
Internet Engineering Task Force (IETF) T. Haynes
Request for Comments: 7862 Primary Data
Category: Standards Track November 2016
ISSN: 2070-1721

 Network File System (NFS) Version 4 Minor Version 2 Protocol

Abstract

 This document describes NFS version 4 minor version 2; it describes
 the protocol extensions made from NFS version 4 minor version 1.
 Major extensions introduced in NFS version 4 minor version 2 include
 the following: Server-Side Copy, Application Input/Output (I/O)
 Advise, Space Reservations, Sparse Files, Application Data Blocks,
 and Labeled NFS.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7862.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Haynes Standards Track [Page 1]

RFC 7862 NFSv4.2 November 2016

Table of Contents

 1. Introduction ..4
 1.1. Requirements Language4
 1.2. Scope of This Document5
 1.3. NFSv4.2 Goals ..5
 1.4. Overview of NFSv4.2 Features6
 1.4.1. Server-Side Clone and Copy6
 1.4.2. Application Input/Output (I/O) Advise6
 1.4.3. Sparse Files ..6
 1.4.4. Space Reservation7
 1.4.5. Application Data Block (ADB) Support7
 1.4.6. Labeled NFS ...7
 1.4.7. Layout Enhancements7
 1.5. Enhancements to Minor Versioning Model7
 2. Minor Versioning ..8
 3. pNFS Considerations for New Operations9
 3.1. Atomicity for ALLOCATE and DEALLOCATE9
 3.2. Sharing of Stateids with NFSv4.19
 3.3. NFSv4.2 as a Storage Protocol in pNFS: The File
 Layout Type ..9
 3.3.1. Operations Sent to NFSv4.2 Data Servers9
 4. Server-Side Copy ...10
 4.1. Protocol Overview ...10
 4.1.1. COPY Operations11
 4.1.2. Requirements for Operations11
 4.2. Requirements for Inter-Server Copy13
 4.3. Implementation Considerations13
 4.3.1. Locking the Files13
 4.3.2. Client Caches14
 4.4. Intra-Server Copy ...14
 4.5. Inter-Server Copy ...16
 4.6. Server-to-Server Copy Protocol19
 4.6.1. Considerations on Selecting a Copy Protocol19
 4.6.2. Using NFSv4.x as the Copy Protocol19
 4.6.3. Using an Alternative Copy Protocol20
 4.7. netloc4 - Network Locations21
 4.8. Copy Offload Stateids21
 4.9. Security Considerations for Server-Side Copy22
 4.9.1. Inter-Server Copy Security22
 5. Support for Application I/O Hints30
 6. Sparse Files ...30
 6.1. Terminology ...31
 6.2. New Operations ..32
 6.2.1. READ_PLUS ..32
 6.2.2. DEALLOCATE ...32
 7. Space Reservation ..32

Haynes Standards Track [Page 2]

RFC 7862 NFSv4.2 November 2016

 8. Application Data Block Support34
 8.1. Generic Framework ...35
 8.1.1. Data Block Representation36
 8.2. An Example of Detecting Corruption36
 8.3. An Example of READ_PLUS38
 8.4. An Example of Zeroing Space39
 9. Labeled NFS ..39
 9.1. Definitions ...40
 9.2. MAC Security Attribute41
 9.2.1. Delegations ..41
 9.2.2. Permission Checking42
 9.2.3. Object Creation42
 9.2.4. Existing Objects42
 9.2.5. Label Changes42
 9.3. pNFS Considerations43
 9.4. Discovery of Server Labeled NFS Support43
 9.5. MAC Security NFS Modes of Operation43
 9.5.1. Full Mode ..44
 9.5.2. Limited Server Mode45
 9.5.3. Guest Mode ...45
 9.6. Security Considerations for Labeled NFS46
 10. Sharing Change Attribute Implementation Characteristics
 with NFSv4 Clients ..46
 11. Error Values ..47
 11.1. Error Definitions ..47
 11.1.1. General Errors47
 11.1.2. Server-to-Server Copy Errors47
 11.1.3. Labeled NFS Errors48
 11.2. New Operations and Their Valid Errors49
 11.3. New Callback Operations and Their Valid Errors53
 12. New File Attributes ...54
 12.1. New RECOMMENDED Attributes - List and Definition
 References ...54
 12.2. Attribute Definitions54
 13. Operations: REQUIRED, RECOMMENDED, or OPTIONAL57
 14. Modifications to NFSv4.1 Operations61
 14.1. Operation 42: EXCHANGE_ID - Instantiate the client ID61
 14.2. Operation 48: GETDEVICELIST - Get all device
 mappings for a file system63
 15. NFSv4.2 Operations ..64
 15.1. Operation 59: ALLOCATE - Reserve space in a
 region of a file ...64
 15.2. Operation 60: COPY - Initiate a server-side copy65
 15.3. Operation 61: COPY_NOTIFY - Notify a source
 server of a future copy70
 15.4. Operation 62: DEALLOCATE - Unreserve space in a
 region of a file ...72

Haynes Standards Track [Page 3]

RFC 7862 NFSv4.2 November 2016

 15.5. Operation 63: IO_ADVISE - Send client I/O access
 pattern hints to the server73
 15.6. Operation 64: LAYOUTERROR - Provide errors for
 the layout ...79
 15.7. Operation 65: LAYOUTSTATS - Provide statistics
 for the layout ...82
 15.8. Operation 66: OFFLOAD_CANCEL - Stop an offloaded
 operation ..84
 15.9. Operation 67: OFFLOAD_STATUS - Poll for the
 status of an asynchronous operation85
 15.10. Operation 68: READ_PLUS - READ data or holes
 from a file ...86
 15.11. Operation 69: SEEK - Find the next data or hole91
 15.12. Operation 70: WRITE_SAME - WRITE an ADB multiple
 times to a file ...92
 15.13. Operation 71: CLONE - Clone a range of a file
 into another file96
 16. NFSv4.2 Callback Operations98
 16.1. Operation 15: CB_OFFLOAD - Report the results of
 an asynchronous operation98
 17. Security Considerations99
 18. IANA Considerations ...99
 19. References ...100
 19.1. Normative References100
 19.2. Informative References101
 Acknowledgments ..103
 Author’s Address ...104

1. Introduction

 The NFS version 4 minor version 2 (NFSv4.2) protocol is the third
 minor version of the NFS version 4 (NFSv4) protocol. The first minor
 version, NFSv4.0, is described in [RFC7530], and the second minor
 version, NFSv4.1, is described in [RFC5661].

 As a minor version, NFSv4.2 is consistent with the overall goals for
 NFSv4, but NFSv4.2 extends the protocol so as to better meet those
 goals, based on experiences with NFSv4.1. In addition, NFSv4.2 has
 adopted some additional goals, which motivate some of the major
 extensions in NFSv4.2.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Haynes Standards Track [Page 4]

RFC 7862 NFSv4.2 November 2016

1.2. Scope of This Document

 This document describes the NFSv4.2 protocol as a set of extensions
 to the specification for NFSv4.1. That specification remains current
 and forms the basis for the additions defined herein. The
 specification for NFSv4.0 remains current as well.

 It is necessary to implement all the REQUIRED features of NFSv4.1
 before adding NFSv4.2 features to the implementation. With respect
 to NFSv4.0 and NFSv4.1, this document does not:

 o describe the NFSv4.0 or NFSv4.1 protocols, except where needed to
 contrast with NFSv4.2

 o modify the specification of the NFSv4.0 or NFSv4.1 protocols

 o clarify the NFSv4.0 or NFSv4.1 protocols -- that is, any
 clarifications made here apply only to NFSv4.2 and not to NFSv4.0
 or NFSv4.1

 NFSv4.2 is a superset of NFSv4.1, with all of the new features being
 optional. As such, NFSv4.2 maintains the same compatibility that
 NFSv4.1 had with NFSv4.0. Any interactions of a new feature with
 NFSv4.1 semantics is described in the relevant text.

 The full External Data Representation (XDR) [RFC4506] for NFSv4.2 is
 presented in [RFC7863].

1.3. NFSv4.2 Goals

 A major goal of the enhancements provided in NFSv4.2 is to take
 common local file system features that have not been available
 through earlier versions of NFS and to offer them remotely. These
 features might

 o already be available on the servers, e.g., sparse files

 o be under development as a new standard, e.g., SEEK pulls in both
 SEEK_HOLE and SEEK_DATA

 o be used by clients with the servers via some proprietary means,
 e.g., Labeled NFS

 NFSv4.2 provides means for clients to leverage these features on the
 server in cases in which such leveraging had previously not been
 possible within the confines of the NFS protocol.

Haynes Standards Track [Page 5]

RFC 7862 NFSv4.2 November 2016

1.4. Overview of NFSv4.2 Features

1.4.1. Server-Side Clone and Copy

 A traditional file copy of a remotely accessed file, whether from one
 server to another or between locations in the same server, results in
 the data being put on the network twice -- source to client and then
 client to destination. New operations are introduced to allow
 unnecessary traffic to be eliminated:

 o The intra-server CLONE feature allows the client to request a
 synchronous cloning, perhaps by copy-on-write semantics.

 o The intra-server COPY feature allows the client to request the
 server to perform the copy internally, avoiding unnecessary
 network traffic.

 o The inter-server COPY feature allows the client to authorize the
 source and destination servers to interact directly.

 As such copies can be lengthy, asynchronous support is also provided.

1.4.2. Application Input/Output (I/O) Advise

 Applications and clients want to advise the server as to expected I/O
 behavior. Using IO_ADVISE (see Section 15.5) to communicate future
 I/O behavior such as whether a file will be accessed sequentially or
 randomly, and whether a file will or will not be accessed in the near
 future, allows servers to optimize future I/O requests for a file by,
 for example, prefetching or evicting data. This operation can be
 used to support the posix_fadvise() [posix_fadvise] function. In
 addition, it may be helpful to applications such as databases and
 video editors.

1.4.3. Sparse Files

 Sparse files are files that have unallocated or uninitialized data
 blocks as holes in the file. Such holes are typically transferred as
 zeros when read from the file. READ_PLUS (see Section 15.10) allows
 a server to send back to the client metadata describing the hole, and
 DEALLOCATE (see Section 15.4) allows the client to punch holes into a
 file. In addition, SEEK (see Section 15.11) is provided to scan for
 the next hole or data from a given location.

Haynes Standards Track [Page 6]

RFC 7862 NFSv4.2 November 2016

1.4.4. Space Reservation

 When a file is sparse, one concern that applications have is ensuring
 that there will always be enough data blocks available for the file
 during future writes. ALLOCATE (see Section 15.1) allows a client to
 request a guarantee that space will be available. Also, DEALLOCATE
 (see Section 15.4) allows the client to punch a hole into a file,
 thus releasing a space reservation.

1.4.5. Application Data Block (ADB) Support

 Some applications treat a file as if it were a disk and as such want
 to initialize (or format) the file image. The WRITE_SAME operation
 (see Section 15.12) is introduced to send this metadata to the server
 to allow it to write the block contents.

1.4.6. Labeled NFS

 While both clients and servers can employ Mandatory Access Control
 (MAC) security models to enforce data access, there has been no
 protocol support for interoperability. A new file object attribute,
 sec_label (see Section 12.2.4), allows the server to store MAC labels
 on files, which the client retrieves and uses to enforce data access
 (see Section 9.5.3). The format of the sec_label accommodates any
 MAC security system.

1.4.7. Layout Enhancements

 In the parallel NFS implementations of NFSv4.1 (see Section 12 of
 [RFC5661]), the client cannot communicate back to the metadata server
 any errors or performance characteristics with the storage devices.
 NFSv4.2 provides two new operations to do so: LAYOUTERROR (see
 Section 15.6) and LAYOUTSTATS (see Section 15.7), respectively.

1.5. Enhancements to Minor Versioning Model

 In NFSv4.1, the only way to introduce new variants of an operation
 was to introduce a new operation. For instance, READ would have to
 be replaced or supplemented by, say, either READ2 or READ_PLUS. With
 the use of discriminated unions as parameters for such functions in
 NFSv4.2, it is possible to add a new "arm" (i.e., a new entry in the
 union and a corresponding new field in the structure) in a subsequent
 minor version. It is also possible to move such an operation from
 OPTIONAL/RECOMMENDED to REQUIRED. Forcing an implementation to adopt
 each arm of a discriminated union at such a time does not meet the
 spirit of the minor versioning rules. As such, new arms of a
 discriminated union MUST follow the same guidelines for minor

Haynes Standards Track [Page 7]

RFC 7862 NFSv4.2 November 2016

 versioning as operations in NFSv4.1 -- i.e., they may not be made
 REQUIRED. To support this, a new error code, NFS4ERR_UNION_NOTSUPP,
 allows the server to communicate to the client that the operation is
 supported but the specific arm of the discriminated union is not.

2. Minor Versioning

 NFSv4.2 is a minor version of NFSv4 and is built upon NFSv4.1 as
 documented in [RFC5661] and [RFC5662].

 NFSv4.2 does not modify the rules applicable to the NFSv4 versioning
 process and follows the rules set out in [RFC5661] or in
 Standards Track documents updating that document (e.g., in an RFC
 based on [NFSv4-Versioning]).

 NFSv4.2 only defines extensions to NFSv4.1, each of which may be
 supported (or not) independently. It does not

 o introduce infrastructural features

 o make existing features MANDATORY to NOT implement

 o change the status of existing features (i.e., by changing their
 status among OPTIONAL, RECOMMENDED, REQUIRED)

 The following versioning-related considerations should be noted.

 o When a new case is added to an existing switch, servers need to
 report non-support of that new case by returning
 NFS4ERR_UNION_NOTSUPP.

 o As regards the potential cross-minor-version transfer of stateids,
 Parallel NFS (pNFS) (see Section 12 of [RFC5661]) implementations
 of the file-mapping type may support the use of an NFSv4.2
 metadata server (see Sections 1.7.2.2 and 12.2.2 of [RFC5661])
 with NFSv4.1 data servers. In this context, a stateid returned by
 an NFSv4.2 COMPOUND will be used in an NFSv4.1 COMPOUND directed
 to the data server (see Sections 3.2 and 3.3).

Haynes Standards Track [Page 8]

RFC 7862 NFSv4.2 November 2016

3. pNFS Considerations for New Operations

 The interactions of the new operations with non-pNFS functionality
 are straightforward and are covered in the relevant sections.
 However, the interactions of the new operations with pNFS are more
 complicated. This section provides an overview.

3.1. Atomicity for ALLOCATE and DEALLOCATE

 Both ALLOCATE (see Section 15.1) and DEALLOCATE (see Section 15.4)
 are sent to the metadata server, which is responsible for
 coordinating the changes onto the storage devices. In particular,
 both operations must either fully succeed or fail; it cannot be the
 case that one storage device succeeds whilst another fails.

3.2. Sharing of Stateids with NFSv4.1

 An NFSv4.2 metadata server can hand out a layout to an NFSv4.1
 storage device. Section 13.9.1 of [RFC5661] discusses how the client
 gets a stateid from the metadata server to present to a storage
 device.

3.3. NFSv4.2 as a Storage Protocol in pNFS: The File Layout Type

 A file layout provided by an NFSv4.2 server may refer to either (1) a
 storage device that only implements NFSv4.1 as specified in [RFC5661]
 or (2) a storage device that implements additions from NFSv4.2, in
 which case the rules in Section 3.3.1 apply. As the file layout type
 does not provide a means for informing the client as to which minor
 version a particular storage device is providing, the client will
 have to negotiate this with the storage device via the normal Remote
 Procedure Call (RPC) semantics of major and minor version discovery.
 For example, as per Section 16.2.3 of [RFC5661], the client could try
 a COMPOUND with a minorversion field value of 2; if it gets
 NFS4ERR_MINOR_VERS_MISMATCH, it would drop back to 1.

3.3.1. Operations Sent to NFSv4.2 Data Servers

 In addition to the commands listed in [RFC5661], NFSv4.2 data servers
 MAY accept a COMPOUND containing the following additional operations:
 IO_ADVISE (see Section 15.5), READ_PLUS (see Section 15.10),
 WRITE_SAME (see Section 15.12), and SEEK (see Section 15.11), which
 will be treated like the subset specified as "Operations Sent to
 NFSv4.1 Data Servers" in Section 13.6 of [RFC5661].

 Additional details on the implementation of these operations in a
 pNFS context are documented in the operation-specific sections.

Haynes Standards Track [Page 9]

RFC 7862 NFSv4.2 November 2016

4. Server-Side Copy

 The server-side copy features provide mechanisms that allow an NFS
 client to copy file data on a server or between two servers without
 the data being transmitted back and forth over the network through
 the NFS client. Without these features, an NFS client would copy
 data from one location to another by reading the data from the source
 server over the network and then writing the data back over the
 network to the destination server.

 If the source object and destination object are on different file
 servers, the file servers will communicate with one another to
 perform the COPY operation. The server-to-server protocol by which
 this is accomplished is not defined in this document.

 The copy feature allows the server to perform the copying either
 synchronously or asynchronously. The client can request synchronous
 copying, but the server may not be able to honor this request. If
 the server intends to perform asynchronous copying, it supplies the
 client with a request identifier that the client can use to monitor
 the progress of the copying and, if appropriate, cancel a request in
 progress. The request identifier is a stateid representing the
 internal state held by the server while the copying is performed.
 Multiple asynchronous copies of all or part of a file may be in
 progress in parallel on a server; the stateid request identifier
 allows monitoring and canceling to be applied to the correct request.

4.1. Protocol Overview

 The server-side copy offload operations support both intra-server and
 inter-server file copies. An intra-server copy is a copy in which
 the source file and destination file reside on the same server. In
 an inter-server copy, the source file and destination file are on
 different servers. In both cases, the copy may be performed
 synchronously or asynchronously.

 In addition, the CLONE operation provides COPY-like functionality in
 the intra-server case, which is both synchronous and atomic in that
 other operations may not see the target file in any state between the
 state before the CLONE operation and the state after it.

 Throughout the rest of this document, the NFS server containing the
 source file is referred to as the "source server" and the NFS server
 to which the file is transferred as the "destination server". In the
 case of an intra-server copy, the source server and destination
 server are the same server. Therefore, in the context of an
 intra-server copy, the terms "source server" and "destination server"
 refer to the single server performing the copy.

Haynes Standards Track [Page 10]

RFC 7862 NFSv4.2 November 2016

 The new operations are designed to copy files or regions within them.
 Other file system objects can be copied by building on these
 operations or using other techniques. For example, if a user wishes
 to copy a directory, the client can synthesize a directory COPY
 operation by first creating the destination directory and the
 individual (empty) files within it and then copying the contents of
 the source directory’s files to files in the new destination
 directory.

 For the inter-server copy, the operations are defined to be
 compatible with the traditional copy authorization approach. The
 client and user are authorized at the source for reading. Then, they
 are authorized at the destination for writing.

4.1.1. COPY Operations

 CLONE: Used by the client to request a synchronous atomic COPY-like
 operation. (Section 15.13)

 COPY_NOTIFY: Used by the client to request the source server to
 authorize a future file copy that will be made by a given
 destination server on behalf of the given user. (Section 15.3)

 COPY: Used by the client to request a file copy. (Section 15.2)

 OFFLOAD_CANCEL: Used by the client to terminate an asynchronous file
 copy. (Section 15.8)

 OFFLOAD_STATUS: Used by the client to poll the status of an
 asynchronous file copy. (Section 15.9)

 CB_OFFLOAD: Used by the destination server to report the results of
 an asynchronous file copy to the client. (Section 16.1)

4.1.2. Requirements for Operations

 Inter-server copy, intra-server copy, and intra-server clone are each
 OPTIONAL features in the context of server-side copy. A server may
 choose independently to implement any of them. A server implementing
 any of these features may be REQUIRED to implement certain
 operations. Other operations are OPTIONAL in the context of a
 particular feature (see Table 5 in Section 13) but may become
 REQUIRED, depending on server behavior. Clients need to use these
 operations to successfully copy a file.

Haynes Standards Track [Page 11]

RFC 7862 NFSv4.2 November 2016

 For a client to do an intra-server file copy, it needs to use either
 the COPY or the CLONE operation. If COPY is used, the client MUST
 support the CB_OFFLOAD operation. If COPY is used and it returns a
 stateid, then the client MAY use the OFFLOAD_CANCEL and
 OFFLOAD_STATUS operations.

 For a client to do an inter-server file copy, it needs to use the
 COPY and COPY_NOTIFY operations and MUST support the CB_OFFLOAD
 operation. If COPY returns a stateid, then the client MAY use the
 OFFLOAD_CANCEL and OFFLOAD_STATUS operations.

 If a server supports the intra-server COPY feature, then the server
 MUST support the COPY operation. If a server’s COPY operation
 returns a stateid, then the server MUST also support these
 operations: CB_OFFLOAD, OFFLOAD_CANCEL, and OFFLOAD_STATUS.

 If a server supports the CLONE feature, then it MUST support the
 CLONE operation and the clone_blksize attribute on any file system on
 which CLONE is supported (as either source or destination file).

 If a source server supports the inter-server COPY feature, then it
 MUST support the COPY_NOTIFY and OFFLOAD_CANCEL operations. If a
 destination server supports the inter-server COPY feature, then it
 MUST support the COPY operation. If a destination server’s COPY
 operation returns a stateid, then the destination server MUST also
 support these operations: CB_OFFLOAD, OFFLOAD_CANCEL, COPY_NOTIFY,
 and OFFLOAD_STATUS.

 Each operation is performed in the context of the user identified by
 the Open Network Computing (ONC) RPC credential in the RPC request
 containing the COMPOUND or CB_COMPOUND request. For example, an
 OFFLOAD_CANCEL operation issued by a given user indicates that a
 specified COPY operation initiated by the same user is to be
 canceled. Therefore, an OFFLOAD_CANCEL MUST NOT interfere with a
 copy of the same file initiated by another user.

 An NFS server MAY allow an administrative user to monitor or cancel
 COPY operations using an implementation-specific interface.

Haynes Standards Track [Page 12]

RFC 7862 NFSv4.2 November 2016

4.2. Requirements for Inter-Server Copy

 The specification of the inter-server copy is driven by several
 requirements:

 o The specification MUST NOT mandate the server-to-server protocol.

 o The specification MUST provide guidance for using NFSv4.x as a
 copy protocol. For those source and destination servers willing
 to use NFSv4.x, there are specific security considerations that
 the specification MUST address.

 o The specification MUST NOT mandate preconfiguration between the
 source and destination servers. Requiring that the source and
 destination servers first have a "copying relationship" increases
 the administrative burden. However, the specification MUST NOT
 preclude implementations that require preconfiguration.

 o The specification MUST NOT mandate a trust relationship between
 the source and destination servers. The NFSv4 security model
 requires mutual authentication between a principal on an NFS
 client and a principal on an NFS server. This model MUST continue
 with the introduction of COPY.

4.3. Implementation Considerations

4.3.1. Locking the Files

 Both the source file and the destination file may need to be locked
 to protect the content during the COPY operations. A client can
 achieve this by a combination of OPEN and LOCK operations. That is,
 either share locks or byte-range locks might be desired.

