address is communicating with a system that has an IPv6 address but
 no IPv4 address, or that the two systems do not have contiguous
 routing connectivity, or they might have contiguous routing
 connectivity but are interacting via masking addresses (i.e.,
 hairpinning) [RFC4787], and hence are forced to have their
 communications translated.

 In the stateless mode, an IP/ICMP translator will convert IPv4
 addresses to IPv6 and vice versa solely based on the configuration of
 the stateless IP/ICMP translator and information contained within the
 packet being translated. For example, for the default behavior
 defined in [RFC6052], a specific IPv6 address range will represent
 IPv4 systems (IPv4-converted addresses), and the IPv6 systems have
 addresses (IPv4-translatable addresses) that can be algorithmically
 mapped to a subset of the service provider’s IPv4 addresses. Other
 stateless translation algorithms are defined in Section 6. The
 stateless translator does not keep any dynamic session or binding
 state, thus there is no requirement that the packets in a single
 session or flow traverse a single translator.

 In the stateful mode, a specific IPv6 address range (consisting of
 IPv4-converted IPv6 addresses) will typically represent IPv4 systems.
 The IPv6 nodes may use any IPv6 addresses [RFC4291] except in that
 range. A stateful IP/ICMP translator continuously maintains a
 dynamic translation table containing bindings between the IPv4 and
 IPv6 addresses, and likely also the Layer-4 identifiers, that are
 used in the translated packets. The exact address translations of
 any given packet thus become dependent on how packets belonging to
 the same session or flow have been translated. For this reason,
 stateful translation generally requires that all packets belonging to
 a single flow must traverse the same translator.

Bao, et al. Standards Track [Page 4]

RFC 7915 IPv4/IPv6 Translation June 2016

 In order to be able to successfully translate a packet from IPv4 to
 IPv6 or vice versa, the translator must implement an address mapping
 algorithm. This document does not specify any such algorithms,
 instead these are referenced from Section 6.

1.4. Path MTU Discovery and Fragmentation

 Due to the different sizes of the IPv4 and IPv6 header, which are 20+
 octets and 40 octets respectively, handling the maximum packet size
 is critical for the operation of the IPv4/IPv6 translator. There are
 three mechanisms to handle this issue: path MTU discovery (PMTUD),
 fragmentation, and transport-layer negotiation such as the TCP
 Maximum Segment Size (MSS) option [RFC6691]. Note that the
 translator MUST behave as a router, i.e., the translator MUST send a
 Packet Too Big error message or fragment the packet when the packet
 size exceeds the MTU of the next-hop interface.

 Don’t Fragment, ICMP Packet Too Big, and packet fragmentation are
 discussed in Sections 4 and 5 of this document. The reassembling of
 fragmented packets in the stateful translator is discussed in
 [RFC6146], since it requires state maintenance in the translator.

2. Changes from RFC 6145

 The changes from RFC 6145 are the following:

 1. Inserted the notes about IPv6 extension header handling:
 [Err3059], [Err3060], [Err3061], and [Err4090].

 2. Deprecated the algorithm that generates the IPv6 atomic
 fragments, as a result of the analysis in [ATOMIC] and the
 specification in [IPv6].

 3. Inserted the notes for stateless source address mapping for
 ICMPv6 packets [RFC6791].

 4. Supported new address mapping algorithms and moved the discussion
 of these algorithms to Section 6.

3. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Bao, et al. Standards Track [Page 5]

RFC 7915 IPv4/IPv6 Translation June 2016

4. Translating from IPv4 to IPv6

 When an IP/ICMP translator receives an IPv4 datagram addressed to a
 destination towards the IPv6 domain, it translates the IPv4 header of
 that packet into an IPv6 header. The original IPv4 header on the
 packet is removed and replaced by an IPv6 header, and the transport
 checksum is updated as needed, if that transport is supported by the
 translator. The data portion of the packet is left unchanged. The
 IP/ICMP translator then forwards the packet based on the IPv6
 destination address.

 +-------------+ +-------------+
 | IPv4 | | IPv6 |
 | Header | | Header |
 +-------------+ +-------------+
 | Transport- | | Fragment |
 | Layer | ===> | Header |
 | Header | | (if needed) |
 +-------------+ +-------------+
 | | | Transport- |
 ˜ Data ˜ | Layer |
 | | | Header |
 +-------------+ +-------------+
 | |
 ˜ Data ˜
 | |
 +-------------+

 Figure 2: IPv4-to-IPv6 Translation

 Path MTU discovery is mandatory in IPv6, but it is optional in IPv4.
 IPv6 routers never fragment a packet -- only the sender can do
 fragmentation.

 When an IPv4 node performs path MTU discovery (by setting the Don’t
 Fragment (DF) bit in the header), path MTU discovery can operate end-
 to-end, i.e., across the translator. In this case, either IPv4 or
 IPv6 routers (including the translator) might send back ICMP Packet
 Too Big messages to the sender. When the IPv6 routers send these
 ICMPv6 errors, they will pass through a translator that will
 translate the ICMPv6 error to a form that the IPv4 sender can
 understand. As a result, an IPv6 Fragment Header is only included if
 the IPv4 packet is already fragmented.

 However, when the IPv4 sender does not set the DF bit, the translator
 MUST ensure that the packet does not exceed the path MTU on the IPv6
 side. This is done by fragmenting the IPv4 packet (with Fragment
 Headers) so that it fits in 1280-byte IPv6 packets, since that is the

Bao, et al. Standards Track [Page 6]

RFC 7915 IPv4/IPv6 Translation June 2016

 minimum IPv6 MTU. The IPv6 Fragment Header has been shown to cause
 operational difficulties in practice due to limited firewall
 fragmentation support, etc. In an environment where the network
 owned/operated by the same entity that owns/operates the translator,
 the translator MUST provide a configuration function for the network
 administrator to adjust the threshold of the minimum IPv6 MTU to a
 value that reflects the real value of the minimum IPv6 MTU in the
 network (greater than 1280 bytes). This will help reduce the chance
 of including the Fragment Header in the packets.

 When the IPv4 sender does not set the DF bit, the translator MUST NOT
 include the Fragment Header for the non-fragmented IPv6 packets.

 The rules in Section 4.1 ensure that when packets are fragmented,
 either by the sender or by IPv4 routers, the low-order 16 bits of the
 fragment identification are carried end-to-end, ensuring that packets
 are correctly reassembled.

 Other than the special rules for handling fragments and path MTU
 discovery, the actual translation of the packet header consists of a
 simple translation as defined below. Note that ICMPv4 packets
 require special handling in order to translate the content of ICMPv4
 error messages and also to add the ICMPv6 pseudo-header checksum.

 The translator SHOULD make sure that the packets belonging to the
 same flow leave the translator in the same order in which they
 arrived.

4.1. Translating IPv4 Headers into IPv6 Headers

 If the DF flag is not set and the IPv4 packet will result in an IPv6
 packet larger than a user-defined length (hereinafter referred to as
 "lowest-ipv6-mtu", and which defaults to 1280 bytes), the packet
 SHOULD be fragmented so that the resulting IPv6 packet (with Fragment
 Header added to each fragment) will be less than or equal to lowest-
 ipv6-mtu, For example, if the packet is fragmented prior to the
 translation, the IPv4 packets should be fragmented so that their
 length, excluding the IPv4 header, is at most 1232 bytes (1280 minus
 40 for the IPv6 header and 8 for the Fragment Header). The
 translator MUST provide a configuration function for the network
 administrator to adjust the threshold of the minimum IPv6 MTU to a
 value greater than 1280 bytes if the real value of the minimum IPv6
 MTU in the network is known to the administrator. The resulting
 fragments are then translated independently using the logic described
 below.

