I nt ernet Engi neering Task Force (I ETF) T. Haynes
Request for Comments: 7862 Primary Data
Cat egory: Standards Track Novenber 2016
| SSN: 2070-1721

Network File System (NFS) Version 4 Mnor Version 2 Protoco

Abstract

Thi s docunent describes NFS version 4 minor version 2; it describes
the protocol extensions nade from NFS version 4 ninor version 1.
Maj or extensions introduced in NFS version 4 minor version 2 include
the follow ng: Server-Side Copy, Application Input/Qutput (1/0

Advi se, Space Reservations, Sparse Files, Application Data Bl ocks,
and Label ed NFS.

Status of This Meno
This is an Internet Standards Track docunent.

This docunent is a product of the Internet Engi neering Task Force
(IETF). It represents the consensus of the I ETF comunity. |t has
recei ved public review and has been approved for publication by the
I nternet Engineering Steering Goup (IESG. Further information on
Internet Standards is available in Section 2 of RFC 7841.

I nformation about the current status of this docunent, any errata,
and how to provide feedback on it nmay be obtai ned at
http://ww. rfc-editor.org/info/rfc7862

Copyright Notice

Copyright (c) 2016 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the | ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided w thout warranty as
described in the Sinplified BSD License.

Haynes St andards Track [Page 1]

RFC 7862 NFSv4. 2 Novenber 2016

Tabl e

1

Haynes

of Contents
INtroduCti ON ... 4
1.1. Requirenents Languaget 4
1. 2. Scope of This DoCcUMBNL e 5
1.3, NRSVA. 2 Goal S ..o 5
1.4. Overview of NFSV4.2 Featuresuiiiiinnnennnn 6
1.4.1. Server-Side done and Copy 6
1.4.2. Application Input/Qutput (1/O Advise 6
1.4.3. Sparse Files 6
1.4.4. Space Reservation 7
1.4.5. Application Data Block (ADB) Support 7
1.4.6. Labeled NFS 7
1.4.7. Layout Enhancements i, 7
1.5. Enhancenents to M nor Versioning Mdel 7
M nor Versi oni NQ e 8
pNFS Considerations for New Qperations 9
3.1. Atomicity for ALLOCATE and DEALLOCATE 9
3.2. Sharing of Stateids with NFSv4.1 9
3.3. NFSv4.2 as a Storage Protocol in pNFS: The File
LayoUt TYPe . 9
3.3.1. Operations Sent to NFSv4.2 Data Servers 9
Server-Side CopY . ..ot 10
4.1. Protocol OVervi W 10
4.1.1. COPY Qperati Onsot e e et e 11
4.1.2. Requirenments for Operations 11
4.2. Requirements for Inter-Server Copy 13
4.3. Inplenmentation Considerations 13
4.3.1. Locking the Files i 13
4.3.2. Cient Caches 14
4.4, Intra-Server COPY ..ot e 14
4.5, Inter-Server COPY 16
4.6. Server-to-Server Copy Protocol 19
4.6.1. Considerations on Selecting a Copy Protocol 19
4.6.2. Using NFSv4.x as the Copy Protocol 19
4.6.3. Using an Alternative Copy Protocol 20
4.7. netlocd - Network Locations 21
4.8. Copy Ofload Stateids 21
4.9. Security Considerations for Server-Side Copy 22
4.9.1. Inter-Server Copy Security, 22
Support for Application I/OHDNts 30
Sparse Fil es e 30
6. 1. Termnol Ogy 31
6.2. New Operati ONS 32
6.2.1. READ PLUS 32
6.2.2. DEALLOCATE e 32
Space Reservati on 32
St andards Track [Page 2]

RFC 78

8.

10.

11.

12.

13.
14.

15.

Haynes

62 NFSv4. 2 Novenmber 2016

Application Data Bl ock SUPpPOrty 34
8.1. Generic Framework 35
8.1.1. Data Block Representation 36
8.2. An Exanple of Detecting Corruption 36
8.3. An Exanple of READ PLUS i, 38
8.4. An Exanple of Zeroing Space 39
Label ed NFS 39
9.1, Definitions 40
9.2. MAC Security Attribute 41
9.2.1. Delegations 41
9.2.2. Permission Checking 42
9.2.3. Ghject Creation, 42
9.2.4. Existing QbjeCts 42
9.2.5. Label Changes 42
9.3. PNFS Considerati ons 43
9.4. Discovery of Server Labeled NFS Support 43
9.5. MAC Security NFS Mbdes of QOperation 43
9.5.1. Full Mde 44
9.5.2. Limted Server Mode 45
9.5.3. @uest Mude 45
9.6. Security Considerations for Labeled NFS 46
Sharing Change Attribute Inplenentation Characteristics
With NFSV4A Clients e e 46
Error Val ues 47
11.1. Error Definitions 47
11.1.1. General Errors e 47
11.1.2. Server-to-Server Copy Errors 47
11.1.3. Labeled NFS Errors 48
11.2. New Operations and Their Valid Errors 49
11.3. New Cal | back Operations and Their Valid Errors 53
New File Attributes e 54
12.1. New RECOMMENDED Attributes - List and Definition
Ref erences 54
12.2. Attribute Definitions i, 54
Qperations: REQU RED, RECOMVENDED, or OPTIONAL 57
Modifications to NFSv4. 1 Qperations 61

14.1. Qperation 42: EXCHANGE ID - Instantiate the client ID....61
14.2. COperation 48: GETDEVI CELI ST - Get all device

mappi ngs for a file system....... 63
NFSV4. 2 Operati ONS e 64
15.1. Qperation 59: ALLOCATE - Reserve space in a
region of a file e 64
15.2. Qperation 60: COPY - |Initiate a server-side copy 65
15.3. Qperation 61: COPY_NOTIFY - Notify a source
server of a future copy 70
15. 4. Qperation 62: DEALLOCATE - Unreserve space in a
region of a file 72
St andards Track [Page 3]

RFC 7862 NFSv4. 2 Novenber 2016

15.5. Qperation 63: IO ADVISE - Send client 1/0O access

pattern hints to the server 73
15.6. QOperation 64: LAYOUTERROR - Provide errors for
the layout 79
15. 7. Operation 65: LAYQUTSTATS - Provide statistics
for the layout e 82
15.8. Qperation 66: OFFLOAD CANCEL - Stop an of fl oaded
OPErati ON ..o 84
15.9. Operation 67: OFFLOAD_STATUS - Poll for the
status of an asynchronous operation 85
15.10. Operation 68: READ PLUS - READ data or hol es
froma file e 86
15.11. Operation 69: SEEK - Find the next data or hole 91
15.12. Operation 70: WRI TE_SAME - WRI TE an ADB nultiple
times to a file 92
15.13. Operation 71: CLONE - Clone a range of a file
into another file 96
16. NFSv4.2 Callback Qperations, 98
16.1. Qperation 15: CB OFFLOAD - Report the results of
an asynchronous operation 98
17. Security Considerati ONS 99
18. TANA Considerati ONS i 99
19. References 100
19.1. Normative References 100
19.2. Informative References 101
ACKknNOW edgmBNt S 103
Aut hor’ s Addr €SS 104
1. Introduction

The NFS version 4 minor version 2 (NFSv4.2) protocol is the third

m nor version of the NFS version 4 (NFSv4) protocol. The first mnor
version, NFSv4.0, is described in [RFC7530], and the second m nor
version, NFSv4.1, is described in [RFC5661].

As a minor version, NFSv4.2 is consistent with the overall goals for
NFSv4, but NFSv4. 2 extends the protocol so as to better neet those
goal s, based on experiences with NFSv4.1. In addition, NFSv4.2 has
adopt ed sonme additional goals, which notivate sone of the ngjor
extensions in NFSv4. 2.

1.1. Requirenents Language
The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",

"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in RFC 2119 [RFC2119].

Haynes St andards Track [Page 4]

RFC 7862 NFSv4. 2 Novenber 2016

1.2. Scope of This Docunent

Thi s docunent describes the NFSv4.2 protocol as a set of extensions
to the specification for NFSv4.1. That specification remains current
and fornms the basis for the additions defined herein. The
specification for NFSv4.0 remains current as well.

It is necessary to inplenent all the REQUI RED features of NFSv4.1
bef ore addi ng NFSv4.2 features to the inplenentation. Wth respect
to NFSv4.0 and NFSv4.1, this docunent does not:

0 describe the NFSv4.0 or NFSv4.1 protocols, except where needed to
contrast with NFSv4. 2

o nodify the specification of the NFSv4.0 or NFSv4.1 protocols

o clarify the NFSv4.0 or NFSv4.1 protocols -- that is, any
clarifications nmade here apply only to NFSv4.2 and not to NFSv4.0
or NFSv4.1

NFSv4.2 is a superset of NFSv4.1, with all of the new features being
optional. As such, NFSv4.2 maintains the same conpatibility that
NFSv4.1 had with NFSv4.0. Any interactions of a new feature with
NFSv4.1 semantics is described in the relevant text.

The full External Data Representation (XDR) [RFC4506] for NFSv4.2 is
presented in [RFC7863].

1.3. NFSv4.2 Coal s
A maj or goal of the enhancenents provided in NFSv4.2 is to take
common |l ocal file systemfeatures that have not been avail able
through earlier versions of NFS and to offer themrenotely. These
features night

o0 already be avail able on the servers, e.g., sparse files

0 be under devel opnent as a new standard, e.g., SEEK pulls in both
SEEK_HOLE and SEEK_DATA

0 be used by clients with the servers via sone proprietary means,
e.g., Labeled NFS

NFSv4. 2 provides neans for clients to | everage these features on the

server in cases in which such | everagi ng had previously not been
possi ble within the confines of the NFS protocol

Haynes St andards Track [Page 5]

RFC 7862 NFSv4. 2 Novenber 2016

1.4. Overview of NFSv4.2 Features
1.4.1. Server-Side done and Copy

A traditional file copy of a renotely accessed file, whether from one
server to another or between |ocations in the same server, results in
the data being put on the network twice -- source to client and then
client to destination. New operations are introduced to allow
unnecessary traffic to be elim nated:

0 The intra-server CLONE feature allows the client to request a
synchronous cloni ng, perhaps by copy-on-wite semantics.

0 The intra-server COPY feature allows the client to request the
server to performthe copy internally, avoiding unnecessary
network traffic.

0 The inter-server COPY feature allows the client to authorize the
source and destination servers to interact directly.

As such copies can be I engthy, asynchronous support is also provided.
1.4.2. Application Input/Qutput (1/0O Advise

Applications and clients want to advise the server as to expected 1/0O
behavior. Using | O ADVI SE (see Section 15.5) to conmunicate future
I/ O behavior such as whether a file will be accessed sequentially or
random y, and whether a file will or will not be accessed in the near
future, allows servers to optimze future I/O requests for a file by,
for exanple, prefetching or evicting data. This operation can be
used to support the posix_fadvise() [posix _fadvise] function. In
addition, it rmay be hel pful to applications such as databases and

vi deo editors.

1.4.3. Sparse Files

Sparse files are files that have unallocated or uninitialized data

bl ocks as holes in the file. Such holes are typically transferred as
zeros when read fromthe file. READ PLUS (see Section 15.10) allows
a server to send back to the client nmetadata describing the hole, and
DEALLOCATE (see Section 15.4) allows the client to punch holes into a
file. In addition, SEEK (see Section 15.11) is provided to scan for
the next hole or data froma given | ocation

Haynes St andards Track [Page 6]

RFC 7862 NFSv4. 2 Novenber 2016

1.4.4. Space Reservation

When a file is sparse, one concern that applications have is ensuring
that there will always be enough data bl ocks available for the file
during future wites. ALLOCCATE (see Section 15.1) allows a client to
request a guarantee that space will be available. Al so, DEALLOCATE
(see Section 15.4) allows the client to punch a hole into a file,
thus rel easing a space reservation

1.4.5. Application Data Bl ock (ADB) Support

Sonme applications treat a file as if it were a disk and as such want
toinitialize (or format) the file inmage. The WRI TE_SAME operation
(see Section 15.12) is introduced to send this netadata to the server
to allowit to wite the block contents.

1.4.6. Label ed NFS

Wil e both clients and servers can enpl oy Mandatory Access Contro
(MAC) security nodels to enforce data access, there has been no
protocol support for interoperability. A newfile object attribute,
sec_l abel (see Section 12.2.4), allows the server to store MAC | abel s
on files, which the client retrieves and uses to enforce data access
(see Section 9.5.3). The format of the sec_| abel acconnobdates any
MAC security system

1.4.7. Layout Enhancenents

In the parallel NFS inplenentations of NFSv4.1 (see Section 12 of

[RFC5661]), the client cannot communicate back to the netadata server
any errors or performance characteristics with the storage devices.
NFSv4. 2 provides two new operations to do so: LAYOUTERROR (see
Section 15.6) and LAYOUTSTATS (see Section 15.7), respectively.

1.5. Enhancenents to M nor Versioning Mde

In NFSv4.1, the only way to introduce new variants of an operation
was to introduce a new operation. For instance, READ would have to
be replaced or supplenmented by, say, either READ2 or READ PLUS. Wth
the use of discrimnated unions as paraneters for such functions in
NFSv4.2, it is possible to add a new "arnf (i.e., a newentry in the
union and a corresponding new field in the structure) in a subsequent
m nor version. It is also possible to nove such an operation from
OPTI ONAL/ RECOMVENDED t o REQUI RED. Forcing an inpl enentation to adopt
each arm of a discrinminated union at such a tine does not neet the
spirit of the mnor versioning rules. As such, new arns of a

di scrimnated union MJIST foll ow the sane guidelines for m nor

Haynes St andards Track [Page 7]

RFC 7862 NFSv4. 2 Novenber 2016

versioning as operations in NFSv4.1 -- i.e., they nay not be nade
REQUI RED. To support this, a new error code, NFS4ERR UNI ON_NOTSUPP,
all ows the server to communicate to the client that the operation is
supported but the specific armof the discrimnated union is not.

2. M nor Versioning

NFSv4.2 is a minor version of NFSv4 and is built upon NFSv4.1 as
docunmented in [RFC5661] and [RFC5662] .

NFSv4. 2 does not nodify the rules applicable to the NFSv4 versioni ng
process and follows the rules set out in [RFC5661] or in

St andards Track docunents updating that document (e.g., in an RFC
based on [NFSv4- Versioning]).

NFSv4. 2 only defines extensions to NFSv4.1, each of which may be
supported (or not) independently. It does not

o introduce infrastructural features
0o make existing features MANDATORY to NOT i npl enent

o change the status of existing features (i.e., by changing their
status anmong OPTI ONAL, RECOMMENDED, REQUI RED)

The foll owi ng versioning-rel ated considerations should be noted.

0 Wien a new case is added to an existing switch, servers need to
report non-support of that new case by returning
NFS4ERR_UNI ON_NOTSUPP.

0 As regards the potential cross-mnor-version transfer of stateids,
Parall el NFS (pNFS) (see Section 12 of [RFC5661]) inplenmentations
of the file-mapping type may support the use of an NFSv4. 2
nmet adat a server (see Sections 1.7.2.2 and 12.2.2 of [RFC5661])
with NFSv4.1 data servers. In this context, a stateid returned by
an NFSv4.2 COMPOUND wi Il be used in an NFSv4.1 COVPOUND directed
to the data server (see Sections 3.2 and 3.3).

Haynes St andards Track [Page 8]

RFC 7862 NFSv4. 2 Novenber 2016

3. pNFS Considerations for New Operations

The interactions of the new operations with non-pNFS functionality
are straightforward and are covered in the rel evant sections.
However, the interactions of the new operations with pNFS are nore
conplicated. This section provides an overvi ew.

3.1. Atomicity for ALLOCATE and DEALLOCATE

Bot h ALLOCATE (see Section 15.1) and DEALLOCATE (see Section 15.4)
are sent to the nmetadata server, which is responsible for

coordi nating the changes onto the storage devices. |n particular
both operations nust either fully succeed or fail; it cannot be the
case that one storage device succeeds whilst another fails.

3.2. Sharing of Stateids with NFSv4.1

An NFSv4.2 netadata server can hand out a layout to an NFSv4.1
storage device. Section 13.9.1 of [RFC5661] discusses how the client
gets a stateid fromthe netadata server to present to a storage

devi ce.

3.3. NFSv4.2 as a Storage Protocol in pNFS: The File Layout Type

A file layout provided by an NFSv4.2 server may refer to either (1) a
storage device that only inplenents NFSv4.1 as specified in [RFC5661]
or (2) a storage device that inplenments additions from NFSv4. 2, in
which case the rules in Section 3.3.1 apply. As the file layout type
does not provide a neans for informng the client as to which m nor
version a particular storage device is providing, the client wll
have to negotiate this with the storage device via the nornmal Renote
Procedure Call (RPC) semantics of nmmjor and minor version discovery.
For exanple, as per Section 16.2.3 of [RFC5661], the client could try
a COWOUND with a minorversion field value of 2; if it gets
NFS4ERR_M NOR_VERS M SMATCH, it would drop back to 1.

3.3.1. Qperations Sent to NFSv4.2 Data Servers

In addition to the conmands listed in [RFC5661], NFSv4.2 data servers
MAY accept a COVPOUND containing the foll owi ng additional operations:
| O ADVI SE (see Section 15.5), READ PLUS (see Section 15.10)

VWRI TE_SAME (see Section 15.12), and SEEK (see Section 15.11), which
will be treated |ike the subset specified as "Qperations Sent to
NFSv4.1 Data Servers" in Section 13.6 of [RFC5661].

Additional details on the inplenentation of these operations in a
pNFS context are docunmented in the operation-specific sections.

Haynes St andards Track [Page 9]

RFC 7862 NFSv4. 2 Novenber 2016

4.

4.

Server - Si de Copy

The server-side copy features provide nmechani sns that allow an NFS
client to copy file data on a server or between two servers w thout
the data being transmtted back and forth over the network through
the NFS client. Wthout these features, an NFS client would copy
data fromone |ocation to another by reading the data fromthe source
server over the network and then witing the data back over the
network to the destination server

If the source object and destination object are on different file
servers, the file servers will comunicate with one another to
performthe COPY operation. The server-to-server protocol by which
this is acconplished is not defined in this docunent.

The copy feature allows the server to performthe copying either
synchronously or asynchronously. The client can request synchronous
copyi ng, but the server may not be able to honor this request. |If
the server intends to perform asynchronous copying, it supplies the
client with a request identifier that the client can use to nonitor
the progress of the copying and, if appropriate, cancel a request in
progress. The request identifier is a stateid representing the
internal state held by the server while the copying is perforned.
Mul ti pl e asynchronous copies of all or part of a file may be in
progress in parallel on a server; the stateid request identifier

all ows nonitoring and canceling to be applied to the correct request.

1. Pr ot ocol Overvi ew

The server-side copy offload operations support both intra-server and
inter-server file copies. An intra-server copy is a copy in which

the source file and destination file reside on the sane server. 1In
an inter-server copy, the source file and destination file are on
different servers. 1In both cases, the copy may be perforned

synchronously or asynchronously.

In addition, the CLONE operation provides COPY-like functionality in
the intra-server case, which is both synchronous and atonic in that
ot her operations may not see the target file in any state between the
state before the CLONE operation and the state after it.

Throughout the rest of this docunent, the NFS server containing the
source file is referred to as the "source server" and the NFS server
to which the file is transferred as the "destination server". In the
case of an intra-server copy, the source server and destination
server are the sanme server. Therefore, in the context of an
intra-server copy, the ternms "source server" and "destination server”
refer to the single server perform ng the copy.

Haynes St andards Track [Page 10]

RFC 7862 NFSv4. 2 Novenber 2016

The new operations are designed to copy files or regions within them
O her file systemobjects can be copied by building on these
operations or using other techniques. For exanple, if a user w shes
to copy a directory, the client can synthesize a directory COPY
operation by first creating the destination directory and the

i ndi vidual (enpty) files within it and then copying the contents of
the source directory's files to files in the new destination
directory.

For the inter-server copy, the operations are defined to be
conpatible with the traditional copy authorization approach. The
client and user are authorized at the source for reading. Then, they
are authorized at the destination for witing.

4.1.1. COPY (perations

CLONE: Used by the client to request a synchronous atom c COPY-1i ke
operation. (Section 15.13)

COPY_NOTI FY: Used by the client to request the source server to
authorize a future file copy that will be nade by a given
destination server on behalf of the given user. (Section 15.3)

COPY: Used by the client to request a file copy. (Section 15.2)

OFFLOAD CANCEL: Used by the client to termi nate an asynchronous file
copy. (Section 15.8)

OFFLOAD_STATUS: Used by the client to poll the status of an
asynchronous file copy. (Section 15.9)

CB OFFLOAD: Used by the destination server to report the results of
an asynchronous file copy to the client. (Section 16.1)

4.1.2. Requirenents for Operations

Inter-server copy, intra-server copy, and intra-server clone are each
OPTI ONAL features in the context of server-side copy. A server nay
choose independently to inplement any of them A server inplenenting
any of these features may be REQUI RED to inplenent certain
operations. Oher operations are OPTIONAL in the context of a
particular feature (see Table 5 in Section 13) but may becone

REQUI RED, dependi ng on server behavior. Cdients need to use these
operations to successfully copy a file.

Haynes St andards Track [Page 11]

RFC 7862 NFSv4. 2 Novenber 2016

For a client to do an intra-server file copy, it needs to use either
the COPY or the CLONE operation. |If COPY is used, the client MJST
support the CB_OFFLQOAD operation. |If COPY is used and it returns a
stateid, then the client MAY use the OFFLOAD CANCEL and
OFFLOAD_STATUS oper ati ons.

For a client to do an inter-server file copy, it needs to use the
COPY and COPY_NOTI FY operations and MJUST support the CB_OFFLOAD
operation. |If COPY returns a stateid, then the client MAY use the
OFFLOAD _CANCEL and OFFLOAD_STATUS operati ons.

If a server supports the intra-server COPY feature, then the server
MUST support the COPY operation. |If a server’s COPY operation
returns a stateid, then the server MJST al so support these
operations: CB_OFFLOAD, OFFLOAD CANCEL, and OFFLQAD_STATUS.

If a server supports the CLONE feature, then it MJST support the
CLONE operation and the clone_ bl ksize attribute on any file system on
whi ch CLONE i s supported (as either source or destination file).

If a source server supports the inter-server COPY feature, then it
MUST support the COPY_NOTI FY and OFFLOAD CANCEL operations. If a
destination server supports the inter-server COPY feature, then it
MUST support the COPY operation. |If a destination server’'s COPY
operation returns a stateid, then the destination server MJST al so
support these operations: CB OFFLOAD, OFFLQAD CANCEL, COPY_NOTI FY,
and OFFLOAD_STATUS.

Each operation is perfornmed in the context of the user identified by
the Open Network Conputing (ONC) RPC credential in the RPC request
contai ni ng the COVPOUND or CB_COVPOUND request. For exanple, an
OFFLOAD_CANCEL operation issued by a given user indicates that a
specified COPY operation initiated by the same user is to be

cancel ed. Therefore, an OFFLOAD CANCEL MUST NOT interfere with a
copy of the sane file initiated by another user.

An NFS server MAY allow an adninistrative user to nonitor or cancel
COPY operations using an inplenentation-specific interface.

Haynes St andards Track [Page 12]

RFC 7862 NFSv4. 2 Novenber 2016

4. 2.

4. 3.

Hay

Requirements for |nter-Server Copy

The specification of the inter-server copy is driven by severa
requirenents

0 The specification MUST NOT nandate the server-to-server protocol

0 The specification MJST provide guidance for using NFSv4.x as a
copy protocol. For those source and destination servers wlling
to use NFSv4.x, there are specific security considerations that
the specification MJST address.

0 The specification MJST NOT nandate preconfiguration between the
source and destination servers. Requiring that the source and
destination servers first have a "copying rel ati onship" increases
the adninistrative burden. However, the specification MIJST NOT
precl ude inplenentati ons that require preconfiguration

0 The specification MJUST NOT nandate a trust relationship between
the source and destination servers. The NFSv4 security nodel
requi res nutual authentication between a principal on an NFS
client and a principal on an NFS server. This nodel MJST conti nue
with the introduction of COPY.

| mpl enent ati on Consi derations
1. Locking the Files

Both the source file and the destination file may need to be | ocked
to protect the content during the COPY operations. A client can
achieve this by a conbination of OPEN and LOCK operations. That is,
either share |l ocks or byte-range | ocks night be desired.