 Note that when the client establishes a lock stateid on the source,
 the context of that stateid is for the client and not the
 destination. As such, there might already be an outstanding stateid,
 issued to the destination as the client of the source, with the same
 value as that provided for the lock stateid. The source MUST
 interpret the lock stateid as that of the client, i.e., when the
 destination presents it in the context of an inter-server copy, it is
 on behalf of the client.

Haynes Standards Track [Page 13]

RFC 7862 NFSv4.2 November 2016

4.3.2. Client Caches

 In a traditional copy, if the client is in the process of writing to
 the file before the copy (and perhaps with a write delegation), it
 will be straightforward to update the destination server. With an
 inter-server copy, the source has no insight into the changes cached
 on the client. The client SHOULD write the data back to the source.
 If it does not do so, it is possible that the destination will
 receive a corrupt copy of the file.

4.4. Intra-Server Copy

 To copy a file on a single server, the client uses a COPY operation.
 The server may respond to the COPY operation with the final results
 of the copy, or it may perform the copy asynchronously and deliver
 the results using a CB_OFFLOAD callback operation. If the copy is
 performed asynchronously, the client may poll the status of the copy
 using OFFLOAD_STATUS or cancel the copy using OFFLOAD_CANCEL.

 A synchronous intra-server copy is shown in Figure 1. In this
 example, the NFS server chooses to perform the copy synchronously.
 The COPY operation is completed, either successfully or
 unsuccessfully, before the server replies to the client’s request.
 The server’s reply contains the final result of the operation.

 Client Server
 + +
 | |
 |--- OPEN ---------------------------->| Client opens
 |<------------------------------------/| the source file
 | |
 |--- OPEN ---------------------------->| Client opens
 |<------------------------------------/| the destination file
 | |
 |--- COPY ---------------------------->| Client requests
 |<------------------------------------/| a file copy
 | |
 |--- CLOSE --------------------------->| Client closes
 |<------------------------------------/| the destination file
 | |
 |--- CLOSE --------------------------->| Client closes
 |<------------------------------------/| the source file
 | |
 | |

 Figure 1: A Synchronous Intra-Server Copy

Haynes Standards Track [Page 14]

RFC 7862 NFSv4.2 November 2016

 An asynchronous intra-server copy is shown in Figure 2. In this
 example, the NFS server performs the copy asynchronously. The
 server’s reply to the copy request indicates that the COPY operation
 was initiated and the final result will be delivered at a later time.
 The server’s reply also contains a copy stateid. The client may use
 this copy stateid to poll for status information (as shown) or to
 cancel the copy using an OFFLOAD_CANCEL. When the server completes
 the copy, the server performs a callback to the client and reports
 the results.

 Client Server
 + +
 | |
 |--- OPEN ---------------------------->| Client opens
 |<------------------------------------/| the source file
 | |
 |--- OPEN ---------------------------->| Client opens
 |<------------------------------------/| the destination file
 | |
 |--- COPY ---------------------------->| Client requests
 |<------------------------------------/| a file copy
 | |
 | |
 |--- OFFLOAD_STATUS ------------------>| Client may poll
 |<------------------------------------/| for status
 | |
 | . | Multiple OFFLOAD_STATUS
 | . | operations may be sent
 | . |
 | |
 |<-- CB_OFFLOAD -----------------------| Server reports results
 |\------------------------------------>|
 | |
 |--- CLOSE --------------------------->| Client closes
 |<------------------------------------/| the destination file
 | |
 |--- CLOSE --------------------------->| Client closes
 |<------------------------------------/| the source file
 | |
 | |

 Figure 2: An Asynchronous Intra-Server Copy

Haynes Standards Track [Page 15]

RFC 7862 NFSv4.2 November 2016

4.5. Inter-Server Copy

 A copy may also be performed between two servers. The copy protocol
 is designed to accommodate a variety of network topologies. As shown
 in Figure 3, the client and servers may be connected by multiple
 networks. In particular, the servers may be connected by a
 specialized, high-speed network (network 192.0.2.0/24 in the diagram)
 that does not include the client. The protocol allows the client to
 set up the copy between the servers (over network 203.0.113.0/24 in
 the diagram) and for the servers to communicate on the high-speed
 network if they choose to do so.

 192.0.2.0/24
 +-------------------------------------+
 | |
 | |
 | 192.0.2.18 | 192.0.2.56
 +-------+------+ +------+------+
 | Source | | Destination |
 +-------+------+ +------+------+
 | 203.0.113.18 | 203.0.113.56
 | |
 | |
 | 203.0.113.0/24 |
 +------------------+------------------+
 |
 |
 | 203.0.113.243
 +-----+-----+
 | Client |
 +-----------+

 Figure 3: An Example Inter-Server Network Topology

 For an inter-server copy, the client notifies the source server that
 a file will be copied by the destination server using a COPY_NOTIFY
 operation. The client then initiates the copy by sending the COPY
 operation to the destination server. The destination server may
 perform the copy synchronously or asynchronously.

Haynes Standards Track [Page 16]

RFC 7862 NFSv4.2 November 2016

 A synchronous inter-server copy is shown in Figure 4. In this case,
 the destination server chooses to perform the copy before responding
 to the client’s COPY request.

 Client Source Destination
 + + +
 | | |
 |--- OPEN --->| | Returns
 |<------------------/| | open state os1
 | | |
 |--- COPY_NOTIFY --->| |
 |<------------------/| |
 | | |
 |--- OPEN ---------------------------->| Returns
 |<------------------------------------/| open state os2
 | | |
 |--- COPY ---------------------------->|
 | | |
 | | |
 | |<----- READ -----|
 | |\--------------->|
 | | |
 | | . | Multiple READs may
 | | . | be necessary
 | | . |
 | | |
 | | |
 |<------------------------------------/| Destination replies
 | | | to COPY
 | | |
 |--- CLOSE --------------------------->| Release os2
 |<------------------------------------/|
 | | |
 |--- CLOSE --->| | Release os1
 |<------------------/| |

 Figure 4: A Synchronous Inter-Server Copy

Haynes Standards Track [Page 17]

RFC 7862 NFSv4.2 November 2016

 An asynchronous inter-server copy is shown in Figure 5. In this
 case, the destination server chooses to respond to the client’s COPY
 request immediately and then perform the copy asynchronously.

 Client Source Destination
 + + +
 | | |
 |--- OPEN --->| | Returns
 |<------------------/| | open state os1
 | | |
 |--- LOCK --->| | Optional; could be done
 |<------------------/| | with a share lock
 | | |
 |--- COPY_NOTIFY --->| | Need to pass in
 |<------------------/| | os1 or lock state
 | | |
 | | |
 | | |
 |--- OPEN ---------------------------->| Returns
 |<------------------------------------/| open state os2
 | | |
 |--- LOCK ---------------------------->| Optional ...
 |<------------------------------------/|
 | | |
 |--- COPY ---------------------------->| Need to pass in
 |<------------------------------------/| os2 or lock state
 | | |
 | | |
 | |<----- READ -----|
 | |\--------------->|
 | | |
 | | . | Multiple READs may
 | | . | be necessary
 | | . |
 | | |
 | | |
 |--- OFFLOAD_STATUS ------------------>| Client may poll
 |<------------------------------------/| for status
 | | |
 | | . | Multiple OFFLOAD_STATUS
 | | . | operations may be sent
 | | . |
 | | |
 | | |
 | | |
 |<-- CB_OFFLOAD -----------------------| Destination reports
 |\------------------------------------>| results
 | | |

Haynes Standards Track [Page 18]

RFC 7862 NFSv4.2 November 2016

 |--- LOCKU --------------------------->| Only if LOCK was done
 |<------------------------------------/|
 | | |
 |--- CLOSE --------------------------->| Release os2
 |<------------------------------------/|
 | | |
 |--- LOCKU --->| | Only if LOCK was done
 |<------------------/| |
 | | |
 |--- CLOSE --->| | Release os1
 |<------------------/| |
 | | |

 Figure 5: An Asynchronous Inter-Server Copy

4.6. Server-to-Server Copy Protocol

 The choice of what protocol to use in an inter-server copy is
 ultimately the destination server’s decision. However, the
 destination server has to be cognizant that it is working on behalf
 of the client.

4.6.1. Considerations on Selecting a Copy Protocol

 The client can have requirements over both the size of transactions
 and error recovery semantics. It may want to split the copy up such
 that each chunk is synchronously transferred. It may want the copy
 protocol to copy the bytes in consecutive order such that upon an
 error the client can restart the copy at the last known good offset.
 If the destination server cannot meet these requirements, the client
 may prefer the traditional copy mechanism such that it can meet those
 requirements.

4.6.2. Using NFSv4.x as the Copy Protocol

 The destination server MAY use standard NFSv4.x (where x >= 1)
 operations to read the data from the source server. If NFSv4.x is
 used for the server-to-server copy protocol, the destination server
 can use the source filehandle and ca_src_stateid provided in the COPY
 request with standard NFSv4.x operations to read data from the source
 server. Note that the ca_src_stateid MUST be the cnr_stateid
 returned from the source via the COPY_NOTIFY (Section 15.3).

Haynes Standards Track [Page 19]

RFC 7862 NFSv4.2 November 2016

4.6.3. Using an Alternative Copy Protocol

 In a homogeneous environment, the source and destination servers
 might be able to perform the file copy extremely efficiently using
 specialized protocols. For example, the source and destination
 servers might be two nodes sharing a common file system format for
 the source and destination file systems. Thus, the source and
 destination are in an ideal position to efficiently render the image
 of the source file to the destination file by replicating the file
 system formats at the block level. Another possibility is that the
 source and destination might be two nodes sharing a common storage
 area network, and thus there is no need to copy any data at all;
 instead, ownership of the file and its contents might simply be
 reassigned to the destination. To allow for these possibilities, the
 destination server is allowed to use a server-to-server copy protocol
 of its choice.

 In a heterogeneous environment, using a protocol other than NFSv4.x
 (e.g., HTTP [RFC7230] or FTP [RFC959]) presents some challenges. In
 particular, the destination server is presented with the challenge of
 accessing the source file given only an NFSv4.x filehandle.

 One option for protocols that identify source files with pathnames is
 to use an ASCII hexadecimal representation of the source filehandle
 as the filename.

 Another option for the source server is to use URLs to direct the
 destination server to a specialized service. For example, the
 response to COPY_NOTIFY could include the URL
 <ftp://s1.example.com:9999/_FH/0x12345>, where 0x12345 is the ASCII
 hexadecimal representation of the source filehandle. When the
 destination server receives the source server’s URL, it would use
 "_FH/0x12345" as the filename to pass to the FTP server listening on
 port 9999 of s1.example.com. On port 9999 there would be a special
 instance of the FTP service that understands how to convert NFS
 filehandles to an open file descriptor (in many operating systems,
 this would require a new system call, one that is the inverse of the
 makefh() function that the pre-NFSv4 MOUNT service needs).

 Authenticating and identifying the destination server to the source
 server is also a challenge. One solution would be to construct
 unique URLs for each destination server.

Haynes Standards Track [Page 20]

RFC 7862 NFSv4.2 November 2016

4.7. netloc4 - Network Locations

 The server-side COPY operations specify network locations using the
 netloc4 data type shown below (see [RFC7863]):

 <CODE BEGINS>

 enum netloc_type4 {
 NL4_NAME = 1,
 NL4_URL = 2,
 NL4_NETADDR = 3
 };

 union netloc4 switch (netloc_type4 nl_type) {
 case NL4_NAME: utf8str_cis nl_name;
 case NL4_URL: utf8str_cis nl_url;
 case NL4_NETADDR: netaddr4 nl_addr;
 };

 <CODE ENDS>

 If the netloc4 is of type NL4_NAME, the nl_name field MUST be
 specified as a UTF-8 string. The nl_name is expected to be resolved
 to a network address via DNS, the Lightweight Directory Access
 Protocol (LDAP), the Network Information Service (NIS), /etc/hosts,
 or some other means. If the netloc4 is of type NL4_URL, a server URL
 [RFC3986] appropriate for the server-to-server COPY operation is
 specified as a UTF-8 string. If the netloc4 is of type NL4_NETADDR,
 the nl_addr field MUST contain a valid netaddr4 as defined in
 Section 3.3.9 of [RFC5661].

 When netloc4 values are used for an inter-server copy as shown in
 Figure 3, their values may be evaluated on the source server,
 destination server, and client. The network environment in which
 these systems operate should be configured so that the netloc4 values
 are interpreted as intended on each system.

4.8. Copy Offload Stateids

 A server may perform a copy offload operation asynchronously. An
 asynchronous copy is tracked using a copy offload stateid. Copy
 offload stateids are included in the COPY, OFFLOAD_CANCEL,
 OFFLOAD_STATUS, and CB_OFFLOAD operations.

 A copy offload stateid will be valid until either (A) the client or
 server restarts or (B) the client returns the resource by issuing an
 OFFLOAD_CANCEL operation or the client replies to a CB_OFFLOAD
 operation.

Haynes Standards Track [Page 21]

RFC 7862 NFSv4.2 November 2016

 A copy offload stateid’s seqid MUST NOT be zero. In the context of a
 copy offload operation, it is inappropriate to indicate "the most
 recent copy offload operation" using a stateid with a seqid of zero
 (see Section 8.2.2 of [RFC5661]). It is inappropriate because the
 stateid refers to internal state in the server and there may be
 several asynchronous COPY operations being performed in parallel on
 the same file by the server. Therefore, a copy offload stateid with
 a seqid of zero MUST be considered invalid.

4.9. Security Considerations for Server-Side Copy

 All security considerations pertaining to NFSv4.1 [RFC5661] apply to
 this section; as such, the standard security mechanisms used by the
 protocol can be used to secure the server-to-server operations.

 NFSv4 clients and servers supporting the inter-server COPY operations
 described in this section are REQUIRED to implement the mechanism
 described in Section 4.9.1.1 and to support rejecting COPY_NOTIFY
 requests that do not use the RPC security protocol (RPCSEC_GSS)
 [RFC7861] with privacy. If the server-to-server copy protocol is
 based on ONC RPC, the servers are also REQUIRED to implement
 [RFC7861], including the RPCSEC_GSSv3 "copy_to_auth",
 "copy_from_auth", and "copy_confirm_auth" structured privileges.
 This requirement to implement is not a requirement to use; for
 example, a server may, depending on configuration, also allow
 COPY_NOTIFY requests that use only AUTH_SYS.

 If a server requires the use of an RPCSEC_GSSv3 copy_to_auth,
 copy_from_auth, or copy_confirm_auth privilege and it is not used,
 the server will reject the request with NFS4ERR_PARTNER_NO_AUTH.

4.9.1. Inter-Server Copy Security

4.9.1.1. Inter-Server Copy via ONC RPC with RPCSEC_GSSv3

 When the client sends a COPY_NOTIFY to the source server to expect
 the destination to attempt to copy data from the source server, it is
 expected that this copy is being done on behalf of the principal
 (called the "user principal") that sent the RPC request that encloses
 the COMPOUND procedure that contains the COPY_NOTIFY operation. The
 user principal is identified by the RPC credentials. A mechanism
 that allows the user principal to authorize the destination server to
 perform the copy, lets the source server properly authenticate the
 destination’s copy, and does not allow the destination server to
 exceed this authorization is necessary.

Haynes Standards Track [Page 22]

RFC 7862 NFSv4.2 November 2016

 An approach that sends delegated credentials of the client’s user
 principal to the destination server is not used for the following
 reason. If the client’s user delegated its credentials, the
 destination would authenticate as the user principal. If the
 destination were using the NFSv4 protocol to perform the copy, then
 the source server would authenticate the destination server as the
 user principal, and the file copy would securely proceed. However,
 this approach would allow the destination server to copy other files.
 The user principal would have to trust the destination server to not
 do so. This is counter to the requirements and therefore is not
 considered.

 Instead, a feature of the RPCSEC_GSSv3 protocol [RFC7861] can be
 used: RPC-application-defined structured privilege assertion. This
 feature allows the destination server to authenticate to the source
 server as acting on behalf of the user principal and to authorize the
 destination server to perform READs of the file to be copied from the
 source on behalf of the user principal. Once the copy is complete,
 the client can destroy the RPCSEC_GSSv3 handles to end the
 authorization of both the source and destination servers to copy.

 For each structured privilege assertion defined by an RPC
 application, RPCSEC_GSSv3 requires the application to define a name
 string and a data structure that will be encoded and passed between
 client and server as opaque data. For NFSv4, the data structures
 specified below MUST be serialized using XDR.

 Three RPCSEC_GSSv3 structured privilege assertions that work together
 to authorize the copy are defined here. For each of the assertions,
 the description starts with the name string passed in the rp_name
 field of the rgss3_privs structure defined in Section 2.7.1.4 of
 [RFC7861] and specifies the XDR encoding of the associated structured
 data passed via the rp_privilege field of the structure.

Haynes Standards Track [Page 23]

RFC 7862 NFSv4.2 November 2016

 copy_from_auth: A user principal is authorizing a source principal
 ("nfs@<source>") to allow a destination principal
 ("nfs@<destination>") to set up the copy_confirm_auth privilege
 required to copy a file from the source to the destination on
 behalf of the user principal. This privilege is established on
 the source server before the user principal sends a COPY_NOTIFY
 operation to the source server, and the resultant RPCSEC_GSSv3
 context is used to secure the COPY_NOTIFY operation.

 <CODE BEGINS>

 struct copy_from_auth_priv {
 secret4 cfap_shared_secret;
 netloc4 cfap_destination;
 /* the NFSv4 user name that the user principal maps to */
 utf8str_mixed cfap_username;
 };

 <CODE ENDS>

 cfap_shared_secret is an automatically generated random number
 secret value.

 copy_to_auth: A user principal is authorizing a destination
 principal ("nfs@<destination>") to set up a copy_confirm_auth
 privilege with a source principal ("nfs@<source>") to allow it to
 copy a file from the source to the destination on behalf of the
 user principal. This privilege is established on the destination
 server before the user principal sends a COPY operation to the
 destination server, and the resultant RPCSEC_GSSv3 context is used
 to secure the COPY operation.

 <CODE BEGINS>

 struct copy_to_auth_priv {
 /* equal to cfap_shared_secret */
 secret4 ctap_shared_secret;
 netloc4 ctap_source<>;
 /* the NFSv4 user name that the user principal maps to */
 utf8str_mixed ctap_username;
 };

 <CODE ENDS>

 ctap_shared_secret is the automatically generated secret value
 used to establish the copy_from_auth privilege with the source
 principal. See Section 4.9.1.1.1.

Haynes Standards Track [Page 24]

RFC 7862 NFSv4.2 November 2016

 copy_confirm_auth: A destination principal ("nfs@<destination>") is
 confirming with the source principal ("nfs@<source>") that it is
 authorized to copy data from the source. This privilege is
 established on the destination server before the file is copied
 from the source to the destination. The resultant RPCSEC_GSSv3
 context is used to secure the READ operations from the source to
 the destination server.

 <CODE BEGINS>

 struct copy_confirm_auth_priv {
 /* equal to GSS_GetMIC() of cfap_shared_secret */
 opaque ccap_shared_secret_mic<>;
 /* the NFSv4 user name that the user principal maps to */
 utf8str_mixed ccap_username;
 };

 <CODE ENDS>

4.9.1.1.1. Establishing a Security Context

 When the user principal wants to copy a file between two servers, if
 it has not established copy_from_auth and copy_to_auth privileges on
 the servers, it establishes them as follows:

 o As noted in [RFC7861], the client uses an existing RPCSEC_GSSv3
 context termed the "parent" handle to establish and protect
 RPCSEC_GSSv3 structured privilege assertion exchanges. The
 copy_from_auth privilege will use the context established between
 the user principal and the source server used to OPEN the source
 file as the RPCSEC_GSSv3 parent handle. The copy_to_auth
 privilege will use the context established between the user
 principal and the destination server used to OPEN the destination
 file as the RPCSEC_GSSv3 parent handle.

 o A random number is generated to use as a secret to be shared
 between the two servers. Note that the random number SHOULD NOT
 be reused between establishing different security contexts. The
 resulting shared secret will be placed in the copy_from_auth_priv
 cfap_shared_secret field and the copy_to_auth_priv
 ctap_shared_secret field. Because of this shared_secret, the
 RPCSEC_GSS3_CREATE control messages for copy_from_auth and
 copy_to_auth MUST use a Quality of Protection (QoP) of
 rpc_gss_svc_privacy.

Haynes Standards Track [Page 25]

RFC 7862 NFSv4.2 November 2016

 o An instance of copy_from_auth_priv is filled in with the shared
 secret, the destination server, and the NFSv4 user id of the user
 principal and is placed in rpc_gss3_create_args
 assertions[0].privs.privilege. The string "copy_from_auth" is
 placed in assertions[0].privs.name. The source server unwraps the
 rpc_gss_svc_privacy RPCSEC_GSS3_CREATE payload and verifies that
 the NFSv4 user id being asserted matches the source server’s
 mapping of the user principal. If it does, the privilege is
 established on the source server as <copy_from_auth, user id,
 destination>. The field "handle" in a successful reply is the
 RPCSEC_GSSv3 copy_from_auth "child" handle that the client will
 use in COPY_NOTIFY requests to the source server.

 o An instance of copy_to_auth_priv is filled in with the shared
 secret, the cnr_source_server list returned by COPY_NOTIFY, and
 the NFSv4 user id of the user principal. The copy_to_auth_priv
 instance is placed in rpc_gss3_create_args
 assertions[0].privs.privilege. The string "copy_to_auth" is
 placed in assertions[0].privs.name. The destination server
 unwraps the rpc_gss_svc_privacy RPCSEC_GSS3_CREATE payload and
 verifies that the NFSv4 user id being asserted matches the
 destination server’s mapping of the user principal. If it does,
 the privilege is established on the destination server as
 <copy_to_auth, user id, source list>. The field "handle" in a
 successful reply is the RPCSEC_GSSv3 copy_to_auth child handle
 that the client will use in COPY requests to the destination
 server involving the source server.

 As noted in Section 2.7.1 of [RFC7861] ("New Control Procedure -
 RPCSEC_GSS_CREATE"), both the client and the source server should
 associate the RPCSEC_GSSv3 child handle with the parent RPCSEC_GSSv3
 handle used to create the RPCSEC_GSSv3 child handle.

4.9.1.1.2. Starting a Secure Inter-Server Copy

 When the client sends a COPY_NOTIFY request to the source server, it
 uses the privileged copy_from_auth RPCSEC_GSSv3 handle.
 cna_destination_server in the COPY_NOTIFY MUST be the same as
 cfap_destination specified in copy_from_auth_priv. Otherwise, the
 COPY_NOTIFY will fail with NFS4ERR_ACCESS. The source server
 verifies that the privilege <copy_from_auth, user id, destination>
 exists and annotates it with the source filehandle, if the user
 principal has read access to the source file and if administrative
 policies give the user principal and the NFS client read access to
 the source file (i.e., if the ACCESS operation would grant read
 access). Otherwise, the COPY_NOTIFY will fail with NFS4ERR_ACCESS.