Bao, et al. Standards Track [Page 7]

RFC 7915 IPv4/IPv6 Translation June 2016

 If the DF bit is set and the MTU of the next-hop interface is less
 than the total length value of the IPv4 packet plus 20, the
 translator MUST send an ICMPv4 "Fragmentation Needed" error message
 to the IPv4 source address.

 The IPv6 header fields are set as follows:

 Version: 6

 Traffic Class: By default, copied from the IP Type Of Service (TOS)
 octet. According to [RFC2474], the semantics of the bits are
 identical in IPv4 and IPv6. However, in some IPv4 environments
 these fields might be used with the old semantics of "Type Of
 Service and Precedence". An implementation of a translator SHOULD
 support an administratively configurable option to ignore the IPv4
 TOS and always set the IPv6 traffic class (TC) to zero. In
 addition, if the translator is at an administrative boundary, the
 filtering and update considerations of [RFC2475] may be
 applicable.

 Flow Label: 0 (all zero bits)

 Payload Length: Total length value from the IPv4 header, minus the
 size of the IPv4 header and IPv4 options, if present.

 Next Header: For ICMPv4 (1), it is changed to ICMPv6 (58);
 otherwise, the protocol field MUST be copied from the IPv4 header.

 Hop Limit: The hop limit is derived from the TTL value in the IPv4
 header. Since the translator is a router, as part of forwarding
 the packet it needs to decrement either the IPv4 TTL (before the
 translation) or the IPv6 Hop Limit (after the translation). As
 part of decrementing the TTL or Hop Limit, the translator (as any
 router) MUST check for zero and send the ICMPv4 "TTL Exceeded" or
 ICMPv6 "Hop Limit Exceeded" error.

 Source Address: Mapped to an IPv6 address based on the algorithms
 presented in Section 6.

 If the translator gets an illegal source address (e.g., 0.0.0.0,
 127.0.0.1, etc.), the translator SHOULD silently discard the
 packet (as discussed in Section 5.3.7 of [RFC1812]). Note when
 translating ICMPv4 Error Messages into ICMPv6, the "illegal"
 source address will be translated for the purpose of trouble
 shooting.

 Destination Address: Mapped to an IPv6 address based on the
 algorithms presented in Section 6.

Bao, et al. Standards Track [Page 8]

RFC 7915 IPv4/IPv6 Translation June 2016

 If any IPv4 options are present in the IPv4 packet, they MUST be
 ignored and the packet translated normally; there is no attempt to
 translate the options. However, if an unexpired source route option
 is present, then the packet MUST instead be discarded, and an ICMPv4
 "Destination Unreachable, Source Route Failed" (Type 3, Code 5) error
 message SHOULD be returned to the sender.

 If there is a need to add a Fragment Header (the packet is a fragment
 or the DF bit is not set and the packet size is greater than the
 minimum IPv6 MTU in the network set by the translator configuration
 function), the header fields are set as above with the following
 exceptions:

 IPv6 fields:

 Payload Length: Total length value from the IPv4 header, plus 8
 for the Fragment Header, minus the size of the IPv4 header and
 IPv4 options, if present.

 Next Header: Fragment Header (44).

 Fragment Header fields:

 Next Header: For ICMPv4 (1), it is changed to ICMPv6 (58);
 otherwise, the protocol field MUST be copied from the IPv4
 header.

 Fragment Offset: Fragment Offset copied from the IPv4 header.

 M flag: More Fragments bit copied from the IPv4 header.

 Identification: The low-order 16 bits copied from the
 Identification field in the IPv4 header. The high-order 16
 bits set to zero.

4.2. Translating ICMPv4 Headers into ICMPv6 Headers

 All ICMPv4 messages that are to be translated require that the ICMPv6
 checksum field be calculated as part of the translation since ICMPv6,
 unlike ICMPv4, has a pseudo-header checksum just like UDP and TCP.

 In addition, all ICMPv4 packets MUST have the Type translated and,
 for ICMPv4 error messages, the included IP header also MUST be
 translated.

Bao, et al. Standards Track [Page 9]

RFC 7915 IPv4/IPv6 Translation June 2016

 The actions needed to translate various ICMPv4 messages are as
 follows:

 ICMPv4 query messages:

 Echo and Echo Reply (Type 8 and Type 0): Adjust the Type values
 to 128 and 129, respectively, and adjust the ICMP checksum both
 to take the type change into account and to include the ICMPv6
 pseudo-header.

 Information Request/Reply (Type 15 and Type 16): Obsoleted in
 ICMPv6. Silently drop.

 Timestamp and Timestamp Reply (Type 13 and Type 14): Obsoleted in
 ICMPv6. Silently drop.

 Address Mask Request/Reply (Type 17 and Type 18): Obsoleted in
 ICMPv6. Silently drop.

 ICMP Router Advertisement (Type 9): Single-hop message. Silently
 drop.

 ICMP Router Solicitation (Type 10): Single-hop message. Silently
 drop.

 Unknown ICMPv4 types: Silently drop.

 IGMP messages: While the Multicast Listener Discovery (MLD)
 messages specified in [RFC2710], [RFC3590], and [RFC3810] are
 the logical IPv6 counterparts for the IPv4 IGMP messages, all
 the "normal" IGMP messages are single-hop messages and SHOULD
 be silently dropped by the translator. Other IGMP messages
 might be used by multicast routing protocols and, since it
 would be a configuration error to try to have router
 adjacencies across IP/ICMP translators, those packets SHOULD
 also be silently dropped.

 ICMPv4 error messages:

 Destination Unreachable (Type 3): Translate the Code as
 described below, set the Type to 1, and adjust the ICMP
 checksum both to take the type/code change into account and
 to include the ICMPv6 pseudo-header.

 Translate the Code as follows:

 Code 0, 1 (Net Unreachable, Host Unreachable): Set the Code
 to 0 (No route to destination).

Bao, et al. Standards Track [Page 10]

RFC 7915 IPv4/IPv6 Translation June 2016

 Code 2 (Protocol Unreachable): Translate to an ICMPv6
 Parameter Problem (Type 4, Code 1) and make the Pointer
 point to the IPv6 Next Header field.

 Code 3 (Port Unreachable): Set the Code to 4 (Port
 unreachable).

 Code 4 (Fragmentation Needed and DF was Set): Translate to
 an ICMPv6 Packet Too Big message (Type 2) with Code set
 to 0. The MTU field MUST be adjusted for the difference
 between the IPv4 and IPv6 header sizes, but MUST NOT be
 set to a value smaller than the minimum IPv6 MTU (1280
 bytes). That is, it should be set to

 maximum(1280,
 minimum((MTU value in the Packet Too Big Message) + 20,
 MTU_of_IPv6_nexthop,
 (MTU_of_IPv4_nexthop) + 20)).

 Note that if the IPv4 router set the MTU field to zero,
 i.e., the router does not implement [RFC1191], then the
 translator MUST use the plateau values specified in
 [RFC1191] to determine a likely path MTU and include that
 path MTU in the ICMPv6 packet. (Use the greatest plateau
 value that is less than the returned Total Length field,
 but that is larger than or equal to 1280.)

 See also the requirements in Section 7.