Note that when the client establishes a | ock stateid on the source,
the context of that stateid is for the client and not the
destination. As such, there mght already be an outstandi ng stateid,
i ssued to the destination as the client of the source, with the sane
val ue as that provided for the lock stateid. The source MJST
interpret the lock stateid as that of the client, i.e., when the
destination presents it in the context of an inter-server copy, it is
on behalf of the client.

nes St andards Track [Page 13]

RFC 7862 NFSv4. 2 Novenber 2016

4,3.2. dient Caches

In a traditional copy, if the client is in the process of witing to
the file before the copy (and perhaps with a wite del egation), it
will be straightforward to update the destination server. Wth an

i nter-server copy, the source has no insight into the changes cached
on the client. The client SHOULD wite the data back to the source.
If it does not do so, it is possible that the destination wll
receive a corrupt copy of the file.

4.4. Intra-Server Copy

To copy a file on a single server, the client uses a COPY operation.
The server may respond to the COPY operation with the final results
of the copy, or it may performthe copy asynchronously and deliver
the results using a CB_OFFLOAD cal | back operation. |If the copy is
performed asynchronously, the client may poll the status of the copy
usi ng OFFLOAD _STATUS or cancel the copy using OFFLOAD CANCEL.

A synchronous intra-server copy is shown in Figure 1. In this
exanpl e, the NFS server chooses to performthe copy synchronously.
The COPY operation is conpleted, either successfully or
unsuccessfully, before the server replies to the client’s request.
The server’s reply contains the final result of the operation

dient Server
+ +
| |
[--- OPEN ----------cmmmmm e - - > Client opens
SR T R T /| the source file
| |
[--- OPEN ------mmmm i > dient opens
SR R T LT /| the destination file
| |
[--- COPY -----mmmmmm e - - > dient requests
[<emmmm /| a file copy
| |
[--- CLOSE ---------mmmmm e - > dient closes
SR R T LT /| the destination file
| |
[--- CLOSE --------------mmmmm oo - - > dient closes
[<emmmm /| the source file
|
|

Figure 1: A Synchronous Intra-Server Copy

Haynes St andards Track [Page 14]

RFC 7862 NFSv4. 2 Novenber 2016

An asynchronous intra-server copy is shown in Figure 2. |In this
exanpl e, the NFS server perforns the copy asynchronously. The
server’s reply to the copy request indicates that the COPY operation
was initiated and the final result will be delivered at a later tine.
The server’s reply also contains a copy stateid. The client may use
this copy stateid to poll for status information (as shown) or to
cancel the copy using an OFFLOAD CANCEL. When the server conpl etes
the copy, the server perforns a callback to the client and reports
the results.

Client Ser ver
+ +
| |
[--- OPEN ---------mmemmmeei e oo oo - > dient opens
SR R T LT /| the source file
| |
[--- OPEN ---------cmmmmmm oo - - > dient opens
SR T R T /| the destination file
| |
[--- COPY ---mmmmm e > dient requests
I /] a file copy
| |
| --- OFFLOAD _STATUS ------------------ > Cient may poll
IR i /| for status
| |
| | Multiple OFFLOAD STATUS
| | operations may be sent
| |
| <-- CB OFFLQOAD -----------mmmmmmm oo | Server reports results
R T R R >|
| |
[--- CLOSE -------------mmmmmme oo - - > dient closes
R e T /| the destination file
| |
[--- CLOSE -----------mmmmmmme e - > dient closes
R /| the source file
|
|

Fi gure 2: An Asynchronous Intra-Server Copy

Haynes St andards Track [Page 15]

RFC 7862 NFSv4. 2 Novenber 2016

4.5. Inter-Server Copy

A copy may al so be performed between two servers. The copy protoco
is designed to accommpdate a variety of network topologies. As shown
in Figure 3, the client and servers nmay be connected by multiple
networks. In particular, the servers may be connected by a
speci al i zed, hi gh-speed network (network 192.0.2.0/24 in the diagran
that does not include the client. The protocol allows the client to
set up the copy between the servers (over network 203.0.113.0/24 in
the diagram) and for the servers to comruni cate on the hi gh-speed
network if they choose to do so.

192.0.2.0/ 24

oo e e e e e e e e e e e aaa +

' :

| 192.0.2.18 | 192.0.2.56
F - Hom - - + Hom - - Hom - - +

Sour ce | | Destination
Fomm e Hom oo + Hom oo Hom oo +
203.0.113.18 203.0. 113.56

Figure 3: An Exanple Inter-Server Network Topol ogy

For an inter-server copy, the client notifies the source server that
afile will be copied by the destination server using a COPY_NOTI FY
operation. The client then initiates the copy by sending the COPY
operation to the destination server. The destination server nay
performthe copy synchronously or asynchronously.

Haynes St andards Track [Page 16]

RFC 7862 NFSv4. 2 Novenber 2016

A synchronous inter-server copy is shown in Figure 4. |In this case,
the destination server chooses to performthe copy before responding
to the client’s COPY request.

Cient Sour ce Desti nati on
+ + +
| | |
| --- OPEN ---> | Returns
| | open state osl
| |
| |
| <---mmmmmmee /1 |
| | |
[--- OPEN ------ o mm i >| Returns
I /| open state o0s2
| | |
[--- COPY ---mmmmme e >|
	<----- READ - ----
T	
I i /	Destination replies
[--- CLOSE -----------mmmmmmme e - >	Rel ease 0s2
R /]	
--- CLOSE --->	Rel ease osl
(SRR R R R I |

Fi gure 4: A Synchronous Inter-Server Copy

Haynes St andards Track [Page 17]

RFC 7862 NFSv4. 2 Novenber 2016

An asynchronous inter-server copy is shown in Figure 5. In this
case, the destination server chooses to respond to the client’s COPY
request i mediately and then performthe copy asynchronously.

Cient Sour ce Desti nation
+ + +
|
--- OPEN ---3> Ret ur ns
TR /] open state osl

Optional; could be done
with a share | ock

Need to pass in
osl or lock state

Ret ur ns
open state 0s2

Opt i onal

Need to pass in
0os2 or lock state

Mul tipl e READs may
be necessary

for status

Mul ti pl e OFFLOAD_STATUS

|
|
|
|
|
I
--- OFFLQOAD STATUS ------------------ > dient may pol
/]
|
l _
| operations may be sent
|
|
|
|

<-- CB OFFLOAD ----------------------- | Destination reports
I e R T > results

Haynes St andards Track [Page 18]

RFC 7862 NFSv4. 2 Novenber 2016

[--- LOCKU ---------mmmmmmmmeme oo oo - > Only if LOCK was done
SR /]

| | |

[--- CLOSE -------------mmmmmme oo - - >| Rel ease 0s2

[<emmmmmm e /]

| | |

| --- LOCKU ---> | Only if LOCK was done
T | |

| --- CLOSE ---> | Rel ease osl

| < /1 |

| |

Figure 5: An Asynchronous | nter-Server Copy
4.6. Server-to-Server Copy Protoco

The choice of what protocol to use in an inter-server copy is
ultimately the destination server’s decision. However, the
destination server has to be cognizant that it is working on behalf
of the client.

4.6.1. Considerations on Selecting a Copy Protocol

The client can have requirenents over both the size of transactions
and error recovery semantics. It may want to split the copy up such
that each chunk is synchronously transferred. It may want the copy
protocol to copy the bytes in consecutive order such that upon an
error the client can restart the copy at the |ast known good offset.
If the destination server cannot neet these requirenents, the client
may prefer the traditional copy nmechani smsuch that it can neet those
requirenents.

4.6.2. Using NFSv4.x as the Copy Protoco

The destination server MAY use standard NFSv4.x (where x >= 1)
operations to read the data fromthe source server. |If NFSv4.x is
used for the server-to-server copy protocol, the destination server
can use the source filehandle and ca_src_stateid provided in the COPY
request with standard NFSv4. x operations to read data fromthe source
server. Note that the ca _src_stateid MJST be the cnr_stateid
returned fromthe source via the COPY_NOTI FY (Section 15.3).

Haynes St andards Track [Page 19]

RFC 7862 NFSv4. 2 Novenber 2016

4.6.3. Using an Alternative Copy Protoco

In a honmobgeneous environnent, the source and destination servers

m ght be able to performthe file copy extrenely efficiently using
speci al i zed protocols. For exanmple, the source and destination
servers mght be two nodes sharing a common file system fornmat for
the source and destination file systens. Thus, the source and
destination are in an ideal position to efficiently render the inage
of the source file to the destination file by replicating the file
system formats at the block Ievel. Another possibility is that the
source and destination m ght be two nodes sharing a conmon storage
area network, and thus there is no need to copy any data at all

i nstead, ownership of the file and its contents mght sinply be
reassigned to the destination. To allow for these possibilities, the
destination server is allowed to use a server-to-server copy protoco
of its choice

In a heterogeneous environnent, using a protocol other than NFSv4. x
(e.g., HITP [RFC7230] or FTP [RFC959]) presents sone challenges. In
particular, the destination server is presented with the challenge of
accessing the source file given only an NFSv4.x fil ehandl e.

One option for protocols that identify source files with pathnanes is
to use an ASCI| hexadeci mal representation of the source fil ehandle
as the fil enane.

Anot her option for the source server is to use URLs to direct the
destination server to a specialized service. For exanple, the
response to COPY_NOTIFY could include the URL

<ftp://sl. exanpl e.com 9999/ FH 0x12345>, where 0x12345 is the ASCI
hexadeci mal representation of the source filehandle. Wen the
destination server receives the source server’s URL, it would use

" _FH 0x12345" as the filenane to pass to the FTP server |istening on
port 9999 of sl1.exanple.com On port 9999 there would be a speci al

i nstance of the FTP service that understands how to convert NFS
filehandles to an open file descriptor (in nmany operating systens,
this would require a new systemcall, one that is the inverse of the
makef h() function that the pre-NFSv4 MOUNT service needs).

Aut henti cating and identifying the destination server to the source

server is also a challenge. One solution would be to construct
uni que URLs for each destination server

Haynes St andards Track [Page 20]

RFC 7862 NFSv4. 2 Novenber 2016

4.7. netloc4 - Network Locations

The server-side COPY operations specify network | ocations using the
netl oc4 data type shown bel ow (see [RFC7863]):

<CODE BEG NS>

enum netl oc_typed {

NL4_NAME =1,
NL4_URL = 2,
NL4_NETADDR =3
s
union netloc4 switch (netloc_typed4 nl_type) {
case NL4_NAME: utf8str_cis nl_nane;
case NL4 URL: utf8str_cis nl _url
case NL4_NETADDR: net addr 4 nl _addr
s
<CODE ENDS>

If the netlocd is of type NL4_NAME, the nl _name field MIST be
specified as a UTF-8 string. The nl_nane is expected to be resol ved
to a network address via DNS, the Lightweight Directory Access
Protocol (LDAP), the Network Infornmation Service (NIS), /etc/hosts,

or some other neans. |If the netloc4 is of type NL4_URL, a server URL
[RFC3986] appropriate for the server-to-server COPY operation is
specified as a UTF-8 string. |If the netloc4 is of type NL4_NETADDR
the nl _addr field MJUST contain a valid netaddr4 as defined in

Section 3.3.9 of [RFC5661].

Wien netl oc4 values are used for an inter-server copy as shown in
Figure 3, their values may be eval uated on the source server
destination server, and client. The network environment in which
these systens operate should be configured so that the netloc4 val ues
are interpreted as intended on each system

4.8. Copy Ofload Stateids

A server may performa copy of fl oad operati on asynchronously. An
asynchronous copy is tracked using a copy offload stateid. Copy
of fload stateids are included in the COPY, OFFLOAD CANCEL,
OFFLOAD _STATUS, and CB_OFFLQAD operati ons.

A copy offload stateid will be valid until either (A) the client or
server restarts or (B) the client returns the resource by issuing an
OFFLOAD_CANCEL operation or the client replies to a CB_OFFLOAD
operation.

Haynes St andards Track [Page 21]

RFC 7862 NFSv4. 2 Novenber 2016

A copy offload stateid s seqid MJUST NOT be zero. In the context of a
copy of fload operation, it is inappropriate to indicate "the nost
recent copy offload operation"” using a stateid with a seqid of zero
(see Section 8.2.2 of [RFC5661]). It is inappropriate because the
stateid refers to internal state in the server and there may be
several asynchronous COPY operations being perforned in parallel on
the sane file by the server. Therefore, a copy offload stateid with
a seqid of zero MJUST be considered invalid.

4.9. Security Considerations for Server-Side Copy

Al'l security considerations pertaining to NFSv4.1 [RFC5661] apply to
this section; as such, the standard security nechani sns used by the
protocol can be used to secure the server-to-server operations.

NFSv4 clients and servers supporting the inter-server COPY operations
described in this section are REQU RED to inplenment the nechani sm
described in Section 4.9.1.1 and to support rejecting COPY_NOTI FY
requests that do not use the RPC security protocol (RPCSEC GSS)

[RFC7861] with privacy. |f the server-to-server copy protocol is
based on ONC RPC, the servers are al so REQUI RED to i npl enent

[RFC7861], including the RPCSEC GSSv3 "copy_to_auth",
"copy_fromauth", and "copy_confirmauth" structured privil eges.
This requirenent to inplenment is not a requirenment to use; for
exanpl e, a server may, depending on configuration, also allow
COPY_NOTI FY requests that use only AUTH SYS.

If a server requires the use of an RPCSEC GSSv3 copy_to_auth,
copy_fromauth, or copy_confirmauth privilege and it is not used,
the server will reject the request wi th NFS4ERR PARTNER NO AUTH

4.9.1. Inter-Server Copy Security
4.9.1.1. Inter-Server Copy via ONC RPC wi th RPCSEC GSSv3

When the client sends a COPY_NOTIFY to the source server to expect
the destination to attenpt to copy data fromthe source server, it is
expected that this copy is being done on behal f of the principa
(called the "user principal") that sent the RPC request that encl oses
t he COVPOUND procedure that contains the COPY_NOTI FY operation. The
user principal is identified by the RPC credentials. A nechanism
that allows the user principal to authorize the destination server to
performthe copy, lets the source server properly authenticate the
destination’s copy, and does not allow the destination server to
exceed this authorization is necessary.

Haynes St andards Track [Page 22]

RFC 7862 NFSv4. 2 Novenber 2016

An approach that sends del egated credentials of the client’s user
principal to the destination server is not used for the follow ng
reason. |If the client’s user delegated its credentials, the
destination would authenticate as the user principal. |f the
destination were using the NFSv4 protocol to performthe copy, then
the source server would authenticate the destination server as the
user principal, and the file copy would securely proceed. However,
this approach would allow the destination server to copy other files.
The user principal would have to trust the destination server to not
do so. This is counter to the requirenents and therefore is not
consi der ed.

Instead, a feature of the RPCSEC GSSv3 protocol [RFC7861] can be
used: RPC-application-defined structured privilege assertion. This
feature allows the destination server to authenticate to the source
server as acting on behalf of the user principal and to authorize the
destination server to perform READs of the file to be copied fromthe
source on behal f of the user principal. Once the copy is conplete,
the client can destroy the RPCSEC GSSv3 handl es to end the

aut hori zation of both the source and destination servers to copy.

For each structured privilege assertion defined by an RPC
application, RPCSEC GSSv3 requires the application to define a name
string and a data structure that will be encoded and passed between
client and server as opaque data. For NFSv4, the data structures
speci fied bel ow MUST be serialized using XDR

Three RPCSEC GSSv3 structured privilege assertions that work together
to authorize the copy are defined here. For each of the assertions,
the description starts with the nane string passed in the rp_nane
field of the rgss3 privs structure defined in Section 2.7.1.4 of

[RFC7861] and specifies the XDR encodi ng of the associated structured
data passed via the rp_privilege field of the structure.

Haynes St andards Track [Page 23]

RFC 78

cop

str

cop

str

Haynes

62 NFSv4. 2 Novenmber 2016

y fromauth: A user principal is authorizing a source principa
("nfs@source>") to allow a destination principa
("nfs@destination>") to set up the copy_confirmauth privilege
required to copy a file fromthe source to the destination on
behal f of the user principal. This privilege is established on
the source server before the user principal sends a COPY_NOTI FY
operation to the source server, and the resultant RPCSEC GSSv3
context is used to secure the COPY_NOTI FY operation.

<CODE BEG NS>

uct copy _fromauth priv {
secret4 cfap_shared_secret;
net | oc4 cfap_destination
/* the NFSv4 user nane that the user principal maps to */
utf8str_m xed cf ap_user nane;
<CODE ENDS>

cfap_shared_secret is an automatically generated random nunber
secret val ue.

y to auth: A user principal is authorizing a destination

principal ("nfs@destination>") to set up a copy_confirmauth
privilege with a source principal ("nfs@source>") to allowit to
copy a file fromthe source to the destination on behalf of the
user principal. This privilege is established on the destination
server before the user principal sends a COPY operation to the

destination server, and the resultant RPCSEC GSSv3 context is used

to secure the COPY operation.

<CODE BEG NS>

uct copy_to_auth_priv {
/* equal to cfap_shared _secret */
secret4 ctap_shared_secret;
netl oc4 ct ap_sour ce<>;
/* the NFSv4 user nane that the user principal maps to */
utf8str_m xed ctap_user nane;
<CODE ENDS>

ctap_shared_secret is the autonmatically generated secret val ue
used to establish the copy fromauth privilege with the source
principal. See Section 4.9.1.1.1.

St andards Track [Page 24]

RFC 7862 NFSv4. 2 Novenber 2016

copy_confirmauth: A destination principal ("nfs@destination>") is

confirmng with the source principal ("nfs@source>") that it is
aut hori zed to copy data fromthe source. This privilege is

est ablished on the destination server before the file is copied

fromthe source to the destination. The resultant RPCSEC GSSv3

context is used to secure the READ operations fromthe source to
the destination server

<CODE BEG NS>

struct copy_confirmauth_priv {

/* equal to GSS GetM C() of cfap_shared _secret */

opaque ccap_shared_secret _m c<>;
/* the NFSv4 user nane that the user principal maps to */
ut f 8str_mi xed ccap_user nane;

<CODE ENDS>

4.9.1.1.1. Establishing a Security Context

When the user principal wants to copy a file between two servers, if
it has not established copy_fromauth and copy_to_auth privileges on
the servers, it establishes themas foll ows:

(o]

Haynes

As noted in [RFC7861], the client uses an existing RPCSEC GSSv3
context termed the "parent"” handle to establish and protect
RPCSEC GSSv3 structured privil ege assertion exchanges. The
copy_fromauth privilege will use the context established between
the user principal and the source server used to OPEN the source
file as the RPCSEC GSSv3 parent handle. The copy_to_auth
privilege will use the context established between the user

princi pal and the destination server used to OPEN the destination
file as the RPCSEC GSSv3 parent handl e.

A random nunber is generated to use as a secret to be shared
between the two servers. Note that the random nunber SHOULD NOT
be reused between establishing different security contexts. The
resulting shared secret will be placed in the copy_fromauth_priv
cfap_shared_secret field and the copy_to_auth_priv
ctap_shared_secret field. Because of this shared_secret, the
RPCSEC _GSS3_CREATE control nessages for copy from auth and
copy_to _auth MJUST use a Quality of Protection (QP) of
rpc_gss_svc_privacy.

St andards Track [Page 25]

RFC 7862 NFSv4. 2 Novenber 2016

0 An instance of copy fromauth priv is filled in with the shared
secret, the destination server, and the NFSv4 user id of the user
principal and is placed in rpc_gss3 create_args
assertions[O].privs.privilege. The string "copy_fromauth" is
pl aced in assertions[0].privs.name. The source server unw aps the
rpc_gss_svc_privacy RPCSEC GSS3 CREATE payl oad and verifies that
the NFSv4 user id being asserted matches the source server’s
mappi ng of the user principal. |If it does, the privilege is
establi shed on the source server as <copy_fromauth, user id,
destination> The field "handle" in a successful reply is the
RPCSEC GSSv3 copy_fromauth "child* handle that the client will
use in COPY_NOTIFY requests to the source server

0 An instance of copy_to_auth_priv is filled in with the shared
secret, the cnr_source_server list returned by COPY_NOTIFY, and
the NFSv4 user id of the user principal. The copy_to_auth_priv
instance is placed in rpc_gss3 create_args
assertions[O].privs.privilege. The string "copy to auth" is
pl aced in assertions[0].privs.nane. The destination server
unwraps the rpc_gss_svc_privacy RPCSEC GSS3_CREATE payl oad and
verifies that the NFSv4 user id being asserted matches the
destination server’s mapping of the user principal. |If it does,
the privilege is established on the destination server as
<copy_to_auth, user id, source list> The field "handle" in a
successful reply is the RPCSEC GSSv3 copy_to_auth child handl e
that the client will use in COPY requests to the destination
server involving the source server.

As noted in Section 2.7.1 of [RFC7861] ("New Control Procedure -
RPCSEC GSS CREATE"), both the client and the source server should
associ ate the RPCSEC GSSv3 child handle with the parent RPCSEC GSSv3
handl e used to create the RPCSEC GSSv3 child handl e.

4.9.1.1.2. Starting a Secure Inter-Server Copy

When the client sends a COPY_NOTI FY request to the source server, it
uses the privileged copy fromauth RPCSEC GSSv3 handl e.
cna_destination_server in the COPY_NOTI FY MIST be the sane as
cfap_destination specified in copy_fromauth priv. Oherw se, the
COPY_NOTIFY will fail with NFSAERR ACCESS. The source server
verifies that the privilege <copy_fromauth, user id, destination>
exists and annotates it with the source filehandl e, if the user
principal has read access to the source file and if admi nistrative
policies give the user principal and the NFS client read access to
the source file (i.e., if the ACCESS operation would grant read
access). Oherwise, the COPY_NOTIFY will fail with NFS4ERR ACCESS.

Haynes St andards Track [Page 26]

RFC 7862 NFSv4. 2 Novenber 2016

When the client sends a COPY request to the destination server, it
uses the privileged copy_to auth RPCSEC GSSv3 handl e.
ca_source_server list in the COPY MIST be the same as ctap_source
list specified in copy_to_auth_priv. OQherwi se, the COPY will fai
with NFSAERR ACCESS. The destination server verifies that the
privilege <copy to_auth, user id, source |list> exists and annot at es
it with the source and destination filehandles. |f the COPY returns
a w_callback id, then this is an asynchronous copy and the
wr_cal I back_id must also nust be annotated to the copy_to_auth
privilege. |If the client has failed to establish the copy_to_auth
privilege, it will reject the request with NFS4AERR PARTNER NO AUTH

If either the COPY_NOTI FY operation or the COPY operations fail, the
associ ated copy_fromauth and copy_to_auth RPCSEC GSSv3 handl es MJST
be destroyed.

4.9.1.1.3. Securing ONC RPC Server-to-Server Copy Protocols

After a destination server has a copy_to_auth privilege established
onit and it receives a COPY request, if it knows it will use an ONC
RPC protocol to copy data, it will establish a copy_confirmauth
privilege on the source server prior to responding to the COPY
operation, as follows:

0 Before establishing an RPCSEC GSSv3 context, a parent context
needs to exi st between nfs@destination> as the initiator
princi pal and nfs@source> as the target principal. If NFSis to
be used as the copy protocol, this means that the destination
server mnust nount the source server using RPCSEC GSSv3.

0 An instance of copy confirmauth priv is filled in with
informati on fromthe established copy to auth privilege. The
val ue of the ccap_shared_secret_nic field is a GSS_ GetM C() of the
ctap_shared_secret in the copy_to_auth privil ege using the parent
handl e context. The ccap_usernane field is the mapping of the
user principal to an NFSv4 user nane ("user" @donai n" forn) and
MUST be the same as the ctap _username in the copy_to_auth
privilege. The copy_confirmauth_priv instance is placed in
rpc_gss3 create_args assertions[O].privs.privilege. The string
"copy_confirmauth" is placed in assertions[O0].privs. nane.

0 The RPCSEC GSS3 CREATE copy_from auth nmessage is sent to the
source server with a QoP of rpc_gss_svc_privacy. The source
server unw aps the rpc_gss_svc_privacy RPCSEC GSS3 CREATE payl oad
and verifies the cap_shared_secret_mnic by calling GSS_VerifyM C()
usi ng the parent context on the cfap_shared_secret fromthe
est ablished copy_fromauth privilege, and verifies that the
ccap_usernanme equal s the cfap_usernane.

Haynes St andards Track [Page 27]

RFC 7862 NFSv4. 2 Novenber 2016

o If all verifications succeed, the copy confirmauth privilege is
establ i shed on the source server as <copy_confirm auth,
shared_secret _mic, user id> Because the shared secret has been
verified, the resultant copy_confirmauth RPCSEC GSSv3 child
handle is noted to be acting on behalf of the user principal

o |If the source server fails to verify the copy fromauth privilege
the COPY_NOTIFY operation will be rejected with
NFS4ERR_PARTNER_NO AUTH.

o If the destination server fails to verify the copy_to_auth or
copy_confirmauth privilege, the COPY will be rejected with
NFSAERR _PARTNER NO AUTH, causing the client to destroy the
associ ated copy_fromauth and copy_to _auth RPCSEC GSSv3 structured
privilege assertion handl es.