Haynes Standards Track [Page 26]

RFC 7862 NFSv4.2 November 2016

 When the client sends a COPY request to the destination server, it
 uses the privileged copy_to_auth RPCSEC_GSSv3 handle.
 ca_source_server list in the COPY MUST be the same as ctap_source
 list specified in copy_to_auth_priv. Otherwise, the COPY will fail
 with NFS4ERR_ACCESS. The destination server verifies that the
 privilege <copy_to_auth, user id, source list> exists and annotates
 it with the source and destination filehandles. If the COPY returns
 a wr_callback_id, then this is an asynchronous copy and the
 wr_callback_id must also must be annotated to the copy_to_auth
 privilege. If the client has failed to establish the copy_to_auth
 privilege, it will reject the request with NFS4ERR_PARTNER_NO_AUTH.

 If either the COPY_NOTIFY operation or the COPY operations fail, the
 associated copy_from_auth and copy_to_auth RPCSEC_GSSv3 handles MUST
 be destroyed.

4.9.1.1.3. Securing ONC RPC Server-to-Server Copy Protocols

 After a destination server has a copy_to_auth privilege established
 on it and it receives a COPY request, if it knows it will use an ONC
 RPC protocol to copy data, it will establish a copy_confirm_auth
 privilege on the source server prior to responding to the COPY
 operation, as follows:

 o Before establishing an RPCSEC_GSSv3 context, a parent context
 needs to exist between nfs@<destination> as the initiator
 principal and nfs@<source> as the target principal. If NFS is to
 be used as the copy protocol, this means that the destination
 server must mount the source server using RPCSEC_GSSv3.

 o An instance of copy_confirm_auth_priv is filled in with
 information from the established copy_to_auth privilege. The
 value of the ccap_shared_secret_mic field is a GSS_GetMIC() of the
 ctap_shared_secret in the copy_to_auth privilege using the parent
 handle context. The ccap_username field is the mapping of the
 user principal to an NFSv4 user name ("user"@"domain" form) and
 MUST be the same as the ctap_username in the copy_to_auth
 privilege. The copy_confirm_auth_priv instance is placed in
 rpc_gss3_create_args assertions[0].privs.privilege. The string
 "copy_confirm_auth" is placed in assertions[0].privs.name.

 o The RPCSEC_GSS3_CREATE copy_from_auth message is sent to the
 source server with a QoP of rpc_gss_svc_privacy. The source
 server unwraps the rpc_gss_svc_privacy RPCSEC_GSS3_CREATE payload
 and verifies the cap_shared_secret_mic by calling GSS_VerifyMIC()
 using the parent context on the cfap_shared_secret from the
 established copy_from_auth privilege, and verifies that the
 ccap_username equals the cfap_username.

Haynes Standards Track [Page 27]

RFC 7862 NFSv4.2 November 2016

 o If all verifications succeed, the copy_confirm_auth privilege is
 established on the source server as <copy_confirm_auth,
 shared_secret_mic, user id>. Because the shared secret has been
 verified, the resultant copy_confirm_auth RPCSEC_GSSv3 child
 handle is noted to be acting on behalf of the user principal.

 o If the source server fails to verify the copy_from_auth privilege,
 the COPY_NOTIFY operation will be rejected with
 NFS4ERR_PARTNER_NO_AUTH.

 o If the destination server fails to verify the copy_to_auth or
 copy_confirm_auth privilege, the COPY will be rejected with
 NFS4ERR_PARTNER_NO_AUTH, causing the client to destroy the
 associated copy_from_auth and copy_to_auth RPCSEC_GSSv3 structured
 privilege assertion handles.

 o All subsequent ONC RPC READ requests sent from the destination to
 copy data from the source to the destination will use the
 RPCSEC_GSSv3 copy_confirm_auth child handle.

 Note that the use of the copy_confirm_auth privilege accomplishes the
 following:

 o If a protocol like NFS is being used with export policies, the
 export policies can be overridden if the destination server is not
 authorized to act as an NFS client.

 o Manual configuration to allow a copy relationship between the
 source and destination is not needed.

4.9.1.1.4. Maintaining a Secure Inter-Server Copy

 If the client determines that either the copy_from_auth or the
 copy_to_auth handle becomes invalid during a copy, then the copy MUST
 be aborted by the client sending an OFFLOAD_CANCEL to both the source
 and destination servers and destroying the respective copy-related
 context handles as described in Section 4.9.1.1.5.

4.9.1.1.5. Finishing or Stopping a Secure Inter-Server Copy

 Under normal operation, the client MUST destroy the copy_from_auth
 and the copy_to_auth RPCSEC_GSSv3 handle once the COPY operation
 returns for a synchronous inter-server copy or a CB_OFFLOAD reports
 the result of an asynchronous copy.

Haynes Standards Track [Page 28]

RFC 7862 NFSv4.2 November 2016

 The copy_confirm_auth privilege is constructed from information held
 by the copy_to_auth privilege and MUST be destroyed by the
 destination server (via an RPCSEC_GSS3_DESTROY call) when the
 copy_to_auth RPCSEC_GSSv3 handle is destroyed.

 The copy_confirm_auth RPCSEC_GSS3 handle is associated with a
 copy_from_auth RPCSEC_GSS3 handle on the source server via the shared
 secret and MUST be locally destroyed (there is no
 RPCSEC_GSS3_DESTROY, as the source server is not the initiator) when
 the copy_from_auth RPCSEC_GSSv3 handle is destroyed.

 If the client sends an OFFLOAD_CANCEL to the source server to rescind
 the destination server’s synchronous copy privilege, it uses the
 privileged copy_from_auth RPCSEC_GSSv3 handle, and the
 cra_destination_server in the OFFLOAD_CANCEL MUST be the same as the
 name of the destination server specified in copy_from_auth_priv. The
 source server will then delete the <copy_from_auth, user id,
 destination> privilege and fail any subsequent copy requests sent
 under the auspices of this privilege from the destination server.
 The client MUST destroy both the copy_from_auth and the copy_to_auth
 RPCSEC_GSSv3 handles.

 If the client sends an OFFLOAD_STATUS to the destination server to
 check on the status of an asynchronous copy, it uses the privileged
 copy_to_auth RPCSEC_GSSv3 handle, and the osa_stateid in the
 OFFLOAD_STATUS MUST be the same as the wr_callback_id specified in
 the copy_to_auth privilege stored on the destination server.

 If the client sends an OFFLOAD_CANCEL to the destination server to
 cancel an asynchronous copy, it uses the privileged copy_to_auth
 RPCSEC_GSSv3 handle, and the oaa_stateid in the OFFLOAD_CANCEL MUST
 be the same as the wr_callback_id specified in the copy_to_auth
 privilege stored on the destination server. The destination server
 will then delete the <copy_to_auth, user id, source list> privilege
 and the associated copy_confirm_auth RPCSEC_GSSv3 handle. The client
 MUST destroy both the copy_to_auth and copy_from_auth RPCSEC_GSSv3
 handles.

4.9.1.2. Inter-Server Copy via ONC RPC without RPCSEC_GSS

 ONC RPC security flavors other than RPCSEC_GSS MAY be used with the
 server-side copy offload operations described in this section. In
 particular, host-based ONC RPC security flavors such as AUTH_NONE and
 AUTH_SYS MAY be used. If a host-based security flavor is used, a
 minimal level of protection for the server-to-server copy protocol is
 possible.

Haynes Standards Track [Page 29]

RFC 7862 NFSv4.2 November 2016

 The biggest issue is that there is a lack of a strong security method
 to allow the source server and destination server to identify
 themselves to each other. A further complication is that in a
 multihomed environment the destination server might not contact the
 source server from the same network address specified by the client
 in the COPY_NOTIFY. The cnr_stateid returned from the COPY_NOTIFY
 can be used to uniquely identify the destination server to the source
 server. The use of the cnr_stateid provides initial authentication
 of the destination server but cannot defend against man-in-the-middle
 attacks after authentication or against an eavesdropper that observes
 the opaque stateid on the wire. Other secure communication
 techniques (e.g., IPsec) are necessary to block these attacks.

 Servers SHOULD reject COPY_NOTIFY requests that do not use RPCSEC_GSS
 with privacy, thus ensuring that the cnr_stateid in the COPY_NOTIFY
 reply is encrypted. For the same reason, clients SHOULD send COPY
 requests to the destination using RPCSEC_GSS with privacy.

5. Support for Application I/O Hints

 Applications can issue client I/O hints via posix_fadvise()
 [posix_fadvise] to the NFS client. While this can help the NFS
 client optimize I/O and caching for a file, it does not allow the NFS
 server and its exported file system to do likewise. The IO_ADVISE
 procedure (Section 15.5) is used to communicate the client file
 access patterns to the NFS server. The NFS server, upon receiving an
 IO_ADVISE operation, MAY choose to alter its I/O and caching behavior
 but is under no obligation to do so.

 Application-specific NFS clients such as those used by hypervisors
 and databases can also leverage application hints to communicate
 their specialized requirements.

6. Sparse Files

 A sparse file is a common way of representing a large file without
 having to utilize all of the disk space for it. Consequently, a
 sparse file uses less physical space than its size indicates. This
 means the file contains "holes", byte ranges within the file that
 contain no data. Most modern file systems support sparse files,
 including most UNIX file systems and Microsoft’s New Technology File
 System (NTFS); however, it should be noted that Apple’s Hierarchical
 File System Plus (HFS+) does not. Common examples of sparse files
 include Virtual Machine (VM) OS/disk images, database files, log
 files, and even checkpoint recovery files most commonly used by the
 High-Performance Computing (HPC) community.

Haynes Standards Track [Page 30]

RFC 7862 NFSv4.2 November 2016

 In addition, many modern file systems support the concept of
 "unwritten" or "uninitialized" blocks, which have uninitialized space
 allocated to them on disk but will return zeros until data is written
 to them. Such functionality is already present in the data model of
 the pNFS block/volume layout (see [RFC5663]). Uninitialized blocks
 can be thought of as holes inside a space reservation window.

 If an application reads a hole in a sparse file, the file system must
 return all zeros to the application. For local data access there is
 little penalty, but with NFS these zeros must be transferred back to
 the client. If an application uses the NFS client to read data into
 memory, this wastes time and bandwidth as the application waits for
 the zeros to be transferred.

 A sparse file is typically created by initializing the file to be all
 zeros. Nothing is written to the data in the file; instead, the hole
 is recorded in the metadata for the file. So, an 8G disk image might
 be represented initially by a few hundred bits in the metadata (on
 UNIX file systems, the inode) and nothing on the disk. If the VM
 then writes 100M to a file in the middle of the image, there would
 now be two holes represented in the metadata and 100M in the data.

 No new operation is needed to allow the creation of a sparsely
 populated file; when a file is created and a write occurs past the
 current size of the file, the non-allocated region will either be a
 hole or be filled with zeros. The choice of behavior is dictated by
 the underlying file system and is transparent to the application.
 However, the abilities to read sparse files and to punch holes to
 reinitialize the contents of a file are needed.

 Two new operations -- DEALLOCATE (Section 15.4) and READ_PLUS
 (Section 15.10) -- are introduced. DEALLOCATE allows for the hole
 punching, where an application might want to reset the allocation and
 reservation status of a range of the file. READ_PLUS supports all
 the features of READ but includes an extension to support sparse
 files. READ_PLUS is guaranteed to perform no worse than READ and can
 dramatically improve performance with sparse files. READ_PLUS does
 not depend on pNFS protocol features but can be used by pNFS to
 support sparse files.

6.1. Terminology

 Regular file: An object of file type NF4REG or NF4NAMEDATTR.

 Sparse file: A regular file that contains one or more holes.

 Hole: A byte range within a sparse file that contains all zeros. A
 hole might or might not have space allocated or reserved to it.

Haynes Standards Track [Page 31]

RFC 7862 NFSv4.2 November 2016

6.2. New Operations

6.2.1. READ_PLUS

 READ_PLUS is a new variant of the NFSv4.1 READ operation [RFC5661].
 Besides being able to support all of the data semantics of the READ
 operation, it can also be used by the client and server to
 efficiently transfer holes. Because the client does not know in
 advance whether a hole is present or not, if the client supports
 READ_PLUS and so does the server, then it should always use the
 READ_PLUS operation in preference to the READ operation.

 READ_PLUS extends the response with a new arm representing holes to
 avoid returning data for portions of the file that are initialized to
 zero and may or may not contain a backing store. Returning actual
 data blocks corresponding to holes wastes computational and network
 resources, thus reducing performance.

 When a client sends a READ operation, it is not prepared to accept a
 READ_PLUS-style response providing a compact encoding of the scope of
 holes. If a READ occurs on a sparse file, then the server must
 expand such data to be raw bytes. If a READ occurs in the middle of
 a hole, the server can only send back bytes starting from that
 offset. By contrast, if a READ_PLUS occurs in the middle of a hole,
 the server can send back a range that starts before the offset and
 extends past the requested length.

6.2.2. DEALLOCATE

 The client can use the DEALLOCATE operation on a range of a file as a
 hole punch, which allows the client to avoid the transfer of a
 repetitive pattern of zeros across the network. This hole punch is a
 result of the unreserved space returning all zeros until overwritten.

7. Space Reservation

 Applications want to be able to reserve space for a file, report the
 amount of actual disk space a file occupies, and free up the backing
 space of a file when it is not required.

 One example is the posix_fallocate() operation [posix_fallocate],
 which allows applications to ask for space reservations from the
 operating system, usually to provide a better file layout and reduce
 overhead for random or slow-growing file-appending workloads.

Haynes Standards Track [Page 32]

RFC 7862 NFSv4.2 November 2016

 Another example is space reservation for virtual disks in a
 hypervisor. In virtualized environments, virtual disk files are
 often stored on NFS-mounted volumes. When a hypervisor creates a
 virtual disk file, it often tries to preallocate the space for the
 file so that there are no future allocation-related errors during the
 operation of the VM. Such errors prevent a VM from continuing
 execution and result in downtime.

 Currently, in order to achieve such a guarantee, applications zero
 the entire file. The initial zeroing allocates the backing blocks,
 and all subsequent writes are overwrites of already-allocated blocks.
 This approach is not only inefficient in terms of the amount of I/O
 done; it is also not guaranteed to work on file systems that are
 log-structured or deduplicated. An efficient way of guaranteeing
 space reservation would be beneficial to such applications.

 The new ALLOCATE operation (see Section 15.1) allows a client to
 request a guarantee that space will be available. The ALLOCATE
 operation guarantees that any future writes to the region it was
 successfully called for will not fail with NFS4ERR_NOSPC.

 Another useful feature is the ability to report the number of blocks
 that would be freed when a file is deleted. Currently, NFS reports
 two size attributes:

 size The logical file size of the file.

 space_used The size in bytes that the file occupies on disk.

 While these attributes are sufficient for space accounting in
 traditional file systems, they prove to be inadequate in modern file
 systems that support block-sharing. In such file systems, multiple
 inodes (the metadata portion of the file system object) can point to
 a single block with a block reference count to guard against
 premature freeing. Having a way to tell the number of blocks that
 would be freed if the file was deleted would be useful to
 applications that wish to migrate files when a volume is low on
 space.

 Since virtual disks represent a hard drive in a VM, a virtual disk
 can be viewed as a file system within a file. Since not all blocks
 within a file system are in use, there is an opportunity to reclaim
 blocks that are no longer in use. A call to deallocate blocks could
 result in better space efficiency; less space might be consumed for
 backups after block deallocation.

Haynes Standards Track [Page 33]

RFC 7862 NFSv4.2 November 2016

 The following attribute and operation can be used to resolve these
 issues:

 space_freed This attribute reports the space that would be freed
 when a file is deleted, taking block-sharing into consideration.

 DEALLOCATE This operation deallocates the blocks backing a region of
 the file.

 If space_used of a file is interpreted to mean the size in bytes of
 all disk blocks pointed to by the inode of the file, then shared
 blocks get double-counted, over-reporting the space utilization.
 This also has the adverse effect that the deletion of a file with
 shared blocks frees up less than space_used bytes.

 On the other hand, if space_used is interpreted to mean the size in
 bytes of those disk blocks unique to the inode of the file, then
 shared blocks are not counted in any file, resulting in
 under-reporting of the space utilization.

 For example, two files, A and B, have 10 blocks each. Let six of
 these blocks be shared between them. Thus, the combined space
 utilized by the two files is 14 * BLOCK_SIZE bytes. In the former
 case, the combined space utilization of the two files would be
 reported as 20 * BLOCK_SIZE. However, deleting either would only
 result in 4 * BLOCK_SIZE being freed. Conversely, the latter
 interpretation would report that the space utilization is only
 8 * BLOCK_SIZE.

 Using the space_freed attribute (see Section 12.2.2) is helpful in
 solving this problem. space_freed is the number of blocks that are
 allocated to the given file that would be freed on its deletion. In
 the example, both A and B would report space_freed as 4 * BLOCK_SIZE
 and space_used as 10 * BLOCK_SIZE. If A is deleted, B will report
 space_freed as 10 * BLOCK_SIZE, as the deletion of B would result in
 the deallocation of all 10 blocks.

 Using the space_freed attribute does not solve the problem of space
 being over-reported. However, over-reporting is better than
 under-reporting.

8. Application Data Block Support

 At the OS level, files are contained on disk blocks. Applications
 are also free to impose structure on the data contained in a file and
 thus can define an Application Data Block (ADB) to be such a
 structure. From the application’s viewpoint, it only wants to handle
 ADBs and not raw bytes (see [Strohm11]). An ADB is typically

Haynes Standards Track [Page 34]

RFC 7862 NFSv4.2 November 2016

 comprised of two sections: header and data. The header describes the
 characteristics of the block and can provide a means to detect
 corruption in the data payload. The data section is typically
 initialized to all zeros.

 The format of the header is application specific, but there are two
 main components typically encountered:

 1. An Application Data Block Number (ADBN), which allows the
 application to determine which data block is being referenced.
 This is useful when the client is not storing the blocks in
 contiguous memory, i.e., a logical block number.

 2. Fields to describe the state of the ADB and a means to detect
 block corruption. For both pieces of data, a useful property
 would be that the allowed values are specially selected so that,
 if passed across the network, corruption due to translation
 between big-endian and little-endian architectures is detectable.
 For example, 0xf0dedef0 has the same (32 wide) bit pattern in
 both architectures, making it inappropriate.

 Applications already impose structures on files [Strohm11] and detect
 corruption in data blocks [Ashdown08]. What they are not able to do
 is efficiently transfer and store ADBs. To initialize a file with
 ADBs, the client must send each full ADB to the server, and that must
 be stored on the server.

 This section defines a framework for transferring the ADB from client
 to server and presents one approach to detecting corruption in a
 given ADB implementation.

8.1. Generic Framework

 The representation of the ADB needs to be flexible enough to support
 many different applications. The most basic approach is no
 imposition of a block at all, which entails working with the raw
 bytes. Such an approach would be useful for storing holes, punching
 holes, etc. In more complex deployments, a server might be
 supporting multiple applications, each with their own definition of
 the ADB. One might store the ADBN at the start of the block and then
 have a guard pattern to detect corruption [McDougall07]. The next
 might store the ADBN at an offset of 100 bytes within the block and
 have no guard pattern at all, i.e., existing applications might
 already have well-defined formats for their data blocks.

 The guard pattern can be used to represent the state of the block, to
 protect against corruption, or both. Again, it needs to be able to
 be placed anywhere within the ADB.

Haynes Standards Track [Page 35]

RFC 7862 NFSv4.2 November 2016

 Both the starting offset of the block and the size of the block need
 to be represented. Note that nothing prevents the application from
 defining different-sized blocks in a file.

8.1.1. Data Block Representation

 <CODE BEGINS>

 struct app_data_block4 {
 offset4 adb_offset;
 length4 adb_block_size;
 length4 adb_block_count;
 length4 adb_reloff_blocknum;
 count4 adb_block_num;
 length4 adb_reloff_pattern;
 opaque adb_pattern<>;
 };

 <CODE ENDS>

 The app_data_block4 structure captures the abstraction presented for
 the ADB. The additional fields present are to allow the transmission
 of adb_block_count ADBs at one time. The adb_block_num is used to
 convey the ADBN of the first block in the sequence. Each ADB will
 contain the same adb_pattern string.

 As both adb_block_num and adb_pattern are optional, if either
 adb_reloff_pattern or adb_reloff_blocknum is set to NFS4_UINT64_MAX,
 then the corresponding field is not set in any of the ADBs.

8.2. An Example of Detecting Corruption

 In this section, an example ADB format is defined in which corruption
 can be detected. Note that this is just one possible format and
 means to detect corruption.

 Consider a very basic implementation of an operating system’s disk
 blocks. A block is either data or an indirect block that allows for
 files that are larger than one block. It is desired to be able to
 initialize a block. Lastly, to quickly unlink a file, a block can be
 marked invalid. The contents remain intact; this would enable the OS
 application in question to undelete a file.

Haynes Standards Track [Page 36]

RFC 7862 NFSv4.2 November 2016

 The application defines 4K-sized data blocks, with an 8-byte block
 counter occurring at offset 0 in the block, and with the guard
 pattern occurring at offset 8 inside the block. Furthermore, the
 guard pattern can take one of four states:

 0xfeedface - This is the FREE state and indicates that the ADB
 format has been applied.

 0xcafedead - This is the DATA state and indicates that real data has
 been written to this block.

 0xe4e5c001 - This is the INDIRECT state and indicates that the block
 contains block counter numbers that are chained off of this block.

 0xba1ed4a3 - This is the INVALID state and indicates that the block
 contains data whose contents are garbage.

 Finally, it also defines an 8-byte checksum starting at byte 16 that
 applies to the remaining contents of the block (see [Baira08] for an
 example of using checksums to detect data corruption). If the state
 is FREE, then that checksum is trivially zero. As such, the
 application has no need to transfer the checksum implicitly inside
 the ADB -- it need not make the transfer layer aware of the fact that
 there is a checksum (see [Ashdown08] for an example of checksums used
 to detect corruption in application data blocks).

 Corruption in each ADB can thus be detected:

 o If the guard pattern is anything other than one of the allowed
 values, including all zeros.

 o If the guard pattern is FREE and any other byte in the remainder
 of the ADB is anything other than zero.

 o If the guard pattern is anything other than FREE, then if the
 stored checksum does not match the computed checksum.

 o If the guard pattern is INDIRECT and one of the stored indirect
 block numbers has a value greater than the number of ADBs in
 the file.

 o If the guard pattern is INDIRECT and one of the stored indirect
 block numbers is a duplicate of another stored indirect block
 number.

 As can be seen, the application can detect errors based on the
 combination of the guard pattern state and the checksum but also can
 detect corruption based on the state and the contents of the ADB.

Haynes Standards Track [Page 37]

RFC 7862 NFSv4.2 November 2016

 This last point is important in validating the minimum amount of data
 incorporated into the generic framework. That is, the guard pattern
 is sufficient in allowing applications to design their own corruption
 detection.

 Finally, it is important to note that none of these corruption checks
 occur in the transport layer. The server and client components are
 totally unaware of the file format and might report everything as
 being transferred correctly, even in cases where the application
 detects corruption.