 Code 5 (Source Route Failed): Set the Code to 0 (No route
 to destination). Note that this error is unlikely since
 source routes are not translated.

 Code 6, 7, 8: Set the Code to 0 (No route to destination).

 Code 9, 10 (Communication with Destination Host
 Administratively Prohibited): Set the Code to 1
 (Communication with destination administratively
 prohibited).

 Code 11, 12: Set the Code to 0 (No route to destination).

 Code 13 (Communication Administratively Prohibited): Set
 the Code to 1 (Communication with destination
 administratively prohibited).

 Code 14 (Host Precedence Violation): Silently drop.

Bao, et al. Standards Track [Page 11]

RFC 7915 IPv4/IPv6 Translation June 2016

 Code 15 (Precedence cutoff in effect): Set the Code to 1
 (Communication with destination administratively
 prohibited).

 Other Code values: Silently drop.

 Redirect (Type 5): Single-hop message. Silently drop.

 Alternative Host Address (Type 6): Silently drop.

 Source Quench (Type 4): Obsoleted in ICMPv6. Silently drop.

 Time Exceeded (Type 11): Set the Type to 3, and adjust the
 ICMP checksum both to take the type change into account and
 to include the ICMPv6 pseudo-header. The Code is unchanged.

 Parameter Problem (Type 12): Set the Type to 4, and adjust the
 ICMP checksum both to take the type/code change into account
 and to include the ICMPv6 pseudo-header.

 Translate the Code as follows:

 Code 0 (Pointer indicates the error): Set the Code to 0
 (Erroneous header field encountered) and update the
 pointer as defined in Figure 3. (If the Original IPv4
 Pointer Value is not listed or the Translated IPv6
 Pointer Value is listed as "n/a", silently drop the
 packet.)

 Code 1 (Missing a required option): Silently drop.

 Code 2 (Bad length): Set the Code to 0 (Erroneous header
 field encountered) and update the pointer as defined in
 Figure 3. (If the Original IPv4 Pointer Value is not
 listed or the Translated IPv6 Pointer Value is listed as
 "n/a", silently drop the packet.)

 Other Code values: Silently drop.

 Unknown ICMPv4 types: Silently drop.

Bao, et al. Standards Track [Page 12]

RFC 7915 IPv4/IPv6 Translation June 2016

 +--------------------------------+--------------------------------+
 | Original IPv4 Pointer Value | Translated IPv6 Pointer Value |
 +--------------------------------+--------------------------------+
 | 0 | Version/IHL | 0 | Version/Traffic Class |
 | 1 | Type Of Service | 1 | Traffic Class/Flow Label |
 | 2,3 | Total Length | 4 | Payload Length |
 | 4,5 | Identification | n/a | |
 | 6 | Flags/Fragment Offset | n/a | |
 | 7 | Fragment Offset | n/a | |
 | 8 | Time to Live | 7 | Hop Limit |
 | 9 | Protocol | 6 | Next Header |
 |10,11| Header Checksum | n/a | |
 |12-15| Source Address | 8 | Source Address |
 |16-19| Destination Address | 24 | Destination Address |
 +--------------------------------+--------------------------------+

 Figure 3: Pointer Value for Translating from IPv4 to IPv6

 ICMP Error Payload: If the received ICMPv4 packet contains an
 ICMPv4 Extension [RFC4884], the translation of the ICMPv4
 packet will cause the ICMPv6 packet to change length. When
 this occurs, the ICMPv6 Extension length attribute MUST be
 adjusted accordingly (e.g., longer due to the translation
 from IPv4 to IPv6). If the ICMPv4 Extension exceeds the
 maximum size of an ICMPv6 message on the outgoing interface,
 the ICMPv4 extension SHOULD be simply truncated. For
 extensions not defined in [RFC4884], the translator passes
 the extensions as opaque bit strings, and those containing
 IPv4 address literals will not have their included addresses
 translated to IPv6 address literals; this may cause problems
 with processing of those ICMP extensions.

4.3. Translating ICMPv4 Error Messages into ICMPv6

 There are some differences between the ICMPv4 and the ICMPv6 error
 message formats as detailed above. The ICMP error messages
 containing the packet in error MUST be translated just like a normal
 IP packet (except the TTL value of the inner IPv4/IPv6 packet). If
 the translation of this "packet in error" changes the length of the
 datagram, the Total Length field in the outer IPv6 header MUST be
 updated.

Bao, et al. Standards Track [Page 13]

RFC 7915 IPv4/IPv6 Translation June 2016

 +-------------+ +-------------+
 | IPv4 | | IPv6 |
 | Header | | Header |
 +-------------+ +-------------+
 | ICMPv4 | | ICMPv6 |
 | Header | | Header |
 +-------------+ +-------------+
 | IPv4 | ===> | IPv6 |
 | Header | | Header |
 +-------------+ +-------------+
 | Partial | | Partial |
 | Transport- | | Transport- |
 | Layer | | Layer |
 | Header | | Header |
 +-------------+ +-------------+

 Figure 4: IPv4-to-IPv6 ICMP Error Translation

 The translation of the inner IP header can be done by invoking the
 function that translated the outer IP headers. This process MUST
 stop at the first embedded header and drop the packet if it contains
 more embedded headers.

4.4. Generation of ICMPv4 Error Message

 If the IPv4 packet is discarded, then the translator SHOULD be able
 to send back an ICMPv4 error message to the original sender of the
 packet, unless the discarded packet is itself an ICMPv4 error
 message. The ICMPv4 message, if sent, has a Type of 3 (Destination
 Unreachable) and a Code of 13 (Communication Administratively
 Prohibited), unless otherwise specified in this document or in
 [RFC6146]. The translator SHOULD allow an administrator to configure
 whether the ICMPv4 error messages are sent, rate-limited, or not
 sent.

4.5. Transport-Layer Header Translation

 If the address translation algorithm is not checksum neutral (see
 Section 4.1 of [RFC6052]), the recalculation and updating of the
 transport-layer headers that contain pseudo-headers need to be
 performed. Translators MUST do this for TCP and ICMP packets and for
 UDP packets that contain a UDP checksum (i.e., the UDP checksum field
 is not zero).

 For UDP packets that do not contain a UDP checksum (i.e., the UDP
 checksum field is zero), the translator SHOULD provide a
 configuration function to allow:

Bao, et al. Standards Track [Page 14]

RFC 7915 IPv4/IPv6 Translation June 2016

 1. Dropping the packet and generating a system management event that
 specifies at least the IP addresses and port numbers of the
 packet.

 2. Calculating an IPv6 checksum and forwarding the packet (which has
 performance implications).

 A stateless translator cannot compute the UDP checksum of
 fragmented packets, so when a stateless translator receives the
 first fragment of a fragmented UDP IPv4 packet and the checksum
 field is zero, the translator SHOULD drop the packet and generate
 a system management event that specifies at least the IP
 addresses and port numbers in the packet.

 For a stateful translator, the handling of fragmented UDP IPv4
 packets with a zero checksum is discussed in [RFC6146],
 Section 3.4.

 Other transport protocols (e.g., the Datagram Congestion Control
 Protocol (DCCP)) are OPTIONAL to support. In order to ease debugging
 and troubleshooting, translators MUST forward all transport protocols
 as described in the "Next Header" step of Section 4.1.

4.6. Knowing When to Translate

 If the IP/ICMP translator also provides a normal forwarding function,
 and the destination IPv4 address is reachable by a more specific
 route without translation, the translator MUST forward it without
 translating it. Otherwise, when an IP/ICMP translator receives an
 IPv4 datagram addressed to an IPv4 destination representing a host in
 the IPv6 domain, the packet MUST be translated to IPv6.