0 All subsequent ONC RPC READ requests sent fromthe destination to
copy data fromthe source to the destination will use the
RPCSEC GSSv3 copy_confirmauth child handl e.

Note that the use of the copy_confirmauth privil ege acconplishes the
fol | owi ng:

o If a protocol like NFS is being used with export policies, the
export policies can be overridden if the destination server is not
aut horized to act as an NFS client.

o Manual configuration to allow a copy relationship between the
source and destination is not needed.

4.9.1.1.4. Maintaining a Secure |nter-Server Copy

If the client determ nes that either the copy_fromauth or the
copy_to_auth handl e beconmes invalid during a copy, then the copy MJST
be aborted by the client sending an OFFLOAD CANCEL to both the source
and destination servers and destroying the respective copy-rel ated
context handl es as described in Section 4.9.1.1.5.

4.9.1.1.5. Finishing or Stopping a Secure Inter-Server Copy
Under normal operation, the client MIST destroy the copy_fromauth
and the copy_to_auth RPCSEC GSSv3 handl e once the COPY operation

returns for a synchronous inter-server copy or a CB_OFFLOAD reports
the result of an asynchronous copy.

Haynes St andards Track [Page 28]

RFC 7862 NFSv4. 2 Novenber 2016

The copy_confirmauth privilege is constructed frominfornation held
by the copy to auth privilege and MJST be destroyed by the
destination server (via an RPCSEC _GSS3_DESTROY cal |) when the
copy_to_auth RPCSEC GSSv3 handl e i s destroyed.

The copy_confirm auth RPCSEC GSS3 handle is associated with a
copy_from aut h RPCSEC GSS3 handl e on the source server via the shared
secret and MJUST be locally destroyed (there is no

RPCSEC _GSS3_DESTROY, as the source server is not the initiator) when
the copy_from auth RPCSEC GSSv3 handl e is destroyed.

If the client sends an OFFLOAD CANCEL to the source server to rescind
the destination server’s synchronous copy privilege, it uses the
privileged copy_fromauth RPCSEC GSSv3 handl e, and the
cra_destination_server in the OFFLOAD CANCEL MJST be the sane as the
nane of the destination server specified in copy_fromauth priv. The
source server will then delete the <copy_from auth, user id,
destination> privilege and fail any subsequent copy requests sent
under the auspices of this privilege fromthe destination server

The client MUST destroy both the copy fromauth and the copy to _auth
RPCSEC_GSSv3 handl es.

If the client sends an OFFLOAD STATUS to the destination server to
check on the status of an asynchronous copy, it uses the privileged
copy_to_auth RPCSEC GSSv3 handl e, and the osa stateid in the
OFFLOAD _STATUS MUST be the sane as the w_call back id specified in
the copy_to_auth privilege stored on the destination server

If the client sends an OFFLOAD CANCEL to the destination server to
cancel an asynchronous copy, it uses the privileged copy to_auth
RPCSEC GSSv3 handl e, and the oaa_stateid in the OFFLOAD CANCEL MUST
be the same as the w_callback_id specified in the copy_to_auth
privilege stored on the destination server. The destination server
will then delete the <copy_to_auth, user id, source list> privilege
and the associ ated copy_confirmauth RPCSEC GSSv3 handle. The client
MUST destroy both the copy to _auth and copy_from auth RPCSEC GSSv3
handl es.

4.9.1.2. Inter-Server Copy via ONC RPC without RPCSEC GSS

ONC RPC security flavors other than RPCSEC GSS MAY be used with the
server-side copy offload operations described in this section. In
particul ar, host-based ONC RPC security flavors such as AUTH NONE and
AUTH_SYS MAY be used. |If a host-based security flavor is used, a

m ni mal | evel of protection for the server-to-server copy protocol is
possi bl e.

Haynes St andards Track [Page 29]

RFC 7862 NFSv4. 2 Novenber 2016

The biggest issue is that there is a lack of a strong security nethod
to allow the source server and destination server to identify
themsel ves to each other. A further conplication is that in a

mul ti honed environnment the destination server m ght not contact the
source server fromthe sane network address specified by the client
in the COPY_NOTIFY. The cnr_stateid returned fromthe COPY_NOTI FY
can be used to uniquely identify the destination server to the source
server. The use of the cnr_stateid provides initial authentication
of the destination server but cannot defend agai nst man-in-the-niddle
attacks after authentication or against an eavesdropper that observes
the opaque stateid on the wire. Oher secure conmunication

techni ques (e.g., |Psec) are necessary to bl ock these attacks.

Servers SHOULD reject COPY_NOTIFY requests that do not use RPCSEC GSS
with privacy, thus ensuring that the cnr_stateid in the COPY_NOTI FY
reply is encrypted. For the sane reason, clients SHOULD send COPY
requests to the destination using RPCSEC GSS with privacy.

5. Support for Application I/O Hints

Applications can issue client 1/O hints via posix_fadvise()

[posi x_fadvise] to the NFS client. Wile this can help the NFS
client optimze I/0O and caching for a file, it does not allow the NFS
server and its exported file systemto do likewise. The | O ADVISE
procedure (Section 15.5) is used to communicate the client file
access patterns to the NFS server. The NFS server, upon receiving an
| O_ADVI SE operation, MAY choose to alter its 1/O and cachi ng behavi or
but is under no obligation to do so.

Application-specific NFS clients such as those used by hypervisors
and dat abases can al so | everage application hints to comunicate
their specialized requirenents.

6. Sparse Files

A sparse file is a comobn way of representing a large file w thout
having to utilize all of the disk space for it. Consequently, a
sparse file uses | ess physical space than its size indicates. This
nmeans the file contains "holes", byte ranges within the file that
contain no data. Most nodern file systens support sparse files,
including nost UNIX file systens and M crosoft’s New Technol ogy File
System (NTFS); however, it should be noted that Apple’'s Hierarchica
File System Plus (HFS+) does not. Conmon exanpl es of sparse files
i nclude Virtual Machine (VM OS/disk i mages, database files, |og
files, and even checkpoint recovery files nost commonly used by the
H gh- Per f ormance Conputing (HPC) community.

Haynes St andards Track [Page 30]

RFC 7862 NFSv4. 2 Novenber 2016

In addition, nany nodern file systens support the concept of
"unwitten" or "uninitialized" blocks, which have uninitialized space
allocated to themon disk but will return zeros until data is witten
to them Such functionality is already present in the data nodel of
t he pNFS bl ock/vol une | ayout (see [RFC5663]). Uninitialized bl ocks
can be thought of as holes inside a space reservati on w ndow.

If an application reads a hole in a sparse file, the file system nust
return all zeros to the application. For |ocal data access there is
little penalty, but with NFS these zeros nust be transferred back to
the client. [If an application uses the NFS client to read data into
menory, this wastes tinme and bandwi dth as the application waits for
the zeros to be transferred.

A sparse file is typically created by initializing the file to be all
zeros. Nothing is witten to the data in the file; instead, the hole
is recorded in the netadata for the file. So, an 8G di sk i mage m ght
be represented initially by a few hundred bits in the netadata (on
UNI X file systens, the inode) and nothing on the disk. |If the VM
then wites 100Mto a file in the mddle of the inmage, there would
now be two holes represented in the netadata and 100Min the data.

No new operation is needed to allow the creation of a sparsely

popul ated file; when a file is created and a wite occurs past the
current size of the file, the non-allocated region will either be a
hole or be filled with zeros. The choice of behavior is dictated by
the underlying file systemand is transparent to the application
However, the abilities to read sparse files and to punch holes to
reinitialize the contents of a file are needed.

Two new operations -- DEALLOCATE (Section 15.4) and READ PLUS
(Section 15.10) -- are introduced. DEALLOCATE allows for the hole
punchi ng, where an application mght want to reset the allocation and
reservation status of a range of the file. READ PLUS supports al

the features of READ but includes an extension to support sparse
files. READ PLUS is guaranteed to performno worse than READ and can
dramatically inprove performance with sparse files. READ PLUS does
not depend on pNFS protocol features but can be used by pNFS to
support sparse files.

6.1. Term nol ogy
Regular file: An object of file type NFAREG or NF4ANAMEDATTR.
Sparse file: A regular file that contains one or nore holes.

Hole: A byte range within a sparse file that contains all zeros. A
hol e m ght or m ght not have space allocated or reserved to it.

Haynes St andards Track [Page 31]

RFC 7862 NFSv4. 2 Novenber 2016

6.2. New Qperations
6.2.1. READ PLUS

READ PLUS is a new variant of the NFSv4.1 READ operation [RFC5661].
Besi des being able to support all of the data semantics of the READ
operation, it can also be used by the client and server to
efficiently transfer holes. Because the client does not know in
advance whether a hole is present or not, if the client supports
READ PLUS and so does the server, then it should al ways use the
READ PLUS operation in preference to the READ operation.

READ PLUS extends the response with a new armrepresenting holes to
avoid returning data for portions of the file that are initialized to
zero and nay or may not contain a backing store. Returning actua
data bl ocks corresponding to holes wastes conputational and network
resources, thus reducing perfornance.

When a client sends a READ operation, it is not prepared to accept a
READ PLUS-styl e response providing a conpact encodi ng of the scope of
holes. |If a READ occurs on a sparse file, then the server nust
expand such data to be raw bytes. If a READ occurs in the niddle of
a hole, the server can only send back bytes starting fromthat
offset. By contrast, if a READ PLUS occurs in the niddle of a hole,
the server can send back a range that starts before the offset and
ext ends past the requested | ength.

6.2.2. DEALLCCATE

The client can use the DEALLOCATE operation on a range of a file as a
hol e punch, which allows the client to avoid the transfer of a

repetitive pattern of zeros across the network. This hole punch is a
result of the unreserved space returning all zeros until overwitten.

7. Space Reservation

Applications want to be able to reserve space for a file, report the
amount of actual disk space a file occupies, and free up the backing
space of a file when it is not required.

One exanple is the posix_fallocate() operation [posix_fallocate],
which allows applications to ask for space reservations fromthe
operating system wusually to provide a better file |ayout and reduce
overhead for random or slow growi ng fil e-appendi ng workl oads.

Haynes St andards Track [Page 32]

RFC 7862 NFSv4. 2 Novenber 2016

Anot her exanple is space reservation for virtual disks in a
hypervisor. In virtualized environnents, virtual disk files are
often stored on NFS-nounted volunes. Wen a hypervisor creates a
virtual disk file, it often tries to preallocate the space for the
file so that there are no future allocation-related errors during the
operation of the VM Such errors prevent a VM from conti nui ng
execution and result in downtine.

Currently, in order to achi eve such a guarantee, applications zero
the entire file. The initial zeroing allocates the backing bl ocks,
and all subsequent wites are overwites of already-allocated bl ocks.
This approach is not only inefficient in ternms of the anount of 1/0O
done; it is also not guaranteed to work on file systens that are

| og-structured or deduplicated. An efficient way of guaranteeing
space reservation would be beneficial to such applications.

The new ALLOCATE operation (see Section 15.1) allows a client to
request a guarantee that space will be available. The ALLOCATE
operation guarantees that any future wites to the region it was
successfully called for will not fail w th NFS4AERR _NOSPC

Anot her useful feature is the ability to report the nunber of bl ocks
that would be freed when a file is deleted. Currently, NFS reports
two size attributes:

size The logical file size of the file.
space_used The size in bytes that the file occupies on disk

While these attributes are sufficient for space accounting in
traditional file systens, they prove to be inadequate in nodern file
systens that support block-sharing. |In such file systens, nultiple
i nodes (the netadata portion of the file system object) can point to
a single block with a block reference count to guard agai nst
premature freeing. Having a way to tell the nunmber of bl ocks that
would be freed if the file was del eted woul d be useful to
applications that wish to nigrate files when a volune is | ow on
space.

Since virtual disks represent a hard drive in a VM a virtual disk
can be viewed as a file systemwithin a file. Since not all blocks
within a file systemare in use, there is an opportunity to reclaim
bl ocks that are no longer in use. A call to deallocate blocks could
result in better space efficiency; |ess space m ght be consuned for
backups after block deallocation.

Haynes St andards Track [Page 33]

RFC 7862 NFSv4. 2 Novenber 2016

The following attribute and operation can be used to resol ve these
i ssues:

space_freed This attribute reports the space that would be freed
when a file is deleted, taking block-sharing into consideration

DEALLOCATE Thi s operation deallocates the bl ocks backing a region of
the file.

If space_used of a file is interpreted to nean the size in bytes of
all disk blocks pointed to by the inode of the file, then shared

bl ocks get doubl e-counted, over-reporting the space utilization
This also has the adverse effect that the deletion of a file with
shared bl ocks frees up | ess than space_used bytes.

On the other hand, if space_used is interpreted to nean the size in
bytes of those disk bl ocks unique to the inode of the file, then
shared bl ocks are not counted in any file, resulting in
under-reporting of the space utilization

For exanple, two files, A and B, have 10 bl ocks each. Let six of
t hese bl ocks be shared between them Thus, the conbi ned space
utilized by the two files is 14 * BLOCK SIZE bytes. |In the former
case, the conbined space utilization of the two files would be
reported as 20 * BLOCK SI ZE. However, deleting either would only
result in 4 * BLOCK_SI ZE being freed. Conversely, the latter
interpretation would report that the space utilization is only

8 * BLOCK SI ZE.

Using the space freed attribute (see Section 12.2.2) is helpful in
solving this problem space freed is the nunber of blocks that are
all ocated to the given file that would be freed on its deletion. In
the exanple, both A and B would report space_freed as 4 * BLOCK S| ZE
and space_used as 10 * BLOCK SIZE. If Ais deleted, B wll report
space_freed as 10 * BLOCK SIZE, as the deletion of B would result in
t he deal |l ocation of all 10 bl ocks.

Using the space freed attribute does not solve the problem of space
bei ng over-reported. However, over-reporting is better than
under-reporting.

8. Application Data Bl ock Support

At the OS level, files are contained on disk bl ocks. Applications
are also free to inpose structure on the data contained in a file and
thus can define an Application Data Block (ADB) to be such a
structure. Fromthe application’s viewpoint, it only wants to handl e
ADBs and not raw bytes (see [Strohnmll]). An ADBis typically

Haynes St andards Track [Page 34]

RFC 7862 NFSv4. 2 Novenber 2016

conprised of two sections: header and data. The header describes the
characteristics of the block and can provide a neans to detect
corruption in the data payload. The data section is typically
initialized to all zeros.

The format of the header is application specific, but there are two
mai n conponents typically encountered:

1. An Application Data Bl ock Nunber (ADBN), which allows the
application to deterni ne which data block is being referenced.
This is useful when the client is not storing the blocks in
contiguous nenory, i.e., a logical block nunber.

2. Fields to describe the state of the ADB and a neans to detect
bl ock corruption. For both pieces of data, a useful property
woul d be that the allowed val ues are specially selected so that,
i f passed across the network, corruption due to translation
bet ween big-endian and little-endian architectures is detectable.
For exanpl e, OxfOdedefO0 has the sane (32 wide) bit pattern in
both architectures, nmaking it inappropriate.

Applications already inpose structures on files [Strohmll1l] and detect
corruption in data bl ocks [Ashdown08]. What they are not able to do
is efficiently transfer and store ADBs. To initialize a file with
ADBs, the client nust send each full ADB to the server, and that nust
be stored on the server.

This section defines a framework for transferring the ADB from client
to server and presents one approach to detecting corruption in a
gi ven ADB i npl enentation

8.1. Ceneric Framework

The representation of the ADB needs to be flexible enough to support
many different applications. The nost basic approach is no

i mposition of a block at all, which entails working with the raw
bytes. Such an approach would be useful for storing holes, punching
holes, etc. In nore conplex deploynents, a server mght be

supporting multiple applications, each with their own definition of
the ADB. One night store the ADBN at the start of the bl ock and then
have a guard pattern to detect corruption [MDougall07]. The next

m ght store the ADBN at an offset of 100 bytes within the bl ock and
have no guard pattern at all, i.e., existing applications night

al ready have well-defined formats for their data bl ocks.

The guard pattern can be used to represent the state of the block, to

protect against corruption, or both. Again, it needs to be able to
be placed anywhere within the ADB

Haynes St andards Track [Page 35]

RFC 7862 NFSv4. 2 Novenber 2016

Both the starting offset of the block and the size of the block need
to be represented. Note that nothing prevents the application from
defining different-sized blocks in a file.

8.1.1. Data Block Representation
<CODE BEG NS>

struct app_data_bl ockd {

of fset4 adb_of fset;
| engt h4 adb_bl ock_si ze;
| engt h4 adb_bl ock_count;
| engt h4 adb_rel of f _bl ocknum
count4 adb_bl ock_num
| engt h4 adb_rel off _pattern
opaque adb_pattern<>;
i
<CODE ENDS>

The app_data_bl ock4 structure captures the abstraction presented for
the ADB. The additional fields present are to allow the transm ssion
of adb_bl ock_count ADBs at one tine. The adb_block numis used to
convey the ADBN of the first block in the sequence. Each ADB will
contain the sane adb_pattern string.

As both adb_bl ock_num and adb_pattern are optional, if either
adb_rel off_pattern or adb_rel of f_bl ocknumis set to NFS4_UI NT64_MAX,
then the corresponding field is not set in any of the ADBs.

8.2. An Exanple of Detecting Corruption

In this section, an exanple ADB format is defined in which corruption
can be detected. Note that this is just one possible format and
means to detect corruption.

Consi der a very basic inplenentation of an operating system s disk

bl ocks. A block is either data or an indirect block that allows for
files that are larger than one block. It is desired to be able to
initialize a block. Lastly, to quickly unlink a file, a block can be
mar ked invalid. The contents remain intact; this would enable the CS
application in question to undelete a file.

Haynes St andards Track [Page 36]

RFC 7862 NFSv4. 2 Novenber 2016

The application defines 4K-sized data bl ocks, with an 8-byte bl ock
counter occurring at offset 0 in the block, and with the guard
pattern occurring at offset 8 inside the block. Furthernore, the
guard pattern can take one of four states:

Oxfeedface - This is the FREE state and indicates that the ADB
format has been appli ed.

Oxcafedead - This is the DATA state and indicates that real data has
been witten to this block

Oxed4e5c001 - This is the I NDIRECT state and indicates that the bl ock
contai ns bl ock counter nunbers that are chained off of this block

Oxbaled4a3 - This is the INVALID state and indicates that the bl ock
contai ns data whose contents are garbage

Finally, it also defines an 8-byte checksumstarting at byte 16 that
applies to the renaining contents of the block (see [Baira08] for an
exanpl e of using checksums to detect data corruption). |If the state
is FREE, then that checksumis trivially zero. As such, the
application has no need to transfer the checksuminplicitly inside
the ADB -- it need not nmake the transfer |ayer aware of the fact that
there is a checksum (see [Ashdown08] for an exanple of checksums used
to detect corruption in application data bl ocks).

Corruption in each ADB can thus be detected:

o If the guard pattern is anything other than one of the allowed
val ues, including all zeros.

o |If the guard pattern is FREE and any other byte in the renai nder
of the ADB is anything other than zero.

o If the guard pattern is anything other than FREE, then if the
stored checksum does not natch the conputed checksum

o If the guard pattern is I NDIRECT and one of the stored indirect
bl ock numbers has a val ue greater than the nunber of ADBs in
the file.

o |If the guard pattern is INDI RECT and one of the stored indirect
bl ock nunmbers is a duplicate of another stored indirect block
nunber.

As can be seen, the application can detect errors based on the

combi nation of the guard pattern state and the checksum but al so can
detect corruption based on the state and the contents of the ADB

Haynes St andards Track [Page 37]

RFC 7862 NFSv4. 2 Novenber 2016

This last point is inportant in validating the m ni mumanount of data
i ncorporated into the generic franework. That is, the guard pattern
is sufficient in allowing applications to design their own corruption
det ection.

Finally, it is inportant to note that none of these corruption checks
occur in the transport layer. The server and client conponents are
totally unaware of the file format and might report everything as
being transferred correctly, even in cases where the application
detects corruption.

8.3. An Exanpl e of READ PLUS
The hypot hetical application presented in Section 8.2 can be used to
illustrate how READ PLUS would return an array of results. Afileis
created and initialized with 100 4K ADBs in the FREE state with the
VWRI TE_SAME operation (see Section 15.12):
WRI TE_SAME {0, 4K, 100, 0, 0, 8, Oxfeedface}

Furt her, assune that the application wites a single ADB at 16K
changi ng the guard pattern to Oxcafedead; then there would be in

menory:
oK -> (4K - 1) : 00 00 00 00 ... fe ed fa ce 00 00 ... 00

4K -> (8K - 1) : 00 00 00 01 ... fe ed fa ce 00 00 ... 00

8K -> (12K - 1) : 00 00 00 02 ... fe ed fa ce 00 00 ... 00
12K -> (16K - 1) : 00 00 00 03 ... fe ed fa ce 00 00 ... 00
16K -> (20K - 1) : 00 00 00 04 ... ca fe de ad 00 00 ... 00
20K -> (24K - 1) : 00 00 00 05 ... fe ed fa ce 00 00 ... 00
24K -> (28K - 1) : 00 00 00 06 ... fe ed fa ce 00 00 ... 00
396K -> (400K - 1) : 00 00 00 63 ... fe ed fa ce 00 00 ... 00

And when the client did a READ PLUS of 64K at the start of the file,
it could get back a result of data:

oK -> (4K - 1) : 00 00 00 OO ... fe ed fa ce 00 00 ... 00
4K -> (8K - 1) : 00 00 00 01 ... fe ed fa ce 00 00 ... 00
8K -> (12K - 1) : 00 00 00 02 ... fe ed fa ce 00 00 ... 0O
12K -> (16K - 1) : 00 00 00 03 ... fe ed fa ce 00 00 ... 0O
16K -> (20K - 1) : 00 00 00 04 ... ca fe de ad 00 00 ... 00
20K -> (24K - 1) : 00 00 00 05 ... fe ed fa ce 00 OO0 ... 00
24K -> (28K - 1) : 00 00 00 06 ... fe ed fa ce 00 OO0 ... 00
62K -> (64K - 1) : 00 00 00 15 ... fe ed fa ce 00 00 ... 0O

Haynes St andards Track [Page 38]

RFC 7862 NFSv4. 2 Novenber 2016

8.4. An Exanpl e of Zeroing Space

A sinmpler use case for WRITE_SAME is applications that want to
efficiently zero out a file, but do not want to nodify space
reservations. This can easily be achieved by a call to WRI TE_SAME
wi t hout an ADB bl ock nunbers and pattern, e.g.

WRI TE_SAME {0, 1K, 10000, O, O, 0O, 0}
9. Label ed NFS

Access control nodels such as UNI X permni ssions or Access Contro
Lists (ACLs) are commonly referred to as Discretionary Access Contro
(DAC) nodels. These systenms base their access decisions on user
identity and resource ownership. 1In contrast, Mandatory Access
Control (MAC) nodel s base their access control decisions on the | abe
on the subject (usually a process) and the object it wi shes to access
[RFC4949]. These labels may contain user identity information but
usual ly contain additional information. In DAC systens, users are
free to specify the access rules for resources that they own. MAC
nodel s base their security decisions on a systemw de policy --

est abli shed by an adnministrator or organization -- that the users do
not have the ability to override. 1In this section, a MAC nodel is
added to NFSv4. 2.

First, a nmethod is provided for transporting and storing security

| abel data on NFSv4 file objects. Security |abels have severa
semantics that are nmet by NFSv4 recommended attributes such as the
ability to set the | abel value upon object creation. Access control
on these attributes is done through a conbination of two nechani sns.
As with other recommended attributes on file objects, the usual DAC
checks, based on the ACLs and pernission bits, will be perforned to
ensure that proper file ownership is enforced. |In addition, a MAC
system MAY be enpl oyed on the client, server, or both to enforce
addi tional policy on what subjects may nodify security | abel

i nformation.

Second, a nethod is described for the client to determine if an NFSv4
file object security |abel has changed. A client that needs to know
if alabel on a file or set of files is going to change SHOULD
request a del egation on each |abeled file. In order to change such a
security label, the server will have to recall del egations on any
file affected by the | abel change, so informng clients of the |abe
change.

Haynes St andards Track [Page 39]

RFC 7862 NFSv4. 2 Novenber 2016

An additional useful feature would be nodification to the RPC | ayer
used by NFSv4 to allow RPCs to assert client process subject security
| abel s and enabl e the enforcement of Full Mdde as described in
Section 9.5.1. Such nodifications are outside the scope of this
docunent (see [RFC7861]).