8.3. An Example of READ_PLUS

 The hypothetical application presented in Section 8.2 can be used to
 illustrate how READ_PLUS would return an array of results. A file is
 created and initialized with 100 4K ADBs in the FREE state with the
 WRITE_SAME operation (see Section 15.12):

 WRITE_SAME {0, 4K, 100, 0, 0, 8, 0xfeedface}

 Further, assume that the application writes a single ADB at 16K,
 changing the guard pattern to 0xcafedead; then there would be in
 memory:

 0K -> (4K - 1) : 00 00 00 00 ... fe ed fa ce 00 00 ... 00
 4K -> (8K - 1) : 00 00 00 01 ... fe ed fa ce 00 00 ... 00
 8K -> (12K - 1) : 00 00 00 02 ... fe ed fa ce 00 00 ... 00
 12K -> (16K - 1) : 00 00 00 03 ... fe ed fa ce 00 00 ... 00
 16K -> (20K - 1) : 00 00 00 04 ... ca fe de ad 00 00 ... 00
 20K -> (24K - 1) : 00 00 00 05 ... fe ed fa ce 00 00 ... 00
 24K -> (28K - 1) : 00 00 00 06 ... fe ed fa ce 00 00 ... 00
 ...
 396K -> (400K - 1) : 00 00 00 63 ... fe ed fa ce 00 00 ... 00

 And when the client did a READ_PLUS of 64K at the start of the file,
 it could get back a result of data:

 0K -> (4K - 1) : 00 00 00 00 ... fe ed fa ce 00 00 ... 00
 4K -> (8K - 1) : 00 00 00 01 ... fe ed fa ce 00 00 ... 00
 8K -> (12K - 1) : 00 00 00 02 ... fe ed fa ce 00 00 ... 00
 12K -> (16K - 1) : 00 00 00 03 ... fe ed fa ce 00 00 ... 00
 16K -> (20K - 1) : 00 00 00 04 ... ca fe de ad 00 00 ... 00
 20K -> (24K - 1) : 00 00 00 05 ... fe ed fa ce 00 00 ... 00
 24K -> (28K - 1) : 00 00 00 06 ... fe ed fa ce 00 00 ... 00
 ...
 62K -> (64K - 1) : 00 00 00 15 ... fe ed fa ce 00 00 ... 00

Haynes Standards Track [Page 38]

RFC 7862 NFSv4.2 November 2016

8.4. An Example of Zeroing Space

 A simpler use case for WRITE_SAME is applications that want to
 efficiently zero out a file, but do not want to modify space
 reservations. This can easily be achieved by a call to WRITE_SAME
 without an ADB block numbers and pattern, e.g.:

 WRITE_SAME {0, 1K, 10000, 0, 0, 0, 0}

9. Labeled NFS

 Access control models such as UNIX permissions or Access Control
 Lists (ACLs) are commonly referred to as Discretionary Access Control
 (DAC) models. These systems base their access decisions on user
 identity and resource ownership. In contrast, Mandatory Access
 Control (MAC) models base their access control decisions on the label
 on the subject (usually a process) and the object it wishes to access
 [RFC4949]. These labels may contain user identity information but
 usually contain additional information. In DAC systems, users are
 free to specify the access rules for resources that they own. MAC
 models base their security decisions on a system-wide policy --
 established by an administrator or organization -- that the users do
 not have the ability to override. In this section, a MAC model is
 added to NFSv4.2.

 First, a method is provided for transporting and storing security
 label data on NFSv4 file objects. Security labels have several
 semantics that are met by NFSv4 recommended attributes such as the
 ability to set the label value upon object creation. Access control
 on these attributes is done through a combination of two mechanisms.
 As with other recommended attributes on file objects, the usual DAC
 checks, based on the ACLs and permission bits, will be performed to
 ensure that proper file ownership is enforced. In addition, a MAC
 system MAY be employed on the client, server, or both to enforce
 additional policy on what subjects may modify security label
 information.

 Second, a method is described for the client to determine if an NFSv4
 file object security label has changed. A client that needs to know
 if a label on a file or set of files is going to change SHOULD
 request a delegation on each labeled file. In order to change such a
 security label, the server will have to recall delegations on any
 file affected by the label change, so informing clients of the label
 change.

Haynes Standards Track [Page 39]

RFC 7862 NFSv4.2 November 2016

 An additional useful feature would be modification to the RPC layer
 used by NFSv4 to allow RPCs to assert client process subject security
 labels and enable the enforcement of Full Mode as described in
 Section 9.5.1. Such modifications are outside the scope of this
 document (see [RFC7861]).

9.1. Definitions

 Label Format Specifier (LFS): an identifier used by the client to
 establish the syntactic format of the security label and the
 semantic meaning of its components. LFSs exist in a registry
 associated with documents describing the format and semantics of
 the label.

 Security Label Format Selection Registry: the IANA registry (see
 [RFC7569]) containing all registered LFSs, along with references
 to the documents that describe the syntactic format and semantics
 of the security label.

 Policy Identifier (PI): an optional part of the definition of an
 LFS. The PI allows clients and servers to identify specific
 security policies.

 Object: a passive resource within the system that is to be
 protected. Objects can be entities such as files, directories,
 pipes, sockets, and many other system resources relevant to the
 protection of the system state.

 Subject: an active entity, usually a process that is requesting
 access to an object.

 MAC-Aware: a server that can transmit and store object labels.

 MAC-Functional: a client or server that is Labeled NFS enabled.
 Such a system can interpret labels and apply policies based on the
 security system.

 Multi-Level Security (MLS): a traditional model where objects are
 given a sensitivity level (Unclassified, Secret, Top Secret, etc.)
 and a category set (see [LB96], [RFC1108], [RFC2401], and
 [RFC4949]).

 (Note: RFC 2401 has been obsoleted by RFC 4301, but we list
 RFC 2401 here because RFC 4301 does not discuss MLS.)

Haynes Standards Track [Page 40]

RFC 7862 NFSv4.2 November 2016

9.2. MAC Security Attribute

 MAC models base access decisions on security attributes bound to
 subjects (usually processes) and objects (for NFS, file objects).
 This information can range from a user identity for an identity-based
 MAC model, sensitivity levels for MLS, or a type for type
 enforcement. These models base their decisions on different
 criteria, but the semantics of the security attribute remain the
 same. The semantics required by the security attribute are listed
 below:

 o MUST provide flexibility with respect to the MAC model.

 o MUST provide the ability to atomically set security information
 upon object creation.

 o MUST provide the ability to enforce access control decisions on
 both the client and the server.

 o MUST NOT expose an object to either the client or server namespace
 before its security information has been bound to it.

 NFSv4 implements the MAC security attribute as a recommended
 attribute. This attribute has a fixed format and semantics, which
 conflicts with the flexible nature of security attributes in general.
 To resolve this, the MAC security attribute consists of two
 components. The first component is an LFS, as defined in [RFC7569],
 to allow for interoperability between MAC mechanisms. The second
 component is an opaque field, which is the actual security attribute
 data. To allow for various MAC models, NFSv4 should be used solely
 as a transport mechanism for the security attribute. It is the
 responsibility of the endpoints to consume the security attribute and
 make access decisions based on their respective models. In addition,
 creation of objects through OPEN and CREATE allows the security
 attribute to be specified upon creation. By providing an atomic
 create and set operation for the security attribute, it is possible
 to enforce the second and fourth requirements listed above. The
 recommended attribute FATTR4_SEC_LABEL (see Section 12.2.4) will be
 used to satisfy this requirement.

9.2.1. Delegations

 In the event that a security attribute is changed on the server while
 a client holds a delegation on the file, both the server and the
 client MUST follow the NFSv4.1 protocol (see Section 10 of [RFC5661])
 with respect to attribute changes. It SHOULD flush all changes back
 to the server and relinquish the delegation.

Haynes Standards Track [Page 41]

RFC 7862 NFSv4.2 November 2016

9.2.2. Permission Checking

 It is not feasible to enumerate all possible MAC models and even
 levels of protection within a subset of these models. This means
 that the NFSv4 client and servers cannot be expected to directly make
 access control decisions based on the security attribute. Instead,
 NFSv4 should defer permission checking on this attribute to the host
 system. These checks are performed in addition to existing DAC and
 ACL checks outlined in the NFSv4 protocol. Section 9.5 gives a
 specific example of how the security attribute is handled under a
 particular MAC model.

9.2.3. Object Creation

 When creating files in NFSv4, the OPEN and CREATE operations are
 used. One of the parameters for these operations is an fattr4
 structure containing the attributes the file is to be created with.
 This allows NFSv4 to atomically set the security attribute of files
 upon creation. When a client is MAC-Functional, it must always
 provide the initial security attribute upon file creation. In the
 event that the server is MAC-Functional as well, it should determine
 by policy whether it will accept the attribute from the client or
 instead make the determination itself. If the client is not
 MAC-Functional, then the MAC-Functional server must decide on a
 default label. A more in-depth explanation can be found in
 Section 9.5.

9.2.4. Existing Objects

 Note that under the MAC model, all objects must have labels.
 Therefore, if an existing server is upgraded to include Labeled NFS
 support, then it is the responsibility of the security system to
 define the behavior for existing objects.

9.2.5. Label Changes

 Consider a Guest Mode system (Section 9.5.3) in which the clients
 enforce MAC checks and the server has only a DAC security system that
 stores the labels along with the file data. In this type of system,
 a user with the appropriate DAC credentials on a client with poorly
 configured or disabled MAC labeling enforcement is allowed access to
 the file label (and data) on the server and can change the label.

Haynes Standards Track [Page 42]

RFC 7862 NFSv4.2 November 2016

 Clients that need to know if a label on a file or set of files has
 changed SHOULD request a delegation on each labeled file so that a
 label change by another client will be known via the process
 described in Section 9.2.1, which must be followed: the delegation
 will be recalled, which effectively notifies the client of the
 change.

 Note that the MAC security policies on a client can be such that the
 client does not have access to the file unless it has a delegation.

9.3. pNFS Considerations

 The new FATTR4_SEC_LABEL attribute is metadata information, and as
 such the storage device is not aware of the value contained on the
 metadata server. Fortunately, the NFSv4.1 protocol [RFC5661] already
 has provisions for doing access-level checks from the storage device
 to the metadata server. In order for the storage device to validate
 the subject label presented by the client, it SHOULD utilize this
 mechanism.

9.4. Discovery of Server Labeled NFS Support

 The server can easily determine that a client supports Labeled NFS
 when it queries for the FATTR4_SEC_LABEL label for an object.
 Further, it can then determine which LFS the client understands. The
 client might want to discover whether the server supports Labeled NFS
 and which LFS the server supports.

 The following COMPOUND MUST NOT be denied by any MAC label check:

 PUTROOTFH, GETATTR {FATTR4_SEC_LABEL}

 Note that the server might have imposed a security flavor on the root
 that precludes such access. That is, if the server requires
 Kerberized access and the client presents a COMPOUND with AUTH_SYS,
 then the server is allowed to return NFS4ERR_WRONGSEC in this case.
 But if the client presents a correct security flavor, then the server
 MUST return the FATTR4_SEC_LABEL attribute with the supported LFS
 filled in.

9.5. MAC Security NFS Modes of Operation

 A system using Labeled NFS may operate in three modes (see Section 4
 of [RFC7204]). The first mode provides the most protection and is
 called "Full Mode". In this mode, both the client and server
 implement a MAC model allowing each end to make an access control
 decision. The second mode is a subset of the Full Mode and is called
 "Limited Server Mode". In this mode, the server cannot enforce the

Haynes Standards Track [Page 43]

RFC 7862 NFSv4.2 November 2016

 labels, but it can store and transmit them. The remaining mode is
 called the "Guest Mode"; in this mode, one end of the connection is
 not implementing a MAC model and thus offers less protection than
 Full Mode.

9.5.1. Full Mode

 Full Mode environments consist of MAC-Functional NFSv4 servers and
 clients and may be composed of mixed MAC models and policies. The
 system requires that both the client and server have an opportunity
 to perform an access control check based on all relevant information
 within the network. The file object security attribute is provided
 using the mechanism described in Section 9.2.

 Fully MAC-Functional NFSv4 servers are not possible in the absence of
 RPCSEC_GSSv3 [RFC7861] support for client process subject label
 assertion. However, servers may make decisions based on the RPC
 credential information available.

9.5.1.1. Initial Labeling and Translation

 The ability to create a file is an action that a MAC model may wish
 to mediate. The client is given the responsibility to determine the
 initial security attribute to be placed on a file. This allows the
 client to make a decision as to the acceptable security attribute to
 create a file with before sending the request to the server. Once
 the server receives the creation request from the client, it may
 choose to evaluate if the security attribute is acceptable.

 Security attributes on the client and server may vary based on MAC
 model and policy. To handle this, the security attribute field has
 an LFS component. This component is a mechanism for the host to
 identify the format and meaning of the opaque portion of the security
 attribute. A Full Mode environment may contain hosts operating in
 several different LFSs. In this case, a mechanism for translating
 the opaque portion of the security attribute is needed. The actual
 translation function will vary based on MAC model and policy and is
 outside the scope of this document. If a translation is unavailable
 for a given LFS, then the request MUST be denied. Another recourse
 is to allow the host to provide a fallback mapping for unknown
 security attributes.

9.5.1.2. Policy Enforcement

 In Full Mode, access control decisions are made by both the clients
 and servers. When a client makes a request, it takes the security
 attribute from the requesting process and makes an access control
 decision based on that attribute and the security attribute of the

Haynes Standards Track [Page 44]

RFC 7862 NFSv4.2 November 2016

 object it is trying to access. If the client denies that access, an
 RPC to the server is never made. If, however, the access is allowed,
 the client will make a call to the NFS server.

 When the server receives the request from the client, it uses any
 credential information conveyed in the RPC request and the attributes
 of the object the client is trying to access to make an access
 control decision. If the server’s policy allows this access, it will
 fulfill the client’s request; otherwise, it will return
 NFS4ERR_ACCESS.

 Future protocol extensions may also allow the server to factor into
 the decision a security label extracted from the RPC request.

 Implementations MAY validate security attributes supplied over the
 network to ensure that they are within a set of attributes permitted
 from a specific peer and, if not, reject them. Note that a system
 may permit a different set of attributes to be accepted from
 each peer.

9.5.2. Limited Server Mode

 A Limited Server mode (see Section 4.2 of [RFC7204]) consists of a
 server that is label aware but does not enforce policies. Such a
 server will store and retrieve all object labels presented by clients
 and will utilize the methods described in Section 9.2.5 to allow the
 clients to detect changing labels, but may not factor the label into
 access decisions. Instead, it will expect the clients to enforce all
 such access locally.

9.5.3. Guest Mode

 Guest Mode implies that either the client or the server does not
 handle labels. If the client is not Labeled NFS aware, then it will
 not offer subject labels to the server. The server is the only
 entity enforcing policy and may selectively provide standard NFS
 services to clients based on their authentication credentials and/or
 associated network attributes (e.g., IP address, network interface).
 The level of trust and access extended to a client in this mode is
 configuration specific. If the server is not Labeled NFS aware, then
 it will not return object labels to the client. Clients in this
 environment may consist of groups implementing different MAC model
 policies. The system requires that all clients in the environment be
 responsible for access control checks.

Haynes Standards Track [Page 45]

RFC 7862 NFSv4.2 November 2016

9.6. Security Considerations for Labeled NFS

 Depending on the level of protection the MAC system offers, there may
 be a requirement to tightly bind the security attribute to the data.

 When only one of the client or server enforces labels, it is
 important to realize that the other side is not enforcing MAC
 protections. Alternate methods might be in use to handle the lack of
 MAC support, and care should be taken to identify and mitigate
 threats from possible tampering outside of these methods.

 An example of this is that a server that modifies READDIR or LOOKUP
 results based on the client’s subject label might want to always
 construct the same subject label for a client that does not present
 one. This will prevent a non-Labeled NFS client from mixing entries
 in the directory cache.

10. Sharing Change Attribute Implementation Characteristics with NFSv4
 Clients

 Although both the NFSv4 [RFC7530] and NFSv4.1 [RFC5661] protocols
 define the change attribute as being mandatory to implement, there is
 little in the way of guidance as to its construction. The only
 mandated constraint is that the value must change whenever the file
 data or metadata changes.

 While this allows for a wide range of implementations, it also leaves
 the client with no way to determine which is the most recent value
 for the change attribute in a case where several RPCs have been
 issued in parallel. In other words, if two COMPOUNDs, both
 containing WRITE and GETATTR requests for the same file, have been
 issued in parallel, how does the client determine which of the two
 change attribute values returned in the replies to the GETATTR
 requests corresponds to the most recent state of the file? In some
 cases, the only recourse may be to send another COMPOUND containing a
 third GETATTR that is fully serialized with the first two.

 NFSv4.2 avoids this kind of inefficiency by allowing the server to
 share details about how the change attribute is expected to evolve,
 so that the client may immediately determine which, out of the
 several change attribute values returned by the server, is the most
 recent. change_attr_type is defined as a new recommended attribute
 (see Section 12.2.3) and is a per-file system attribute.

Haynes Standards Track [Page 46]

RFC 7862 NFSv4.2 November 2016

11. Error Values

 NFS error numbers are assigned to failed operations within a COMPOUND
 (COMPOUND or CB_COMPOUND) request. A COMPOUND request contains a
 number of NFS operations that have their results encoded in sequence
 in a COMPOUND reply. The results of successful operations will
 consist of an NFS4_OK status followed by the encoded results of the
 operation. If an NFS operation fails, an error status will be
 entered in the reply and the COMPOUND request will be terminated.

11.1. Error Definitions

 +-------------------------+--------+------------------+
 | Error | Number | Description |
 +-------------------------+--------+------------------+
 | NFS4ERR_BADLABEL | 10093 | Section 11.1.3.1 |
 | NFS4ERR_OFFLOAD_DENIED | 10091 | Section 11.1.2.1 |
 | NFS4ERR_OFFLOAD_NO_REQS | 10094 | Section 11.1.2.2 |
 | NFS4ERR_PARTNER_NO_AUTH | 10089 | Section 11.1.2.3 |
 | NFS4ERR_PARTNER_NOTSUPP | 10088 | Section 11.1.2.4 |
 | NFS4ERR_UNION_NOTSUPP | 10090 | Section 11.1.1.1 |
 | NFS4ERR_WRONG_LFS | 10092 | Section 11.1.3.2 |
 +-------------------------+--------+------------------+

 Table 1: Protocol Error Definitions

11.1.1. General Errors

 This section deals with errors that are applicable to a broad set of
 different purposes.

11.1.1.1. NFS4ERR_UNION_NOTSUPP (Error Code 10090)

 One of the arguments to the operation is a discriminated union, and
 while the server supports the given operation, it does not support
 the selected arm of the discriminated union.

11.1.2. Server-to-Server Copy Errors

 These errors deal with the interaction between server-to-server
 copies.

11.1.2.1. NFS4ERR_OFFLOAD_DENIED (Error Code 10091)

 The COPY offload operation is supported by both the source and the
 destination, but the destination is not allowing it for this file.
 If the client sees this error, it should fall back to the normal copy
 semantics.

Haynes Standards Track [Page 47]

RFC 7862 NFSv4.2 November 2016

11.1.2.2. NFS4ERR_OFFLOAD_NO_REQS (Error Code 10094)

 The COPY offload operation is supported by both the source and the
 destination, but the destination cannot meet the client requirements
 for either consecutive byte copy or synchronous copy. If the client
 sees this error, it should either relax the requirements (if any) or
 fall back to the normal copy semantics.

11.1.2.3. NFS4ERR_PARTNER_NO_AUTH (Error Code 10089)

 The source server does not authorize a server-to-server COPY offload
 operation. This may be due to the client’s failure to send the
 COPY_NOTIFY operation to the source server, the source server
 receiving a server-to-server copy offload request after the copy
 lease time expired, or some other permission problem.

 The destination server does not authorize a server-to-server COPY
 offload operation. This may be due to an inter-server COPY request
 where the destination server requires RPCSEC_GSSv3 and it is not
 used, or some other permissions problem.

11.1.2.4. NFS4ERR_PARTNER_NOTSUPP (Error Code 10088)

 The remote server does not support the server-to-server COPY offload
 protocol.

11.1.3. Labeled NFS Errors

 These errors are used in Labeled NFS.

11.1.3.1. NFS4ERR_BADLABEL (Error Code 10093)

 The label specified is invalid in some manner.

11.1.3.2. NFS4ERR_WRONG_LFS (Error Code 10092)

 The LFS specified in the subject label is not compatible with the LFS
 in the object label.

Haynes Standards Track [Page 48]

RFC 7862 NFSv4.2 November 2016

11.2. New Operations and Their Valid Errors

 This section contains a table that gives the valid error returns for
 each new NFSv4.2 protocol operation. The error code NFS4_OK
 (indicating no error) is not listed but should be understood to be
 returnable by all new operations. The error values for all other
 operations are defined in Section 15.2 of [RFC5661].