5. Translating from IPv6 to IPv4

 When an IP/ICMP translator receives an IPv6 datagram addressed to a
 destination towards the IPv4 domain, it translates the IPv6 header of
 the received IPv6 packet into an IPv4 header. The original IPv6
 header on the packet is removed and replaced by an IPv4 header.
 Since the ICMPv6 [RFC4443], TCP [RFC793], UDP [RFC768], and DCCP
 [RFC4340] headers contain checksums that cover the IP header, if the
 address mapping algorithm is not checksum neutral, the checksum MUST
 be evaluated before translation and the ICMP and transport-layer
 headers MUST be updated. The data portion of the packet is left
 unchanged. The IP/ICMP translator then forwards the packet based on
 the IPv4 destination address.

Bao, et al. Standards Track [Page 15]

RFC 7915 IPv4/IPv6 Translation June 2016

 +-------------+ +-------------+
 | IPv6 | | IPv4 |
 | Header | | Header |
 +-------------+ +-------------+
 | Fragment | | Transport |
 | Header | ===> | Layer |
 |(if present) | | Header |
 +-------------+ +-------------+
 | Transport | | |
 | Layer | ˜ Data ˜
 | Header | | |
 +-------------+ +-------------+
 | |
 ˜ Data ˜
 | |
 +-------------+

 Figure 5: IPv6-to-IPv4 Translation

 There are some differences between IPv6 and IPv4 (in the areas of
 fragmentation and the minimum link MTU) that affect the translation.
 An IPv6 link has to have an MTU of 1280 bytes or greater. The
 corresponding limit for IPv4 is 68 bytes. Path MTU discovery across
 a translator relies on ICMP Packet Too Big messages being received
 and processed by IPv6 hosts.

 The difference in the minimum MTUs of IPv4 and IPv6 is accommodated
 as follows:

 o When translating an ICMPv4 "Fragmentation Needed" packet, the
 indicated MTU in the resulting ICMPv6 "Packet Too Big" will never
 be set to a value lower than 1280. This ensures that the IPv6
 nodes will never have to encounter or handle Path MTU values lower
 than the minimum IPv6 link MTU of 1280. See Section 4.2.

 o When the resulting IPv4 packet is smaller than or equal to 1260
 bytes, the translator MUST send the packet with a cleared Don’t
 Fragment bit. Otherwise, the packet MUST be sent with the Don’t
 Fragment bit set. See Section 5.1.

 This approach allows Path MTU Discovery to operate end-to-end for
 paths whose MTU are not smaller than the minimum IPv6 MTU of 1280
 (which corresponds to an MTU of 1260 in the IPv4 domain). On paths
 that have IPv4 links with MTU < 1260, the IPv4 router(s) connected to
 those links will fragment the packets in accordance with Section 2.3
 of [RFC791].

Bao, et al. Standards Track [Page 16]

RFC 7915 IPv4/IPv6 Translation June 2016

 Other than the special rules for handling fragments and path MTU
 discovery, the actual translation of the packet header consists of a
 simple translation as defined below. Note that ICMPv6 packets
 require special handling in order to translate the contents of ICMPv6
 error messages and also to remove the ICMPv6 pseudo-header checksum.

 The translator SHOULD make sure that the packets belonging to the
 same flow leave the translator in the same order in which they
 arrived.

5.1. Translating IPv6 Headers into IPv4 Headers

 If there is no IPv6 Fragment Header, the IPv4 header fields are set
 as follows:

 Version: 4

 Internet Header Length: 5 (no IPv4 options)

 Type of Service (TOS) Octet: By default, copied from the IPv6
 Traffic Class (all 8 bits). According to [RFC2474], the semantics
 of the bits are identical in IPv4 and IPv6. However, in some IPv4
 environments, these bits might be used with the old semantics of
 "Type Of Service and Precedence". An implementation of a
 translator SHOULD provide the ability to ignore the IPv6 traffic
 class and always set the IPv4 TOS Octet to a specified value. In
 addition, if the translator is at an administrative boundary, the
 filtering and update considerations of [RFC2475] may be
 applicable.

 Total Length: Payload length value from the IPv6 header, plus the
 size of the IPv4 header.

 Identification: Set according to a Fragment Identification generator
 at the translator.

 Flags: The More Fragments flag is set to zero. The Don’t Fragment
 (DF) flag is set as follows: If the size of the translated IPv4
 packet is less than or equal to 1260 bytes, it is set to zero;
 otherwise, it is set to one.

 Fragment Offset: All zeros.

 Time to Live: Time to Live is derived from the Hop Limit value in
 the IPv6 header. Since the translator is a router, as part of
 forwarding the packet it needs to decrement either the IPv6 Hop
 Limit (before the translation) or the IPv4 TTL (after the

Bao, et al. Standards Track [Page 17]

RFC 7915 IPv4/IPv6 Translation June 2016

 translation). As part of decrementing the TTL or Hop Limit, the
 translator (as any router) MUST check for zero and send the ICMPv4
 "TTL Exceeded" or ICMPv6 "Hop Limit Exceeded" error.

 Protocol: The IPv6-Frag (44) header is handled as discussed in
 Section 5.1.1. ICMPv6 (58) is changed to ICMPv4 (1), and the
 payload is translated as discussed in Section 5.2. The IPv6
 headers HOPOPT (0), IPv6-Route (43), and IPv6-Opts (60) are
 skipped over during processing as they have no meaning in IPv4.
 For the first ’next header’ that does not match one of the cases
 above, its Next Header value (which contains the transport
 protocol number) is copied to the protocol field in the IPv4
 header. This means that all transport protocols are translated.

 Note: Some translated protocols will fail at the receiver for
 various reasons: some are known to fail when translated (e.g.,
 IPsec Authentication Header (51)), and others will fail
 checksum validation if the address translation is not checksum
 neutral [RFC6052] and the translator does not update the
 transport protocol’s checksum (because the translator doesn’t
 support recalculating the checksum for that transport protocol;
 see Section 5.5).

 Header Checksum: Computed once the IPv4 header has been created.

 Source Address: Mapped to an IPv4 address based on the algorithms
 presented in Section 6.

 If the translator gets an illegal source address (e.g., ::1,
 etc.), the translator SHOULD silently drop the packet.

 Destination Address: Mapped to an IPv4 address based on the
 algorithms presented in Section 6.

 If any of an IPv6 Hop-by-Hop Options header, Destination Options
 header, or Routing header with the Segments Left field equal to zero
 are present in the IPv6 packet, those IPv6 extension headers MUST be
 ignored (i.e., there is no attempt to translate the extension
 headers) and the packet translated normally. However, the Total
 Length field and the Protocol field are adjusted to "skip" these
 extension headers.

 If a Routing header with a non-zero Segments Left field is present,
 then the packet MUST NOT be translated, and an ICMPv6 "parameter
 problem/erroneous header field encountered" (Type 4, Code 0) error
 message, with the Pointer field indicating the first byte of the
 Segments Left field, SHOULD be returned to the sender.