9.1. Definitions

Label Format Specifier (LFS): an identifier used by the client to
establish the syntactic format of the security |abel and the
semantic neaning of its conponents. LFSs exist in a registry
associ ated with docunents describing the format and senantics of
the | abel

Security Label Format Selection Registry: the |ANA registry (see
[RFC7569]) containing all registered LFSs, along with references
to the docunents that describe the syntactic format and senantics
of the security | abel

Policy lIdentifier (Pl): an optional part of the definition of an
LFS. The Pl allows clients and servers to identify specific
security policies.

hject: a passive resource within the systemthat is to be
protected. bjects can be entities such as files, directories,
pi pes, sockets, and many other systemresources relevant to the
protection of the system state.

Subject: an active entity, usually a process that is requesting
access to an object.

MAC- Aware: a server that can transmit and store object |abels.

MAC- Functional: a client or server that is Label ed NFS enabl ed.

Such a systemcan interpret |abels and apply policies based on the
security system

Mul ti-Level Security (MS): a traditional nodel where objects are
given a sensitivity level (Unclassified, Secret, Top Secret, etc.)
and a category set (see [LB96], [RFC1108], [RFC2401], and
[RFC4949]) .

(Note: RFC 2401 has been obsol eted by RFC 4301, but we |ist
RFC 2401 here because RFC 4301 does not discuss MS.)

Haynes St andards Track [Page 40]

RFC 7862 NFSv4. 2 Novenber 2016

9.2. MAC Security Attribute

MAC nodel s base access deci sions on security attributes bound to
subjects (usually processes) and objects (for NFS, file objects).
This information can range froma user identity for an identity-based
MAC nodel, sensitivity levels for M.S, or a type for type
enforcenent. These nodel s base their decisions on different

criteria, but the semantics of the security attribute remain the
sanme. The semantics required by the security attribute are listed
bel ow.

0 MJST provide flexibility with respect to the MAC nodel

0 MJST provide the ability to atomically set security information
upon obj ect creation

o0 MJIST provide the ability to enforce access control decisions on
both the client and the server

0 MJST NOT expose an object to either the client or server nanmespace
before its security information has been bound to it.

NFSv4 i npl ements the MAC security attribute as a recomended
attribute. This attribute has a fixed format and semantics, which
conflicts with the flexible nature of security attributes in general
To resolve this, the MAC security attribute consists of two
conmponents. The first conponent is an LFS, as defined in [RFC7569],
to allow for interoperability between MAC nechani sns. The second
component is an opaque field, which is the actual security attribute
data. To allow for various MAC nodels, NFSv4 should be used solely

as a transport nmechanismfor the security attribute. It is the
responsibility of the endpoints to consume the security attribute and
make access deci sions based on their respective nodels. 1In addition

creation of objects through OPEN and CREATE allows the security
attribute to be specified upon creation. By providing an atomc
create and set operation for the security attribute, it is possible
to enforce the second and fourth requirenents |isted above. The
reconmended attribute FATTRA_SEC LABEL (see Section 12.2.4) will be
used to satisfy this requirenent.

9.2.1. Delegations

In the event that a security attribute is changed on the server while
a client holds a delegation on the file, both the server and the
client MUST follow the NFSv4.1 protocol (see Section 10 of [RFC5661])
with respect to attribute changes. It SHOULD flush all changes back
to the server and relinquish the del egation

Haynes St andards Track [Page 41]

RFC 7862 NFSv4. 2 Novenber 2016

9.2.2. Perm ssion Checking

It is not feasible to enunerate all possible MAC nodels and even

| evel s of protection within a subset of these nodels. This neans
that the NFSv4 client and servers cannot be expected to directly make
access control decisions based on the security attribute. Instead,
NFSv4 shoul d defer pernission checking on this attribute to the host
system These checks are perforned in addition to existing DAC and
ACL checks outlined in the NFSv4 protocol. Section 9.5 gives a
specific exanpl e of how the security attribute is handl ed under a
particul ar MAC nodel .

9.2.3. bject Creation

When creating files in NFSv4, the OPEN and CREATE operations are
used. One of the paranmeters for these operations is an fattr4
structure containing the attributes the file is to be created wth.
This allows NFSv4 to atonmically set the security attribute of files

upon creation. Wen a client is MAGC Functional, it nust always
provide the initial security attribute upon file creation. 1In the
event that the server is MAC Functional as well, it should determ ne
by policy whether it will accept the attribute fromthe client or

i nstead make the determination itself. |If the client is not

MAC- Functional, then the MAC Functional server nust decide on a
default label. A nore in-depth explanation can be found in

Section 9.5.

9.2.4. Existing Objects

Not e that under the MAC nodel, all objects nust have | abels.
Therefore, if an existing server is upgraded to include Label ed NFS
support, then it is the responsibility of the security systemto
define the behavior for existing objects.

9.2.5. Label Changes

Consi der a CGuest Mde system (Section 9.5.3) in which the clients
enforce MAC checks and the server has only a DAC security systemthat
stores the labels along with the file data. In this type of system
a user with the appropriate DAC credentials on a client with poorly
configured or disabled MAC | abeling enforcenent is allowed access to
the file label (and data) on the server and can change the | abel.

Haynes St andards Track [Page 42]

RFC 7862 NFSv4. 2 Novenber 2016

Clients that need to know if a label on a file or set of files has
changed SHOULD request a delegation on each labeled file so that a
| abel change by another client will be known via the process
described in Section 9.2.1, which nust be followed: the del egation
will be recalled, which effectively notifies the client of the
change.

Note that the MAC security policies on a client can be such that the
client does not have access to the file unless it has a del egation

9.3. pNFS Consi derations

The new FATTR4_SEC LABEL attribute is nmetadata information, and as
such the storage device is not aware of the val ue contai ned on the
net adata server. Fortunately, the NFSv4.1 protocol [RFC5661] already
has provisions for doing access-1level checks fromthe storage device

to the nmetadata server. 1In order for the storage device to validate
the subject |abel presented by the client, it SHOULD utilize this
nmechani sm

9.4. Discovery of Server Label ed NFS Support

The server can easily deternmine that a client supports Label ed NFS
when it queries for the FATTR4_SEC LABEL | abel for an object.

Further, it can then deternine which LFS the client understands. The
client mght want to discover whether the server supports Label ed NFS
and whi ch LFS the server supports.

The foll owi ng COVPOUND MUST NOT be deni ed by any MAC | abel check
PUTROOTFH, GETATTR { FATTR4_SEC LABEL}

Note that the server might have inposed a security flavor on the root
that precludes such access. That is, if the server requires

Ker beri zed access and the client presents a COMOUND with AUTH SYS,
then the server is allowed to return NFS4AERR WRONGSEC in this case
But if the client presents a correct security flavor, then the server
MUST return the FATTRA_SEC LABEL attribute with the supported LFS
filled in.

9.5. MAC Security NFS Modes of Operation

A system using Label ed NFS nay operate in three nodes (see Section 4
of [RFC7204]). The first node provides the nost protection and is
called "Full Mde". |In this node, both the client and server

i npl ement a MAC nodel allow ng each end to make an access contro
decision. The second node is a subset of the Full Mde and is called
"Limted Server Mdde". |In this node, the server cannot enforce the

Haynes St andards Track [Page 43]

RFC 7862 NFSv4. 2 Novenber 2016

| abel s, but it can store and transmt them The renmaining node is
called the "Guest Mde"; in this node, one end of the connection is
not inplenmenting a MAC nodel and thus offers |less protection than
Ful I Mbde.

9.5.1. Full Mode

Full Mode environnments consi st of MAC-Functional NFSv4 servers and
clients and nay be conposed of mnixed MAC nodels and policies. The
systemrequires that both the client and server have an opportunity
to perform an access control check based on all relevant information
within the network. The file object security attribute is provided
usi ng the nechani sm described in Section 9. 2.

Ful |y MAC- Functional NFSv4 servers are not possible in the absence of
RPCSEC GSSv3 [RFC7861] support for client process subject |abe
assertion. However, servers nmay nake deci sions based on the RPC
credential information avail able.

9.5.1.1. Initial Labeling and Translation

The ability to create a file is an action that a MAC nodel may wi sh
to nediate. The client is given the responsibility to determ ne the
initial security attribute to be placed on a file. This allows the
client to make a decision as to the acceptable security attribute to
create a file with before sending the request to the server. Once
the server receives the creation request fromthe client, it may
choose to evaluate if the security attribute is acceptable.

Security attributes on the client and server may vary based on MAC
nodel and policy. To handle this, the security attribute field has
an LFS conponent. This conponent is a nechanismfor the host to
identify the format and neani ng of the opaque portion of the security
attribute. A Full Mde environment may contain hosts operating in
several different LFSs. In this case, a nechanismfor translating

t he opaque portion of the security attribute is needed. The actua
translation function will vary based on MAC nodel and policy and is
outside the scope of this docunent. |f a translation is unavailable
for a given LFS, then the request MJST be denied. Another recourse
is to allowthe host to provide a fallback mappi ng for unknown
security attributes.

9.5.1.2. Policy Enforcenent
In Full Mde, access control decisions are made by both the clients
and servers. \When a client nmakes a request, it takes the security

attribute fromthe requesting process and nmakes an access contro
deci sion based on that attribute and the security attribute of the

Haynes St andards Track [Page 44]

RFC 7862 NFSv4. 2 Novenber 2016

object it is trying to access. |If the client denies that access, an
RPC to the server is never nade. |f, however, the access is allowed,
the client will make a call to the NFS server

When the server receives the request fromthe client, it uses any
credential information conveyed in the RPC request and the attributes
of the object the client is trying to access to nake an access
control decision. |If the server’s policy allows this access, it wll
fulfill the client’s request; otherwise, it will return
NFS4ERR_ACCESS.

Future protocol extensions may also allow the server to factor into
the decision a security |abel extracted fromthe RPC request.

| mpl enent ati ons MAY validate security attributes supplied over the
network to ensure that they are within a set of attributes pernitted
froma specific peer and, if not, reject them Note that a system
may permt a different set of attributes to be accepted from

each peer.

9.5.2. Limted Server Nbde

A Limted Server node (see Section 4.2 of [RFC7204]) consists of a
server that is |abel aware but does not enforce policies. Such a
server will store and retrieve all object |abels presented by clients
and will utilize the methods described in Section 9.2.5 to allow the
clients to detect changing |abels, but may not factor the label into
access decisions. Instead, it will expect the clients to enforce al
such access locally.

9.5.3. Quest Mde

Quest Mobde inplies that either the client or the server does not
handl e labels. |If the client is not Labeled NFS aware, then it wll
not offer subject labels to the server. The server is the only
entity enforcing policy and may sel ectively provide standard NFS
services to clients based on their authentication credentials and/or

associ ated network attributes (e.g., |P address, network interface).
The | evel of trust and access extended to a client in this node is
configuration specific. |If the server is not Label ed NFS aware, then

it will not return object |labels to the client. Clients in this

envi ronnent nay consist of groups inplenenting different MAC node
policies. The systemrequires that all clients in the environnent be
responsi bl e for access control checks.

Haynes St andards Track [Page 45]

RFC 7862 NFSv4. 2 Novenber 2016

9. 6.

10.

Security Considerations for Label ed NFS

Dependi ng on the level of protection the MAC system offers, there may
be a requirenent to tightly bind the security attribute to the data.

When only one of the client or server enforces labels, it is
important to realize that the other side is not enforcing MAC
protections. Alternate nethods nmight be in use to handle the | ack of
MAC support, and care should be taken to identify and mitigate
threats from possi bl e tanpering outside of these nethods.

An exanple of this is that a server that nodifies READDIR or LOOKUP
results based on the client’s subject |abel mght want to al ways
construct the same subject label for a client that does not present
one. This will prevent a non-Labeled NFS client fromm xing entries
in the directory cache.

Sharing Change Attribute Inplenentation Characteristics with NFSv4
Clients

Al t hough both the NFSv4 [RFC7530] and NFSv4.1 [RFC5661] protocols
define the change attribute as being mandatory to inplenent, there is
little in the way of guidance as to its construction. The only
mandat ed constraint is that the value nust change whenever the file
data or netadata changes

While this allows for a wide range of inplenmentations, it also | eaves
the client with no way to determ ne which is the nost recent val ue
for the change attribute in a case where several RPCs have been
issued in parallel. 1In other words, if two COVPOUNDs, both

contai ning WRI TE and GETATTR requests for the sane file, have been

i ssued in parallel, how does the client determ ne which of the two
change attribute values returned in the replies to the GETATTR
requests corresponds to the nbost recent state of the file? In some
cases, the only recourse may be to send anot her COVPOUND cont ai ning a
third GETATTR that is fully serialized with the first two.

NFSv4. 2 avoids this kind of inefficiency by allowi ng the server to
share details about how the change attribute is expected to evol ve,
so that the client may i medi ately determ ne which, out of the
several change attribute values returned by the server, is the nost
recent. change attr_type is defined as a new recommended attribute
(see Section 12.2.3) and is a per-file systemattribute.

Haynes St andards Track [Page 46]

RFC 7862 NFSv4. 2 Novenber 2016

11.

11.

11.

11.

11.

11.

Error Val ues

NFS error nunbers are assigned to failed operations within a COVOUND
(COVMPOUND or CB_COVPOUND) request. A COVWOUND request contains a
nunber of NFS operations that have their results encoded in sequence
in a COPOUND reply. The results of successful operations will
consist of an NFS4_(K status followed by the encoded results of the
operation. |If an NFS operation fails, an error status will be
entered in the reply and the COVMPOUND request will be term nated.

1. Error Definitions

o e e e e e e e oo E R oo +
| Error | Nunber | Description |
o E R o e oo +
NFS4ERR_BADLABEL	10093	Section 11.1.3.1
NFS4ERR _COFFLOAD DENIED	10091	Section 11.1.2.1
NFS4ERR_CFFLOAD NO REQS	10094	Section 11.1.2.2
NFS4ERR_PARTNER_NO AUTH	10089	Section 11.1.2.3
NFS4ERR PARTNER NOTSUPP	10088	Section 11.1.2.4

| NFS4ERR_UNI ON_NOTSUPP | 10090 | Section 11.1.1.1 |
| NFS4ERR_WRONG LFS | 10092 | Section 11.1.3.2 |
o e e e e e e e e Fom e e e - Fom e e e e e o +

Table 1: Protocol Error Definitions
1.1. GCeneral Errors

This section deals with errors that are applicable to a broad set of
di fferent purposes.

1.1.1. NFS4ERR_UN ON_NOTSUPP (Error Code 10090)

One of the argunments to the operation is a discrimnated union, and
whil e the server supports the given operation, it does not support
the selected arm of the discrimnated union.

1.2. Server-to-Server Copy Errors

These errors deal with the interaction between server-to-server
copi es.

1.2.1. NFS4ERR_OFFLOAD DEN ED (Error Code 10091)

The COPY of fl oad operation is supported by both the source and the
destination, but the destination is not allowing it for this file.

If the client sees this error, it should fall back to the normal copy
semanti cs.

Haynes St andards Track [Page 47]

RFC 7862 NFSv4. 2 Novenber 2016

11.

11.

11.

11.

11.

11.

1.2.2. NFS4ERR OFFLOAD NO REQS (Error Code 10094)

The COPY offl oad operation is supported by both the source and the
destination, but the destination cannot neet the client requirenments
for either consecutive byte copy or synchronous copy. |If the client
sees this error, it should either relax the requirenents (if any) or
fall back to the nornmal copy semantics.

1.2.3. NFS4ERR_PARTNER _NO AUTH (Error Code 10089)

The source server does not authorize a server-to-server COPY offload
operation. This nay be due to the client’'s failure to send the
COPY_NOTI FY operation to the source server, the source server
receiving a server-to-server copy offl oad request after the copy

| ease time expired, or sone other pernission problem

The destination server does not authorize a server-to-server COPY
of fl oad operation. This nmay be due to an inter-server COPY request
where the destination server requires RPCSEC GSSv3 and it is not
used, or sone other pernm ssions problem

1.2.4. NFS4ERR_PARTNER _NOTSUPP (Error Code 10088)

The renote server does not support the server-to-server COPY offload
pr ot ocol

1.3. Labeled NFS Errors

These errors are used in Label ed NFS.

1.3.1. NFS4ERR BADLABEL (Error Code 10093)
The | abel specified is invalid in some manner
1.3.2. NFS4ERR VWRONG LFS (Error Code 10092)

The LFS specified in the subject |abel is not conpatible with the LFS
in the object |abel

Haynes St andards Track [Page 48]

RFC 7862 NFSv4. 2 Novenber 2016

11.2. New Qperations and Their Valid Errors

This section contains a table that gives the valid error returns for
each new NFSv4.2 protocol operation. The error code NFS4_ K
(indicating no error) is not listed but should be understood to be
returnabl e by all new operations. The error values for all other
operations are defined in Section 15.2 of [RFC5661].

+

|

+

| NFS4ERR_ACCESS, NFS4ERR_ADM N_REVOKED,
| NFS4ERR_BADXDR, NFS4ERR_BAD STATEI D,

| NFS4ERR_DEADSESSI ON, NFS4ERR DELAY,

| NFS4ERR DELEG REVOKED, NFS4ERR DQUOT,

| NFS4ERR_EXPI RED, NFS4ERR FBI G

| NFS4ERR_FHEXPI RED, NFS4ERR GRACE, NFS4ERR | NVAL,
| NFS4ERR | O, NFS4ERR | SDI R, NFS4ERR_MOVED,

| NFS4ERR_NOFI LEHANDLE, NFS4ERR NOSPC,

| NFS4ERR_NOTSUPP, NFS4ERR OLD STATEI D,

| NFS4ERR_OPENMODE, NFS4ERR OP_NOT | N_SESSI ON,

| NFS4ERR_REP_TCO BI G

| NFS4ERR_REP_TOO Bl G_TO CACHE,

| NFS4ERR_REQ TOO Bl G, NFS4ERR RETRY_UNCACHED REP,
| NFS4ERR_ROFS, NFS4ERR_SERVERFAULT,

| NFS4ERR_STALE, NFS4ERR SYM.I NK,

| NFS4ERR_TOO MANY_OPS, NFS4ERR W\RONG TYPE

o o o e m e e e e e m e e m e — -
| NFS4ERR_ACCESS, NFS4ERR_ADM N_REVOKED,

| NFS4ERR_BADXDR, NFS4ERR_BAD STATEI D,

| NFS4ERR_DEADSESSI ON, NFS4ERR DELAY,

| NFS4ERR DELEG REVOKED, NFS4ERR DQUOT,

| NFS4ERR_EXPI RED, NFS4ERR FBI G

| NFS4ERR_FHEXPI RED, NFS4ERR GRACE, NFS4ERR | NVAL,
| NFS4ERR | O, NFS4ERR | SDI R, NFS4ERR_MOVED,

| NFS4ERR_NOFI LEHANDLE, NFS4ERR NOSPC,

| NFS4ERR_NOTSUPP, NFS4ERR_OLD STATEI D,

| NFS4ERR_OPENMODE, NFS4ERR OP_NOT | N_SESSI ON,

| NFS4ERR_REP_TCO BI G

| NFS4ERR_REP_TOO Bl G TO CACHE,

| NFS4ERR_REQ TOO Bl G NFS4ERR RETRY_UNCACHED REP,
| NFS4ERR_ROFS, NFS4ERR_SERVERFAULT,

| NFS4ERR_STALE, NFS4ERR_SYM.I NK,

| NFS4ERR_TOO MANY_OPS, NFS4ERR WWRONG TYPE,

| NFS4ERR_XDEV

- -+ — +

Haynes St andards Track [Page 49]

RFC 7862 NFSv4. 2 Novenber 2016

NFS4ERR_ACCESS, NFS4ERR_ADM N_REVOKED,
NFS4ERR_BADXDR, NFS4ERR_BAD STATEI D,
NFS4ERR_DEADSESSI ON, NFS4ERR_DELAY,
NFS4ERR_DELEG REVOKED, NFS4ERR_DQUOT,
NFS4ERR_EXP| RED, NFS4ERR FBI G,

NFS4ERR_FHEXPI RED, NFS4ERR_GRACE, NFS4ERR | NVAL,
NFS4ERR | O, NFS4ERR | SDI R, NFS4ERR_LOCKED,
NFS4ERR_MOVED, NFS4ERR_NOFI LEHANDLE,
NFS4ERR_NOSPC, NFS4ERR_OFFLOAD DENI ED,
NFS4ERR_OLD_STATEI D, NFS4ERR_OPENMODE,
NFS4ERR_OP_NOT_| N_SESSI ON,

NFS4ERR_PARTNER NO_AUTH,
NFS4ERR_PARTNER_NOTSUPP, NFS4ERR PNFS | O HOLE,
NFS4ERR_PNFS_NO _LAYOUT, NFS4ERR REP_TOO Bl G,
NFS4ERR_REP_TOO Bl G TO CACHE,

NFS4ERR_REQ TOO Bl G, NFS4ERR_RETRY_UNCACHED REP,
NFS4ERR_ROFS, NFS4ERR_SERVERFAULT,
NFS4ERR_STALE, NFS4ERR SYM.I NK,

NFS4ERR_TOO MANY_OPS, NFS4ERR WWRONG TYPE

+

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

+

| NFS4ERR_ACCESS, NFS4ERR_ADM N_REVOKED,
| NFS4ERR_BADXDR, NFS4ERR_BAD STATEI D,

| NFS4ERR_DEADSESSI ON, NFS4ERR DELAY,

| NFS4ERR_DELEG REVOKED, NFS4ERR EXPI| RED,

| NFS4ERR_FHEXPI RED, NFS4ERR GRACE, NFS4ERR | NVAL,
| NFS4ERR | O, NFS4ERR | SDIR, NFS4ERR_LOCKED,

| NFS4ERR_MOVED, NFS4ERR_NOFI LEHANDLE,

| NFS4ERR_OLD_STATEI D, NFS4ERR_OPENMODE,

| NFS4ERR_OP_NOT_| N_SESSI ON, NFS4ERR_PNFS_| O HOLE,
| NFS4ERR_PNFS_NO LAYOUT, NFS4ERR REP_TCO BI G

| NFS4ERR_REP_TOO Bl G TO CACHE,

| NFS4ERR_REQ TOO Bl G NFS4ERR_RETRY_UNCACHED REP,
| NFS4ERR_SERVERFAULT, NFS4ERR_STALE,

| NFS4ERR_SYMLI NK, NFS4ERR TOO_MANY_OPS,

| NFS4ERR_WRONG TYPE

+
|
|
|
|
|
|
|
|
|
|
|

NFS4ERR_ACCESS, NFS4ERR_ADM N_REVOKED,
NFS4ERR_BADXDR, NFS4ERR_BAD STATEI D,
NFS4ERR_DEADSESSI ON, NFS4ERR_DELAY,
NFS4ERR_DELEG REVOKED, NFS4ERR_EXPI RED,
NFS4ERR FBI G NFS4ERR_FHEXPI RED, NFS4ERR_GRACE,
NFS4ERR | NVAL, NFS4ERR | O, NFS4ERR | SDI R,
NFS4ERR_MOVED, NFS4ERR_NOFI LEHANDLE,
NFS4ERR_NOTSUPP, NFS4ERR_OLD_STATEI D,
NFS4ERR_OPENMODE, NFS4ERR_OP_NOT_| N_SESSI ON,
NFS4ERR_REP_TCO BI G

NFS4ERR_REP_TCO Bl G_TO CACHE,

- - -+

Haynes St andards Track [Page 50]

RFC 7862

| O_ADVI SE

I
I
I
I
I
I
I
I
I
I
I
|
LAYOUTERROR

LAYQUTSTATS

Haynes

NFSv4. 2 Novenmber 2016

NFS4ERR _REQ TOO Bl G, NFS4ERR_RETRY_UNCACHED REP,
NFS4ERR_ROFS, NFS4ERR SERVERFAULT,
NFS4ERR_STALE, NFS4ERR SYM.I NK,
NFS4ERR_TOO _MANY OPS, NFS4ERR WWRONG TYPE

NFS4ERR ACCESS, NFS4ERR ADM N_REVOKED,
NFS4ERR_BADXDR, NFS4ERR_BAD STATEI D,
NFS4ERR_DEADSESS| ON, NFS4ERR_DELAY,
NFS4ERR_DELEG REVOKED, NFS4ERR_EXPI RED,
NFS4ERR FBI G NFS4ERR FHEXP| RED, NFS4ERR_GRACE,
NFS4ERR | NVAL, NFS4ERR | O, NFS4ERR | SDI R,
NFS4ERR_MOVED, NFS4ERR_NOFI LEHANDLE,
NFS4ERR_NOTSUPP, NFS4ERR OLD STATEI D,
NFS4ERR_OP_NOT_| N_SESSI ON,
NFS4ERR_RETRY_UNCACHED REP, NFS4ERR SERVERFAULT,
NFS4ERR_STALE, NFS4ERR_SYM.I NK,