 +----------------+--+
 | Operation | Errors |
 +----------------+--+
ALLOCATE	NFS4ERR_ACCESS, NFS4ERR_ADMIN_REVOKED,
	NFS4ERR_BADXDR, NFS4ERR_BAD_STATEID,
	NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
	NFS4ERR_DELEG_REVOKED, NFS4ERR_DQUOT,
	NFS4ERR_EXPIRED, NFS4ERR_FBIG,
	NFS4ERR_FHEXPIRED, NFS4ERR_GRACE, NFS4ERR_INVAL,
	NFS4ERR_IO, NFS4ERR_ISDIR, NFS4ERR_MOVED,
	NFS4ERR_NOFILEHANDLE, NFS4ERR_NOSPC,
	NFS4ERR_NOTSUPP, NFS4ERR_OLD_STATEID,
	NFS4ERR_OPENMODE, NFS4ERR_OP_NOT_IN_SESSION,
	NFS4ERR_REP_TOO_BIG,
	NFS4ERR_REP_TOO_BIG_TO_CACHE,
	NFS4ERR_REQ_TOO_BIG, NFS4ERR_RETRY_UNCACHED_REP,
	NFS4ERR_ROFS, NFS4ERR_SERVERFAULT,
	NFS4ERR_STALE, NFS4ERR_SYMLINK,
	NFS4ERR_TOO_MANY_OPS, NFS4ERR_WRONG_TYPE
+----------------+--+	
CLONE	NFS4ERR_ACCESS, NFS4ERR_ADMIN_REVOKED,
	NFS4ERR_BADXDR, NFS4ERR_BAD_STATEID,
	NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
	NFS4ERR_DELEG_REVOKED, NFS4ERR_DQUOT,
	NFS4ERR_EXPIRED, NFS4ERR_FBIG,
	NFS4ERR_FHEXPIRED, NFS4ERR_GRACE, NFS4ERR_INVAL,
	NFS4ERR_IO, NFS4ERR_ISDIR, NFS4ERR_MOVED,
	NFS4ERR_NOFILEHANDLE, NFS4ERR_NOSPC,
	NFS4ERR_NOTSUPP, NFS4ERR_OLD_STATEID,
	NFS4ERR_OPENMODE, NFS4ERR_OP_NOT_IN_SESSION,
	NFS4ERR_REP_TOO_BIG,
	NFS4ERR_REP_TOO_BIG_TO_CACHE,
	NFS4ERR_REQ_TOO_BIG, NFS4ERR_RETRY_UNCACHED_REP,
	NFS4ERR_ROFS, NFS4ERR_SERVERFAULT,
	NFS4ERR_STALE, NFS4ERR_SYMLINK,
	NFS4ERR_TOO_MANY_OPS, NFS4ERR_WRONG_TYPE,
	NFS4ERR_XDEV

Haynes Standards Track [Page 49]

RFC 7862 NFSv4.2 November 2016

 +----------------+--+
COPY	NFS4ERR_ACCESS, NFS4ERR_ADMIN_REVOKED,
	NFS4ERR_BADXDR, NFS4ERR_BAD_STATEID,
	NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
	NFS4ERR_DELEG_REVOKED, NFS4ERR_DQUOT,
	NFS4ERR_EXPIRED, NFS4ERR_FBIG,
	NFS4ERR_FHEXPIRED, NFS4ERR_GRACE, NFS4ERR_INVAL,
	NFS4ERR_IO, NFS4ERR_ISDIR, NFS4ERR_LOCKED,
	NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE,
	NFS4ERR_NOSPC, NFS4ERR_OFFLOAD_DENIED,
	NFS4ERR_OLD_STATEID, NFS4ERR_OPENMODE,
	NFS4ERR_OP_NOT_IN_SESSION,
	NFS4ERR_PARTNER_NO_AUTH,
	NFS4ERR_PARTNER_NOTSUPP, NFS4ERR_PNFS_IO_HOLE,
	NFS4ERR_PNFS_NO_LAYOUT, NFS4ERR_REP_TOO_BIG,
	NFS4ERR_REP_TOO_BIG_TO_CACHE,
	NFS4ERR_REQ_TOO_BIG, NFS4ERR_RETRY_UNCACHED_REP,
	NFS4ERR_ROFS, NFS4ERR_SERVERFAULT,
	NFS4ERR_STALE, NFS4ERR_SYMLINK,
	NFS4ERR_TOO_MANY_OPS, NFS4ERR_WRONG_TYPE
+----------------+--+	
COPY_NOTIFY	NFS4ERR_ACCESS, NFS4ERR_ADMIN_REVOKED,
	NFS4ERR_BADXDR, NFS4ERR_BAD_STATEID,
	NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
	NFS4ERR_DELEG_REVOKED, NFS4ERR_EXPIRED,
	NFS4ERR_FHEXPIRED, NFS4ERR_GRACE, NFS4ERR_INVAL,
	NFS4ERR_IO, NFS4ERR_ISDIR, NFS4ERR_LOCKED,
	NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE,
	NFS4ERR_OLD_STATEID, NFS4ERR_OPENMODE,
	NFS4ERR_OP_NOT_IN_SESSION, NFS4ERR_PNFS_IO_HOLE,
	NFS4ERR_PNFS_NO_LAYOUT, NFS4ERR_REP_TOO_BIG,
	NFS4ERR_REP_TOO_BIG_TO_CACHE,
	NFS4ERR_REQ_TOO_BIG, NFS4ERR_RETRY_UNCACHED_REP,
	NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
	NFS4ERR_SYMLINK, NFS4ERR_TOO_MANY_OPS,
	NFS4ERR_WRONG_TYPE
+----------------+--+	
DEALLOCATE	NFS4ERR_ACCESS, NFS4ERR_ADMIN_REVOKED,
	NFS4ERR_BADXDR, NFS4ERR_BAD_STATEID,
	NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
	NFS4ERR_DELEG_REVOKED, NFS4ERR_EXPIRED,
	NFS4ERR_FBIG, NFS4ERR_FHEXPIRED, NFS4ERR_GRACE,
	NFS4ERR_INVAL, NFS4ERR_IO, NFS4ERR_ISDIR,
	NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE,
	NFS4ERR_NOTSUPP, NFS4ERR_OLD_STATEID,
	NFS4ERR_OPENMODE, NFS4ERR_OP_NOT_IN_SESSION,
	NFS4ERR_REP_TOO_BIG,
	NFS4ERR_REP_TOO_BIG_TO_CACHE,

Haynes Standards Track [Page 50]

RFC 7862 NFSv4.2 November 2016

	NFS4ERR_REQ_TOO_BIG, NFS4ERR_RETRY_UNCACHED_REP,
	NFS4ERR_ROFS, NFS4ERR_SERVERFAULT,
	NFS4ERR_STALE, NFS4ERR_SYMLINK,
	NFS4ERR_TOO_MANY_OPS, NFS4ERR_WRONG_TYPE
+----------------+--+	
GETDEVICELIST	NFS4ERR_NOTSUPP
+----------------+--+	
IO_ADVISE	NFS4ERR_ACCESS, NFS4ERR_ADMIN_REVOKED,
	NFS4ERR_BADXDR, NFS4ERR_BAD_STATEID,
	NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
	NFS4ERR_DELEG_REVOKED, NFS4ERR_EXPIRED,
	NFS4ERR_FBIG, NFS4ERR_FHEXPIRED, NFS4ERR_GRACE,
	NFS4ERR_INVAL, NFS4ERR_IO, NFS4ERR_ISDIR,
	NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE,
	NFS4ERR_NOTSUPP, NFS4ERR_OLD_STATEID,
	NFS4ERR_OP_NOT_IN_SESSION,
	NFS4ERR_RETRY_UNCACHED_REP, NFS4ERR_SERVERFAULT,
	NFS4ERR_STALE, NFS4ERR_SYMLINK,
	NFS4ERR_TOO_MANY_OPS, NFS4ERR_WRONG_TYPE
+----------------+--+	
LAYOUTERROR	NFS4ERR_ADMIN_REVOKED, NFS4ERR_BADXDR,
	NFS4ERR_BAD_STATEID, NFS4ERR_DEADSESSION,
	NFS4ERR_DELAY, NFS4ERR_DELEG_REVOKED,
	NFS4ERR_EXPIRED, NFS4ERR_FHEXPIRED,
	NFS4ERR_GRACE, NFS4ERR_INVAL, NFS4ERR_ISDIR,
	NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE,
	NFS4ERR_NOTSUPP, NFS4ERR_NO_GRACE,
	NFS4ERR_OLD_STATEID, NFS4ERR_OP_NOT_IN_SESSION,
	NFS4ERR_REP_TOO_BIG,
	NFS4ERR_REP_TOO_BIG_TO_CACHE,
	NFS4ERR_REQ_TOO_BIG, NFS4ERR_RETRY_UNCACHED_REP,
	NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
	NFS4ERR_TOO_MANY_OPS,
	NFS4ERR_UNKNOWN_LAYOUTTYPE, NFS4ERR_WRONG_CRED,
	NFS4ERR_WRONG_TYPE
+----------------+--+	
LAYOUTSTATS	NFS4ERR_ADMIN_REVOKED, NFS4ERR_BADXDR,
	NFS4ERR_BAD_STATEID, NFS4ERR_DEADSESSION,
	NFS4ERR_DELAY, NFS4ERR_DELEG_REVOKED,
	NFS4ERR_EXPIRED, NFS4ERR_FHEXPIRED,
	NFS4ERR_GRACE, NFS4ERR_INVAL, NFS4ERR_ISDIR,
	NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE,
	NFS4ERR_NOTSUPP, NFS4ERR_NO_GRACE,
	NFS4ERR_OLD_STATEID, NFS4ERR_OP_NOT_IN_SESSION,
	NFS4ERR_REP_TOO_BIG,
	NFS4ERR_REP_TOO_BIG_TO_CACHE,
	NFS4ERR_REQ_TOO_BIG, NFS4ERR_RETRY_UNCACHED_REP,
	NFS4ERR_SERVERFAULT, NFS4ERR_STALE,

Haynes Standards Track [Page 51]

RFC 7862 NFSv4.2 November 2016

	NFS4ERR_TOO_MANY_OPS,
	NFS4ERR_UNKNOWN_LAYOUTTYPE, NFS4ERR_WRONG_CRED,
	NFS4ERR_WRONG_TYPE
+----------------+--+	
OFFLOAD_CANCEL	NFS4ERR_ADMIN_REVOKED, NFS4ERR_BADXDR,
	NFS4ERR_BAD_STATEID, NFS4ERR_COMPLETE_ALREADY,
	NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
	NFS4ERR_EXPIRED, NFS4ERR_GRACE, NFS4ERR_NOTSUPP,
	NFS4ERR_OLD_STATEID, NFS4ERR_OP_NOT_IN_SESSION,
	NFS4ERR_SERVERFAULT, NFS4ERR_TOO_MANY_OPS
+----------------+--+	
OFFLOAD_STATUS	NFS4ERR_ADMIN_REVOKED, NFS4ERR_BADXDR,
	NFS4ERR_BAD_STATEID, NFS4ERR_COMPLETE_ALREADY,
	NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
	NFS4ERR_EXPIRED, NFS4ERR_GRACE, NFS4ERR_NOTSUPP,
	NFS4ERR_OLD_STATEID, NFS4ERR_OP_NOT_IN_SESSION,
	NFS4ERR_SERVERFAULT, NFS4ERR_TOO_MANY_OPS
+----------------+--+	
READ_PLUS	NFS4ERR_ACCESS, NFS4ERR_ADMIN_REVOKED,
	NFS4ERR_BADXDR, NFS4ERR_BAD_STATEID,
	NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
	NFS4ERR_DELEG_REVOKED, NFS4ERR_EXPIRED,
	NFS4ERR_FHEXPIRED, NFS4ERR_GRACE, NFS4ERR_INVAL,
	NFS4ERR_IO, NFS4ERR_ISDIR, NFS4ERR_LOCKED,
	NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE,
	NFS4ERR_NOTSUPP, NFS4ERR_OLD_STATEID,
	NFS4ERR_OPENMODE, NFS4ERR_OP_NOT_IN_SESSION,
	NFS4ERR_PARTNER_NO_AUTH, NFS4ERR_PNFS_IO_HOLE,
	NFS4ERR_PNFS_NO_LAYOUT, NFS4ERR_REP_TOO_BIG,
	NFS4ERR_REP_TOO_BIG_TO_CACHE,
	NFS4ERR_REQ_TOO_BIG, NFS4ERR_RETRY_UNCACHED_REP,
	NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
	NFS4ERR_SYMLINK, NFS4ERR_TOO_MANY_OPS,
	NFS4ERR_WRONG_TYPE
+----------------+--+	
SEEK	NFS4ERR_ACCESS, NFS4ERR_ADMIN_REVOKED,
	NFS4ERR_BADXDR, NFS4ERR_BAD_STATEID,
	NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
	NFS4ERR_DELEG_REVOKED, NFS4ERR_EXPIRED,
	NFS4ERR_FHEXPIRED, NFS4ERR_GRACE, NFS4ERR_INVAL,
	NFS4ERR_IO, NFS4ERR_ISDIR, NFS4ERR_LOCKED,
	NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE,
	NFS4ERR_NOTSUPP, NFS4ERR_OLD_STATEID,
	NFS4ERR_OPENMODE, NFS4ERR_OP_NOT_IN_SESSION,
	NFS4ERR_PNFS_IO_HOLE, NFS4ERR_PNFS_NO_LAYOUT,
	NFS4ERR_REP_TOO_BIG,
	NFS4ERR_REP_TOO_BIG_TO_CACHE,
	NFS4ERR_REQ_TOO_BIG, NFS4ERR_RETRY_UNCACHED_REP,

Haynes Standards Track [Page 52]

RFC 7862 NFSv4.2 November 2016

	NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
	NFS4ERR_SYMLINK, NFS4ERR_TOO_MANY_OPS,
	NFS4ERR_UNION_NOTSUPP, NFS4ERR_WRONG_TYPE
+----------------+--+	
WRITE_SAME	NFS4ERR_ACCESS, NFS4ERR_ADMIN_REVOKED,
	NFS4ERR_BADXDR, NFS4ERR_BAD_STATEID,
	NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
	NFS4ERR_DELEG_REVOKED, NFS4ERR_DQUOT,
	NFS4ERR_EXPIRED, NFS4ERR_FBIG,
	NFS4ERR_FHEXPIRED, NFS4ERR_GRACE, NFS4ERR_INVAL,
	NFS4ERR_IO, NFS4ERR_ISDIR, NFS4ERR_LOCKED,
	NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE,
	NFS4ERR_NOSPC, NFS4ERR_NOTSUPP,
	NFS4ERR_OLD_STATEID, NFS4ERR_OPENMODE,
	NFS4ERR_OP_NOT_IN_SESSION, NFS4ERR_PNFS_IO_HOLE,
	NFS4ERR_PNFS_NO_LAYOUT, NFS4ERR_REP_TOO_BIG,
	NFS4ERR_REP_TOO_BIG_TO_CACHE,
	NFS4ERR_REQ_TOO_BIG, NFS4ERR_RETRY_UNCACHED_REP,
	NFS4ERR_ROFS, NFS4ERR_SERVERFAULT,
	NFS4ERR_STALE, NFS4ERR_SYMLINK,
	NFS4ERR_TOO_MANY_OPS, NFS4ERR_WRONG_TYPE
 +----------------+--+

 Table 2: Valid Error Returns for Each New Protocol Operation

11.3. New Callback Operations and Their Valid Errors

 This section contains a table that gives the valid error returns for
 each new NFSv4.2 callback operation. The error code NFS4_OK
 (indicating no error) is not listed but should be understood to be
 returnable by all new callback operations. The error values for all
 other callback operations are defined in Section 15.3 of [RFC5661].

 +------------+--+
 | Callback | Errors |
 | Operation | |
 +------------+--+
CB_OFFLOAD	NFS4ERR_BADHANDLE, NFS4ERR_BADXDR,
	NFS4ERR_BAD_STATEID, NFS4ERR_DELAY,
	NFS4ERR_OP_NOT_IN_SESSION, NFS4ERR_REP_TOO_BIG,
	NFS4ERR_REP_TOO_BIG_TO_CACHE, NFS4ERR_REQ_TOO_BIG,
	NFS4ERR_RETRY_UNCACHED_REP, NFS4ERR_SERVERFAULT,
	NFS4ERR_TOO_MANY_OPS
 +------------+--+

 Table 3: Valid Error Returns for Each New Protocol Callback Operation

Haynes Standards Track [Page 53]

RFC 7862 NFSv4.2 November 2016

12. New File Attributes

12.1. New RECOMMENDED Attributes - List and Definition References

 The list of new RECOMMENDED attributes appears in Table 4. The
 meanings of the columns of the table are:

 Name: The name of the attribute.

 Id: The number assigned to the attribute. In the event of conflicts
 between the assigned number and [RFC7863], the latter is
 authoritative, but in such an event, it should be resolved with
 errata to this document and/or [RFC7863]. See [IESG08] for the
 errata process.

 Data Type: The XDR data type of the attribute.

 Acc: Access allowed to the attribute.

 R means read-only (GETATTR may retrieve, SETATTR may not set).

 W means write-only (SETATTR may set, GETATTR may not retrieve).

 R W means read/write (GETATTR may retrieve, SETATTR may set).

 Defined in: The section of this specification that describes the
 attribute.

 +------------------+----+-------------------+-----+----------------+
 | Name | Id | Data Type | Acc | Defined in |
 +------------------+----+-------------------+-----+----------------+
clone_blksize	77	uint32_t	R	Section 12.2.1
space_freed	78	length4	R	Section 12.2.2
change_attr_type	79	change_attr_type4	R	Section 12.2.3
sec_label	80	sec_label4	R W	Section 12.2.4
 +------------------+----+-------------------+-----+----------------+

 Table 4: New RECOMMENDED Attributes

12.2. Attribute Definitions

12.2.1. Attribute 77: clone_blksize

 The clone_blksize attribute indicates the granularity of a CLONE
 operation.

Haynes Standards Track [Page 54]

RFC 7862 NFSv4.2 November 2016

12.2.2. Attribute 78: space_freed

 space_freed gives the number of bytes freed if the file is deleted.
 This attribute is read-only and is of type length4. It is a per-file
 attribute.

12.2.3. Attribute 79: change_attr_type

 <CODE BEGINS>

 enum change_attr_type4 {
 NFS4_CHANGE_TYPE_IS_MONOTONIC_INCR = 0,
 NFS4_CHANGE_TYPE_IS_VERSION_COUNTER = 1,
 NFS4_CHANGE_TYPE_IS_VERSION_COUNTER_NOPNFS = 2,
 NFS4_CHANGE_TYPE_IS_TIME_METADATA = 3,
 NFS4_CHANGE_TYPE_IS_UNDEFINED = 4
 };

 <CODE ENDS>

 change_attr_type is a per-file system attribute that enables the
 NFSv4.2 server to provide additional information about how it expects
 the change attribute value to evolve after the file data or metadata
 has changed. While Section 5.4 of [RFC5661] discusses
 per-file system attributes, it is expected that the value of
 change_attr_type will not depend on the value of "homogeneous" and
 will only change in the event of a migration.

 NFS4_CHANGE_TYPE_IS_MONOTONIC_INCR: The change attribute value MUST
 monotonically increase for every atomic change to the file
 attributes, data, or directory contents.

 NFS4_CHANGE_TYPE_IS_VERSION_COUNTER: The change attribute value MUST
 be incremented by one unit for every atomic change to the file
 attributes, data, or directory contents. This property is
 preserved when writing to pNFS data servers.

 NFS4_CHANGE_TYPE_IS_VERSION_COUNTER_NOPNFS: The change attribute
 value MUST be incremented by one unit for every atomic change to
 the file attributes, data, or directory contents. In the case
 where the client is writing to pNFS data servers, the number of
 increments is not guaranteed to exactly match the number of
 WRITEs.

Haynes Standards Track [Page 55]

RFC 7862 NFSv4.2 November 2016

 NFS4_CHANGE_TYPE_IS_TIME_METADATA: The change attribute is
 implemented as suggested in [RFC7530] in terms of the
 time_metadata attribute.

 NFS4_CHANGE_TYPE_IS_UNDEFINED: The change attribute does not take
 values that fit into any of these categories.

 If either NFS4_CHANGE_TYPE_IS_MONOTONIC_INCR,
 NFS4_CHANGE_TYPE_IS_VERSION_COUNTER, or
 NFS4_CHANGE_TYPE_IS_TIME_METADATA is set, then the client knows at
 the very least that the change attribute is monotonically increasing,
 which is sufficient to resolve the question of which value is the
 most recent.

 If the client sees the value NFS4_CHANGE_TYPE_IS_TIME_METADATA, then
 by inspecting the value of the "time_delta" attribute it additionally
 has the option of detecting rogue server implementations that use
 time_metadata in violation of the specification.

 If the client sees NFS4_CHANGE_TYPE_IS_VERSION_COUNTER, it has the
 ability to predict what the resulting change attribute value should
 be after a COMPOUND containing a SETATTR, WRITE, or CREATE. This
 again allows it to detect changes made in parallel by another client.
 The value NFS4_CHANGE_TYPE_IS_VERSION_COUNTER_NOPNFS permits the
 same, but only if the client is not doing pNFS WRITEs.

 Finally, if the server does not support change_attr_type or if
 NFS4_CHANGE_TYPE_IS_UNDEFINED is set, then the server SHOULD make an
 effort to implement the change attribute in terms of the
 time_metadata attribute.

12.2.4. Attribute 80: sec_label

 <CODE BEGINS>

 typedef uint32_t policy4;

 struct labelformat_spec4 {
 policy4 lfs_lfs;
 policy4 lfs_pi;
 };

 struct sec_label4 {
 labelformat_spec4 slai_lfs;
 opaque slai_data<>;
 };

 <CODE ENDS>

Haynes Standards Track [Page 56]

RFC 7862 NFSv4.2 November 2016

 The FATTR4_SEC_LABEL contains an array of two components, with the
 first component being an LFS. It serves to provide the receiving end
 with the information necessary to translate the security attribute
 into a form that is usable by the endpoint. Label Formats assigned
 an LFS may optionally choose to include a Policy Identifier field to
 allow for complex policy deployments. The LFS and the Security Label
 Format Selection Registry are described in detail in [RFC7569]. The
 translation used to interpret the security attribute is not specified
 as part of the protocol, as it may depend on various factors. The
 second component is an opaque section that contains the data of the
 attribute. This component is dependent on the MAC model to interpret
 and enforce.

 In particular, it is the responsibility of the LFS specification to
 define a maximum size for the opaque section, slai_data<>. When
 creating or modifying a label for an object, the client needs to be
 guaranteed that the server will accept a label that is sized
 correctly. By both client and server being part of a specific MAC
 model, the client will be aware of the size.

13. Operations: REQUIRED, RECOMMENDED, or OPTIONAL

 Tables 5 and 6 summarize the operations of the NFSv4.2 protocol and
 the corresponding designations of REQUIRED, RECOMMENDED, and OPTIONAL
 to implement or MUST NOT implement. The "MUST NOT implement"
 designation is reserved for those operations that were defined in
 either NFSv4.0 or NFSv4.1 and MUST NOT be implemented in NFSv4.2.

 For the most part, the REQUIRED, RECOMMENDED, or OPTIONAL designation
 for operations sent by the client is for the server implementation.
 The client is generally required to implement the operations needed
 for the operating environment that it serves. For example, a
 read-only NFSv4.2 client would have no need to implement the WRITE
 operation and is not required to do so.

 The REQUIRED or OPTIONAL designation for callback operations sent by
 the server is for both the client and server. Generally, the client
 has the option of creating the backchannel and sending the operations
 on the forechannel that will be a catalyst for the server sending
 callback operations. A partial exception is CB_RECALL_SLOT; the only
 way the client can avoid supporting this operation is by not creating
 a backchannel.

Haynes Standards Track [Page 57]

RFC 7862 NFSv4.2 November 2016

 Since this is a summary of the operations and their designation,
 there are subtleties that are not presented here. Therefore, if
 there is a question regarding implementation requirements, the
 operation descriptions themselves must be consulted, along with other
 relevant explanatory text within either this specification or the
 NFSv4.1 specification [RFC5661].

 The abbreviations used in the second and third columns of Tables 5
 and 6 are defined as follows:

 REQ: REQUIRED to implement

 REC: RECOMMENDED to implement

 OPT: OPTIONAL to implement

 MNI: MUST NOT implement

 For the NFSv4.2 features that are OPTIONAL, the operations that
 support those features are OPTIONAL, and the server MUST return
 NFS4ERR_NOTSUPP in response to the client’s use of those operations
 when those operations are not implemented by the server. If an
 OPTIONAL feature is supported, it is possible that a set of
 operations related to the feature become REQUIRED to implement. The
 third column of the tables designates the feature(s) and if the
 operation is REQUIRED or OPTIONAL in the presence of support for the
 feature.