Bao, et al. Standards Track [Page 18]

RFC 7915 IPv4/IPv6 Translation June 2016

5.1.1. IPv6 Fragment Processing

 If the IPv6 packet contains a Fragment Header, the header fields are
 set as above with the following exceptions:

 Total Length: If the Next Header field of the Fragment Header is an
 extension header (except ESP, but including the Authentication
 Header (AH)), then the packet SHOULD be dropped and logged. For
 other cases, the Total Length MUST be set to Payload Length value
 from IPv6 header, minus the length of the extension headers up to
 the Fragmentation Header, minus 8 for the Fragment Header, plus
 the size of the IPv4 header.

 Identification: Copied from the low-order 16 bits in the
 Identification field in the Fragment Header.

 Flags: The IPv4 More Fragments (MF) flag is copied from the M flag
 in the IPv6 Fragment Header. The IPv4 Don’t Fragment (DF) flag is
 cleared (set to zero), allowing this packet to be further
 fragmented by IPv4 routers.

 Fragment Offset: If the Next Header field of the Fragment Header is
 not an extension header (except ESP), then Fragment Offset MUST be
 copied from the Fragment Offset field of the IPv6 Fragment Header.
 If the Next Header field of the Fragment Header is an extension
 header (except ESP), then the packet SHOULD be dropped and logged.

 Protocol: For ICMPv6 (58), it is changed to ICMPv4 (1); otherwise,
 extension headers are skipped, and the Next Header field is copied
 from the last IPv6 header.

 If an IPv6 packet that is smaller than or equal to 1280 bytes results
 (after translation) in an IPv4 packet that is larger than the MTU of
 the next-hop interface, then the translator MUST perform IPv4
 fragmentation on that packet such that it can be transferred over the
 constricting link.

5.2. Translating ICMPv6 Headers into ICMPv4 Headers

 If a non-checksum-neutral translation address is being used, ICMPv6
 messages MUST have their ICMPv4 checksum field be updated as part of
 the translation since ICMPv6 (unlike ICMPv4) includes a pseudo-header
 in the checksum just like UDP and TCP.

 In addition, all ICMP packets MUST have the Type translated and, for
 ICMP error messages, the included IP header MUST also be translated.

Bao, et al. Standards Track [Page 19]

RFC 7915 IPv4/IPv6 Translation June 2016

 The actions needed to translate various ICMPv6 messages are:

 ICMPv6 informational messages:

 Echo Request and Echo Reply (Type 128 and 129): Adjust the Type
 values to 8 and 0, respectively, and adjust the ICMP checksum
 both to take the type change into account and to exclude the
 ICMPv6 pseudo-header.

 MLD Multicast Listener Query/Report/Done (Type 130, 131, 132):
 Single-hop message. Silently drop.

 Neighbor Discover messages (Type 133 through 137): Single-hop
 message. Silently drop.

 Unknown informational messages: Silently drop.

 ICMPv6 error messages:

 Destination Unreachable (Type 1) Set the Type to 3, and adjust
 the ICMP checksum both to take the type/code change into
 account and to exclude the ICMPv6 pseudo-header.

 Translate the Code as follows:

 Code 0 (No route to destination): Set the Code to 1 (Host
 unreachable).

 Code 1 (Communication with destination administratively
 prohibited): Set the Code to 10 (Communication with
 destination host administratively prohibited).

 Code 2 (Beyond scope of source address): Set the Code to 1
 (Host unreachable). Note that this error is very unlikely
 since an IPv4-translatable source address is typically
 considered to have global scope.

 Code 3 (Address unreachable): Set the Code to 1 (Host
 unreachable).

 Code 4 (Port unreachable): Set the Code to 3 (Port
 unreachable).

 Other Code values: Silently drop.

Bao, et al. Standards Track [Page 20]

RFC 7915 IPv4/IPv6 Translation June 2016

 Packet Too Big (Type 2): Translate to an ICMPv4 Destination
 Unreachable (Type 3) with Code 4, and adjust the ICMPv4
 checksum both to take the type change into account and to
 exclude the ICMPv6 pseudo-header. The MTU field MUST be
 adjusted for the difference between the IPv4 and IPv6 header
 sizes, taking into account whether or not the packet in error
 includes a Fragment Header, i.e., minimum((MTU value in the
 Packet Too Big Message)-20, MTU_of_IPv4_nexthop,
 (MTU_of_IPv6_nexthop)-20).

 See also the requirements in Section 7.

 Time Exceeded (Type 3): Set the Type to 11, and adjust the ICMPv4
 checksum both to take the type change into account and to
 exclude the ICMPv6 pseudo-header. The Code is unchanged.

 Parameter Problem (Type 4): Translate the Type and Code as
 follows, and adjust the ICMPv4 checksum both to take the type/
 code change into account and to exclude the ICMPv6 pseudo-
 header.

 Translate the Code as follows:

 Code 0 (Erroneous header field encountered): Set to Type 12,
 Code 0, and update the pointer as defined in Figure 6. (If
 the Original IPv6 Pointer Value is not listed or the
 Translated IPv4 Pointer Value is listed as "n/a", silently
 drop the packet.)

 Code 1 (Unrecognized Next Header type encountered): Translate
 this to an ICMPv4 protocol unreachable (Type 3, Code 2).

 Code 2 (Unrecognized IPv6 option encountered): Silently drop.

 Unknown error messages: Silently drop.

Bao, et al. Standards Track [Page 21]

RFC 7915 IPv4/IPv6 Translation June 2016

 +--------------------------------+--------------------------------+
 | Original IPv6 Pointer Value | Translated IPv4 Pointer Value |
 +--------------------------------+--------------------------------+
 | 0 | Version/Traffic Class | 0 | Version/IHL, Type Of Ser |
 | 1 | Traffic Class/Flow Label | 1 | Type Of Service |
 | 2,3 | Flow Label | n/a | |
 | 4,5 | Payload Length | 2 | Total Length |
 | 6 | Next Header | 9 | Protocol |
 | 7 | Hop Limit | 8 | Time to Live |
 | 8-23| Source Address | 12 | Source Address |
 |24-39| Destination Address | 16 | Destination Address |
 +--------------------------------+--------------------------------+

 Figure 6: Pointer Value for Translating from IPv6 to IPv4

 ICMP Error Payload: If the received ICMPv6 packet contains an
 ICMPv6 Extension [RFC4884], the translation of the ICMPv6
 packet will cause the ICMPv4 packet to change length. When
 this occurs, the ICMPv6 Extension length attribute MUST be
 adjusted accordingly (e.g., shorter due to the translation from
 IPv6 to IPv4). For extensions not defined in [RFC4884], the
 translator passes the extensions as opaque bit strings and any
 IPv6 address literals contained therein will not be translated
 to IPv4 address literals; this may cause problems with
 processing of those ICMP extensions.

5.3. Translating ICMPv6 Error Messages into ICMPv4

 There are some differences between the ICMPv4 and the ICMPv6 error
 message formats as detailed above. The ICMP error messages
 containing the packet in error MUST be translated just like a normal
 IP packet (except that the TTL/Hop Limit value of the inner IPv4/IPv6
 packet are not decremented). The translation of this "packet in
 error" is likely to change the length of the datagram; thus, the
 Total Length field in the outer IPv4 header MUST be updated.

Bao, et al. Standards Track [Page 22]

RFC 7915 IPv4/IPv6 Translation June 2016

 +-------------+ +-------------+
 | IPv6 | | IPv4 |
 | Header | | Header |
 +-------------+ +-------------+
 | ICMPv6 | | ICMPv4 |
 | Header | | Header |
 +-------------+ +-------------+
 | IPv6 | ===> | IPv4 |
 | Header | | Header |
 +-------------+ +-------------+
 | Partial | | Partial |
 | Transport- | | Transport- |
 | Layer | | Layer |
 | Header | | Header |
 +-------------+ +-------------+

 Figure 7: IPv6-to-IPv4 ICMP Error Translation

 The translation of the inner IP header can be done by invoking the
 function that translated the outer IP headers. This process MUST
 stop at the first embedded header and drop the packet if it contains
 more embedded headers.