NFS4ERR_TOO MANY_OPS, NFS4ERR WRONG TYPE

NFS4ERR ADM N_REVOKED, NFS4ERR BADXDR,
NFS4ERR_BAD_STATEI D, NFS4ERR_DEADSESSI ON,
NFS4ERR_DELAY, NFS4ERR DELEG REVOKED,
NFS4ERR_EXPI RED, NFS4ERR_FHEXPI RED,
NFS4ERR_GRACE, NFS4ERR | NVAL, NFS4ERR | SDI R,
NFS4ERR_MOVED, NFS4ERR_NOFI LEHANDLE,
NFS4ERR_NOTSUPP, NFS4ERR_NO GRACE,
NFS4ERR_OLD_STATEI D, NFS4ERR_OP_NOT_| N_SESSI ON,
NFS4ERR_REP_TCO Bl G

NFS4ERR_REP_TCO Bl G_TO CACHE,

NFS4ERR_REQ TOO Bl G, NFS4ERR_RETRY_UNCACHED REP,
NFS4ERR_SERVERFAULT, NFS4ERR STALE,

NFS4ERR_TOO MANY_OPS,
NFS4ERR_UNKNOWN_LAYOUTTYPE, NFS4ERR WRONG CRED,
NFS4ERR_W\RONG_TYPE

NFS4ERR_ADM N_REVOKED, NFS4ERR BADXDR,
NFS4ERR_BAD_STATEI D, NFS4ERR DEADSESSI ON,
NFS4ERR_DELAY, NFS4ERR DELEG REVOKED,
NFS4ERR_EXPI RED, NFS4ERR_FHEXPI RED,
NFS4ERR_GRACE, NFS4ERR | NVAL, NFS4ERR | SDI R,
NFS4ERR_MOVED, NFS4ERR_NOFI LEHANDLE,
NFS4ERR_NOTSUPP, NFS4ERR_NO_GRACE,
NFS4ERR_OLD_STATEI D, NFS4ERR OP_NOT | N_SESSI ON,
NFS4ERR_REP_TOO BI G,

NFS4ERR_REP_TCO Bl G_TO CACHE,

NFS4ERR_REQ TOO Bl G, NFS4ERR_RETRY_UNCACHED REP,
NFS4ERR_SERVERFAULT, NFS4ERR_STALE,

- - -+ -+

St andards Track [Page 51]

RFC 7862

NFSv4. 2 Novenmber 2016

NFS4ERR_TOO MANY _OPS,
NFS4ERR_UNKNOWN_LAYOUTTYPE, NFS4ERR WRONG CRED,
NFS4ERR_WRONG TYPE

NFS4ERR_ADM N_REVOKED, NFS4ERR BADXDR,
NFS4ERR_BAD_STATEI D, NFS4ERR_COMPLETE_ALREADY,
NFS4ERR_DEADSESSI ON, NFS4ERR_DELAY,

NFS4ERR_EXPl| RED, NFS4ERR GRACE, NFS4ERR NOTSUPP,
NFS4ERR_OLD_STATEI D, NFS4ERR_OP_NOT_| N_SESSI ON,
NFS4ERR_SERVERFAULT, NFS4ERR_TOO MANY_OPS

NFS4ERR_ADM N_REVOKED, NFS4ERR_BADXDR,
NFS4ERR_BAD_STATEI D, NFS4ERR_COMPLETE_ALREADY,
NFS4ERR_DEADSESS| ON, NFS4ERR_DELAY,

NFS4ERR_EXP| RED, NFS4ERR GRACE, NFS4ERR_NOTSUPP,
NFS4ERR_OLD_STATEI D, NFS4ERR OP_NOT_| N_SESSI ON,
NFS4ERR_SERVERFAULT, NFS4ERR_TOO MANY_OPS

NFS4ERR _ACCESS, NFS4ERR_ADM N_REVOKED,
NFS4ERR_BADXDR, NFS4ERR BAD STATEI D,
NFS4ERR_DEADSESSI ON, NFS4ERR_DELAY,
NFS4ERR_DELEG REVOKED, NFS4ERR_EXPI RED,
NFS4ERR_FHEXPI RED, NFS4ERR_GRACE, NFS4ERR | NVAL,
NFS4ERR | O, NFS4ERR | SDI R, NFS4ERR_LOCKED,
NFS4ERR_MOVED, NFS4ERR_NOFI LEHANDLE,
NFS4ERR_NOTSUPP, NFS4ERR OLD_STATEI D,
NFS4ERR_OPENMODE, NFS4ERR_OP_NOT | N_SESSI ON,
NFS4ERR_PARTNER NO AUTH, NFS4ERR_PNFS_| O HOLE,
NFS4ERR_PNFS_NO_LAYOUT, NFS4ERR REP_TOO BI G,
NFS4ERR_REP_TCO Bl G_TO CACHE,

NFS4ERR_REQ TOO Bl G, NFS4ERR_RETRY_UNCACHED REP,
NFS4ERR_SERVERFAULT, NFS4ERR STALE,
NFS4ERR_SYMLI NK, NFS4ERR_TOO MANY_COPS,
NFS4ERR_W\RONG_TYPE

NFS4ERR _ACCESS, NFS4ERR_ADM N_REVOKED,
NFS4ERR_BADXDR, NFS4ERR_BAD STATEI D,
NFS4ERR_DEADSESS| ON, NFS4ERR_DELAY,
NFS4ERR_DELEG REVOKED, NFS4ERR_EXPI RED,
NFS4ERR_FHEXPI RED, NFS4ERR_GRACE, NFS4ERR | NVAL,
NFS4ERR | O, NFS4ERR | SDI R, NFS4ERR_LOCKED,
NFS4ERR_MOVED, NFS4ERR_NOFI LEHANDLE,
NFS4ERR_NOTSUPP, NFS4ERR_OLD_STATEI D,
NFS4ERR_OPENMODE, NFS4ERR_OP_NOT_| N_SESSI ON,
NFS4ERR_PNFS_| O HOLE, NFS4ERR_PNFS_NO _LAYOUT,
NFS4ERR_REP_TCO Bl G

NFS4ERR_REP_TCO Bl G_TO CACHE,

NFS4ERR_REQ TOO Bl G, NFS4ERR_RETRY_UNCACHED REP,

- - -+ -+

St andards Track [Page 52]

RFC 7862 NFSv4. 2 Novenber 2016

NFS4ERR SERVERFAULT, NFS4ERR STALE,
NFS4ERR_SYMLI NK, NFS4ERR TOO MANY OPS,
NFS4ERR_UNI ON_NOTSUPP, NFS4ERR WRONG TYPE

| |
| |
| |
+ +
| NFS4ERR_ACCESS, NFS4ERR_ADM N_REVOKED, |
| NFS4ERR_BADXDR, NFS4ERR_BAD STATEI D, |
| NFS4ERR_DEADSESSI ON, NFS4ERR DELAY, |
| NFS4ERR DELEG REVOKED, NFS4ERR DQUOT, |
| NFS4ERR_EXPI RED, NFS4ERR FBI G |
| NFS4ERR_FHEXPI RED, NFS4ERR GRACE, NFS4ERR | NVAL, |
| NFS4ERR | O, NFS4ERR | SDI R, NFS4ERR_LOCKED, |
| NFS4ERR_MOVED, NFS4ERR_NOFI LEHANDLE, |
| NFS4ERR_NOSPC, NFS4ERR_NOTSUPP, |
| NFS4ERR_OLD_STATEI D, NFS4ERR OPENMODE, |
| NFS4ERR_OP_NOT | N_SESSI ON, NFS4ERR PNFS | O HOLE, |
| NFS4ERR_PNFS_NO LAYOUT, NFS4ERR REP _TCO Bl G |
| NFS4ERR_REP_TOO Bl G TO CACHE, |
| NFS4ERR_REQ TOO Bl G, NFS4ERR RETRY_UNCACHED REP, |
| NFS4ERR_ROFS, NFS4ERR_SERVERFAULT, |
| NFS4ERR_STALE, NFS4ERR SYM.I NK, |
| NFS4ERR_TOO MANY_OPS, NFS4ERR W\RONG TYPE |
+ +

Table 2: Valid Error Returns for Each New Protocol Operation
11.3. New Cal | back Operations and Their Valid Errors

This section contains a table that gives the valid error returns for
each new NFSv4. 2 cal | back operation. The error code NFS4_CK
(indicating no error) is not listed but should be understood to be
returnabl e by all new cal |l back operations. The error values for all
ot her call back operations are defined in Section 15.3 of [RFC5661].

| Call back | Errors |
| Operation | |

CB_OFFLOAD | NFS4ERR BADHANDLE, NFS4ERR BADXDR, |
NFS4ERR_BAD_STATEI D, NFS4ERR_DELAY, |
NFS4ERR_OP_NOT_| N_SESSI ON, NFS4ERR_REP_TOO BI G, |
NFS4ERR_REP_TOO Bl G_TO CACHE, NFS4ERR REQ TOO BI G |
NFS4ERR_RETRY_UNCACHED_REP, NFS4ERR SERVERFAULT, |
NFS4ERR_TOO MANY_OPS |

Table 3: Valid Error Returns for Each New Protocol Callback Operation

Haynes St andards Track [Page 53]

RFC 7862
12. New File Attributes
12.1. New RECOMVENDED Attri butes -

12.

12.

Haynes

The Iist of new RECOMVENDED attri
meani ngs of the colums of the ta

Nane: The nane of the attribute.

I d:
bet ween t he assi gned nunber an
authoritative, but in such an
errata to this docunent and/or
errata process.

Dat a Type:
Acc: Access allowed to the attri

R neans read-only (GETATTR nma

W neans wite-only (SETATTR nmay set,

R W neans read/wite (GETATT

Defined in: The section of this specification that describes the
attribute.
Fom e e e e e o e e e e e e e a e - o L S +
| Nane | 1d | Data Type | Acc | Defined in |
S e oo oo - e +
clone_blksize	77	uint32_t	R	Section 12.2.1
space_freed	78	length4	R	Section 12.2.2
change_attr_type	79	change_attr _typed	R	Section 12.2.3
sec_lI abel	80	sec_label4	RW]	Section 12.2.4
Fom e e e oo oo Fom e e e e e e oo o oo L S +
Tabl e 4: New RECOMMENDED Attri butes

2. Attribute Definitions
2.1. Attribute 77: clone_blksize
The clone_bl ksize attribute indicates the granularity of a CLONE
operati on.

St andards Track [Page 54]

NFSv4. 2

The nunber assigned to the attribute.

List and Definition References
butes appears in Table 4. The
bl e are:

d [RFC7863], the latter is
event, it should be resolved with
[RFC7863]. See [IES@)8] for the

The XDR data type of the attribute.

but e.
y retrieve, SETATTR nmay not set).
CGETATTR may not retrieve).

R may retrieve, SETATTR nmay set).

Novenmber 2016

In the event of conflicts

RFC 7862 NFSv4. 2 Novenber 2016

12.

12.

2.2. Attribute 78: space_freed

space_freed gives the nunber of bytes freed if the file is del eted.
This attribute is read-only and is of type length4. It is a per-file
attribute.

2.3. Attribute 79: change_attr_type

<CODE BEG NS>

enum change_attr_typed {

NFS4_CHANGE_TYPE_| S_MONOTONI C_| NCR =0,
NFS4_CHANGE_TYPE_| S_VERSI ON_COUNTER =1,
NFS4_CHANGE_TYPE_| S_VERSI ON_COUNTER _NOPNFS = 2,
NFS4_CHANGE_TYPE_| S_TI ME_METADATA = 3,
NFS4_CHANGE_TYPE_| S_UNDEFI NED =4
b
<CODE ENDS>

change_attr_type is a per-file systemattribute that enables the
NFSv4. 2 server to provide additional information about how it expects
the change attribute value to evolve after the file data or netadata
has changed. Wiile Section 5.4 of [RFC5661] discusses

per-file systemattributes, it is expected that the val ue of
change_attr_type will not depend on the val ue of "honogeneous" and
will only change in the event of a migration

NFS4 _CHANGE_TYPE | S MONOTONI C | NCR: The change attri bute val ue MJST
nonotoni cally increase for every atonmi c change to the file
attributes, data, or directory contents.

NFS4_CHANGE TYPE_| S _VERSI ON_COUNTER: The change attri bute val ue MJUST
be incremented by one unit for every atomic change to the file
attributes, data, or directory contents. This property is
preserved when witing to pNFS data servers.

NFS4_CHANGE _TYPE_I S_VERSI ON_COUNTER_NOPNFS: The change attribute
val ue MUST be increnented by one unit for every atonic change to
the file attributes, data, or directory contents. 1In the case
where the client is witing to pNFS data servers, the nunber of
increnments is not guaranteed to exactly match the nunber of
WRI TEs.

Haynes St andards Track [Page 55]

RFC 7862 NFSv4. 2 Novenber 2016

12.

NFS4 CHANGE TYPE | S TI ME METADATA: The change attribute is
i mpl enented as suggested in [RFC7530] in terns of the
time_metadata attribute.

NFS4 _CHANGE _TYPE_ | S UNDEFI NED: The change attribute does not take
values that fit into any of these categories.

I f either NFS4_CHANCE_TYPE_ | S_MONOTONI C_I NCR
NFS4_CHANGE_TYPE_I S_VERSI ON_COUNTER, or

NFS4 CHANGE TYPE IS TI ME METADATA is set, then the client knows at
the very least that the change attribute is nonotonically increasing,
which is sufficient to resolve the question of which value is the
nost recent.

If the client sees the value NFS4_CHANGE TYPE | S_TI ME_METADATA, then
by inspecting the value of the "tinme_delta" attribute it additionally
has the option of detecting rogue server inplenentations that use
tinme_nmetadata in violation of the specification

If the client sees NFS4 CHANGE TYPE IS VERSI ON COUNTER, it has the
ability to predict what the resulting change attribute val ue shoul d
be after a COVWPOUND contai ni ng a SETATTR, WRI TE, or CREATE. This
again allows it to detect changes nade in parallel by another client.
The val ue NFS4_CHANGE_TYPE_I S_VERSI ON_COUNTER_NOPNFS pernits the
same, but only if the client is not doing pNFS WRI TEs.

Finally, if the server does not support change_attr_type or if

NFS4 CHANGE TYPE IS UNDEFINED is set, then the server SHOULD nmake an
effort to inplement the change attribute in ternms of the
tinme_nmetadata attribute.

2.4, Attribute 80: sec_|labe

<CODE BEG NS>

typedef uint32_t policy4,;

struct | abel format specd {

policyd Ifs_Ifs;
policy4d Ifs_pi;

i
struct sec_|abel 4 {
| abel f or mat _spec4 slai _|fs;
opaque sl ai _dat a<>;
s
<CODE ENDS>

Haynes St andards Track [Page 56]

RFC 7862 NFSv4. 2 Novenber 2016

13.

The FATTR4_SEC LABEL contains an array of two conponents, with the
first component being an LFS. It serves to provide the receiving end
with the information necessary to translate the security attribute
into a formthat is usable by the endpoint. Label Formats assigned
an LFS may optionally choose to include a Policy ldentifier field to
all ow for conplex policy deploynments. The LFS and the Security Labe
Format Sel ection Registry are described in detail in [RFC7569]. The
translation used to interpret the security attribute is not specified
as part of the protocol, as it may depend on various factors. The
second conponent is an opaque section that contains the data of the
attribute. This conponent is dependent on the MAC nodel to interpret
and enf orce.

In particular, it is the responsibility of the LFS specification to
define a maxi mum si ze for the opaque section, slai_data<>. Wen
creating or nodifying a label for an object, the client needs to be
guaranteed that the server will accept a label that is sized
correctly. By both client and server being part of a specific MAC
nodel, the client will be aware of the size.

Operations: REQU RED, RECOMMENDED, or OPTI ONAL

Tables 5 and 6 summari ze the operations of the NFSv4.2 protocol and

t he correspondi ng desi gnations of REQU RED, RECOVMENDED, and OPTI ONAL
to inplenent or MJUST NOT inplenment. The "MJST NOT i npl enent”
designation is reserved for those operations that were defined in

ei ther NFSv4.0 or NFSv4.1 and MUST NOT be inplemented in NFSv4. 2.

For the nobst part, the REQU RED, RECOMMENDED, or OPTI ONAL desi gnation
for operations sent by the client is for the server inplenentation
The client is generally required to inplenent the operations needed
for the operating environnent that it serves. For exanple, a
read-only NFSv4.2 client would have no need to inplenent the WRITE
operation and is not required to do so.

The REQUI RED or OPTI ONAL designation for callback operations sent by
the server is for both the client and server. GCenerally, the client
has the option of creating the backchannel and sending the operations
on the forechannel that will be a catalyst for the server sending
cal | back operations. A partial exception is CB RECALL _SLOT; the only
way the client can avoid supporting this operation is by not creating
a backchannel

Haynes St andards Track [Page 57]

RFC 7862 NFSv4. 2 Novenber 2016

Since this is a sunmmary of the operations and their designation
there are subtleties that are not presented here. Therefore, if
there is a question regarding inplenentation requirenents, the
operation descriptions thensel ves nmust be consulted, along with other
rel evant explanatory text within either this specification or the
NFSv4. 1 specification [RFC5661].

The abbreviations used in the second and third colums of Tables 5
and 6 are defined as foll ows:

REQ REQUIRED to inpl enent

REC. RECOVMENDED to i npl enent

OPT: OPTIONAL to inplenent

MNI: MJST NOT i npl ement

For the NFSv4.2 features that are OPTI ONAL, the operations that
support those features are OPTIONAL, and the server MJST return
NFS4ERR_NOTSUPP in response to the client’s use of those operations
when those operations are not inplenmented by the server. |If an

OPTI ONAL feature is supported, it is possible that a set of
operations related to the feature becone REQU RED to inplenent. The
third colum of the tables designates the feature(s) and if the
operation is REQU RED or OPTIONAL in the presence of support for the
feature.

The OPTIONAL features identified and their abbreviations are as
foll ows:

pNFS: Parallel NFS

FDELG File Del egations

DDELG Directory Del egations

COPYra: Intra-server Server-Side Copy
COPYer: Inter-server Server-Side Copy

ADB: Application Data Bl ocks

Haynes St andards Track [Page 58]

RFC 7862 NFSv4. 2 Novenber 2016

o e o e o e e +
| Operation | REQ REC, OPT, or | Feature (REQ REC, or |
| | MNI | OPT) |
o e e e e e e e i o e e e e e e e e +
ACCESS	REQ	
ALLOCATE	OPT	
BACKCHANNEL CTL	REQ	
BIND CONN TO SESSION	REQ	
CLONE	OPT	
CLOSE	REQ I I	
COWM T	REQ	
CoPY	OPT	COPYer (REQ, COPYra
		(REQ
COPY_NOTI FY	OPT	COPYer (REQ
CREATE	REQ	
CREATE_SESSI ON	REQ	
DEALLCCATE	OPT	
DELEGPURGE	OPT	FDELG (REQ
DELEGRETURN	OPT	FDELG DDELG PpNFS
		(REQ
DESTROY_CLI ENTI D	REQ	
DESTROY_SESSI ON	REQ	
EXCHANGE_I D	REQ	
FREE_STATEI D	REQ	
GETATTR	REQ	
GETDEVI CEl NFO	OPT	pNFS (REQ
GETDEVI CELI ST	MNI	pNFS (MNI)
GETFH	REQ	
GET_DI R_DELEGATI ON	OPT	DDELG (REQ
1LLEGAL	REQ	
1O _ADVI SE	OPT	
LAYOQUTCOMWM T	OPT	pNFS (REQ
LAYOUTERRCOR	OPT	pNFS (OPT)
LAYOUTGET	OPT	pNFS (REQ
LAYOUTRETURN	OPT	pNFS (REQ
LAYQUTSTATS	OPT	pNFS (OPT)
LINK	OPT	
LOCK	REQ	
LOCKT	REQ	
LOCKU	REQ	
LOOKUP	REQ	
LOOKUPP	REQ	
NVERI FY	REQ	
OFFLOAD CANCEL	OPT	COPYer (OPT), COPYra
		(OPT)
OFFLOAD_STATUS	OPT	COPYer (OPT), COPYra
		(OPT)

Haynes St andards Track [Page 59]

RFC 7862 NFSv4. 2 Novenber 2016

OPEN	REQ		
OPENATTR	OPT		
OPEN_CONFI RM	MNI		
OPEN_DOWNGRADE	REQ		
PUTFH	REQ		
PUTPUBFH	REQ		
PUTROOTFH	REQ		
READ	REQ		
READDI R	REQ		
READLI NK	OPT		
READ_PLUS	OPT		
RECLAI M_COVPLETE	REQ		
RELEASE_LOCKOMNER	MNI		
REMOVE	REQ		
RENANME	REQ		
RENEW	MNI		
RESTOREFH	REQ		
SAVEFH	REQ		
SECI NFO	REQ		
SECI NFO_NO NAME	REC	pNFS file	ayout
		(REQ	
SEEK	OPT		
SEQUENCE	REQ		
SETATTR	REQ		
SETCLI ENTI D	MNI		
SETCLIENTID CONFIRM	MNI		
SET_SSV	REQ		
TEST_STATEI D	REQ		
VERIFY	REQ		
WANT_DELEGATI ON	OPT	FDELG (OPT)	
WRITE	REQ		
VRl TE_SAME	OPT	ADB (REQ	
Fmm e e e a oo Fmm e e e Fmm e e a oo +

Tabl e 5: Operations

Haynes St andards Track [Page 60]

RFC 7862 NFSv4. 2 Novenber 2016

o e oo oo +
| Operation | REQ REC, OFT, | Feature (REQ REC |
| | or MNI | or OPT) |
Fom e e e e e e e e e mea oo e o e e e e e e oo +
CB_GETATTR	OPT	FDELG (REQ
CB_I LLEGAL	REQ	
CB_LAYOUTRECALL	OPT	pNFS (REQ
CB_NOTI FY	OPT	DDELG (REQ
CB_NOTI FY_DEVI CEI D	OPT	pNFS (OPT)
CB_NOTI FY_LOCK	OPT	
CB_OFFLOAD	OPT	COPYer (REQ, COPYra
		(REQ
CB_PUSH DELEG	OPT	FDELG (OPT)
CB_RECALL	OPT	FDELG, DDELG pNFS
		(REQ
CB_RECALL_ANY	OPT	FDELG DDELG PpNFS
		(REQ
CB_RECALL_SLOT	REQ	
CB_RECALLABLE OBJ_AVAIL	OPT	DDELG pNFS (REQ
CB_SEQUENCE	OPT	FDELG, DDELG pNFS
		(REQ
CB_WANTS CANCELLED	OPT	FDELG DDELG PpNFS
		(REQ
o e e e e e e e e oo Fom e e e oo oo e e e e a - +

Tabl e 6: Call back Operations
14. Modifications to NFSv4.1 Operations
14.1. Operation 42: EXCHANGE ID - Instantiate the client ID
14.1.1. ARGUMENT
<CODE BEQ NS>

/* new */
const EXCHA D4_FLAG SUPP_FENCE_OPS = 0x00000004;

<CODE ENDS>
14.1.2. RESULT

Unchanged

Haynes St andards Track [Page 61]

RFC 7862 NFSv4. 2 Novenber 2016

14.

14.

1.3. MOTI VATI ON

Enterprise applications require guarantees that an operation has

ei ther aborted or conpleted. NFSv4.1 provides this guarantee as |ong
as the session is alive: sinply send a SEQUENCE operati on on the same
slot with a new sequence nunber, and the successful return of
SEQUENCE i ndi cates that the previous operation has conpl et ed.

However, if the session is lost, there is no way to know when any
operations in progress have aborted or conpleted. In hindsight, the
NFSv4. 1 specification should have nandated that DESTROY_SESSI ON

ei ther abort or conplete all outstanding operations.

1.4. DESCRI PTI ON

A client SHOULD request the EXCHA D4_FLAG SUPP_FENCE OPS capability
when it sends an EXCHANGE | D operation. The server SHOULD set this
capability in the EXCHANGE ID reply whether the client requests it or
not. It is the server’s return that determ nes whether this
capability is in effect. Wien it is in effect, the following wll
occur:

0 The server will not reply to any DESTROY_SESSI ON i nvoked with the
client IDuntil all operations in progress are conpleted or
aborted.