 The OPTIONAL features identified and their abbreviations are as
 follows:

 pNFS: Parallel NFS

 FDELG: File Delegations

 DDELG: Directory Delegations

 COPYra: Intra-server Server-Side Copy

 COPYer: Inter-server Server-Side Copy

 ADB: Application Data Blocks

Haynes Standards Track [Page 58]

RFC 7862 NFSv4.2 November 2016

 +----------------------+--------------------+-----------------------+
 | Operation | REQ, REC, OPT, or | Feature (REQ, REC, or |
 | | MNI | OPT) |
 +----------------------+--------------------+-----------------------+
ACCESS	REQ	
ALLOCATE	OPT	
BACKCHANNEL_CTL	REQ	
BIND_CONN_TO_SESSION	REQ	
CLONE	OPT	
CLOSE	REQ	
COMMIT	REQ	
COPY	OPT	COPYer (REQ), COPYra
		(REQ)
COPY_NOTIFY	OPT	COPYer (REQ)
CREATE	REQ	
CREATE_SESSION	REQ	
DEALLOCATE	OPT	
DELEGPURGE	OPT	FDELG (REQ)
DELEGRETURN	OPT	FDELG, DDELG, pNFS
		(REQ)
DESTROY_CLIENTID	REQ	
DESTROY_SESSION	REQ	
EXCHANGE_ID	REQ	
FREE_STATEID	REQ	
GETATTR	REQ	
GETDEVICEINFO	OPT	pNFS (REQ)
GETDEVICELIST	MNI	pNFS (MNI)
GETFH	REQ	
GET_DIR_DELEGATION	OPT	DDELG (REQ)
ILLEGAL	REQ	
IO_ADVISE	OPT	
LAYOUTCOMMIT	OPT	pNFS (REQ)
LAYOUTERROR	OPT	pNFS (OPT)
LAYOUTGET	OPT	pNFS (REQ)
LAYOUTRETURN	OPT	pNFS (REQ)
LAYOUTSTATS	OPT	pNFS (OPT)
LINK	OPT	
LOCK	REQ	
LOCKT	REQ	
LOCKU	REQ	
LOOKUP	REQ	
LOOKUPP	REQ	
NVERIFY	REQ	
OFFLOAD_CANCEL	OPT	COPYer (OPT), COPYra
		(OPT)
OFFLOAD_STATUS	OPT	COPYer (OPT), COPYra
		(OPT)

Haynes Standards Track [Page 59]

RFC 7862 NFSv4.2 November 2016

OPEN	REQ	
OPENATTR	OPT	
OPEN_CONFIRM	MNI	
OPEN_DOWNGRADE	REQ	
PUTFH	REQ	
PUTPUBFH	REQ	
PUTROOTFH	REQ	
READ	REQ	
READDIR	REQ	
READLINK	OPT	
READ_PLUS	OPT	
RECLAIM_COMPLETE	REQ	
RELEASE_LOCKOWNER	MNI	
REMOVE	REQ	
RENAME	REQ	
RENEW	MNI	
RESTOREFH	REQ	
SAVEFH	REQ	
SECINFO	REQ	
SECINFO_NO_NAME	REC	pNFS file layout
		(REQ)
SEEK	OPT	
SEQUENCE	REQ	
SETATTR	REQ	
SETCLIENTID	MNI	
SETCLIENTID_CONFIRM	MNI	
SET_SSV	REQ	
TEST_STATEID	REQ	
VERIFY	REQ	
WANT_DELEGATION	OPT	FDELG (OPT)
WRITE	REQ	
WRITE_SAME	OPT	ADB (REQ)
 +----------------------+--------------------+-----------------------+

 Table 5: Operations

Haynes Standards Track [Page 60]

RFC 7862 NFSv4.2 November 2016

 +-------------------------+------------------+----------------------+
 | Operation | REQ, REC, OPT, | Feature (REQ, REC, |
 | | or MNI | or OPT) |
 +-------------------------+------------------+----------------------+
CB_GETATTR	OPT	FDELG (REQ)
CB_ILLEGAL	REQ	
CB_LAYOUTRECALL	OPT	pNFS (REQ)
CB_NOTIFY	OPT	DDELG (REQ)
CB_NOTIFY_DEVICEID	OPT	pNFS (OPT)
CB_NOTIFY_LOCK	OPT	
CB_OFFLOAD	OPT	COPYer (REQ), COPYra
		(REQ)
CB_PUSH_DELEG	OPT	FDELG (OPT)
CB_RECALL	OPT	FDELG, DDELG, pNFS
		(REQ)
CB_RECALL_ANY	OPT	FDELG, DDELG, pNFS
		(REQ)
CB_RECALL_SLOT	REQ	
CB_RECALLABLE_OBJ_AVAIL	OPT	DDELG, pNFS (REQ)
CB_SEQUENCE	OPT	FDELG, DDELG, pNFS
		(REQ)
CB_WANTS_CANCELLED	OPT	FDELG, DDELG, pNFS
		(REQ)
 +-------------------------+------------------+----------------------+

 Table 6: Callback Operations

14. Modifications to NFSv4.1 Operations

14.1. Operation 42: EXCHANGE_ID - Instantiate the client ID

14.1.1. ARGUMENT

 <CODE BEGINS>

 /* new */
 const EXCHGID4_FLAG_SUPP_FENCE_OPS = 0x00000004;

 <CODE ENDS>

14.1.2. RESULT

 Unchanged

Haynes Standards Track [Page 61]

RFC 7862 NFSv4.2 November 2016

14.1.3. MOTIVATION

 Enterprise applications require guarantees that an operation has
 either aborted or completed. NFSv4.1 provides this guarantee as long
 as the session is alive: simply send a SEQUENCE operation on the same
 slot with a new sequence number, and the successful return of
 SEQUENCE indicates that the previous operation has completed.
 However, if the session is lost, there is no way to know when any
 operations in progress have aborted or completed. In hindsight, the
 NFSv4.1 specification should have mandated that DESTROY_SESSION
 either abort or complete all outstanding operations.

14.1.4. DESCRIPTION

 A client SHOULD request the EXCHGID4_FLAG_SUPP_FENCE_OPS capability
 when it sends an EXCHANGE_ID operation. The server SHOULD set this
 capability in the EXCHANGE_ID reply whether the client requests it or
 not. It is the server’s return that determines whether this
 capability is in effect. When it is in effect, the following will
 occur:

 o The server will not reply to any DESTROY_SESSION invoked with the
 client ID until all operations in progress are completed or
 aborted.

 o The server will not reply to subsequent EXCHANGE_ID operations
 invoked on the same client owner with a new verifier until all
 operations in progress on the client ID’s session are completed or
 aborted.

 o In implementations where the NFS server is deployed as a cluster,
 it does support client ID trunking, and the
 EXCHGID4_FLAG_SUPP_FENCE_OPS capability is enabled, then a
 session ID created on one node of the storage cluster MUST be
 destroyable via DESTROY_SESSION. In addition, DESTROY_CLIENTID
 and an EXCHANGE_ID with a new verifier affect all sessions,
 regardless of what node the sessions were created on.

Haynes Standards Track [Page 62]

RFC 7862 NFSv4.2 November 2016

14.2. Operation 48: GETDEVICELIST - Get all device mappings for a file
 system

14.2.1. ARGUMENT

 <CODE BEGINS>

 struct GETDEVICELIST4args {
 /* CURRENT_FH: object belonging to the file system */
 layouttype4 gdla_layout_type;

 /* number of device IDs to return */
 count4 gdla_maxdevices;

 nfs_cookie4 gdla_cookie;
 verifier4 gdla_cookieverf;
 };

 <CODE ENDS>

14.2.2. RESULT

 <CODE BEGINS>

 struct GETDEVICELIST4resok {
 nfs_cookie4 gdlr_cookie;
 verifier4 gdlr_cookieverf;
 deviceid4 gdlr_deviceid_list<>;
 bool gdlr_eof;
 };

 union GETDEVICELIST4res switch (nfsstat4 gdlr_status) {
 case NFS4_OK:
 GETDEVICELIST4resok gdlr_resok4;
 default:
 void;
 };

 <CODE ENDS>

14.2.3. MOTIVATION

 The GETDEVICELIST operation was introduced in [RFC5661] specifically
 to request a list of devices at file system mount time from block
 layout type servers. However, the use of the GETDEVICELIST operation
 introduces a race condition versus notification about changes to pNFS
 device IDs as provided by CB_NOTIFY_DEVICEID. Implementation
 experience with block layout servers has shown that there is no need

Haynes Standards Track [Page 63]

RFC 7862 NFSv4.2 November 2016

 for GETDEVICELIST. Clients have to be able to request new devices
 using GETDEVICEINFO at any time in response to either a new deviceid
 in LAYOUTGET results or the CB_NOTIFY_DEVICEID callback operation.

14.2.4. DESCRIPTION

 Clients and servers MUST NOT implement the GETDEVICELIST operation.

15. NFSv4.2 Operations

15.1. Operation 59: ALLOCATE - Reserve space in a region of a file

15.1.1. ARGUMENT

 <CODE BEGINS>

 struct ALLOCATE4args {
 /* CURRENT_FH: file */
 stateid4 aa_stateid;
 offset4 aa_offset;
 length4 aa_length;
 };

 <CODE ENDS>

15.1.2. RESULT

 <CODE BEGINS>

 struct ALLOCATE4res {
 nfsstat4 ar_status;
 };

 <CODE ENDS>

15.1.3. DESCRIPTION

 Whenever a client wishes to reserve space for a region in a file, it
 calls the ALLOCATE operation with the current filehandle set to the
 filehandle of the file in question, and with the start offset and
 length in bytes of the region set in aa_offset and aa_length,
 respectively.

 CURRENT_FH must be a regular file. If CURRENT_FH is not a regular
 file, the operation MUST fail and return NFS4ERR_WRONG_TYPE.

Haynes Standards Track [Page 64]

RFC 7862 NFSv4.2 November 2016

 The aa_stateid MUST refer to a stateid that is valid for a WRITE
 operation and follows the rules for stateids in Sections 8.2.5 and
 18.32.3 of [RFC5661].

 The server will ensure that backing blocks are reserved to the region
 specified by aa_offset and aa_length, and that no future writes into
 this region will return NFS4ERR_NOSPC. If the region lies partially
 or fully outside the current file size, the file size will be set to
 aa_offset + aa_length implicitly. If the server cannot guarantee
 this, it must return NFS4ERR_NOSPC.

 The ALLOCATE operation can also be used to extend the size of a file
 if the region specified by aa_offset and aa_length extends beyond the
 current file size. In that case, any data outside of the previous
 file size will return zeros when read before data is written to it.

 It is not required that the server allocate the space to the file
 before returning success. The allocation can be deferred; however,
 it must be guaranteed that it will not fail for lack of space. The
 deferral does not result in an asynchronous reply.

 The ALLOCATE operation will result in the space_used and space_freed
 attributes being increased by the number of bytes reserved, unless
 they were previously reserved or written and not shared.

15.2. Operation 60: COPY - Initiate a server-side copy

15.2.1. ARGUMENT

 <CODE BEGINS>

 struct COPY4args {
 /* SAVED_FH: source file */
 /* CURRENT_FH: destination file */
 stateid4 ca_src_stateid;
 stateid4 ca_dst_stateid;
 offset4 ca_src_offset;
 offset4 ca_dst_offset;
 length4 ca_count;
 bool ca_consecutive;
 bool ca_synchronous;
 netloc4 ca_source_server<>;
 };

 <CODE ENDS>

Haynes Standards Track [Page 65]

RFC 7862 NFSv4.2 November 2016

15.2.2. RESULT

 <CODE BEGINS>

 struct write_response4 {
 stateid4 wr_callback_id<1>;
 length4 wr_count;
 stable_how4 wr_committed;
 verifier4 wr_writeverf;
 };

 struct copy_requirements4 {
 bool cr_consecutive;
 bool cr_synchronous;
 };

 struct COPY4resok {
 write_response4 cr_response;
 copy_requirements4 cr_requirements;
 };

 union COPY4res switch (nfsstat4 cr_status) {
 case NFS4_OK:
 COPY4resok cr_resok4;
 case NFS4ERR_OFFLOAD_NO_REQS:
 copy_requirements4 cr_requirements;
 default:
 void;
 };

 <CODE ENDS>

15.2.3. DESCRIPTION

 The COPY operation is used for both intra-server and inter-server
 copies. In both cases, the COPY is always sent from the client to
 the destination server of the file copy. The COPY operation requests
 that a range in the file specified by SAVED_FH be copied to a range
 in the file specified by CURRENT_FH.

 Both SAVED_FH and CURRENT_FH must be regular files. If either
 SAVED_FH or CURRENT_FH is not a regular file, the operation MUST fail
 and return NFS4ERR_WRONG_TYPE.

 SAVED_FH and CURRENT_FH must be different files. If SAVED_FH and
 CURRENT_FH refer to the same file, the operation MUST fail with
 NFS4ERR_INVAL.

Haynes Standards Track [Page 66]

RFC 7862 NFSv4.2 November 2016

 If the request is for an inter-server copy, the source-fh is a
 filehandle from the source server and the COMPOUND procedure is being
 executed on the destination server. In this case, the source-fh is a
 foreign filehandle on the server receiving the COPY request. If
 either PUTFH or SAVEFH checked the validity of the filehandle, the
 operation would likely fail and return NFS4ERR_STALE.

 If a server supports the inter-server copy feature, a PUTFH followed
 by a SAVEFH MUST NOT return NFS4ERR_STALE for either operation.
 These restrictions do not pose substantial difficulties for servers.
 CURRENT_FH and SAVED_FH may be validated in the context of the
 operation referencing them and an NFS4ERR_STALE error returned for an
 invalid filehandle at that point.

 The ca_dst_stateid MUST refer to a stateid that is valid for a WRITE
 operation and follows the rules for stateids in Sections 8.2.5 and
 18.32.3 of [RFC5661]. For an inter-server copy, the ca_src_stateid
 MUST be the cnr_stateid returned from the earlier COPY_NOTIFY
 operation, while for an intra-server copy ca_src_stateid MUST refer
 to a stateid that is valid for a READ operation and follows the rules
 for stateids in Sections 8.2.5 and 18.22.3 of [RFC5661]. If either
 stateid is invalid, then the operation MUST fail.

 The ca_src_offset is the offset within the source file from which the
 data will be read, the ca_dst_offset is the offset within the
 destination file to which the data will be written, and the ca_count
 is the number of bytes that will be copied. An offset of 0 (zero)
 specifies the start of the file. A count of 0 (zero) requests that
 all bytes from ca_src_offset through EOF be copied to the
 destination. If concurrent modifications to the source file overlap
 with the source file region being copied, the data copied may include
 all, some, or none of the modifications. The client can use standard
 NFS operations (e.g., OPEN with OPEN4_SHARE_DENY_WRITE or mandatory
 byte-range locks) to protect against concurrent modifications if
 the client is concerned about this. If the source file’s EOF is
 being modified in parallel with a COPY that specifies a count of
 0 (zero) bytes, the amount of data copied is implementation dependent
 (clients may guard against this case by specifying a non-zero count
 value or preventing modification of the source file as mentioned
 above).

Haynes Standards Track [Page 67]

RFC 7862 NFSv4.2 November 2016

 If the source offset or the source offset plus count is greater than
 the size of the source file, the operation MUST fail with
 NFS4ERR_INVAL. The destination offset or destination offset plus
 count may be greater than the size of the destination file. This
 allows the client to issue parallel copies to implement operations
 such as

 <CODE BEGINS>

 % cat file1 file2 file3 file4 > dest

 <CODE ENDS>

 If the ca_source_server list is specified, then this is an
 inter-server COPY operation and the source file is on a remote
 server. The client is expected to have previously issued a
 successful COPY_NOTIFY request to the remote source server. The
 ca_source_server list MUST be the same as the COPY_NOTIFY response’s
 cnr_source_server list. If the client includes the entries from the
 COPY_NOTIFY response’s cnr_source_server list in the ca_source_server
 list, the source server can indicate a specific copy protocol for the
 destination server to use by returning a URL that specifies both a
 protocol service and server name. Server-to-server copy protocol
 considerations are described in Sections 4.6 and 4.9.1.

 If ca_consecutive is set, then the client has specified that the copy
 protocol selected MUST copy bytes in consecutive order from
 ca_src_offset to ca_count. If the destination server cannot meet
 this requirement, then it MUST return an error of
 NFS4ERR_OFFLOAD_NO_REQS and set cr_consecutive to be FALSE.
 Likewise, if ca_synchronous is set, then the client has required that
 the copy protocol selected MUST perform a synchronous copy. If the
 destination server cannot meet this requirement, then it MUST return
 an error of NFS4ERR_OFFLOAD_NO_REQS and set cr_synchronous to be
 FALSE.

 If both are set by the client, then the destination SHOULD try to
 determine if it can respond to both requirements at the same time.
 If it cannot make that determination, it must set to TRUE the one it
 can and set to FALSE the other. The client, upon getting an
 NFS4ERR_OFFLOAD_NO_REQS error, has to examine both cr_consecutive and
 cr_synchronous against the respective values of ca_consecutive and
 ca_synchronous to determine the possible requirement not met. It
 MUST be prepared for the destination server not being able to
 determine both requirements at the same time.

Haynes Standards Track [Page 68]

RFC 7862 NFSv4.2 November 2016

 Upon receiving the NFS4ERR_OFFLOAD_NO_REQS error, the client has to
 determine whether it wants to re-request the copy with a relaxed set
 of requirements or revert to manually copying the data. If it
 decides to manually copy the data and this is a remote copy, then the
 client is responsible for informing the source that the earlier
 COPY_NOTIFY is no longer valid by sending it an OFFLOAD_CANCEL.

 If the operation does not result in an immediate failure, the server
 will return NFS4_OK.

 If the wr_callback_id is returned, this indicates that an
 asynchronous COPY operation was initiated and a CB_OFFLOAD callback
 will deliver the final results of the operation. The wr_callback_id
 stateid is termed a "copy stateid" in this context. The server is
 given the option of returning the results in a callback because the
 data may require a relatively long period of time to copy.

 If no wr_callback_id is returned, the operation completed
 synchronously and no callback will be issued by the server. The
 completion status of the operation is indicated by cr_status.

 If the copy completes successfully, either synchronously or
 asynchronously, the data copied from the source file to the
 destination file MUST appear identical to the NFS client. However,
 the NFS server’s on-disk representation of the data in the source
 file and destination file MAY differ. For example, the NFS server
 might encrypt, compress, deduplicate, or otherwise represent the
 on-disk data in the source and destination files differently.

 If a failure does occur for a synchronous copy, wr_count will be set
 to the number of bytes copied to the destination file before the
 error occurred. If cr_consecutive is TRUE, then the bytes were
 copied in order. If the failure occurred for an asynchronous copy,
 then the client will have gotten the notification of the consecutive
 copy order when it got the copy stateid. It will be able to
 determine the bytes copied from the coa_bytes_copied in the
 CB_OFFLOAD argument.

 In either case, if cr_consecutive was not TRUE, there is no assurance
 as to exactly which bytes in the range were copied. The client MUST
 assume that there exists a mixture of the original contents of the
 range and the new bytes. If the COPY wrote past the end of the file
 on the destination, then the last byte written to will determine the
 new file size. The contents of any block not written to and past
 the original size of the file will be as if a normal WRITE extended
 the file.

Haynes Standards Track [Page 69]

RFC 7862 NFSv4.2 November 2016

15.3. Operation 61: COPY_NOTIFY - Notify a source server of a future
 copy

15.3.1. ARGUMENT

 <CODE BEGINS>

 struct COPY_NOTIFY4args {
 /* CURRENT_FH: source file */
 stateid4 cna_src_stateid;
 netloc4 cna_destination_server;
 };

 <CODE ENDS>

15.3.2. RESULT

 <CODE BEGINS>

 struct COPY_NOTIFY4resok {
 nfstime4 cnr_lease_time;
 stateid4 cnr_stateid;
 netloc4 cnr_source_server<>;
 };

 union COPY_NOTIFY4res switch (nfsstat4 cnr_status) {
 case NFS4_OK:
 COPY_NOTIFY4resok resok4;
 default:
 void;
 };

 <CODE ENDS>

15.3.3. DESCRIPTION

 This operation is used for an inter-server copy. A client sends this
 operation in a COMPOUND request to the source server to authorize a
 destination server identified by cna_destination_server to read the
 file specified by CURRENT_FH on behalf of the given user.

 The cna_src_stateid MUST refer to either open or locking states
 provided earlier by the server. If it is invalid, then the operation
 MUST fail.

 The cna_destination_server MUST be specified using the netloc4
 network location format. The server is not required to resolve the
 cna_destination_server address before completing this operation.

Haynes Standards Track [Page 70]

RFC 7862 NFSv4.2 November 2016

 If this operation succeeds, the source server will allow the
 cna_destination_server to copy the specified file on behalf of the
 given user as long as both of the following conditions are met:

 o The destination server begins reading the source file before the
 cnr_lease_time expires. If the cnr_lease_time expires while the
 destination server is still reading the source file, the
 destination server is allowed to finish reading the file. If the
 cnr_lease_time expires before the destination server uses READ or
 READ_PLUS to begin the transfer, the source server can use
 NFS4ERR_PARTNER_NO_AUTH to inform the destination server that the
 cnr_lease_time has expired.

 o The client has not issued an OFFLOAD_CANCEL for the same
 combination of user, filehandle, and destination server.

 The cnr_lease_time is chosen by the source server. A cnr_lease_time
 of 0 (zero) indicates an infinite lease. To avoid the need for
 synchronized clocks, copy lease times are granted by the server as a
 time delta. To renew the copy lease time, the client should resend
 the same copy notification request to the source server.

 The cnr_stateid is a copy stateid that uniquely describes the state
 needed on the source server to track the proposed COPY. As defined
 in Section 8.2 of [RFC5661], a stateid is tied to the current
 filehandle, and if the same stateid is presented by two different
 clients, it may refer to different states. As the source does not
 know which netloc4 network location the destination might use to
 establish the COPY operation, it can use the cnr_stateid to identify
 that the destination is operating on behalf of the client. Thus, the
 source server MUST construct copy stateids such that they are
 distinct from all other stateids handed out to clients. These copy
 stateids MUST denote the same set of locks as each of the earlier
 delegation, locking, and open states for the client on the given file
 (see Section 4.3.1).

 A successful response will also contain a list of netloc4 network
 location formats called cnr_source_server, on which the source is
 willing to accept connections from the destination. These might not
 be reachable from the client and might be located on networks to
 which the client has no connection.

 This operation is unnecessary for an intra-server copy.

Haynes Standards Track [Page 71]

RFC 7862 NFSv4.2 November 2016

15.4. Operation 62: DEALLOCATE - Unreserve space in a region of a file

15.4.1. ARGUMENT

 <CODE BEGINS>

 struct DEALLOCATE4args {
 /* CURRENT_FH: file */
 stateid4 da_stateid;
 offset4 da_offset;
 length4 da_length;
 };

 <CODE ENDS>

15.4.2. RESULT

 <CODE BEGINS>

 struct DEALLOCATE4res {
 nfsstat4 dr_status;
 };

 <CODE ENDS>

15.4.3. DESCRIPTION

 Whenever a client wishes to unreserve space for a region in a file,
 it calls the DEALLOCATE operation with the current filehandle set to
 the filehandle of the file in question, and with the start offset and
 length in bytes of the region set in da_offset and da_length,
 respectively. If no space was allocated or reserved for all or parts
 of the region, the DEALLOCATE operation will have no effect for the
 region that already is in unreserved state. All further READs from
 the region passed to DEALLOCATE MUST return zeros until overwritten.