5.4. Generation of ICMPv6 Error Messages

 If the IPv6 packet is discarded, then the translator SHOULD send back
 an ICMPv6 error message to the original sender of the packet, unless
 the discarded packet is itself an ICMPv6 message.

 The ICMPv6 message MUST have Type 1 (Destination Unreachable) and
 Code 1 (Communication with destination administratively prohibited),
 unless otherwise specified in this document or [RFC6146]. The
 translator SHOULD allow an administrator to configure whether the
 ICMPv6 error messages are sent, rate-limited, or not sent.

5.5. Transport-Layer Header Translation

 If the address translation algorithm is not checksum neutral (see
 Section 4.1 of [RFC6052]), the recalculation and updating of the
 transport-layer headers that contain pseudo-headers need to be
 performed. Translators MUST do this for TCP, UDP, and ICMP.

 Other transport protocols (e.g., DCCP) are OPTIONAL to support. In
 order to ease debugging and troubleshooting, translators MUST forward
 all transport protocols as described in the "Protocol" step of
 Section 5.1.

Bao, et al. Standards Track [Page 23]

RFC 7915 IPv4/IPv6 Translation June 2016

5.6. Knowing When to Translate

 If the IP/ICMP translator also provides a normal forwarding function,
 and the destination address is reachable by a more specific route
 without translation, the router MUST forward it without translating
 it. When an IP/ICMP translator receives an IPv6 datagram addressed
 to an IPv6 address representing a host in the IPv4 domain, the IPv6
 packet MUST be translated to IPv4.

6. Mapping of IP Addresses

 The translator MUST support the stateless address mapping algorithm
 defined in [RFC6052], which is the default behavior. A workflow
 example is shown in Appendix A of this document. Note that [RFC7136]
 updates [RFC4291], which allows the use of unicast addresses without
 u-bit, as long as they’re not derived from an IEEE MAC-layer address.
 Therefore, the address mapping algorithm defined in [RFC6219] also
 complies with the IPv6 address architecture.

 The stateless translator SHOULD support the explicit address mapping
 algorithm defined in [RFC7757].

 The stateless translator SHOULD support [RFC6791] for handling ICMP/
 ICMPv6 packets.

 Implementations may support both stateless and stateful translation
 modes (e.g., Network Address and Protocol Translation from IPv6
 Clients to IPv4 Servers (NAT64) [RFC6146]).

 Implementations may support stateless NAT64 function, e.g., MAP-T
 Customer Edge (CE) or MAP-T Border Relay (BR) [RFC7599].

7. Special Considerations for ICMPv6 Packet Too Big

 A number of studies [ATOMIC] indicate that it not unusual for
 networks to drop ICMPv6 Packet Too Big error messages. Such packet
 drops will result in PMTUD black holes [RFC2923], which can only be
 overcome with Packetization Layer Path MTU Discovery (PLPMTUD)
 [RFC4821].

8. Security Considerations

 The use of stateless IP/ICMP translators does not introduce any new
 security issues beyond the security issues that are already present
 in the IPv4 and IPv6 protocols and in the routing protocols that are
 used to make the packets reach the translator.

Bao, et al. Standards Track [Page 24]

RFC 7915 IPv4/IPv6 Translation June 2016

 There are potential issues that might arise by deriving an IPv4
 address from an IPv6 address -- particularly addresses like broadcast
 or loopback addresses and the non-IPv4-translatable IPv6 addresses,
 etc. [RFC6052] addresses these issues.

 The IPsec Authentication Header [RFC4302] cannot be used for NAT44 or
 NAT64.

 As with the network address translation of IPv4 to IPv4, packets with
 tunnel mode Encapsulating Security Payload (ESP) can be translated
 since tunnel mode ESP does not depend on header fields prior to the
 ESP header. Similarly, transport mode ESP will fail with IPv6-to-
 IPv4 translation unless checksum-neutral addresses are used. In both
 cases, the IPsec ESP endpoints will normally detect the presence of
 the translator and encapsulate ESP in UDP packets [RFC3948].

9. References

9.1. Normative References

 [RFC768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 DOI 10.17487/RFC0768, August 1980,
 <http://www.rfc-editor.org/info/rfc768>.

 [RFC791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 DOI 10.17487/RFC0791, September 1981,
 <http://www.rfc-editor.org/info/rfc791>.

 [RFC793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, DOI 10.17487/RFC0793, September 1981,
 <http://www.rfc-editor.org/info/rfc793>.

 [RFC1812] Baker, F., Ed., "Requirements for IP Version 4 Routers",
 RFC 1812, DOI 10.17487/RFC1812, June 1995,
 <http://www.rfc-editor.org/info/rfc1812>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3948] Huttunen, A., Swander, B., Volpe, V., DiBurro, L., and M.
 Stenberg, "UDP Encapsulation of IPsec ESP Packets",
 RFC 3948, DOI 10.17487/RFC3948, January 2005,
 <http://www.rfc-editor.org/info/rfc3948>.

Bao, et al. Standards Track [Page 25]

RFC 7915 IPv4/IPv6 Translation June 2016

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, DOI 10.17487/RFC4291, February
 2006, <http://www.rfc-editor.org/info/rfc4291>.

 [RFC4340] Kohler, E., Handley, M., and S. Floyd, "Datagram
 Congestion Control Protocol (DCCP)", RFC 4340,
 DOI 10.17487/RFC4340, March 2006,
 <http://www.rfc-editor.org/info/rfc4340>.

 [RFC4443] Conta, A., Deering, S., and M. Gupta, Ed., "Internet
 Control Message Protocol (ICMPv6) for the Internet
 Protocol Version 6 (IPv6) Specification", RFC 4443,
 DOI 10.17487/RFC4443, March 2006,
 <http://www.rfc-editor.org/info/rfc4443>.

 [RFC4884] Bonica, R., Gan, D., Tappan, D., and C. Pignataro,
 "Extended ICMP to Support Multi-Part Messages", RFC 4884,
 DOI 10.17487/RFC4884, April 2007,
 <http://www.rfc-editor.org/info/rfc4884>.

 [RFC5382] Guha, S., Ed., Biswas, K., Ford, B., Sivakumar, S., and P.
 Srisuresh, "NAT Behavioral Requirements for TCP", BCP 142,
 RFC 5382, DOI 10.17487/RFC5382, October 2008,
 <http://www.rfc-editor.org/info/rfc5382>.

 [RFC5771] Cotton, M., Vegoda, L., and D. Meyer, "IANA Guidelines for
 IPv4 Multicast Address Assignments", BCP 51, RFC 5771,
 DOI 10.17487/RFC5771, March 2010,
 <http://www.rfc-editor.org/info/rfc5771>.

 [RFC6052] Bao, C., Huitema, C., Bagnulo, M., Boucadair, M., and X.
 Li, "IPv6 Addressing of IPv4/IPv6 Translators", RFC 6052,
 DOI 10.17487/RFC6052, October 2010,
 <http://www.rfc-editor.org/info/rfc6052>.