0 The server will not reply to subsequent EXCHANGE | D operations
i nvoked on the same client owner with a new verifier until al
operations in progress on the client ID s session are conpleted or
abort ed.

o0 In inplenmentations where the NFS server is deployed as a cluster
it does support client ID trunking, and the
EXCHA D4_FLAG SUPP_FENCE_OPS capability is enabled, then a
session I D created on one node of the storage cluster MJST be
destroyabl e via DESTROY_SESSION. In addition, DESTROY_CLIENTID
and an EXCHANGE IDwith a new verifier affect all sessions,
regardl ess of what node the sessions were created on.

Haynes St andards Track [Page 62]

RFC 7862 NFSv4. 2 Novenber 2016

14.

14.

14.

14.

2. Operation 48: GETDEVI CELI ST - Get all device nmappings for a file
system

2.1. ARGUMENT
<CODE BEG NS>

struct GETDEVI CELI ST4args {
/* CURRENT_FH object belonging to the file system */

| ayoutt ype4 gdl a_l ayout _type;
/* nunber of device IDs to return */
count 4 gdl a_naxdevi ces;
nfs_cooki e4 gdl a_cooki e;
verifierd gdl a_cooki everf;

i

<CODE ENDS>

2.2. RESULT

<CODE BEG NS>

struct GETDEVI CELI ST4resok {

nfs_cooki e4 gdl r _cooki e;
verifier4d gdl r _cooki everf;

devi cei d4 gdl r _deviceid_list<>;
bool gdl r _eof;

b

uni on CGETDEVI CELI ST4res switch (nfsstat4 gdlr_status) {
case NF4_X
CGETDEVI CELI ST4r esok gdl r _resok4;
defaul t:
voi d;
i

<CODE ENDS>
2.3. MOTI VATI ON

The GETDEVI CELI ST operation was introduced in [RFC5661] specifically
to request a list of devices at file systemnmount time from bl ock

| ayout type servers. However, the use of the GETDEVI CELI ST operation
i ntroduces a race condition versus notification about changes to pNFS
device IDs as provided by CB NOTI FY_DEVI CEID. |nplenentation
experience with block | ayout servers has shown that there is no need

Haynes St andards Track [Page 63]

RFC 7862 NFSv4. 2 Novenber 2016

14.

15.

15.

15.

15.

15.

for GETDEVICELIST. dients have to be able to request new devices

usi ng CETDEVI CEI NFO at any time in response to either a new deviceid

in LAYOUTGET results or the CB_NOTI FY_DEVI CEI D cal | back operation.

2.4. DESCRI PTI ON

Cients and servers MJST NOT inpl enent the GETDEVI CELI ST operati on.
NFSv4. 2 Operations

1. Operation 59: ALLOCATE - Reserve space in a region of a file

1.1. ARGUVMENT

<CCDE BEQ NS>

struct ALLOCATE4args {
/* CURRENT_FH: file */

statei d4 aa_stateid;
of fset4 aa_of fset;
| engt h4 aa_l engt h;
s
<CODE ENDS>

1.2. RESULT
<CODE BEG NS>

struct ALLOCATE4res {
nfsstat4 ar _stat us;
s

<CODE ENDS>
1. 3. DESCRI PTI ON

Wienever a client wi shes to reserve space for a regionin afile, it
calls the ALLOCATE operation with the current filehandle set to the
filehandle of the file in question, and with the start offset and
length in bytes of the region set in aa_offset and aa_l ength,
respectively.

CURRENT_FH nust be a regular file. |f CURRENT_FH is not a regul ar
file, the operation MJST fail and return NFS4ERR_WRONG TYPE.

Haynes St andards Track [Page 64]

RFC 7862 NFSv4. 2 Novenber 2016

15.

15.

The aa_stateid MJST refer to a stateid that is valid for a WRITE
operation and follows the rules for stateids in Sections 8.2.5 and
18. 32. 3 of [RFC5661].

The server will ensure that backing blocks are reserved to the region
specified by aa_offset and aa_|ength, and that no future wites into
this region will return NFS4AERR NOSPC. If the region lies partially
or fully outside the current file size, the file size will be set to
aa_offset + aa_ length inmplicitly. |[If the server cannot guarantee
this, it nmust return NFS4ERR _NOSPC

The ALLOCATE operation can also be used to extend the size of a file
if the region specified by aa offset and aa | ength extends beyond the
current file size. 1In that case, any data outside of the previous
file size will return zeros when read before data is witten to it.

It is not required that the server allocate the space to the file
before returning success. The allocation can be deferred; however,
it nmust be guaranteed that it will not fail for lack of space. The
deferral does not result in an asynchronous reply.

The ALLOCATE operation will result in the space_used and space_freed
attributes being increased by the nunber of bytes reserved, unless
they were previously reserved or witten and not shared.

2. Operation 60: COPY - Initiate a server-side copy

2.1. ARGUMENT

<CCDE BEG NS>

struct COPY4args {

/* SAVED FH: source file */
/* CURRENT_FH destination file */

st at ei d4 ca_src_stateid;
statei d4 ca_dst_stateid;
of fset4 ca_src_offset;
of fset4 ca_dst_offset;
| engt h4 ca_count;
bool ca_consecutive;
bool ca_synchronous;
net | oc4 ca_source_server<>;
i
<CODE ENDS>

Haynes St andards Track [Page 65]

RFC 7862 NFSv4. 2 Novenber 2016

15.

15.

2.2. RESULT
<CODE BEG NS>

struct wite_responsed {

statei d4 wr _cal | back_i d<1>;
| engt h4 wWr_count;
st abl e_how4 wr_comi tted,;
verifier4d wr_writeverf;
s
struct copy_requirenentsd {
bool Ccr_consecutive;
bool cr_synchronous;
s
struct COPY4resok {
wite_responsed Cr_response;
copy_requirenent s4 Cr_requirenents;
s

uni on COPY4res switch (nfsstat4 cr_status) {
case NF4_ XK

COPY4r esok cr_resok4;
case NFS4ERR_OFFLOAD _NO REQS:
copy_requirement s4 Cr_requirenents;
defaul t:
voi d;
i
<CODE ENDS>

2.3. DESCRI PTI ON

The COPY operation is used for both intra-server and inter-server
copies. In both cases, the COPY is always sent fromthe client to
the destination server of the file copy. The COPY operation requests
that a range in the file specified by SAVED FH be copied to a range
in the file specified by CURRENT_FH.

Bot h SAVED FH and CURRENT_FH nust be regular files. |If either
SAVED FH or CURRENT FH is not a regular file, the operation MJST fail
and return NFS4ERR WRONG TYPE.

SAVED FH and CURRENT_FH nust be different files. |If SAVED FH and
CURRENT_FH refer to the sane file, the operation MJST fail wth
NFS4ERR_| NVAL.

Haynes St andards Track [Page 66]

RFC 7862 NFSv4. 2 Novenber 2016

If the request is for an inter-server copy, the source-fh is a
filehandl e fromthe source server and the COVPOUND procedure is being
executed on the destination server. |In this case, the source-fh is a
foreign filehandl e on the server receiving the COPY request. |If

ei ther PUTFH or SAVEFH checked the validity of the filehandle, the
operation would likely fail and return NFS4ERR STALE

If a server supports the inter-server copy feature, a PUTFH fol | owed
by a SAVEFH MUST NOT return NFS4ERR_STALE for either operation

These restrictions do not pose substantial difficulties for servers.
CURRENT_FH and SAVED FH may be validated in the context of the
operation referencing them and an NFS4ERR STALE error returned for an
invalid filehandl e at that point.

The ca_dst_stateid MIST refer to a stateid that is valid for a WRITE
operation and follows the rules for stateids in Sections 8.2.5 and
18.32.3 of [RFC5661]. For an inter-server copy, the ca_src_stateid
MUST be the cnr_stateid returned fromthe earlier COPY_NOTIFY
operation, while for an intra-server copy ca_src_stateid MJST refer
to a stateid that is valid for a READ operation and follows the rules
for stateids in Sections 8.2.5 and 18.22.3 of [RFC5661]. If either
stateid is invalid, then the operation MJST fail

The ca_src_offset is the offset within the source file fromwhich the
data will be read, the ca_dst _offset is the offset within the
destination file to which the data will be witten, and the ca_count
is the number of bytes that will be copied. An offset of 0 (zero)
specifies the start of the file. A count of O (zero) requests that
all bytes fromca_src_offset through EOF be copied to the

destination. |If concurrent nodifications to the source file overlap
with the source file region being copied, the data copi ed may include
all, some, or none of the nodifications. The client can use standard

NFS operations (e.g., OPEN with OPENA_SHARE DENY_WRI TE or mandatory
byt e-range | ocks) to protect against concurrent nodifications if

the client is concerned about this. |If the source file's ECF is
being nodified in parallel with a COPY that specifies a count of

0 (zero) bytes, the anount of data copied is inplenmentation dependent
(clients may guard against this case by specifying a non-zero count
val ue or preventing nodification of the source file as nmentioned
above) .

Haynes St andards Track [Page 67]

RFC 7862 NFSv4. 2 Novenber 2016

If the source offset or the source offset plus count is greater than
the size of the source file, the operation MIST fail with

NFS4ERR_| NVAL. The destination offset or destination offset plus
count may be greater than the size of the destination file. This
allows the client to issue parallel copies to inplenent operations
such as

<CODE BEGQ NS>
%cat filel file2 file3 filed4 > dest
<CODE ENDS>

If the ca_source_server list is specified, then this is an

i nter-server COPY operation and the source file is on a renote
server. The client is expected to have previously issued a
successful COPY_NOTIFY request to the renote source server. The
ca_source_server |list MJUST be the same as the COPY_NOTI FY response’s
cnr_source_server list. |If the client includes the entries fromthe
COPY_NOTI FY response’s cnr_source_server list in the ca_source_server
list, the source server can indicate a specific copy protocol for the
destination server to use by returning a URL that specifies both a
protocol service and server name. Server-to-server copy protoco
consi derations are described in Sections 4.6 and 4.9. 1.

If ca _consecutive is set, then the client has specified that the copy
protocol selected MIUST copy bytes in consecutive order from

ca src_offset to ca count. If the destination server cannot neet
this requirement, then it MJST return an error of

NFSAERR _OFFLOAD NO REQS and set cr_consecutive to be FALSE

Li kewi se, if ca_synchronous is set, then the client has required that
the copy protocol selected MIUST performa synchronous copy. |If the
destination server cannot neet this requirenent, then it MJST return
an error of NFSAERR _OFFLOAD NO REQS and set cr_synchronous to be
FALSE.

If both are set by the client, then the destination SHOULD try to
deternmine if it can respond to both requirenents at the sane tine.

If it cannot nake that determination, it rmust set to TRUE the one it
can and set to FALSE the other. The client, upon getting an

NFS4ERR _OFFLOAD _NO REQS error, has to exam ne both cr_consecutive and
cr_synchronous agai nst the respective values of ca_consecutive and
ca_synchronous to determ ne the possible requirenent not nmet. |t
MUST be prepared for the destination server not being able to
determ ne both requirenents at the sane tine.

Haynes St andards Track [Page 68]

RFC 7862 NFSv4. 2 Novenber 2016

Upon receiving the NFS4ERR OFFLOAD NO REQS error, the client has to
determi ne whether it wants to re-request the copy with a rel axed set
of requirenents or revert to manually copying the data. [If it
decides to manually copy the data and this is a renote copy, then the
client is responsible for informng the source that the earlier
COPY_NOTIFY is no longer valid by sending it an OFFLOAD CANCEL.

If the operation does not result in an inmmediate failure, the server
wWill return NFS4_OK

If the w_callback id is returned, this indicates that an
asynchronous COPY operation was initiated and a CB_OFFLQOAD cal | back
will deliver the final results of the operation. The w _callback id
stateid is terned a "copy stateid" in this context. The server is
given the option of returning the results in a callback because the
data may require a relatively long period of tinme to copy.

If no w_callback id is returned, the operation conpleted
synchronously and no call back will be issued by the server. The
conpl etion status of the operation is indicated by cr_status.

If the copy compl etes successfully, either synchronously or
asynchronously, the data copied fromthe source file to the
destination file MJUST appear identical to the NFS client. However,
the NFS server’s on-di sk representation of the data in the source
file and destination file MAY differ. For exanple, the NFS server
m ght encrypt, conpress, deduplicate, or otherw se represent the
on-disk data in the source and destination files differently.

If a failure does occur for a synchronous copy, w _count will be set
to the nunber of bytes copied to the destination file before the

error occurred. |If cr_consecutive is TRUE, then the bytes were
copied in order. |If the failure occurred for an asynchronous copy,
then the client will have gotten the notification of the consecutive

copy order when it got the copy stateid. It will be able to
determ ne the bytes copied fromthe coa bytes copied in the
CB_OFFLOAD ar gunent .

In either case, if cr_consecutive was not TRUE, there is no assurance
as to exactly which bytes in the range were copied. The client MJST
assune that there exists a mxture of the original contents of the
range and the new bytes. |If the COPY wote past the end of the file
on the destination, then the last byte witten to will deternine the
new file size. The contents of any block not witten to and past

the original size of the file will be as if a nornal WRI TE ext ended
the file.

Haynes St andards Track [Page 69]

RFC 7862 NFSv4. 2 Novenber 2016

15.

15.

15.

15.

3. Operation 61: COPY_NOTIFY - Notify a source server of a future
copy

3.1. ARGUMENT
<CODE BEG NS>

struct COPY_NOTI FY4args {
/* CURRENT_FH. source file */

st at ei d4 cha_src_stateid,

netl oc4 cna_destinati on_server
s
<CODE ENDS>
3.2. RESULT

<CODE BEG NS>

struct COPY_NOTI FY4resok {

nf sti me4 cnr_| ease_tine
st at ei d4 cnr_stateid,
net | oc4 cnr_source_server <>;

b

uni on COPY_NOTI FY4res switch (nfsstat4 cnr_status) {
case NFH4_X
COPY_NOTI FY4r esok resok4;
defaul t:
voi d;
s

<CODE ENDS>
3.3. DESCRI PTI ON

This operation is used for an inter-server copy. A client sends this
operation in a COVPOUND request to the source server to authorize a
destination server identified by cna_destination_server to read the
file specified by CURRENT_FH on behal f of the given user.

The cna_src_stateid MJST refer to either open or |ocking states
provided earlier by the server. |If it is invalid, then the operation
MJUST fail.

The cna_destinati on_server MJST be specified using the netloc4
network | ocation format. The server is not required to resolve the
cna_destination_server address before conpleting this operation

Haynes St andards Track [Page 70]

RFC 7862 NFSv4. 2 Novenber 2016

If this operation succeeds, the source server will allow the
cha_destination_server to copy the specified file on behalf of the
gi ven user as long as both of the follow ng conditions are net:

0 The destination server begins reading the source file before the

cnr_lease tine expires. |If the cnr_lease tine expires while the
destination server is still reading the source file, the
destination server is allowed to finish reading the file. |If the

cnr_lease_tine expires before the destination server uses READ or
READ PLUS to begin the transfer, the source server can use
NFS4ERR_PARTNER _NO AUTH to informthe destination server that the
cnr_| ease_tine has expired

o0 The client has not issued an OFFLOAD CANCEL for the same
conbi nati on of user, filehandle, and destination server

The cnr_l ease_tine is chosen by the source server. A cnr_|ease_tine
of 0 (zero) indicates an infinite lease. To avoid the need for
synchroni zed cl ocks, copy lease tines are granted by the server as a
time delta. To renew the copy lease tinme, the client should resend
the sane copy notification request to the source server

The cnr_stateid is a copy stateid that uniquely describes the state
needed on the source server to track the proposed COPY. As defined
in Section 8.2 of [RFC5661], a stateid is tied to the current
filehandle, and if the same stateid is presented by two different
clients, it may refer to different states. As the source does not
know whi ch netl oc4 network |l ocation the destination night use to
establish the COPY operation, it can use the cnr_stateid to identify
that the destination is operating on behalf of the client. Thus, the
source server MJST construct copy stateids such that they are
distinct fromall other stateids handed out to clients. These copy
statei ds MJUST denote the sanme set of |ocks as each of the earlier

del egation, locking, and open states for the client on the given file
(see Section 4.3.1).

A successful response will also contain a list of netloc4 network

| ocation formats called cnr_source_server, on which the source is
willing to accept connections fromthe destination. These night not
be reachable fromthe client and m ght be | ocated on networks to

whi ch the client has no connection

This operation is unnecessary for an intra-server copy.

Haynes St andards Track [Page 71]

RFC 7862 NFSv4. 2 Novenber 2016

15.

15.

15.

15.

4. Qperation 62: DEALLOCATE - Unreserve space in a region of a file
4. 1. ARGUVMENT
<CCDE BEG NS>

struct DEALLOCATE4args {
/* CURRENT_FH. file */

statei d4 da_stateid;
of fset4 da_of fset;
| engt h4 da_l engt h;

s

<CODE ENDS>

4.2. RESULT

<CODE BEG NS>

struct DEALLOCATE4res {
nf sstat 4 dr _status;
s

<CODE ENDS>
4.3. DESCRI PTI ON

Whenever a client wishes to unreserve space for a region in a file,

it calls the DEALLOCATE operation with the current filehandl e set to
the filehandl e of the file in question, and with the start offset and
length in bytes of the region set in da_offset and da_l ength,
respectively. |If no space was allocated or reserved for all or parts
of the region, the DEALLOCATE operation will have no effect for the
region that already is in unreserved state. Al further READs from
the regi on passed to DEALLOCATE MUST return zeros until overwitten.

CURRENT _FH nmust be a regular file. |If CURRENT_FH is not a regular
file, the operation MJUST fail and return NFS4ERR_WRONG TYPE

The da_stateid MJST refer to a stateid that is valid for a WRITE
operation and follows the rules for stateids in Sections 8.2.5 and
18.32. 3 of [RFC5661].

Haynes St andards Track [Page 72]

RFC 7862 NFSv4. 2 Novenber 2016

Situations may arise where da_offset and/or da_offset + da |ength
will not be aligned to a boundary for which the server does

al l ocations or deallocations. For nost file systens, this is the
bl ock size of the file system |In such a case, the server can
deal | ocate as many bytes as it can in the region. The bl ocks that
cannot be deal |l ocated MJST be zeroed.

DEALLOCATE will result in the space_used attribute being decreased by
t he nunber of bytes that were deallocated. The space freed attribute
may or may not decrease, depending on the support and whether the

bl ocks backi ng the specified range were shared or not. The size
attribute will remai n unchanged.

15.5. (Operation 63: 10O ADVISE - Send client |1/O access pattern hints to
t he server

15.5.1. ARGUMENT
<CODE BEG NS>

enum | O_ADVI SE typed {

| O_ADVI SE4_NORVAL

| O_ADVI SE4_SEQUENTI AL

| O_ADVI SE4_SEQUENTI AL_BACKWARDS
O_ADVI SE4_RANDOM
O_ADVI SE4_W LLNEED
O _ADVI SE4_W LLNEED OPPORTUNI STI C
O_ADVI SE4_DONTNEED
O_ADVI SE4_NOREUSE
O_
o
o

ADVI SE4_READ
ADVI SE4_WRI TE
ADVI SE4_I NI T_PROXIM TY

[1 1 1 e VR N
POO~NOUAWNEFO

o-

b

struct |1 O _ADVI SE4args {
/* CURRENT_FH: file */

statei d4 i aa_st at ei d;
of fset4 i aa_of fset;
| engt h4 i aa_count;
bi t map4 i aa_hints;
i
<CODE ENDS>

Haynes St andards Track [Page 73]

RFC 7862 NFSv4. 2 Novenber 2016

15.

15.

5.2. RESULT
<CODE BEG NS>

struct 1O _ADVI SE4resok {
bi t map4 i or _hints;
i

union | O ADVI SE4res switch (nfsstat4 ior_status) {
case NF4_ XK
| O_ADVI SE4r esok resok4;
def aul t:
voi d;
s

<CODE ENDS>
5.3. DESCRI PTI ON

The | O_ADVI SE operation sends an |/ O access pattern hint to the
server for the owner of the stateid for a given byte range specified
by iar_offset and iar_count. The byte range specified by iaa_ offset
and iaa_count need not currently exist in the file, but the iaa_hints
will apply to the byte range when it does exist. |If iaa_count is O,
all data following iaa offset is specified. The server MAY ignore

t he advi ce.

The following are the allowed hints for a stateid hol der:

| O ADVI SE4_ NORMAL There is no advice to give. This is the default
behavi or.

| O_ADVI SE4_SEQUENTI AL Expects to access the specified data
sequentially fromlower offsets to higher offsets.

| O_ADVI SE4 SEQUENTI AL_ BACKWARDS Expects to access the specified data
sequentially from higher offsets to | ower offsets.

| O_ADVI SE4_RANDOM Expects to access the specified data in a random
or der.

| O ADVI SE4_ W LLNEED Expects to access the specified data in the near
future.

| O_ADVI SE4_W LLNEED_OPPORTUNI STI C Expects to possibly access the
data in the near future. This is a speculative hint, and
therefore the server should prefetch data or indirect blocks only
if it can be done at a nargi nal cost.

Haynes St andards Track [Page 74]

RFC 7862 NFSv4. 2 Novenber 2016

| O ADVI SE DONTNEED Expects that it will not access the specified
data in the near future

| O_ADVI SE_NOREUSE Expects to access the specified data once and then
not reuse it thereafter

| O ADVI SE4_READ Expects to read the specified data in the near
future.

| O ADVI SE4_WRI TE Expects to wite the specified data in the near
future.

IO ADVISE4 INIT PROXIMTY Infornms the server that the data in the
byte range remains inportant to the client.

Since |IOADVISE is a hint, a server SHOULD NOT return an error and
invalidate an entire COVPOUND request if one of the sent hints in
iar_hints is not supported by the server. Also, the server MJST NOT
return an error if the client sends contradictory hints to the
server, e.g., | O ADVI SE4_SEQUENTI AL and | O ADVI SE4A_RANDOM i n a single
| O_ADVI SE operation. |In these cases, the server MJST return success
and an ior_hints value that indicates the hint it intends to

i npl ement. This may mean sinply returning | O ADVI SE4_NORMAL.

The ior_hints returned by the server is primarily for debuggi ng

pur poses, since the server is under no obligation to carry out the
hints that it describes in the ior_hints result. |In addition, while
the server may have intended to inplenent the hints returned in
ior_hints, the server may need to change its handling of a given file
-- for exanple, because of nenory pressure, additional | O ADVISE
hints sent by other clients, or heuristically detected file access
patterns.

The server MAY return different advice than what the client
requested. Sone exanpl es include another client advising of a
different 1/0O access pattern, another client enploying a different
I/ O access pattern, or inability of the server to support the
requested 1/ O access pattern

Each i ssuance of the |1 O _ADVI SE operation overrides all previous
i ssuances of 1O ADVISE for a given byte range. This effectively
follows a strategy of "last hint wins" for a given stateid and
byt e range.

Clients should assunme that hints included in an | O_ADVI SE operation
will be forgotten once the file is closed.

Haynes St andards Track [Page 75]

RFC 7862 NFSv4. 2 Novenber 2016

15.

15.

15.

5.4. | MPLEMENTATI ON

The NFS client may choose to issue an | O ADVI SE operation to the
server in several different instances.

The nost obvious is in direct response to an application’s execution
of posix fadvise(). |In this case, |10 ADVISE4 WRI TE and

| O_ADVI SE4_READ nmay be set, based upon the type of file access
specified when the file was opened.

5.5, IO ADVISE4_INT_PROXIM TY

The 10 ADVISE4 INIT_PROXIM TY hint is non-PCSI X in origin and can be
used to convey that the client has recently accessed the byte range
inits own cache. That is, it has not accessed it on the server but
has accessed it locally. Wen the server reaches resource
exhausti on, knowi ng which data is nore inportant allows the server to
make better choices about which data to, for exanple, purge froma
cache or nove to secondary storage. It also inforns the server as to
whi ch del egations are nore inportant, because if del egations are
wor ki ng correctly, once delegated to a client and the client has read
the content for that byte range, a server m ght never receive another
READ request for that byte range.

The 10 ADVISE4A I NIT_PROXIMTY hint can also be used in a pNFS setting
to let the client informthe netadata server as to the |I/O statistics
between the client and the storage devices. The netadata server is
then free to use this information about client I/Oto optim ze the
data storage | ocation.

This hint is also useful in the case of NFS clients that are network-
booting froma server. |If the first client to be booted sends this
hint, then it keeps the cache warmfor the remaining clients.