 CURRENT_FH must be a regular file. If CURRENT_FH is not a regular
 file, the operation MUST fail and return NFS4ERR_WRONG_TYPE.

 The da_stateid MUST refer to a stateid that is valid for a WRITE
 operation and follows the rules for stateids in Sections 8.2.5 and
 18.32.3 of [RFC5661].

Haynes Standards Track [Page 72]

RFC 7862 NFSv4.2 November 2016

 Situations may arise where da_offset and/or da_offset + da_length
 will not be aligned to a boundary for which the server does
 allocations or deallocations. For most file systems, this is the
 block size of the file system. In such a case, the server can
 deallocate as many bytes as it can in the region. The blocks that
 cannot be deallocated MUST be zeroed.

 DEALLOCATE will result in the space_used attribute being decreased by
 the number of bytes that were deallocated. The space_freed attribute
 may or may not decrease, depending on the support and whether the
 blocks backing the specified range were shared or not. The size
 attribute will remain unchanged.

15.5. Operation 63: IO_ADVISE - Send client I/O access pattern hints to
 the server

15.5.1. ARGUMENT

 <CODE BEGINS>

 enum IO_ADVISE_type4 {
 IO_ADVISE4_NORMAL = 0,
 IO_ADVISE4_SEQUENTIAL = 1,
 IO_ADVISE4_SEQUENTIAL_BACKWARDS = 2,
 IO_ADVISE4_RANDOM = 3,
 IO_ADVISE4_WILLNEED = 4,
 IO_ADVISE4_WILLNEED_OPPORTUNISTIC = 5,
 IO_ADVISE4_DONTNEED = 6,
 IO_ADVISE4_NOREUSE = 7,
 IO_ADVISE4_READ = 8,
 IO_ADVISE4_WRITE = 9,
 IO_ADVISE4_INIT_PROXIMITY = 10
 };

 struct IO_ADVISE4args {
 /* CURRENT_FH: file */
 stateid4 iaa_stateid;
 offset4 iaa_offset;
 length4 iaa_count;
 bitmap4 iaa_hints;
 };

 <CODE ENDS>

Haynes Standards Track [Page 73]

RFC 7862 NFSv4.2 November 2016

15.5.2. RESULT

 <CODE BEGINS>

 struct IO_ADVISE4resok {
 bitmap4 ior_hints;
 };

 union IO_ADVISE4res switch (nfsstat4 ior_status) {
 case NFS4_OK:
 IO_ADVISE4resok resok4;
 default:
 void;
 };

 <CODE ENDS>

15.5.3. DESCRIPTION

 The IO_ADVISE operation sends an I/O access pattern hint to the
 server for the owner of the stateid for a given byte range specified
 by iar_offset and iar_count. The byte range specified by iaa_offset
 and iaa_count need not currently exist in the file, but the iaa_hints
 will apply to the byte range when it does exist. If iaa_count is 0,
 all data following iaa_offset is specified. The server MAY ignore
 the advice.

 The following are the allowed hints for a stateid holder:

 IO_ADVISE4_NORMAL There is no advice to give. This is the default
 behavior.

 IO_ADVISE4_SEQUENTIAL Expects to access the specified data
 sequentially from lower offsets to higher offsets.

 IO_ADVISE4_SEQUENTIAL_BACKWARDS Expects to access the specified data
 sequentially from higher offsets to lower offsets.

 IO_ADVISE4_RANDOM Expects to access the specified data in a random
 order.

 IO_ADVISE4_WILLNEED Expects to access the specified data in the near
 future.

 IO_ADVISE4_WILLNEED_OPPORTUNISTIC Expects to possibly access the
 data in the near future. This is a speculative hint, and
 therefore the server should prefetch data or indirect blocks only
 if it can be done at a marginal cost.

Haynes Standards Track [Page 74]

RFC 7862 NFSv4.2 November 2016

 IO_ADVISE_DONTNEED Expects that it will not access the specified
 data in the near future.

 IO_ADVISE_NOREUSE Expects to access the specified data once and then
 not reuse it thereafter.

 IO_ADVISE4_READ Expects to read the specified data in the near
 future.

 IO_ADVISE4_WRITE Expects to write the specified data in the near
 future.

 IO_ADVISE4_INIT_PROXIMITY Informs the server that the data in the
 byte range remains important to the client.

 Since IO_ADVISE is a hint, a server SHOULD NOT return an error and
 invalidate an entire COMPOUND request if one of the sent hints in
 iar_hints is not supported by the server. Also, the server MUST NOT
 return an error if the client sends contradictory hints to the
 server, e.g., IO_ADVISE4_SEQUENTIAL and IO_ADVISE4_RANDOM in a single
 IO_ADVISE operation. In these cases, the server MUST return success
 and an ior_hints value that indicates the hint it intends to
 implement. This may mean simply returning IO_ADVISE4_NORMAL.

 The ior_hints returned by the server is primarily for debugging
 purposes, since the server is under no obligation to carry out the
 hints that it describes in the ior_hints result. In addition, while
 the server may have intended to implement the hints returned in
 ior_hints, the server may need to change its handling of a given file
 -- for example, because of memory pressure, additional IO_ADVISE
 hints sent by other clients, or heuristically detected file access
 patterns.

 The server MAY return different advice than what the client
 requested. Some examples include another client advising of a
 different I/O access pattern, another client employing a different
 I/O access pattern, or inability of the server to support the
 requested I/O access pattern.

 Each issuance of the IO_ADVISE operation overrides all previous
 issuances of IO_ADVISE for a given byte range. This effectively
 follows a strategy of "last hint wins" for a given stateid and
 byte range.

 Clients should assume that hints included in an IO_ADVISE operation
 will be forgotten once the file is closed.

Haynes Standards Track [Page 75]

RFC 7862 NFSv4.2 November 2016

15.5.4. IMPLEMENTATION

 The NFS client may choose to issue an IO_ADVISE operation to the
 server in several different instances.

 The most obvious is in direct response to an application’s execution
 of posix_fadvise(). In this case, IO_ADVISE4_WRITE and
 IO_ADVISE4_READ may be set, based upon the type of file access
 specified when the file was opened.

15.5.5. IO_ADVISE4_INIT_PROXIMITY

 The IO_ADVISE4_INIT_PROXIMITY hint is non-POSIX in origin and can be
 used to convey that the client has recently accessed the byte range
 in its own cache. That is, it has not accessed it on the server but
 has accessed it locally. When the server reaches resource
 exhaustion, knowing which data is more important allows the server to
 make better choices about which data to, for example, purge from a
 cache or move to secondary storage. It also informs the server as to
 which delegations are more important, because if delegations are
 working correctly, once delegated to a client and the client has read
 the content for that byte range, a server might never receive another
 READ request for that byte range.

 The IO_ADVISE4_INIT_PROXIMITY hint can also be used in a pNFS setting
 to let the client inform the metadata server as to the I/O statistics
 between the client and the storage devices. The metadata server is
 then free to use this information about client I/O to optimize the
 data storage location.

 This hint is also useful in the case of NFS clients that are network-
 booting from a server. If the first client to be booted sends this
 hint, then it keeps the cache warm for the remaining clients.

15.5.6. pNFS File Layout Data Type Considerations

 The IO_ADVISE considerations for pNFS are very similar to the COMMIT
 considerations for pNFS (see Section 13.7 of [RFC5661]). That is, as
 with COMMIT, some NFS server implementations prefer that IO_ADVISE be
 done on the storage device, and some prefer that it be done on the
 metadata server.

 For the file’s layout type, NFSv4.2 includes an additional hint,
 NFL42_CARE_IO_ADVISE_THRU_MDS, which is valid only on metadata
 servers running NFSv4.2 or higher. ("NFL" stands for "NFS File
 Layout".) Any file’s layout obtained from an NFSv4.1 metadata server
 MUST NOT have NFL42_UFLG_IO_ADVISE_THRU_MDS set. Any file’s layout

Haynes Standards Track [Page 76]

RFC 7862 NFSv4.2 November 2016

 obtained with an NFSv4.2 metadata server MAY have
 NFL42_UFLG_IO_ADVISE_THRU_MDS set. However, if the layout utilizes
 NFSv4.1 storage devices, the IO_ADVISE operation cannot be sent
 to them.

 If NFL42_UFLG_IO_ADVISE_THRU_MDS is set, the client MUST send the
 IO_ADVISE operation to the metadata server in order for it to be
 honored by the storage device. Once the metadata server receives the
 IO_ADVISE operation, it will communicate the advice to each storage
 device.

 If NFL42_UFLG_IO_ADVISE_THRU_MDS is not set, then the client SHOULD
 send an IO_ADVISE operation to the appropriate storage device for the
 specified byte range. While the client MAY always send IO_ADVISE to
 the metadata server, if the server has not set
 NFL42_UFLG_IO_ADVISE_THRU_MDS, the client should expect that such an
 IO_ADVISE is futile. Note that a client SHOULD use the same set of
 arguments on each IO_ADVISE sent to a storage device for the same
 open file reference.

 The server is not required to support different advice for different
 storage devices with the same open file reference.

15.5.6.1. Dense and Sparse Packing Considerations

 The IO_ADVISE operation MUST use the iar_offset and byte range as
 dictated by the presence or absence of NFL4_UFLG_DENSE (see
 Section 13.4.4 of [RFC5661]).

 For example, if NFL4_UFLG_DENSE is present, then (1) a READ or WRITE
 to the storage device for iaa_offset 0 really means iaa_offset 10000
 in the logical file and (2) an IO_ADVISE for iaa_offset 0 means
 iaa_offset 10000 in the logical file.

 For example, if NFL4_UFLG_DENSE is absent, then (1) a READ or WRITE
 to the storage device for iaa_offset 0 really means iaa_offset 0 in
 the logical file and (2) an IO_ADVISE for iaa_offset 0 means
 iaa_offset 0 in the logical file.

Haynes Standards Track [Page 77]

RFC 7862 NFSv4.2 November 2016

 For example, if NFL4_UFLG_DENSE is present, the stripe unit is
 1000 bytes and the stripe count is 10, and the dense storage device
 file is serving iar_offset 0. A READ or WRITE to the storage device
 for iaa_offsets 0, 1000, 2000, and 3000 really means iaa_offsets
 10000, 20000, 30000, and 40000 (implying a stripe count of 10 and a
 stripe unit of 1000), and then an IO_ADVISE sent to the same storage
 device with an iaa_offset of 500 and an iaa_count of 3000 means that
 the IO_ADVISE applies to these byte ranges of the dense storage
 device file:

 - 500 to 999
 - 1000 to 1999
 - 2000 to 2999
 - 3000 to 3499

 That is, the contiguous range 500 to 3499, as specified in IO_ADVISE.

 It also applies to these byte ranges of the logical file:

 - 10500 to 10999 (500 bytes)
 - 20000 to 20999 (1000 bytes)
 - 30000 to 30999 (1000 bytes)
 - 40000 to 40499 (500 bytes)
 (total 3000 bytes)

 For example, if NFL4_UFLG_DENSE is absent, the stripe unit is
 250 bytes, the stripe count is 4, and the sparse storage device file
 is serving iaa_offset 0. Then, a READ or WRITE to the storage device
 for iaa_offsets 0, 1000, 2000, and 3000 really means iaa_offsets 0,
 1000, 2000, and 3000 in the logical file, keeping in mind that in the
 storage device file byte ranges 250 to 999, 1250 to 1999, 2250 to
 2999, and 3250 to 3999 are not accessible. Then, an IO_ADVISE sent
 to the same storage device with an iaa_offset of 500 and an iaa_count
 of 3000 means that the IO_ADVISE applies to these byte ranges of the
 logical file and the sparse storage device file:

 - 500 to 999 (500 bytes) - no effect
 - 1000 to 1249 (250 bytes) - effective
 - 1250 to 1999 (750 bytes) - no effect
 - 2000 to 2249 (250 bytes) - effective
 - 2250 to 2999 (750 bytes) - no effect
 - 3000 to 3249 (250 bytes) - effective
 - 3250 to 3499 (250 bytes) - no effect
 (subtotal 2250 bytes) - no effect
 (subtotal 750 bytes) - effective
 (grand total 3000 bytes) - no effect + effective

Haynes Standards Track [Page 78]

RFC 7862 NFSv4.2 November 2016

 If neither the NFL42_UFLG_IO_ADVISE_THRU_MDS flag nor the
 NFL4_UFLG_DENSE flag is set in the layout, then any IO_ADVISE request
 sent to the data server with a byte range that overlaps stripe units
 that the data server does not serve MUST NOT result in the status
 NFS4ERR_PNFS_IO_HOLE. Instead, the response SHOULD be successful,
 and if the server applies IO_ADVISE hints on any stripe units that
 overlap with the specified range, those hints SHOULD be indicated in
 the response.

15.6. Operation 64: LAYOUTERROR - Provide errors for the layout

15.6.1. ARGUMENT

 <CODE BEGINS>

 struct device_error4 {
 deviceid4 de_deviceid;
 nfsstat4 de_status;
 nfs_opnum4 de_opnum;
 };

 struct LAYOUTERROR4args {
 /* CURRENT_FH: file */
 offset4 lea_offset;
 length4 lea_length;
 stateid4 lea_stateid;
 device_error4 lea_errors<>;
 };

 <CODE ENDS>

15.6.2. RESULT

 <CODE BEGINS>

 struct LAYOUTERROR4res {
 nfsstat4 ler_status;
 };

 <CODE ENDS>

15.6.3. DESCRIPTION

 The client can use LAYOUTERROR to inform the metadata server about
 errors in its interaction with the layout (see Section 12 of
 [RFC5661]) represented by the current filehandle, client ID (derived
 from the session ID in the preceding SEQUENCE operation), byte range
 (lea_offset + lea_length), and lea_stateid.

Haynes Standards Track [Page 79]

RFC 7862 NFSv4.2 November 2016

 Each individual device_error4 describes a single error associated
 with a storage device, which is identified via de_deviceid. If the
 layout type (see Section 12.2.7 of [RFC5661]) supports NFSv4
 operations, then the operation that returned the error is identified
 via de_opnum. If the layout type does not support NFSv4 operations,
 then either (1) it MAY choose to map the operation onto one of the
 allowed operations that can be sent to a storage device with the file
 layout type (see Section 3.3) or (2) it can signal no support for
 operations by marking de_opnum with the ILLEGAL operation. Finally,
 the NFS error value (nfsstat4) encountered is provided via de_status
 and may consist of the following error codes:

 NFS4ERR_NXIO: The client was unable to establish any communication
 with the storage device.

 NFS4ERR_*: The client was able to establish communication with the
 storage device and is returning one of the allowed error codes for
 the operation denoted by de_opnum.

 Note that while the metadata server may return an error associated
 with the layout stateid or the open file, it MUST NOT return an error
 in the processing of the errors. If LAYOUTERROR is in a COMPOUND
 before LAYOUTRETURN, it MUST NOT introduce an error other than what
 LAYOUTRETURN would already encounter.

15.6.4. IMPLEMENTATION

 There are two broad classes of errors: transient and persistent. The
 client SHOULD strive to only use this new mechanism to report
 persistent errors. It MUST be able to deal with transient issues by
 itself. Also, while the client might consider an issue to be
 persistent, it MUST be prepared for the metadata server to consider
 such issues to be transient. A prime example of this is if the
 metadata server fences off a client from either a stateid or a
 filehandle. The client will get an error from the storage device and
 might relay either NFS4ERR_ACCESS or NFS4ERR_BAD_STATEID back to the
 metadata server, with the belief that this is a hard error. If the
 metadata server is informed by the client that there is an error, it
 can safely ignore that. For the metadata server, the mission is
 accomplished in that the client has returned a layout that the
 metadata server had most likely recalled.

Haynes Standards Track [Page 80]

RFC 7862 NFSv4.2 November 2016

 The client might also need to inform the metadata server that it
 cannot reach one or more of the storage devices. While the metadata
 server can detect the connectivity of both of these paths:

 o metadata server to storage device

 o metadata server to client

 it cannot determine if the client and storage device path is working.
 As with the case of the storage device passing errors to the client,
 it must be prepared for the metadata server to consider such outages
 as being transitory.

 Clients are expected to tolerate transient storage device errors, and
 hence clients SHOULD NOT use the LAYOUTERROR error handling for
 device access problems that may be transient. The methods by which a
 client decides whether a device access problem is transient or
 persistent are implementation specific but may include retrying I/Os
 to a data server under appropriate conditions.

 When an I/O to a storage device fails, the client SHOULD retry the
 failed I/O via the metadata server. In this situation, before
 retrying the I/O, the client SHOULD return the layout, or the
 affected portion thereof, and SHOULD indicate which storage device or
 devices was problematic. The client needs to do this when the
 storage device is being unresponsive in order to fence off any failed
 write attempts and ensure that they do not end up overwriting any
 later data being written through the metadata server. If the client
 does not do this, the metadata server MAY issue a layout recall
 callback in order to perform the retried I/O.

 The client needs to be cognizant that since this error handling is
 optional in the metadata server, the metadata server may silently
 ignore this functionality. Also, as the metadata server may consider
 some issues the client reports to be expected, the client might find
 it difficult to detect a metadata server that has not implemented
 error handling via LAYOUTERROR.

 If a metadata server is aware that a storage device is proving
 problematic to a client, the metadata server SHOULD NOT include that
 storage device in any pNFS layouts sent to that client. If the
 metadata server is aware that a storage device is affecting many
 clients, then the metadata server SHOULD NOT include that storage
 device in any pNFS layouts sent out. If a client asks for a new
 layout for the file from the metadata server, it MUST be prepared for
 the metadata server to return that storage device in the layout. The
 metadata server might not have any choice in using the storage
 device, i.e., there might only be one possible layout for the system.

Haynes Standards Track [Page 81]

RFC 7862 NFSv4.2 November 2016

 Also, in the case of existing files, the metadata server might have
 no choice regarding which storage devices to hand out to clients.

 The metadata server is not required to indefinitely retain per-client
 storage device error information. The metadata server is also not
 required to automatically reinstate the use of a previously
 problematic storage device; administrative intervention may be
 required instead.

15.7. Operation 65: LAYOUTSTATS - Provide statistics for the layout

15.7.1. ARGUMENT

 <CODE BEGINS>

 struct layoutupdate4 {
 layouttype4 lou_type;
 opaque lou_body<>;
 };

 struct io_info4 {
 uint64_t ii_count;
 uint64_t ii_bytes;
 };

 struct LAYOUTSTATS4args {
 /* CURRENT_FH: file */
 offset4 lsa_offset;
 length4 lsa_length;
 stateid4 lsa_stateid;
 io_info4 lsa_read;
 io_info4 lsa_write;
 deviceid4 lsa_deviceid;
 layoutupdate4 lsa_layoutupdate;
 };

 <CODE ENDS>

15.7.2. RESULT

 <CODE BEGINS>

 struct LAYOUTSTATS4res {
 nfsstat4 lsr_status;
 };

 <CODE ENDS>

Haynes Standards Track [Page 82]

RFC 7862 NFSv4.2 November 2016

15.7.3. DESCRIPTION

 The client can use LAYOUTSTATS to inform the metadata server about
 its interaction with the layout (see Section 12 of [RFC5661])
 represented by the current filehandle, client ID (derived from the
 session ID in the preceding SEQUENCE operation), byte range
 (lsa_offset and lsa_length), and lsa_stateid. lsa_read and lsa_write
 allow non-layout-type-specific statistics to be reported.
 lsa_deviceid allows the client to specify to which storage device the
 statistics apply. The remaining information the client is presenting
 is specific to the layout type and presented in the lsa_layoutupdate
 field. Each layout type MUST define the contents of lsa_layoutupdate
 in their respective specifications.

 LAYOUTSTATS can be combined with IO_ADVISE (see Section 15.5) to
 augment the decision-making process of how the metadata server
 handles a file. That is, IO_ADVISE lets the server know that a byte
 range has a certain characteristic, but not necessarily the intensity
 of that characteristic.

 The statistics are cumulative, i.e., multiple LAYOUTSTATS updates can
 be in flight at the same time. The metadata server can examine the
 packet’s timestamp to order the different calls. The first
 LAYOUTSTATS sent by the client SHOULD be from the opening of the
 file. The choice of how often to update the metadata server is made
 by the client.

 Note that while the metadata server may return an error associated
 with the layout stateid or the open file, it MUST NOT return an error
 in the processing of the statistics.

Haynes Standards Track [Page 83]

RFC 7862 NFSv4.2 November 2016

15.8. Operation 66: OFFLOAD_CANCEL - Stop an offloaded operation

15.8.1. ARGUMENT

 <CODE BEGINS>

 struct OFFLOAD_CANCEL4args {
 /* CURRENT_FH: file to cancel */
 stateid4 oca_stateid;
 };

 <CODE ENDS>

15.8.2. RESULT

 <CODE BEGINS>

 struct OFFLOAD_CANCEL4res {
 nfsstat4 ocr_status;
 };

 <CODE ENDS>

15.8.3. DESCRIPTION

 OFFLOAD_CANCEL is used by the client to terminate an asynchronous
 operation, which is identified by both CURRENT_FH and the
 oca_stateid. That is, there can be multiple OFFLOAD_CANCEL
 operations acting on the file, and the stateid will identify to the
 server exactly which one is to be stopped. Currently, there are only
 two operations that can decide to be asynchronous: COPY and
 WRITE_SAME.

 In the context of server-to-server copy, the client can send
 OFFLOAD_CANCEL to either the source or destination server, albeit
 with a different stateid. The client uses OFFLOAD_CANCEL to inform
 the destination to stop the active transfer and uses the stateid it
 got back from the COPY operation. The client uses OFFLOAD_CANCEL and
 the stateid it used in the COPY_NOTIFY to inform the source to not
 allow any more copying from the destination.

 OFFLOAD_CANCEL is also useful in situations in which the source
 server granted a very long or infinite lease on the destination
 server’s ability to read the source file and all COPY operations on
 the source file have been completed.

Haynes Standards Track [Page 84]

RFC 7862 NFSv4.2 November 2016

15.9. Operation 67: OFFLOAD_STATUS - Poll for the status of an
 asynchronous operation

15.9.1. ARGUMENT

 <CODE BEGINS>

 struct OFFLOAD_STATUS4args {
 /* CURRENT_FH: destination file */
 stateid4 osa_stateid;
 };

 <CODE ENDS>

15.9.2. RESULT

 <CODE BEGINS>

 struct OFFLOAD_STATUS4resok {
 length4 osr_count;
 nfsstat4 osr_complete<1>;
 };

 union OFFLOAD_STATUS4res switch (nfsstat4 osr_status) {
 case NFS4_OK:
 OFFLOAD_STATUS4resok osr_resok4;
 default:
 void;
 };

 <CODE ENDS>

15.9.3. DESCRIPTION

 OFFLOAD_STATUS can be used by the client to query the progress of an
 asynchronous operation, which is identified by both CURRENT_FH and
 the osa_stateid. If this operation is successful, the number of
 bytes processed is returned to the client in the osr_count field.