 [RFC6145] Li, X., Bao, C., and F. Baker, "IP/ICMP Translation
 Algorithm", RFC 6145, DOI 10.17487/RFC6145, April 2011,
 <http://www.rfc-editor.org/info/rfc6145>.

 [RFC6146] Bagnulo, M., Matthews, P., and I. van Beijnum, "Stateful
 NAT64: Network Address and Protocol Translation from IPv6
 Clients to IPv4 Servers", RFC 6146, DOI 10.17487/RFC6146,
 April 2011, <http://www.rfc-editor.org/info/rfc6146>.

 [RFC6791] Li, X., Bao, C., Wing, D., Vaithianathan, R., and G.
 Huston, "Stateless Source Address Mapping for ICMPv6
 Packets", RFC 6791, DOI 10.17487/RFC6791, November 2012,
 <http://www.rfc-editor.org/info/rfc6791>.

Bao, et al. Standards Track [Page 26]

RFC 7915 IPv4/IPv6 Translation June 2016

 [RFC7757] Anderson, T. and A. Leiva Popper, "Explicit Address
 Mappings for Stateless IP/ICMP Translation", RFC 7757,
 DOI 10.17487/RFC7757, February 2016,
 <http://www.rfc-editor.org/info/rfc7757>.

9.2. Informative References

 [ATOMIC] Gont, F., LIU, S., and T. Anderson, "Generation of IPv6
 Atomic Fragments Considered Harmful", Work in Progress,
 draft-ietf-6man-deprecate-atomfrag-generation-06, April
 2016.

 [Err3059] RFC Errata, Erratum ID 3059, RFC 6145.

 [Err3060] RFC Errata, Erratum ID 3060, RFC 6145.

 [Err3061] RFC Errata, Erratum ID 3061, RFC 6145.

 [Err4090] RFC Errata, Erratum ID 4090, RFC 6145.

 [IPv6] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", Work in Progress, draft-ietf-6man-
 rfc2460bis-04, March 2016.

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 DOI 10.17487/RFC1191, November 1990,
 <http://www.rfc-editor.org/info/rfc1191>.

 [RFC2474] Nichols, K., Blake, S., Baker, F., and D. Black,
 "Definition of the Differentiated Services Field (DS
 Field) in the IPv4 and IPv6 Headers", RFC 2474,
 DOI 10.17487/RFC2474, December 1998,
 <http://www.rfc-editor.org/info/rfc2474>.

 [RFC2475] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z.,
 and W. Weiss, "An Architecture for Differentiated
 Services", RFC 2475, DOI 10.17487/RFC2475, December 1998,
 <http://www.rfc-editor.org/info/rfc2475>.

 [RFC2710] Deering, S., Fenner, W., and B. Haberman, "Multicast
 Listener Discovery (MLD) for IPv6", RFC 2710,
 DOI 10.17487/RFC2710, October 1999,
 <http://www.rfc-editor.org/info/rfc2710>.

 [RFC2923] Lahey, K., "TCP Problems with Path MTU Discovery",
 RFC 2923, DOI 10.17487/RFC2923, September 2000,
 <http://www.rfc-editor.org/info/rfc2923>.

Bao, et al. Standards Track [Page 27]

RFC 7915 IPv4/IPv6 Translation June 2016

 [RFC3307] Haberman, B., "Allocation Guidelines for IPv6 Multicast
 Addresses", RFC 3307, DOI 10.17487/RFC3307, August 2002,
 <http://www.rfc-editor.org/info/rfc3307>.

 [RFC3590] Haberman, B., "Source Address Selection for the Multicast
 Listener Discovery (MLD) Protocol", RFC 3590,
 DOI 10.17487/RFC3590, September 2003,
 <http://www.rfc-editor.org/info/rfc3590>.

 [RFC3810] Vida, R., Ed. and L. Costa, Ed., "Multicast Listener
 Discovery Version 2 (MLDv2) for IPv6", RFC 3810,
 DOI 10.17487/RFC3810, June 2004,
 <http://www.rfc-editor.org/info/rfc3810>.

 [RFC3849] Huston, G., Lord, A., and P. Smith, "IPv6 Address Prefix
 Reserved for Documentation", RFC 3849,
 DOI 10.17487/RFC3849, July 2004,
 <http://www.rfc-editor.org/info/rfc3849>.

 [RFC4302] Kent, S., "IP Authentication Header", RFC 4302,
 DOI 10.17487/RFC4302, December 2005,
 <http://www.rfc-editor.org/info/rfc4302>.

 [RFC4787] Audet, F., Ed. and C. Jennings, "Network Address
 Translation (NAT) Behavioral Requirements for Unicast
 UDP", BCP 127, RFC 4787, DOI 10.17487/RFC4787, January
 2007, <http://www.rfc-editor.org/info/rfc4787>.

 [RFC4821] Mathis, M. and J. Heffner, "Packetization Layer Path MTU
 Discovery", RFC 4821, DOI 10.17487/RFC4821, March 2007,
 <http://www.rfc-editor.org/info/rfc4821>.

 [RFC5737] Arkko, J., Cotton, M., and L. Vegoda, "IPv4 Address Blocks
 Reserved for Documentation", RFC 5737,
 DOI 10.17487/RFC5737, January 2010,
 <http://www.rfc-editor.org/info/rfc5737>.

 [RFC6144] Baker, F., Li, X., Bao, C., and K. Yin, "Framework for
 IPv4/IPv6 Translation", RFC 6144, DOI 10.17487/RFC6144,
 April 2011, <http://www.rfc-editor.org/info/rfc6144>.

 [RFC6219] Li, X., Bao, C., Chen, M., Zhang, H., and J. Wu, "The
 China Education and Research Network (CERNET) IVI
 Translation Design and Deployment for the IPv4/IPv6
 Coexistence and Transition", RFC 6219,
 DOI 10.17487/RFC6219, May 2011,
 <http://www.rfc-editor.org/info/rfc6219>.

Bao, et al. Standards Track [Page 28]

RFC 7915 IPv4/IPv6 Translation June 2016

 [RFC6691] Borman, D., "TCP Options and Maximum Segment Size (MSS)",
 RFC 6691, DOI 10.17487/RFC6691, July 2012,
 <http://www.rfc-editor.org/info/rfc6691>.

 [RFC7136] Carpenter, B. and S. Jiang, "Significance of IPv6
 Interface Identifiers", RFC 7136, DOI 10.17487/RFC7136,
 February 2014, <http://www.rfc-editor.org/info/rfc7136>.

 [RFC7599] Li, X., Bao, C., Dec, W., Ed., Troan, O., Matsushima, S.,
 and T. Murakami, "Mapping of Address and Port using
 Translation (MAP-T)", RFC 7599, DOI 10.17487/RFC7599, July
 2015, <http://www.rfc-editor.org/info/rfc7599>.

Bao, et al. Standards Track [Page 29]

RFC 7915 IPv4/IPv6 Translation June 2016

Appendix A. Stateless Translation Workflow Example

 A stateless translation workflow example is depicted in the following
 figure. The documentation address blocks 2001:db8::/32 [RFC3849],
 192.0.2.0/24, and 198.51.100.0/24 [RFC5737] are used in this example.