5.6. PpNFS File Layout Data Type Consi derations

The 1 O ADVI SE consi derations for pNFS are very sinilar to the COWM T
consi derations for pNFS (see Section 13.7 of [RFC5661]). That is, as
with COWM T, some NFS server inplenentations prefer that 1O ADVI SE be
done on the storage device, and sone prefer that it be done on the
nmet adat a server.

For the file's layout type, NFSv4.2 includes an additional hint,
NFL42_CARE_| O ADVI SE_THRU MDS, which is valid only on netadata
servers running NFSv4.2 or higher. ("NFL" stands for "NFS File
Layout".) Any file' s layout obtained froman NFSv4.1 nmetadata server
MUST NOT have NFL42_UFLG | O ADVI SE_ THRU MDS set. Any file’'s |ayout

Haynes St andards Track [Page 76]

RFC 7862 NFSv4. 2 Novenber 2016

15.

obtained with an NFSv4.2 netadata server MAY have
NFL42_UFLG | O ADVI SE_THRU MDS set. However, if the layout utilizes
NFSv4. 1 storage devices, the | O ADVI SE operation cannot be sent

to them

If NFL42 UFLG I O ADVI SE THRU MDS is set, the client MJST send the

| O ADVI SE operation to the nmetadata server in order for it to be
honored by the storage device. Once the netadata server receives the
| O_ADVI SE operation, it will comunicate the advice to each storage
devi ce.

I f NFL42_UFLG_ | O ADVI SE_ THRU MDS is not set, then the client SHOULD
send an | O ADVI SE operation to the appropriate storage device for the
specified byte range. Wile the client MAY always send | O ADVI SE to
the nmetadata server, if the server has not set
NFL42_UFLG | O ADVI SE THRU MDS, the client should expect that such an
IOADVISE is futile. Note that a client SHOULD use the sanme set of
argunents on each 10O ADVI SE sent to a storage device for the sane
open file reference.

The server is not required to support different advice for different
storage devices with the sane open file reference.

5.6.1. Dense and Sparse Packi ng Consi derations

The 1 O _ADVI SE operati on MJUST use the iar_offset and byte range as
dictated by the presence or absence of NFL4_UFLG DENSE (see
Section 13.4.4 of [RFC5661]).

For exanple, if NFL4 UFLG DENSE is present, then (1) a READ or WRI TE
to the storage device for iaa offset 0 really neans iaa offset 10000
in the logical file and (2) an IO ADVI SE for iaa_offset 0O nmeans

i aa_offset 10000 in the logical file.

For exanple, if NFL4_UFLG DENSE is absent, then (1) a READ or WRITE
to the storage device for iaa offset O really neans iaa offset 0 in
the logical file and (2) an 1O ADVISE for iaa offset 0O nmeans
iaa_offset O in the logical file.

Haynes St andards Track [Page 77]

RFC 7862 NFSv4. 2 Novenber 2016

For exanple, if NFL4 UFLG DENSE is present, the stripe unit is

1000 bytes and the stripe count is 10, and the dense storage device
file is serving iar_offset 0. A READ or WRITE to the storage device
for iaa_offsets 0, 1000, 2000, and 3000 really nmeans iaa_offsets
10000, 20000, 30000, and 40000 (inplying a stripe count of 10 and a
stripe unit of 1000), and then an 1O ADVISE sent to the sane storage
device with an iaa_offset of 500 and an iaa_count of 3000 neans that
the 1 O_ADVI SE applies to these byte ranges of the dense storage
device file:

- 500 to 999

- 1000 to 1999
- 2000 to 2999
- 3000 to 3499

That is, the contiguous range 500 to 3499, as specified in | O ADVI SE.
It also applies to these byte ranges of the logical file:

- 10500 to 10999 (500 bytes)
- 20000 to 20999 (1000 bytes)
- 30000 to 30999 (1000 bytes)
- 40000 to 40499 (500 bytes)
(total 3000 byt es)

For exanple, if NFL4_UFLG DENSE is absent, the stripe unit is

250 bytes, the stripe count is 4, and the sparse storage device file
is serving iaa_offset 0. Then, a READ or WRITE to the storage device
for iaa_offsets 0, 1000, 2000, and 3000 really nmeans iaa_offsets O,
1000, 2000, and 3000 in the logical file, keeping in mnd that in the
storage device file byte ranges 250 to 999, 1250 to 1999, 2250 to
2999, and 3250 to 3999 are not accessible. Then, an | O _ADVI SE sent
to the sanme storage device with an iaa_offset of 500 and an iaa_count
of 3000 neans that the 10O _ADVISE applies to these byte ranges of the
I ogical file and the sparse storage device file:

- 500 to 999 (500 bytes) - no effect
- 1000 to 1249 (250 bytes) - effective
- 1250 to 1999 (750 bytes) - no effect
- 2000 to 2249 (250 bytes) - effective
- 2250 to 2999 (750 bytes) - no effect
- 3000 to 3249 (250 bytes) - effective
- 3250 to 3499 (250 bytes) - no effect
(subt ot al 2250 bytes) - no effect
(subt ot al 750 bytes) - effective
(grand total 3000 bytes) - no effect + effective

Haynes St andards Track [Page 78]

RFC 7862 NFSv4. 2 Novenber 2016

If neither the NFL42 _UFLG | O ADVI SE THRU MDS flag nor the

NFL4 UFLG DENSE flag is set in the layout, then any | O ADVI SE request
sent to the data server with a byte range that overlaps stripe units
that the data server does not serve MJST NOT result in the status
NFSAERR PNFS | O HOLE. Instead, the response SHOULD be successful

and if the server applies 10O ADVISE hints on any stripe units that
overlap with the specified range, those hints SHOULD be indicated in
t he response.

15.6. Operation 64: LAYOUTERROR - Provide errors for the |ayout
15.6.1. ARGUMENT
<CCDE BEG NS>

struct device_errord {

devi cei d4 de_devi cei d;
nf sstat 4 de_st at us;
nfs_opnumd de_opnum

s

struct LAYOUTERROR4args {
/* CURRENT_FH: file */

of fset4 | ea_of fset;
| engt h4 | ea_l engt h;
statei d4 | ea_statei d;
device_error4 | ea_errors<>;
s
<CODE ENDS>

15.6.2. RESULT
<CODE BEG NS>
struct LAYOUTERROR4res {
nfsstat4 | er _status;
i
<CODE ENDS>
15.6.3. DESCRI PTI ON
The client can use LAYOUTERROR to inform the netadata server about
errors inits interaction with the |ayout (see Section 12 of
[RFC5661]) represented by the current filehandle, client 1D (derived

fromthe session ID in the precedi ng SEQUENCE operation), byte range
(lea offset + lea length), and | ea_stateid.

Haynes St andards Track [Page 79]

RFC 7862 NFSv4. 2 Novenber 2016

15.

Each indivi dual device_error4 describes a single error associated
with a storage device, which is identified via de_deviceid. |If the
| ayout type (see Section 12.2.7 of [RFC5661]) supports NFSv4
operations, then the operation that returned the error is identified
via de_opnum |If the layout type does not support NFSv4 operations,
then either (1) it MAY choose to nmap the operation onto one of the
al | oned operations that can be sent to a storage device with the file
| ayout type (see Section 3.3) or (2) it can signal no support for
operations by marking de_opnumw th the | LLEGAL operation. Finally,
the NFS error value (nfsstat4) encountered is provided via de_status
and may consist of the follow ng error codes:

NFSAERR NXIQO The client was unable to establish any communication
with the storage device

NFS4ERR *: The client was able to establish comrunication with the
storage device and is returning one of the allowed error codes for
t he operation denoted by de_opnum

Note that while the nmetadata server may return an error associ ated
with the layout stateid or the open file, it MJST NOT return an error
in the processing of the errors. |f LAYOUTERROR is in a COVPOUND

bef ore LAYOQUTRETURN, it MJST NOT introduce an error other than what
LAYOUTRETURN woul d al ready encounter

6.4. | MPLEMENTATI ON

There are two broad classes of errors: transient and persistent. The
client SHOULD strive to only use this new mechanismto report
persistent errors. It MJST be able to deal with transient issues by
itself. Also, while the client might consider an issue to be
persistent, it MJUST be prepared for the netadata server to consider
such issues to be transient. A prime exanple of this is if the

nmet adat a server fences off a client fromeither a stateid or a
filehandle. The client will get an error fromthe storage device and
m ght relay either NFS4ERR ACCESS or NFS4ERR BAD STATEI D back to the
net adata server, with the belief that this is a hard error. |If the
nmet adata server is informed by the client that there is an error, it
can safely ignore that. For the netadata server, the nission is
acconplished in that the client has returned a |ayout that the

nmet adata server had nost likely recalled

Haynes St andards Track [Page 80]

RFC 7862 NFSv4. 2 Novenber 2016

The client mght also need to informthe netadata server that it
cannot reach one or nore of the storage devices. Wile the netadata
server can detect the connectivity of both of these paths:

o netadata server to storage device
o netadata server to client

it cannot deternmine if the client and storage device path is working.
As with the case of the storage device passing errors to the client,
it must be prepared for the netadata server to consider such outages
as being transitory.

Cients are expected to tolerate transient storage device errors, and
hence clients SHOULD NOT use the LAYOUTERROR error handling for

devi ce access problens that may be transient. The nethods by which a
client decides whether a device access problemis transient or
persistent are inplenentation specific but may include retrying I/Cs
to a data server under appropriate conditions.

Wien an /O to a storage device fails, the client SHOULD retry the
failed 1/Ovia the netadata server. In this situation, before
retrying the 1/Q the client SHOULD return the | ayout, or the

af fected portion thereof, and SHOULD i ndi cate which storage device or
devices was problematic. The client needs to do this when the
storage device is being unresponsive in order to fence off any failed
wite attenpts and ensure that they do not end up overwiting any

| ater data being witten through the netadata server. |If the client
does not do this, the netadata server MAY issue a |ayout recal

call back in order to performthe retried I/0QO

The client needs to be cognizant that since this error handling is
optional in the netadata server, the netadata server may silently
ignore this functionality. Also, as the netadata server may consider
some issues the client reports to be expected, the client mght find
it difficult to detect a netadata server that has not inplenented
error handling via LAYOUTERROR

If a metadata server is aware that a storage device is proving
problematic to a client, the metadata server SHOULD NOT i ncl ude that
storage device in any pNFS | ayouts sent to that client. |If the

nmet adata server is aware that a storage device is affecting nany
clients, then the netadata server SHOULD NOT include that storage
device in any pNFS |ayouts sent out. If a client asks for a new

| ayout for the file fromthe netadata server, it MJST be prepared for
the nmetadata server to return that storage device in the layout. The
nmet adat a server mght not have any choice in using the storage
device, i.e., there mght only be one possible layout for the system

Haynes St andards Track [Page 81]

RFC 7862 NFSv4. 2 Novenber 2016

15.

15.

15.

Al'so, in the case of existing files, the netadata server might have
no choi ce regardi ng which storage devices to hand out to clients.

The nmetadata server is not required to indefinitely retain per-client
storage device error information. The nmetadata server is also not
required to automatically reinstate the use of a previously

probl emati c storage device; administrative intervention may be

requi red instead.

7. Operation 65: LAYOUTSTATS - Provide statistics for the |ayout
7.1. ARGUMENT

<CCODE BEG NS>

struct | ayoutupdated {

| ayoutt ype4 | ou_type;
opaque | ou_body<>;
i
struct io_info4 {
ui nt 64 _t ii_count;
ui nt 64 _t ii_bytes;
s

struct LAYOQUTSTATS4args {
/* CURRENT_FH: file */

of fset4 | sa_of fset;
| engt h4 | sa_l engt h;
statei d4 | sa_stateid;
io_info4 | sa_read;
i o_info4 lsa_wite;
devi cei d4 | sa_devi cei d;
| ayout updat e4 | sa_| ayout updat e;
i
<CODE ENDS>
7.2. RESULT

<CODE BEG NS>

struct LAYOQUTSTATS4res {
nf sstat4 | sr_status;
s

<CODE ENDS>

Haynes St andards Track [Page 82]

RFC 7862 NFSv4. 2 Novenber 2016

15.7.3. DESCRI PTI ON

The client can use LAYOQUTSTATS to informthe netadata server about
its interaction with the |ayout (see Section 12 of [RFC5661])
represented by the current filehandle, client ID (derived fromthe
session IDin the precedi ng SEQJENCE operation), byte range

(Isa offset and Isa length), and | sa_stateid. Isa read and Isa wite
al | ow non-1ayout-type-specific statistics to be reported.

| sa_deviceid allows the client to specify to which storage device the
statistics apply. The remaining information the client is presenting
is specific to the layout type and presented in the | sa_| ayoutupdate
field. Each |layout type MJST define the contents of |sa_|ayoutupdate
in their respective specifications.

LAYQUTSTATS can be conbined with | O ADVI SE (see Section 15.5) to
augrment the deci sion-maki ng process of how the netadata server
handles a file. That is, 10 ADVISE lets the server know that a byte
range has a certain characteristic, but not necessarily the intensity
of that characteristic.

The statistics are cunulative, i.e., nultiple LAYOQUTSTATS updates can
be in flight at the same time. The netadata server can exam ne the
packet’s tinmestanp to order the different calls. The first
LAYQUTSTATS sent by the client SHOULD be fromthe opening of the
file. The choice of how often to update the netadata server is nade
by the client.

Note that while the metadata server may return an error associ ated

with the layout stateid or the open file, it MJST NOT return an error
in the processing of the statistics.

Haynes St andards Track [Page 83]

RFC 7862 NFSv4. 2 Novenber 2016

15.

15.

15.

15.

8. Operation 66: OFFLOAD CANCEL - Stop an offl oaded operation
8.1. ARGUMENT
<CCDE BEG NS>

struct OFFLOAD CANCEL4args {
/* CURRENT _FH file to cancel */
statei d4 oca_st at ei d;

b

<CODE ENDS>
8.2. RESULT
<CODE BEG NS>

struct OFFLOAD CANCEL4res {
nfsstat4 ocr _st at us;
s

<CODE ENDS>
8.3. DESCRI PTI ON

OFFLOAD CANCEL is used by the client to term nate an asynchronous
operation, which is identified by both CURRENT_FH and t he
oca_stateid. That is, there can be multiple OFFLOAD CANCEL
operations acting on the file, and the stateid will identify to the
server exactly which one is to be stopped. Currently, there are only
two operations that can decide to be asynchronous: COPY and

VRl TE_SAME.

In the context of server-to-server copy, the client can send

OFFLOAD CANCEL to either the source or destination server, albeit
with a different stateid. The client uses OFFLOAD CANCEL to inform
the destination to stop the active transfer and uses the stateid it
got back fromthe COPY operation. The client uses OFFLOAD CANCEL and
the stateid it used in the COPY_NOTIFY to informthe source to not
all ow any nore copying fromthe destination.

OFFLOAD CANCEL is al so useful in situations in which the source
server granted a very long or infinite |l ease on the destination
server’'s ability to read the source file and all COPY operations on
the source file have been conpl et ed.

Haynes St andards Track [Page 84]

RFC 7862 NFSv4. 2 Novenber 2016

15.

15.

15.

15.

9. Operation 67: OFFLOAD STATUS - Poll for the status of an
asynchronous operation

9.1. ARGUMENT
<CODE BEG NS>

struct OFFLOAD STATUS4args {
/* CURRENT_FH. destination file */

st at ei d4 osa_stateid;
i
<CODE ENDS>
9.2. RESULT

<CODE BEG NS>

struct OFFLOAD STATUS4resok {
| engt h4 osr_count;
nf sstat 4 osr_conpl et e<1>;

s

uni on OFFLOAD STATUS4res switch (nfsstat4 osr_status) {
case NF4_K

OFFLOAD _STATUS4r esok osr_resok4;
defaul t:

voi d;
1

<CODE ENDS>
9. 3. DESCRI PTI ON

OFFLOAD_STATUS can be used by the client to query the progress of an
asynchronous operation, which is identified by both CURRENT_FH and
the osa stateid. |If this operation is successful, the nunber of
bytes processed is returned to the client in the osr_count field.

If the optional osr_conplete field is present, the asynchronous
operation has conpleted. |In this case, the status value indicates
the result of the asynchronous operation. 1In all cases, the server
will also deliver the final results of the asynchronous operation in
a CB_OFFLQAD operati on.

The failure of this operation does not indicate the result of the
asynchronous operation in any way.

Haynes St andards Track [Page 85]

RFC 7862 NFSv4. 2 Novenber 2016

15.10. Qperation 68: READ PLUS - READ data or holes froma file
15.10.1. ARGUMENT
<CCDE BEG NS>

struct READ PLUS4args {
/* CURRENT_FH. file */

statei d4 rpa_st atei d;
of fset4 rpa_of fset;
count 4 r pa_count;
i
<CODE ENDS>

15.10.2. RESULT
<CODE BEG NS>

enum data_content4 {

NFS4 _CONTENT_DATA = 0,
NFS4_CONTENT_HOLE = 1
i
struct data_info4d {
of fset4 di _of fset;
| engt h4 di _I engt h;
s
struct data4d {
of fset4 d_of fset;
opaque d_dat a<>;
s

union read_plus_content switch (data_content4 rpc_content) {
case NFS4_CONTENT_DATA:

dat a4 rpc_dat a;
case NFS4_CONTENT_HOLE:

data_i nfo4 rpc_hol e;
defaul t:

voi d;
s

Haynes St andards Track [Page 86]

RFC 7862 NFSv4. 2 Novenber 2016

15.

/*
* Allow a return of an array of contents.
*/
struct read_plus_res4 {
bool rpr_eof;
read_pl us_cont ent rpr_contents<>
i

uni on READ PLUS4res switch (nfsstat4 rp_status) {
case NF4_ XX
read_plus_res4 rp_resok4;
def aul t:
voi d;
s

<CODE ENDS>
10.3. DESCRI PTI ON

The READ PLUS operation is based upon the NFSv4.1 READ operation (see
Section 18.22 of [RFC5661]) and sinmilarly reads data fromthe regul ar
file identified by the current filehandle.

The client provides an rpa offset of where the READ PLUS is to start
and an rpa_count of how many bytes are to be read. An rpa offset of
zero means that data will be read starting at the beginning of the
file. |If rpa_offset is greater than or equal to the size of the
file, the status NFS4_OK is returned with di _Iength (the data | ength)
set to zero and eof set to TRUE

The READ PLUS result is conprised of an array of rpr_contents, each
of which describes a data_content4 type of data. For NFSv4.2, the
al | oned values are data and hole. A server MJST support both the
data type and the hole if it uses READ PLUS. |If it does not want to
support a hole, it MIST use READ. The array contents MJST be
contiguous in the file.

Hol es SHOULD be returned in their entirety -- clients nust be
prepared to get nore information than they requested. Both the start
and the end of the hole may exceed what was requested. |If data to be
returned is conprised entirely of zeros, then the server SHOULD
return that data as a hol e instead.

The server nmay elect to return adjacent elements of the sane type
For exanple, if the server has a range of data conprised entirely of
zeros and then a hole, it might want to return two adjacent holes to
the client.

Haynes St andards Track [Page 87]

RFC 7862 NFSv4. 2 Novenber 2016

If the client specifies an rpa_count value of zero, the READ PLUS
succeeds and returns zero bytes of data. |In all situations, the
server may choose to return fewer bytes than specified by the client.
The client needs to check for this condition and handl e the condition
appropriately.

If the client specifies data that is entirely contained within a hole
of the file (i.e., both rpa offset and rpa _offset + rpa_count are
within the hole), then the di _offset and di_length returned MAY be
for the entire hole. If the owner has a | ocked byte range covering
rpa_offset and rpa_count entirely, the di _offset and di_| ength MJST
NOT be extended outside the |ocked byte range. This result is
considered valid until the file is changed (detected via the change
attribute). The server MJST provide the sane semantics for the hole
as if the client read the region and received zeros; the inplied
hole’s contents lifetime MJST be exactly the same as any ot her

read dat a.

If the client specifies data by an rpa offset that begins in a
non-hole of the file but extends into a hole (the rpa offset +
rpa_count is in the hole), the server should return an array

conpri sed of both data and a hole. The client MJST be prepared for
the server to return a short read describing just the data. The
client will then issue another READ PLUS for the renaining bytes,
to which the server will respond with infornmation about the hole in
the file.

Except when special stateids are used, the stateid value for a

READ PLUS request represents a value returned froma previous
byte-range | ock or share reservation request or the stateid
associated with a delegation. The stateid identifies the associated
owners, if any, and is used by the server to verify that the

associ ated | ocks are still valid (e.g., have not been revoked).

If the read ended at the end of the file (formally, in a correctly
formed READ PLUS operation, if rpa offset + rpa count is equal to the
size of the file) or the READ PLUS operation extends beyond the size
of the file (if rpa_offset + rpa_count is greater than the size of
the file), eof is returned as TRUE, otherwise, it is FALSE. A
successful READ PLUS of an enpty file will always return eof as TRUE

If the current filehandle is not an ordinary file, an error will be
returned to the client. |In the case that the current filehandle
represents an object of type NFADIR, NFS4ERR ISDIR is returned. |If
the current filehandl e designates a synbolic |ink, NFSAERR SYM.INK is
returned. In all other cases, NFS4ERR WRONG TYPE i s returned.

Haynes St andards Track [Page 88]

RFC 7862 NFSv4. 2 Novenber 2016

15.

15.

15.

For a READ PLUS with a stateid value of all bits equal to zero, the
server MAY allow the READ PLUS to be serviced subject to nmandatory
byt e-range | ocks or the current share deny nodes for the file. For a
READ PLUS with a stateid value of all bits equal to one, the server
MAY al | ow READ PLUS operations to bypass |ocking checks at the
server.

On success, the current filehandle retains its val ue.
10.3.1. Note on dient Support of Arnms of the Union

It was decided not to add a neans for the client to informthe server
as to which arns of READ PLUS it would support. 1In a later minor
version, it may beconme necessary for the introduction of a new
operation that would allow the client to informthe server as to

whet her it supported the new arns of the union of data types

avail abl e in READ PLUS

10. 4. | MPLEMENTATI ON

In general, the | MPLEMENTATI ON notes for READ in Section 18.22.4 of
[RFC5661] al so apply to READ PLUS

10.4.1. Additional pNFS Inplenentation Information

Wth pNFS, the semantics of using READ PLUS remains the sane. Any
data server MAY return a hole result for a READ PLUS request that it
receives. Wen a data server chooses to return such a result, it has
the option of returning information for the data stored on that data
server (as defined by the data layout), but it MJST NOT return
results for a byte range that includes data nanaged by another data
server.

If mandatory |locking is enforced, then the data server nust also
ensure that only information that is within the owner’s | ocked byte
range i s returned.

Haynes St andards Track [Page 89]

RFC 7862 NFSv4. 2 Novenber 2016

15.10.5. READ PLUS with Sparse Files: Exanple

The followi ng table describes a sparse file. For each byte range,
the file contains either non-zero data or a hole. |In addition, the
server in this exanple will only create a hole if it is greater

t han 32K

S [T +
| Byte Range | Contents

Fom e e e e e o oo S +
| 0-15999 | Hole |
| 16K-31999 | Non-Zero

| 32K-255999 | Hole

| 256K-287999 | Non-Zero

| 288K-353999 | Hole

| |

354K-417999 | Non-Zero

Table 7: Sparse File

Under the given circunstances, if a client was to read fromthe file
with a maxi numread size of 64K, the following will be the results
for the given READ PLUS calls. This assunmes that the client has

al ready opened the file, acquired a valid stateid ("s" in the

exanpl e), and just needs to issue READ PLUS requests.

1. READ PLUS(s, 0, 64K) --> NFS OK, eof = FALSE, <data[O0, 32K]
hol e[32K, 224K] >. Since the first hole is less than the server’s
m ni mum hol e size, the first 32K of the file is returned as data
and the remaining 32K is returned as a hole that actually extends
to 256K

2. READ PLUS(s, 32K, 64K) --> NFS_OK, eof = FALSE, <hol e[32K, 224K] >.
The requested range was all zeros, and the current hol e begins at
of fset 32K and is 224K in length. Note that the client should
not have followed up the previous READ PLUS request with this
one, as the hole information fromthe previous call extended past
what the client was requesting.

3. READ PLUS(s, 256K, 64K) --> NFS_OK, eof = FALSE, <data[256K
288K], hol e[288K, 354K]>. Returns an array of the 32K data and
the hol e, which extends to 354K

4. READ PLUS(s, 354K, 64K) --> NFS OK, eof = TRUE, <data[354K,

418K] >. Returns the final 64K of data and infornms the client
that there is no nbre data in the file.