 +--------------+ +--------------+
 | IPv4 network | | IPv6 network | | | | |
 | | +-------+ | |
 | +----+ |-----| XLAT |---- | +----+ |
 | | H4 |-----| +-------+ |--| H6 | |
 | +----+ | | +----+ |
 +--------------+ +--------------+

 Figure 8: Stateless Translation Workflow

 A translator (XLAT) connects the IPv6 network to the IPv4 network.
 This XLAT uses the Network-Specific Prefix (NSP) 2001:db8:100::/40
 defined in [RFC6052] to represent IPv4 addresses in the IPv6 address
 space (IPv4-converted addresses) and to represent IPv6 addresses
 (IPv4-translatable addresses) in the IPv4 address space. In this
 example, 192.0.2.0/24 is the IPv4 block of the corresponding
 IPv4-translatable addresses.

 Based on the address mapping rule, the IPv6 node H6 has an
 IPv4-translatable IPv6 address 2001:db8:1c0:2:21:: (address mapping
 from 192.0.2.33). The IPv4 node H4 has IPv4 address 198.51.100.2.

 The IPv6 routing is configured in such a way that the IPv6 packets
 addressed to a destination address in 2001:db8:100::/40 are routed to
 the IPv6 interface of the XLAT.

 The IPv4 routing is configured in such a way that the IPv4 packets
 addressed to a destination address in 192.0.2.0/24 are routed to the
 IPv4 interface of the XLAT.

A.1. H6 Establishes Communication with H4

 The steps by which H6 establishes communication with H4 are:

 1. H6 performs the destination address mapping, so the
 IPv4-converted address 2001:db8:1c6:3364:2:: is formed from
 198.51.100.2 based on the address mapping algorithm [RFC6052].

 2. H6 sends a packet to H4. The packet is sent from a source
 address 2001:db8:1c0:2:21:: to a destination address
 2001:db8:1c6:3364:2::.

Bao, et al. Standards Track [Page 30]

RFC 7915 IPv4/IPv6 Translation June 2016

 3. The packet is routed to the IPv6 interface of the XLAT (since
 IPv6 routing is configured that way).

 4. The XLAT receives the packet and performs the following actions:

 * The XLAT translates the IPv6 header into an IPv4 header using
 the IP/ICMP Translation Algorithm defined in this document.

 * The XLAT includes 192.0.2.33 as the source address in the
 packet and 198.51.100.2 as the destination address in the
 packet. Note that 192.0.2.33 and 198.51.100.2 are extracted
 directly from the source IPv6 address 2001:db8:1c0:2:21::
 (IPv4-translatable address) and destination IPv6 address
 2001:db8:1c6:3364:2:: (IPv4-converted address) of the received
 IPv6 packet that is being translated.

 5. The XLAT sends the translated packet out of its IPv4 interface,
 and the packet arrives at H4.

 6. H4 node responds by sending a packet with destination address
 192.0.2.33 and source address 198.51.100.2.

 7. The packet is routed to the IPv4 interface of the XLAT (since
 IPv4 routing is configured that way). The XLAT performs the
 following operations:

 * The XLAT translates the IPv4 header into an IPv6 header using
 the IP/ICMP Translation Algorithm defined in this document.

 * The XLAT includes 2001:db8:1c0:2:21:: as the destination
 address in the packet and 2001:db8:1c6:3364:2:: as the source
 address in the packet. Note that 2001:db8:1c0:2:21:: and
 2001:db8:1c6:3364:2:: are formed directly from the destination
 IPv4 address 192.0.2.33 and the source IPv4 address
 198.51.100.2 of the received IPv4 packet that is being
 translated.

 8. The translated packet is sent out of the IPv6 interface to H6.

 The packet exchange between H6 and H4 continues until the session is
 finished.

Bao, et al. Standards Track [Page 31]

RFC 7915 IPv4/IPv6 Translation June 2016

A.2. H4 Establishes Communication with H6

 The steps by which H4 establishes communication with H6 are:

 1. H4 performs the destination address mapping, so 192.0.2.33 is
 formed from the IPv4-translatable address 2001:db8:1c0:2:21::
 based on the address mapping algorithm [RFC6052].

 2. H4 sends a packet to H6. The packet is sent from a source
 address 198.51.100.2 to a destination address 192.0.2.33.

 3. The packet is routed to the IPv4 interface of the XLAT (since
 IPv4 routing is configured that way).

 4. The XLAT receives the packet and performs the following actions:

 * The XLAT translates the IPv4 header into an IPv6 header using
 the IP/ICMP Translation Algorithm defined in this document.

 * The XLAT includes 2001:db8:1c6:3364:2:: as the source address
 in the packet and 2001:db8:1c0:2:21:: as the destination
 address in the packet. Note that 2001:db8:1c6:3364:2::
 (IPv4-converted address) and 2001:db8:1c0:2:21::
 (IPv4-translatable address) are obtained directly from the
 source IPv4 address 198.51.100.2 and destination IPv4 address
 192.0.2.33 of the received IPv4 packet that is being
 translated.

 5. The XLAT sends the translated packet out its IPv6 interface, and
 the packet arrives at H6.

 6. H6 node responds by sending a packet with destination address
 2001:db8:1c6:3364:2:: and source address 2001:db8:1c0:2:21::.

 7. The packet is routed to the IPv6 interface of the XLAT (since
 IPv6 routing is configured that way). The XLAT performs the
 following operations:

 * The XLAT translates the IPv6 header into an IPv4 header using
 the IP/ICMP Translation Algorithm defined in this document.

 * The XLAT includes 198.51.100.2 as the destination address in
 the packet and 192.0.2.33 as the source address in the packet.
 Note that 198.51.100.2 and 192.0.2.33 are formed directly from
 the destination IPv6 address 2001:db8:1c6:3364:2:: and source
 IPv6 address 2001:db8:1c0:2:21:: of the received IPv6 packet
 that is being translated.

Bao, et al. Standards Track [Page 32]

RFC 7915 IPv4/IPv6 Translation June 2016

 8. The translated packet is sent out the IPv4 interface to H4.

 The packet exchange between H4 and H6 continues until the session is
 finished.

Acknowledgements

 Gandhar Gokhale, Wesley Eddy, and Fernando Gont submitted and handled
 the errata reports on [RFC6145]. Fernando Gont, Will (Shucheng) Liu,
 and Tore Anderson provided the security analysis and the suggestions
 for updates concerning atomic fragments. In addition, Tore Anderson
 and Alberto Leiva provided the proposal of the Explicit Address
 Mapping (EAM) algorithm.

Authors’ Addresses

 Congxiao Bao
 CERNET Center/Tsinghua University
 Room 225, Main Building, Tsinghua University
 Beijing 100084
 China

 Phone: +86 10-62785983
 Email: congxiao@cernet.edu.cn

 Xing Li
 CERNET Center/Tsinghua University
 Room 225, Main Building, Tsinghua University
 Beijing 100084
 China

 Phone: +86 10-62785983
 Email: xing@cernet.edu.cn

 Fred Baker
 Cisco Systems
 Santa Barbara, California 93117
 United States

 Phone: +1-408-526-4257
 Email: fred@cisco.com

Bao, et al. Standards Track [Page 33]

RFC 7915 IPv4/IPv6 Translation June 2016

 Tore Anderson
 Redpill Linpro
 Vitaminveien 1A
 0485 Oslo
 Norway

 Phone: +47 959 31 212
 Email: tore@redpill-linpro.com
 URI: http://www.redpill-linpro.com

 Fernando Gont
 Huawei Technologies
 Evaristo Carriego 2644
 Haedo, Provincia de Buenos Aires 1706
 Argentina

 Phone: +54 11 4650 8472
 Email: fgont@si6networks.com
 URI: http://www.si6networks.com

Bao, et al. Standards Track [Page 34]