Haynes St andards Track [Page 90]

RFC 7862 NFSv4. 2 Novenber 2016

15.11. Qperation 69: SEEK - Find the next data or hole
15.11.1. ARGUMENT

<CODE BEQ NS>

enum data_content4 {

NFS4_CONTENT_DATA
NFS4_CONTENT_HOLE

s

struct SEEK4args {
/* CURRENT_FH: file */

statei d4 sa_stateid;
of fset4 sa_of fset;
data content4 sa_what ;

i

<CODE ENDS>

15.11.2. RESULT
<CODE BEG NS>

struct seek res4 {
bool sr_eof;
of fset4 sr_of fset;

s

uni on SEEK4res switch (nfsstat4 sa_status) {
case NF4_K
seek _res4 r esok4;
defaul t:
voi d;
1

<CODE ENDS>

15.11.3. DESCRI PTI ON
SEEK is an operation that allows a client to determ ne the | ocation
of the next data content4 in a file. 1t allows an inplenentation of
the enmerging extension to the Iseek(2) function to allow clients to

determ ne the next hole whilst in data or the next data whilst in
a hol e.

Haynes St andards Track [Page 91]

RFC 7862 NFSv4. 2 Novenber 2016

15.

15.

Fromthe given sa offset, find the next data content4 of type sa what
inthe file. |If the server cannot find a correspondi ng sa what, then
the status will still be NFS4_OK, but sr_eof would be TRUE. |If the
server can find the sa what, then the sr_offset is the start of that
content. |If the sa offset is beyond the end of the file, then SEEK
MUST return NFS4ERR_NXI O

Al files MUST have a virtual hole at the end of the file. That is,
if afile system does not support sparse files, then a COVWOUND with
{SEEK 0 NFS4_CONTENT_HOLE;} would return a result of {SEEK 1 X},
where "X' was the size of the file.

SEEK nust follow the sanme rules for stateids as READ PLUS
(Section 15.10.3).

12. Operation 70: WRITE SAME - WRITE an ADB multiple times to a file
12.1. ARGUMENT
<CCDE BEG NS>

enum st abl e_how4 {

UNSTABLE4 = 0,
DATA_SYNC4 = 1,
FI LE_SYNC4 =2
i
struct app_data_bl ock4 {
of fset4 adb_of fset;
| engt h4 adb_bl ock_si ze;
| engt h4 adb_bl ock_count;
| engt h4 adb_rel of f _bl ocknum
count 4 adb_bl ock_num
| engt h4 adb_rel of f _pattern;
opaque adb_pattern<>;
i

struct WRI TE_SAME4args {
/* CURRENT_FH: file */

st at ei d4 wsa_stateid;
st abl e_how4 wsa_stabl e;
app_dat a_bl ock4 wsa_adb;

s

<CODE ENDS>

Haynes St andards Track [Page 92]

RFC 7862 NFSv4. 2 Novenber 2016

15.

15.

12.2. RESULT
<CODE BEG NS>

struct wite_responsed {

statei d4 wr _cal | back_i d<1>;
| engt h4 wWr_count;

st abl e_how4 wr_comi tted,;
verifier4d wr_writeverf;

s

uni on WRI TE_SAME4res switch (nfsstat4 wsr_status) {
case NF4_K
wite response4 r esok4;
defaul t:
voi d;
1

<CODE ENDS>
12.3. DESCRI PTI ON

The WRI TE_SAME operation wites an application data block to the
regular file identified by the current filehandle (see

WRI TE SAME (10) in [T10-SBC2]). The target file is specified by the
current filehandle. The data to be witten is specified by an
app_data_bl ock4 structure (Section 8.1.1). The client specifies with
the wsa_stabl e paraneter the nethod of how the data is to be
processed by the server. It is treated like the stable parameter in
the NFSv4.1 WRI TE operation (see Section 18.32.3 of [RFC5661]).

A successful WRITE_SAME will construct a reply for w _count,
w_conmitted, and w_writeverf as per the NFSv4.1 WRI TE operation
results. If w_callback id is set, it indicates an asynchronous
reply (see Section 15.12.3.1).

As it is an OPTIONAL operation, WRI TE _SAVE has to support

NFSAERR NOTSUPP. As it is an extension of WRITE, it has to support
all of the errors returned by WRITE. If the client supports

WRI TE_SAME, it MJST support CB_OFFLOAD.

If the server supports ADBs, then it MJST support the WRI TE_SAME
operation. The server has no concept of the structure inposed by the

application. It is only when the application wites to a section of
the file does order get inposed. |In order to detect corruption even
before the application utilizes the file, the application will want

toinitialize a range of ADBs using WR TE_SAME

Haynes St andards Track [Page 93]

RFC 7862 NFSv4. 2 Novenber 2016

15.

When the client invokes the WRI TE_SAME operation, it wants to record
the bl ock structure described by the app_data block4 into the file.

When the server receives the WRI TE_SAME operation, it MJST popul ate
adb_bl ock_count ADBs in the file, starting at adb_offset. The block
size will be given by adb_bl ock _size. The ADBN (if provided) wll
start at adb_rel off_bl ocknum and each block will be nonotonically
nunbered, starting fromadb bl ock numin the first block. The
pattern (if provided) will be at adb_reloff_pattern of each bl ock and
will be provided in adb_pattern.

The server SHOULD return an asynchronous result if it can determ ne
that the operation will be long-running (see Section 15.12.3.1).

Once either the WRI TE_SAME fi ni shes synchronously or the server uses
CB OFFLOAD to informthe client of the asynchronous conpletion of the
WRI TE_SAME, the server MUST return the ADBs to clients as data.

12.3.1. Asynchronous Transactions

ADB initialization may cause a server to decide to service the
operation asynchronously. |If it decides to do so, it sets the
stateid in w_callback id to be that of the wsa stateid. |[If it does
not set the w _callback_id, then the result is synchronous.

When the client determines that the reply will be given
asynchronously, it should not assune anythi ng about the contents of
what it wote until it is inforned by the server that the operation
is conplete. It can use OFFLOAD STATUS (Section 15.9) to nonitor the
operation and OFFLOAD CANCEL (Section 15.8) to cancel the operation
An exanpl e of an asynchronous WRI TE SAME is shown in Figure 6. Note
that, as with the COPY operation, WRI TE SAME nust provide a stateid
for tracking the asynchronous operation

Haynes St andards Track [Page 94]

RFC 7862 NFSv4. 2 Novenber 2016
dient Server
+ +
| |
[--- OPEN -------cmmmm e - - > dient opens
[mmmmm /| the file
| |
[--- WRITE_SAME ------------mmmmm oo o - > Cient initializes
R /| an ADB
: :
| --- OFFLOAD STATUS ------------------ > dient may pol
[<emmmm /| for status
| |
| | Multiple OFFLOAD STATUS
| | operations nay be sent.
| |
| <-- CB_OFFLOAD ---------mmmmmmmaa oo - | Server reports results
R R R >|
| |
[--- CLOSE --------mmmmmmm e - - > dient closes
[mmmm /| the file
|
|

15.

Haynes

Fi gure 6: An Asynchronous WRI TE_SAME

When CB OFFLOAD inforns the client of the successful WRI TE SAME, the
write_responsed4 enbedded in the operation will provide the necessary
i nformati on that a synchronous WRI TE_SAME woul d have provi ded.

Regar dl ess of whether the operation is asynchronous or synchronous,
it MIUST still support the COWM T operation semantics as outlined in
Section 18.3 of [RFC5661]. That is, COM T works on one or nore
VWRI TE operations, and the WRI TE_SAME operati on can appear as severa
VWRI TE operations to the server. The client can use | ocking
operations to control the behavior on the server with respect to

| ong-runni ng asynchronous WRI TE_SAME oper ati ons.

12.3.2. FError Handling of a Partially Conplete WR TE_SAME
VWRI TE_ SAME wi | | cl one adb_bl ock_count copies of the given ADB in
consecutive order in the file, starting at adb_offset. An error can
occur after witing the Nth ADB to the file. WRI TE_SAME MJST appear
to populate the range of the file as if the client used WRITE to
transfer the instantiated ADBs. That is, the contents of the range
will be easy for the client to determine in the case of a partially
conpl ete WRI TE_SAMVE

St andards Track [Page 95]

RFC 7862 NFSv4. 2 Novenber 2016

15.

15.

15.

15.

13. Operation 71: CLONE - Clone a range of a file into another file
13.1. ARGUMENT

<CODE BEQ NS>

struct CLONE4args {

/* SAVED FH: source file */
/* CURRENT_FH. destination file */

st at ei d4 cl _src_stateid;
st at ei d4 cl _dst_stateid;
of fset4 cl _src_offset;
of fset4 cl _dst_offset;
| engt h4 cl _count;

s

<CODE ENDS>

13.2. RESULT
<CODE BEG NS>

struct CLONE4res {
nf sstat 4 cl _status;
i

<CODE ENDS>
13.3. DESCRI PTI ON

The CLONE operation is used to clone file content froma source file
specified by the SAVED FH value into a destination file specified by
CURRENT_FH wi t hout actually copying the data, e.g., by using a
copy-on-wite nechani sm

Bot h SAVED FH and CURRENT _FH nust be regular files. |If either
SAVED FH or CURRENT FH is not a regular file, the operation MJST fail
and return NFS4ERR_WRONG TYPE.

The ca_dst _stateid MIUST refer to a stateid that is valid for a WRITE
operation and follows the rules for stateids in Sections 8.2.5 and
18.32.3 of [RFC5661]. The ca_src_stateid MIST refer to a stateid
that is valid for a READ operation and follows the rules for stateids
in Sections 8.2.5 and 18.22.3 of [RFC5661]. |If either stateid is
invalid, then the operation MJST fail.

Haynes St andards Track [Page 96]

RFC 7862 NFSv4. 2 Novenber 2016

The cl _src_offset is the starting offset within the source file from
which the data to be cloned will be obtained, and the cl _dst_ offset
is the starting offset of the target region into which the cloned
data will be placed. An offset of O (zero) indicates the start of
the respective file. The nunber of bytes to be cloned is obtained
fromcl _count, except that a cl _count of 0 (zero) indicates that the
nunber of bytes to be cloned is the count of bytes between

cl _src_offset and the EOF of the source file. Both cl_src_offset and
cl _dst_offset nust be aligned to the clone bl ock size

(Section 12.2.1). The nunber of bytes to be cloned nust be a
multiple of the clone block size, except in the case in which

cl _src_offset plus the nunber of bytes to be cloned is equal to the
source file size

If the source offset or the source offset plus count is greater than
the size of the source file, the operation MJST fail wth
NFSAERR | NVAL. The destination offset or destination offset plus
count may be greater than the size of the destination file.

I f SAVED FH and CURRENT_FH refer to the same file and the source and
target ranges overlap, the operation MIST fail with NFSAERR | NVAL.

If the target area of the CLONE operation ends beyond the end of the
destination file, the offset at the end of the target area wll
deternmine the new size of the destination file. The contents of any
bl ock not part of the target area will be the sane as if the file
size were extended by a WRI TE.

If the area to be cloned is not a nultiple of the clone block size
and the size of the destination file is past the end of the target
area, the area between the end of the target area and the next
nmul ti ple of the clone block size will be zeroed.

The CLONE operation is atomic in that other operations may not see
any internediate states between the state of the two files before the
operation and after the operation. READs of the destination file
will never see sone blocks of the target area cloned without all of
them bei ng cl oned. WRITEs of the source area will either have no
effect on the data of the target file or be fully reflected in the
target area of the destination file.

The conpl etion status of the operation is indicated by cr_status.

Haynes St andards Track [Page 97]

RFC 7862

16. NFSv4.2 Cal | back Operations

16.1. Operation 15: CB_OFFLOAD -
operati on
16.1.1. ARGUMENT

<CODE BEG NS>

struct wite_responsed {

NFSv4. 2 Novenmber 2016

Report the results of an asynchronous

st at ei d4 wr _cal | back_i d<1>;
| engt h4 wr_count;

stabl e_how4 wr_committed;
verifier4d w_witeverf;

b

union offload_info4 switch (nfsstat4 coa_status) {

case NF4_ XX

write response4 coa_resok4;

coa_bytes_copi ed;

coa_statei d;
coa_of fl oad_i nf o;

defaul t:
| engt h4

b

struct CB OFFLOAD4args {
nfs fha coa_fh;
statei d4
of f1 oad_i nf 04

b

<CODE ENDS>

16. 1. 2. RESULT

<CODE BEG NS>

struct CB OFFLOAD4res {
nfsstat4
s

<CODE ENDS>

cor_st

Haynes

St andards Track

at us;

[Page 98]

RFC 7862 NFSv4. 2 Novenber 2016

16.

17.

18.

1.3. DESCRI PTI ON

CB OFFLOAD is used to report to the client the results of an
asynchronous operation, e.g., server-side COPY or WRITE_SAME. The
coa_fh and coa_stateid identify the transaction, and the coa_status

i ndi cates success or failure. The coa resok4.w callback id MJST NOT
be set. If the transaction failed, then the coa bytes copied
contai ns the nunber of bytes copied before the failure occurred. The
coa_bytes_copi ed val ue indicates the nunber of bytes copied but not
whi ch specific bytes have been copi ed.

If the client supports any of the follow ng operations:

COPY: for both intra-server and inter-server asynchronous copies
WRI TE_ SAME: for ADB initialization

then the client is REQU RED to support the CB OFFLOAD operation.
There is a potential race between the reply to the origina
transaction on the forechannel and the CB_OFFLOAD cal | back on the
backchannel. Section 2.10.6.3 of [RFC5661] describes how to handl e
this type of issue.

Upon success, the coa_resok4.w count presents for each operation
COPY: the total number of bytes copied

VWRI TE_SAME: the sane information that a synchronous WRI TE_SAME woul d
provi de

Security Considerations
NFSv4. 2 has all of the security concerns present in NFSv4.1l (see
Section 21 of [RFC5661]), as well as those present in the server-side
copy (see Section 4.9) and in Label ed NFS (see Section 9.6).

| ANA Consi derati ons

The | ANA considerations for Label ed NFS are addressed in [RFC7569].

Haynes St andards Track [Page 99]

RFC 7862

NFSv4. 2 Novenmber 2016

19. References

19.1. Normati

ve References

[posi x_f advi se]

[posi x_fall

[RFC2119]

[RFC3986]

[RFC5661]

[RFC5662]

[RFC7569]

Haynes

The OQpen Group, "Section ’'posix fadvise()' of System
Interfaces of The Open G oup Base Specifications Issue 7",
| EEE Std 1003.1, 2016 Edition (HTM. Version),

| SBN 1937218812, Septenber 2016,

<ht t p: / / www. opengr oup. or g/ >.

ocat e]

The OQpen Group, "Section 'posix fallocate()’ of System
Interfaces of The Open G oup Base Specifications Issue 7",
| EEE Std 1003.1, 2016 Edition (HTM. Version),

| SBN 1937218812, Septenber 2016,

<ht t p: / / www. opengr oup. or g/ >.

Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119,

DA 10.17487/ RFC2119, March 1997,

<http://ww. rfc-editor.org/info/rfc2119>.

Berners-Lee, T., Fielding, R, and L. Masinter, "Uniform
Resource ldentifier (URI): Generic Syntax", STD 66,

RFC 3986, DA 10.17487/ RFC3986, January 2005,
<http://ww. rfc-editor.org/info/rfc3986>.

Shepler, S., Ed., Eisler, M, Ed., and D. Noveck, Ed.,
"Network File System (NFS) Version 4 Mnor Version 1
Protocol ", RFC 5661, DO 10.17487/ RFC5661, January 2010,
<http://ww. rfc-editor.org/info/rfc5661>.

Shepler, S., Ed., Eisler, M, Ed., and D. Noveck, Ed.,
"Network File System (NFS) Version 4 Mnor Version 1
External Data Representation Standard (XDR) Description”,
RFC 5662, DA 10.17487/ RFC5662, January 2010,
<http://ww. rfc-editor.org/info/rfc5662>.

Qigley, D, Lu, J., and T. Haynes, "Registry
Specification for Mandatory Access Control (MAC) Security
Label Formats", RFC 7569, DA 10.17487/ RFC7569, July 2015,
<http://ww.rfc-editor.org/infol/rfc7569>.

St andards Track [Page 100]

RFC 7862

19.

[RFC7861]

[RFC7863]

NFSv4. 2 Novenmber 2016

Adanson, A and N. WIllians, "Renote Procedure Call (RPC
Security Version 3", RFC 7861, DO 10.17487/ RFC7861,
Novenber 2016, <http://ww. rfc-editor.org/info/rfc7861>.

Haynes, T., "Network File System (NFS) Version 4 M nor
Version 2 External Data Representation Standard (XDR)
Description", RFC 7863, DO 10.17487/ RFC7863,

Novenber 2016, <http://ww. rfc-editor.org/info/rfc7863>.

2. I nformati ve References

[Ashdown08]

[Bai ra08]

[1 ESQ08]

[LB96]

Ashdown, L., "Chapter 15: Validating Database Files and
Backups", Oracl e Database Backup and Recovery User’'s
Quide 11g Release 1 (11.1), August 2008,

<ht t p: // downl oad. or acl e. conf docs/ cd/ B28359 01/ backup. 111/
b28270/ rcrval i d. ht np.

Bai ravasundaram L., Goodson, G, Schroeder, B.,

Arpaci - Dusseau, A., and R Arpaci-Dusseau, "An Anal ysis of
Data Corruption in the Storage Stack", Proceedings of the
6th USENI X Synposi umon File and Storage Technol ogi es
(FAST ' 08), 2008,

<htt p://ww. useni x. or g/ event s/ fast 08/ tech/ ful | _papers/

bai ravasundar an bai r avasundar am pdf >.

| ESG "I ESG Processing of RFC Errata for the I ETF Streant,
July 2008, <https://ww.ietf.org/iesg/statemnment/
errat a- processi ng. ht m >.

LaPadula, L. and D. Bell, "M TRE Techni cal Report 2547,
Volume 11", Journal of Conmputer Security, Volune 4,

| ssue 2-3, 239-263, |10S Press, Amsterdam The Netherl ands,
January 1996.

[McDougal | 07]

McDougal |, R and J. Mauro, "Section 11.4.3: Detecting
Menmory Corruption", Solaris Internals: Solaris 10 and
OpenSol aris Kernel Architecture, 2nd Edition, 2007.

[NFSv4- Ver si oni ng]

[RFC959]

Haynes

Noveck, D., "Rules for NFSv4 Extensions and M nor
Versions", Wrk in Progress,
draft-ietf-nfsv4-versioning-07, October 2016.

Postel, J. and J. Reynolds, "File Transfer Protocol",

STD 9, RFC 959, DA 10. 17487/ RFC0959, Cctober 1985,
<http://ww.rfc-editor.org/info/rfc959>.

St andards Track [Page 101]

RFC 7862

[RFC1108]

[RFC2401]

[RFCA506]

[RFC4949]

[RFC5663]

[RFC7204]

[RFC7230]

[RFC7530]

[St rohml1]

[T10- SBC2]

Haynes

NFSv4. 2 Novenmber 2016

Kent, S., "US. Departnent of Defense Security Options for
the Internet Protocol", RFC 1108, DA 10.17487/ RFC1108,
Novenber 1991, <http://ww. rfc-editor.org/info/rfcll08>.

Kent, S. and R Atkinson, "Security Architecture for the
Internet Protocol", RFC 2401, DO 10. 17487/ RFC2401,
Novenber 1998, <http://ww. rfc-editor.org/info/rfc2401>.

Eisler, M, Ed., "XDR External Data Representation
St andard", STD 67, RFC 4506, DA 10.17487/ RFCA506,
May 2006, <http://ww. rfc-editor.org/info/rfc4506>.

Shirey, R, "lInternet Security G ossary, Version 2",
FYl 36, RFC 4949, DO 10. 17487/ RFC4949, August 2007,
<http://ww. rfc-editor.org/info/rfc4949>.

Bl ack, D., Fridella, S., and J. G asgow, "Parallel NFS
(pNFS) Bl ock/ Vol une Layout", RFC 5663,

DA 10. 17487/ RFC5663, January 2010,
<http://ww.rfc-editor.org/info/rfc5663>.

Haynes, T., "Requirenments for Label ed NFS', RFC 7204,
DA 10.17487/ RFC7204, April 2014,
<http://ww.rfc-editor.org/infol/rfc7204>.

Fielding, R, Ed., and J. Reschke, Ed., "Hypertext
Transfer Protocol (HTTP/1.1): Message Syntax and Routing",
RFC 7230, DA 10. 17487/ RFC7230, June 2014,

<http://ww. rfc-editor.org/info/rfc7230>.

Haynes, T., Ed., and D. Noveck, Ed., "Network File System
(NFS) Version 4 Protocol", RFC 7530, DO 10.17487/ RFC7530,
March 2015, <http://www.rfc-editor.org/info/rfc7530>.

Strohm R, "Chapter 2: Data Bl ocks, Extents, and
Segnents", Oracl e Database Concepts 11g Release 1 (11.1),
January 2011,

<htt p: // downl oad. or acl e. com docs/ cd/ B28359_01/ server. 111/
b28318/ | ogi cal . ht mp.

Elliott, R, Ed., "ANSI INCI TS 405-2005, Information
Technol ogy - SCSI Bl ock Commands - 2 (SBC-2)",
Novenber 2004,

<ftp://ww.t10.o0rg/t10/docunent. 05/ 05-344r 0. pdf >.

St andards Track [Page 102]

RFC 7862 NFSv4. 2 Novenber 2016

Acknowl edgrent s

Tom Haynes woul d like to thank NetApp, Inc. for its funding of his
time on this project.

For the topic "sharing change attribute inplenentation
characteristics with NFSv4 clients", the original docunent was by
Trond Mkl ebust.

For the NFS server-side copy, the original docunent was by Janes
Lentini, Mke Eisler, Deepak Kenchammana, Anshul Madan, and Rahul
Iyer. Tom Tal pey co-authored an unpublished version of that
docunent. It was al so reviewed by a nunber of individuals: Pranoop
Erasani, Tom Haynes, Arthur Lent, Trond Mkl ebust, Dave Noveck,
Theresa Lingutl a-Raj, Manjunath Shankararao, Satyam Vaghani, and N co
Wllianms. Anna Schumaker’s early prototyping experience hel ped us
avoid sone traps. Also, both A ga Kornievskaia and Andy Adanson
brought inplenentation experience to the use of copy stateids in the
i nter-server copy. Jorge Mora was able to optimze the handling of
errors for the result of COPY.

For the NFS space reservation operations, the original docunment was
by M ke Eisler, Janmes Lentini, Mnjunath Shankararao, and Rahul Iyer.

For the sparse file support, the original docunent was by Dean

Hi | debrand and Marc Eshel. Valuable input and advice was received
from Sorin Fai bi sh, Bruce Fields, Benny Hal evy, Trond Mykl ebust, and
Ri chard Scheff enegger.

For the application I/O hints, the original docunent was by Dean
Hi | debrand, M ke Eisler, Trond Mykl ebust, and Sam Fal kner. Sone
early reviewers included Benny Hal evy and Pranoop Erasani.

For Label ed NFS, the original docunent was by David Quigley, Janes
Morris, Jarrett Lu, and Tom Haynes. Peter Staubach, Trond Mykl ebust,
St ephen Snal l ey, Sorin Faibish, Nico WIllians, and David Bl ack al so
contributed in the final push to get this accepted.

Christoph Hellwi g was very hel pful in getting the WRI TE_SAME
semantics to nodel nore of what T10 was doing for WRI TE SAME (10)
[T10-SBC2]. And he led the push to get space reservations to nore
closely nodel the posix fallocate() operation.

Andy Adanson picked up the RPCSEC GSSv3 work, which enabl ed both
Label ed NFS and server-side copy to provide nore secure options.

Christoph Hellwi g provided the update to GETDEVI CELI ST.

Haynes St andards Track [Page 103]

RFC 7862 NFSv4. 2 Novenber 2016

Jorge Mora provided a very detailed review and caught sone inportant
i ssues with the tables.

During the review process, Talia Reyes-Otiz hel ped the sessions run
snoothly. VWhile nmany people contributed here and there, the core
reviewers were Andy Adanson, Pranoop Erasani, Bruce Fields, Chuck
Lever, Trond MKkl ebust, David Noveck, Peter Staubach, and M ke

Kupf er.

El wn Davies was the General Area Reviewer for this docunent, and his
insights as to the relationship of this docunment and both [RFC5661]
and [RFC7530] were very nuch appreci at ed!

Aut hor’ s Addr ess

Thomas Haynes

Primary Data, |nc.

4300 EIl Camino Real Ste 100
Los Altos, CA 94022

United States of Anerica

Phone: +1 408 215 1519
Emai | : thomas. haynes@ri marydat a. com

Haynes St andards Track [Page 104]