 If the optional osr_complete field is present, the asynchronous
 operation has completed. In this case, the status value indicates
 the result of the asynchronous operation. In all cases, the server
 will also deliver the final results of the asynchronous operation in
 a CB_OFFLOAD operation.

 The failure of this operation does not indicate the result of the
 asynchronous operation in any way.

Haynes Standards Track [Page 85]

RFC 7862 NFSv4.2 November 2016

15.10. Operation 68: READ_PLUS - READ data or holes from a file

15.10.1. ARGUMENT

 <CODE BEGINS>

 struct READ_PLUS4args {
 /* CURRENT_FH: file */
 stateid4 rpa_stateid;
 offset4 rpa_offset;
 count4 rpa_count;
 };

 <CODE ENDS>

15.10.2. RESULT

 <CODE BEGINS>

 enum data_content4 {
 NFS4_CONTENT_DATA = 0,
 NFS4_CONTENT_HOLE = 1
 };

 struct data_info4 {
 offset4 di_offset;
 length4 di_length;
 };

 struct data4 {
 offset4 d_offset;
 opaque d_data<>;
 };

 union read_plus_content switch (data_content4 rpc_content) {
 case NFS4_CONTENT_DATA:
 data4 rpc_data;
 case NFS4_CONTENT_HOLE:
 data_info4 rpc_hole;
 default:
 void;
 };

Haynes Standards Track [Page 86]

RFC 7862 NFSv4.2 November 2016

 /*
 * Allow a return of an array of contents.
 */
 struct read_plus_res4 {
 bool rpr_eof;
 read_plus_content rpr_contents<>;
 };

 union READ_PLUS4res switch (nfsstat4 rp_status) {
 case NFS4_OK:
 read_plus_res4 rp_resok4;
 default:
 void;
 };

 <CODE ENDS>

15.10.3. DESCRIPTION

 The READ_PLUS operation is based upon the NFSv4.1 READ operation (see
 Section 18.22 of [RFC5661]) and similarly reads data from the regular
 file identified by the current filehandle.

 The client provides an rpa_offset of where the READ_PLUS is to start
 and an rpa_count of how many bytes are to be read. An rpa_offset of
 zero means that data will be read starting at the beginning of the
 file. If rpa_offset is greater than or equal to the size of the
 file, the status NFS4_OK is returned with di_length (the data length)
 set to zero and eof set to TRUE.

 The READ_PLUS result is comprised of an array of rpr_contents, each
 of which describes a data_content4 type of data. For NFSv4.2, the
 allowed values are data and hole. A server MUST support both the
 data type and the hole if it uses READ_PLUS. If it does not want to
 support a hole, it MUST use READ. The array contents MUST be
 contiguous in the file.

 Holes SHOULD be returned in their entirety -- clients must be
 prepared to get more information than they requested. Both the start
 and the end of the hole may exceed what was requested. If data to be
 returned is comprised entirely of zeros, then the server SHOULD
 return that data as a hole instead.

 The server may elect to return adjacent elements of the same type.
 For example, if the server has a range of data comprised entirely of
 zeros and then a hole, it might want to return two adjacent holes to
 the client.

Haynes Standards Track [Page 87]

RFC 7862 NFSv4.2 November 2016

 If the client specifies an rpa_count value of zero, the READ_PLUS
 succeeds and returns zero bytes of data. In all situations, the
 server may choose to return fewer bytes than specified by the client.
 The client needs to check for this condition and handle the condition
 appropriately.

 If the client specifies data that is entirely contained within a hole
 of the file (i.e., both rpa_offset and rpa_offset + rpa_count are
 within the hole), then the di_offset and di_length returned MAY be
 for the entire hole. If the owner has a locked byte range covering
 rpa_offset and rpa_count entirely, the di_offset and di_length MUST
 NOT be extended outside the locked byte range. This result is
 considered valid until the file is changed (detected via the change
 attribute). The server MUST provide the same semantics for the hole
 as if the client read the region and received zeros; the implied
 hole’s contents lifetime MUST be exactly the same as any other
 read data.

 If the client specifies data by an rpa_offset that begins in a
 non-hole of the file but extends into a hole (the rpa_offset +
 rpa_count is in the hole), the server should return an array
 comprised of both data and a hole. The client MUST be prepared for
 the server to return a short read describing just the data. The
 client will then issue another READ_PLUS for the remaining bytes,
 to which the server will respond with information about the hole in
 the file.

 Except when special stateids are used, the stateid value for a
 READ_PLUS request represents a value returned from a previous
 byte-range lock or share reservation request or the stateid
 associated with a delegation. The stateid identifies the associated
 owners, if any, and is used by the server to verify that the
 associated locks are still valid (e.g., have not been revoked).

 If the read ended at the end of the file (formally, in a correctly
 formed READ_PLUS operation, if rpa_offset + rpa_count is equal to the
 size of the file) or the READ_PLUS operation extends beyond the size
 of the file (if rpa_offset + rpa_count is greater than the size of
 the file), eof is returned as TRUE; otherwise, it is FALSE. A
 successful READ_PLUS of an empty file will always return eof as TRUE.

 If the current filehandle is not an ordinary file, an error will be
 returned to the client. In the case that the current filehandle
 represents an object of type NF4DIR, NFS4ERR_ISDIR is returned. If
 the current filehandle designates a symbolic link, NFS4ERR_SYMLINK is
 returned. In all other cases, NFS4ERR_WRONG_TYPE is returned.

Haynes Standards Track [Page 88]

RFC 7862 NFSv4.2 November 2016

 For a READ_PLUS with a stateid value of all bits equal to zero, the
 server MAY allow the READ_PLUS to be serviced subject to mandatory
 byte-range locks or the current share deny modes for the file. For a
 READ_PLUS with a stateid value of all bits equal to one, the server
 MAY allow READ_PLUS operations to bypass locking checks at the
 server.

 On success, the current filehandle retains its value.

15.10.3.1. Note on Client Support of Arms of the Union

 It was decided not to add a means for the client to inform the server
 as to which arms of READ_PLUS it would support. In a later minor
 version, it may become necessary for the introduction of a new
 operation that would allow the client to inform the server as to
 whether it supported the new arms of the union of data types
 available in READ_PLUS.

15.10.4. IMPLEMENTATION

 In general, the IMPLEMENTATION notes for READ in Section 18.22.4 of
 [RFC5661] also apply to READ_PLUS.

15.10.4.1. Additional pNFS Implementation Information

 With pNFS, the semantics of using READ_PLUS remains the same. Any
 data server MAY return a hole result for a READ_PLUS request that it
 receives. When a data server chooses to return such a result, it has
 the option of returning information for the data stored on that data
 server (as defined by the data layout), but it MUST NOT return
 results for a byte range that includes data managed by another data
 server.

 If mandatory locking is enforced, then the data server must also
 ensure that only information that is within the owner’s locked byte
 range is returned.

Haynes Standards Track [Page 89]

RFC 7862 NFSv4.2 November 2016

15.10.5. READ_PLUS with Sparse Files: Example

 The following table describes a sparse file. For each byte range,
 the file contains either non-zero data or a hole. In addition, the
 server in this example will only create a hole if it is greater
 than 32K.

 +-------------+----------+
 | Byte Range | Contents |
 +-------------+----------+
 | 0-15999 | Hole |
 | 16K-31999 | Non-Zero |
 | 32K-255999 | Hole |
 | 256K-287999 | Non-Zero |
 | 288K-353999 | Hole |
 | 354K-417999 | Non-Zero |
 +-------------+----------+

 Table 7: Sparse File

 Under the given circumstances, if a client was to read from the file
 with a maximum read size of 64K, the following will be the results
 for the given READ_PLUS calls. This assumes that the client has
 already opened the file, acquired a valid stateid ("s" in the
 example), and just needs to issue READ_PLUS requests.

 1. READ_PLUS(s, 0, 64K) --> NFS_OK, eof = FALSE, <data[0,32K],
 hole[32K,224K]>. Since the first hole is less than the server’s
 minimum hole size, the first 32K of the file is returned as data
 and the remaining 32K is returned as a hole that actually extends
 to 256K.

 2. READ_PLUS(s, 32K, 64K) --> NFS_OK, eof = FALSE, <hole[32K,224K]>.
 The requested range was all zeros, and the current hole begins at
 offset 32K and is 224K in length. Note that the client should
 not have followed up the previous READ_PLUS request with this
 one, as the hole information from the previous call extended past
 what the client was requesting.

 3. READ_PLUS(s, 256K, 64K) --> NFS_OK, eof = FALSE, <data[256K,
 288K], hole[288K, 354K]>. Returns an array of the 32K data and
 the hole, which extends to 354K.

 4. READ_PLUS(s, 354K, 64K) --> NFS_OK, eof = TRUE, <data[354K,
 418K]>. Returns the final 64K of data and informs the client
 that there is no more data in the file.

Haynes Standards Track [Page 90]

RFC 7862 NFSv4.2 November 2016

15.11. Operation 69: SEEK - Find the next data or hole

15.11.1. ARGUMENT

 <CODE BEGINS>

 enum data_content4 {
 NFS4_CONTENT_DATA = 0,
 NFS4_CONTENT_HOLE = 1
 };

 struct SEEK4args {
 /* CURRENT_FH: file */
 stateid4 sa_stateid;
 offset4 sa_offset;
 data_content4 sa_what;
 };

 <CODE ENDS>

15.11.2. RESULT

 <CODE BEGINS>

 struct seek_res4 {
 bool sr_eof;
 offset4 sr_offset;
 };

 union SEEK4res switch (nfsstat4 sa_status) {
 case NFS4_OK:
 seek_res4 resok4;
 default:
 void;
 };

 <CODE ENDS>

15.11.3. DESCRIPTION

 SEEK is an operation that allows a client to determine the location
 of the next data_content4 in a file. It allows an implementation of
 the emerging extension to the lseek(2) function to allow clients to
 determine the next hole whilst in data or the next data whilst in
 a hole.

Haynes Standards Track [Page 91]

RFC 7862 NFSv4.2 November 2016

 From the given sa_offset, find the next data_content4 of type sa_what
 in the file. If the server cannot find a corresponding sa_what, then
 the status will still be NFS4_OK, but sr_eof would be TRUE. If the
 server can find the sa_what, then the sr_offset is the start of that
 content. If the sa_offset is beyond the end of the file, then SEEK
 MUST return NFS4ERR_NXIO.

 All files MUST have a virtual hole at the end of the file. That is,
 if a file system does not support sparse files, then a COMPOUND with
 {SEEK 0 NFS4_CONTENT_HOLE;} would return a result of {SEEK 1 X;},
 where "X" was the size of the file.

 SEEK must follow the same rules for stateids as READ_PLUS
 (Section 15.10.3).

15.12. Operation 70: WRITE_SAME - WRITE an ADB multiple times to a file

15.12.1. ARGUMENT

 <CODE BEGINS>

 enum stable_how4 {
 UNSTABLE4 = 0,
 DATA_SYNC4 = 1,
 FILE_SYNC4 = 2
 };

 struct app_data_block4 {
 offset4 adb_offset;
 length4 adb_block_size;
 length4 adb_block_count;
 length4 adb_reloff_blocknum;
 count4 adb_block_num;
 length4 adb_reloff_pattern;
 opaque adb_pattern<>;
 };

 struct WRITE_SAME4args {
 /* CURRENT_FH: file */
 stateid4 wsa_stateid;
 stable_how4 wsa_stable;
 app_data_block4 wsa_adb;
 };

 <CODE ENDS>

Haynes Standards Track [Page 92]

RFC 7862 NFSv4.2 November 2016

15.12.2. RESULT

 <CODE BEGINS>

 struct write_response4 {
 stateid4 wr_callback_id<1>;
 length4 wr_count;
 stable_how4 wr_committed;
 verifier4 wr_writeverf;
 };

 union WRITE_SAME4res switch (nfsstat4 wsr_status) {
 case NFS4_OK:
 write_response4 resok4;
 default:
 void;
 };

 <CODE ENDS>

15.12.3. DESCRIPTION

 The WRITE_SAME operation writes an application data block to the
 regular file identified by the current filehandle (see
 WRITE SAME (10) in [T10-SBC2]). The target file is specified by the
 current filehandle. The data to be written is specified by an
 app_data_block4 structure (Section 8.1.1). The client specifies with
 the wsa_stable parameter the method of how the data is to be
 processed by the server. It is treated like the stable parameter in
 the NFSv4.1 WRITE operation (see Section 18.32.3 of [RFC5661]).

 A successful WRITE_SAME will construct a reply for wr_count,
 wr_committed, and wr_writeverf as per the NFSv4.1 WRITE operation
 results. If wr_callback_id is set, it indicates an asynchronous
 reply (see Section 15.12.3.1).

 As it is an OPTIONAL operation, WRITE_SAME has to support
 NFS4ERR_NOTSUPP. As it is an extension of WRITE, it has to support
 all of the errors returned by WRITE. If the client supports
 WRITE_SAME, it MUST support CB_OFFLOAD.

 If the server supports ADBs, then it MUST support the WRITE_SAME
 operation. The server has no concept of the structure imposed by the
 application. It is only when the application writes to a section of
 the file does order get imposed. In order to detect corruption even
 before the application utilizes the file, the application will want
 to initialize a range of ADBs using WRITE_SAME.

Haynes Standards Track [Page 93]

RFC 7862 NFSv4.2 November 2016

 When the client invokes the WRITE_SAME operation, it wants to record
 the block structure described by the app_data_block4 into the file.

 When the server receives the WRITE_SAME operation, it MUST populate
 adb_block_count ADBs in the file, starting at adb_offset. The block
 size will be given by adb_block_size. The ADBN (if provided) will
 start at adb_reloff_blocknum, and each block will be monotonically
 numbered, starting from adb_block_num in the first block. The
 pattern (if provided) will be at adb_reloff_pattern of each block and
 will be provided in adb_pattern.

 The server SHOULD return an asynchronous result if it can determine
 that the operation will be long-running (see Section 15.12.3.1).
 Once either the WRITE_SAME finishes synchronously or the server uses
 CB_OFFLOAD to inform the client of the asynchronous completion of the
 WRITE_SAME, the server MUST return the ADBs to clients as data.

15.12.3.1. Asynchronous Transactions

 ADB initialization may cause a server to decide to service the
 operation asynchronously. If it decides to do so, it sets the
 stateid in wr_callback_id to be that of the wsa_stateid. If it does
 not set the wr_callback_id, then the result is synchronous.

 When the client determines that the reply will be given
 asynchronously, it should not assume anything about the contents of
 what it wrote until it is informed by the server that the operation
 is complete. It can use OFFLOAD_STATUS (Section 15.9) to monitor the
 operation and OFFLOAD_CANCEL (Section 15.8) to cancel the operation.
 An example of an asynchronous WRITE_SAME is shown in Figure 6. Note
 that, as with the COPY operation, WRITE_SAME must provide a stateid
 for tracking the asynchronous operation.

Haynes Standards Track [Page 94]

RFC 7862 NFSv4.2 November 2016

 Client Server
 + +
 | |
 |--- OPEN ---------------------------->| Client opens
 |<------------------------------------/| the file
 | |
 |--- WRITE_SAME ---------------------->| Client initializes
 |<------------------------------------/| an ADB
 | |
 | |
 |--- OFFLOAD_STATUS ------------------>| Client may poll
 |<------------------------------------/| for status
 | |
 | . | Multiple OFFLOAD_STATUS
 | . | operations may be sent.
 | . |
 | |
 |<-- CB_OFFLOAD -----------------------| Server reports results
 |\------------------------------------>|
 | |
 |--- CLOSE --------------------------->| Client closes
 |<------------------------------------/| the file
 | |
 | |

 Figure 6: An Asynchronous WRITE_SAME

 When CB_OFFLOAD informs the client of the successful WRITE_SAME, the
 write_response4 embedded in the operation will provide the necessary
 information that a synchronous WRITE_SAME would have provided.

 Regardless of whether the operation is asynchronous or synchronous,
 it MUST still support the COMMIT operation semantics as outlined in
 Section 18.3 of [RFC5661]. That is, COMMIT works on one or more
 WRITE operations, and the WRITE_SAME operation can appear as several
 WRITE operations to the server. The client can use locking
 operations to control the behavior on the server with respect to
 long-running asynchronous WRITE_SAME operations.

15.12.3.2. Error Handling of a Partially Complete WRITE_SAME

 WRITE_SAME will clone adb_block_count copies of the given ADB in
 consecutive order in the file, starting at adb_offset. An error can
 occur after writing the Nth ADB to the file. WRITE_SAME MUST appear
 to populate the range of the file as if the client used WRITE to
 transfer the instantiated ADBs. That is, the contents of the range
 will be easy for the client to determine in the case of a partially
 complete WRITE_SAME.

Haynes Standards Track [Page 95]

RFC 7862 NFSv4.2 November 2016

15.13. Operation 71: CLONE - Clone a range of a file into another file

15.13.1. ARGUMENT

 <CODE BEGINS>

 struct CLONE4args {
 /* SAVED_FH: source file */
 /* CURRENT_FH: destination file */
 stateid4 cl_src_stateid;
 stateid4 cl_dst_stateid;
 offset4 cl_src_offset;
 offset4 cl_dst_offset;
 length4 cl_count;
 };

 <CODE ENDS>

15.13.2. RESULT

 <CODE BEGINS>

 struct CLONE4res {
 nfsstat4 cl_status;
 };

 <CODE ENDS>

15.13.3. DESCRIPTION

 The CLONE operation is used to clone file content from a source file
 specified by the SAVED_FH value into a destination file specified by
 CURRENT_FH without actually copying the data, e.g., by using a
 copy-on-write mechanism.

 Both SAVED_FH and CURRENT_FH must be regular files. If either
 SAVED_FH or CURRENT_FH is not a regular file, the operation MUST fail
 and return NFS4ERR_WRONG_TYPE.

 The ca_dst_stateid MUST refer to a stateid that is valid for a WRITE
 operation and follows the rules for stateids in Sections 8.2.5 and
 18.32.3 of [RFC5661]. The ca_src_stateid MUST refer to a stateid
 that is valid for a READ operation and follows the rules for stateids
 in Sections 8.2.5 and 18.22.3 of [RFC5661]. If either stateid is
 invalid, then the operation MUST fail.

Haynes Standards Track [Page 96]

RFC 7862 NFSv4.2 November 2016

 The cl_src_offset is the starting offset within the source file from
 which the data to be cloned will be obtained, and the cl_dst_offset
 is the starting offset of the target region into which the cloned
 data will be placed. An offset of 0 (zero) indicates the start of
 the respective file. The number of bytes to be cloned is obtained
 from cl_count, except that a cl_count of 0 (zero) indicates that the
 number of bytes to be cloned is the count of bytes between
 cl_src_offset and the EOF of the source file. Both cl_src_offset and
 cl_dst_offset must be aligned to the clone block size
 (Section 12.2.1). The number of bytes to be cloned must be a
 multiple of the clone block size, except in the case in which
 cl_src_offset plus the number of bytes to be cloned is equal to the
 source file size.

 If the source offset or the source offset plus count is greater than
 the size of the source file, the operation MUST fail with
 NFS4ERR_INVAL. The destination offset or destination offset plus
 count may be greater than the size of the destination file.

 If SAVED_FH and CURRENT_FH refer to the same file and the source and
 target ranges overlap, the operation MUST fail with NFS4ERR_INVAL.

 If the target area of the CLONE operation ends beyond the end of the
 destination file, the offset at the end of the target area will
 determine the new size of the destination file. The contents of any
 block not part of the target area will be the same as if the file
 size were extended by a WRITE.

 If the area to be cloned is not a multiple of the clone block size
 and the size of the destination file is past the end of the target
 area, the area between the end of the target area and the next
 multiple of the clone block size will be zeroed.

 The CLONE operation is atomic in that other operations may not see
 any intermediate states between the state of the two files before the
 operation and after the operation. READs of the destination file
 will never see some blocks of the target area cloned without all of
 them being cloned. WRITEs of the source area will either have no
 effect on the data of the target file or be fully reflected in the
 target area of the destination file.

 The completion status of the operation is indicated by cr_status.

Haynes Standards Track [Page 97]

RFC 7862 NFSv4.2 November 2016

16. NFSv4.2 Callback Operations

16.1. Operation 15: CB_OFFLOAD - Report the results of an asynchronous
 operation

16.1.1. ARGUMENT

 <CODE BEGINS>

 struct write_response4 {
 stateid4 wr_callback_id<1>;
 length4 wr_count;
 stable_how4 wr_committed;
 verifier4 wr_writeverf;
 };

 union offload_info4 switch (nfsstat4 coa_status) {
 case NFS4_OK:
 write_response4 coa_resok4;
 default:
 length4 coa_bytes_copied;
 };

 struct CB_OFFLOAD4args {
 nfs_fh4 coa_fh;
 stateid4 coa_stateid;
 offload_info4 coa_offload_info;
 };

 <CODE ENDS>

16.1.2. RESULT

 <CODE BEGINS>

 struct CB_OFFLOAD4res {
 nfsstat4 cor_status;
 };

 <CODE ENDS>

Haynes Standards Track [Page 98]

RFC 7862 NFSv4.2 November 2016

16.1.3. DESCRIPTION

 CB_OFFLOAD is used to report to the client the results of an
 asynchronous operation, e.g., server-side COPY or WRITE_SAME. The
 coa_fh and coa_stateid identify the transaction, and the coa_status
 indicates success or failure. The coa_resok4.wr_callback_id MUST NOT
 be set. If the transaction failed, then the coa_bytes_copied
 contains the number of bytes copied before the failure occurred. The
 coa_bytes_copied value indicates the number of bytes copied but not
 which specific bytes have been copied.

 If the client supports any of the following operations:

 COPY: for both intra-server and inter-server asynchronous copies

 WRITE_SAME: for ADB initialization

 then the client is REQUIRED to support the CB_OFFLOAD operation.

 There is a potential race between the reply to the original
 transaction on the forechannel and the CB_OFFLOAD callback on the
 backchannel. Section 2.10.6.3 of [RFC5661] describes how to handle
 this type of issue.

 Upon success, the coa_resok4.wr_count presents for each operation:

 COPY: the total number of bytes copied

 WRITE_SAME: the same information that a synchronous WRITE_SAME would
 provide

17. Security Considerations

 NFSv4.2 has all of the security concerns present in NFSv4.1 (see
 Section 21 of [RFC5661]), as well as those present in the server-side
 copy (see Section 4.9) and in Labeled NFS (see Section 9.6).

18. IANA Considerations

 The IANA considerations for Labeled NFS are addressed in [RFC7569].

Haynes Standards Track [Page 99]

RFC 7862 NFSv4.2 November 2016

19. References

19.1. Normative References

 [posix_fadvise]
 The Open Group, "Section ’posix_fadvise()’ of System
 Interfaces of The Open Group Base Specifications Issue 7",
 IEEE Std 1003.1, 2016 Edition (HTML Version),
 ISBN 1937218812, September 2016,
 <http://www.opengroup.org/>.

 [posix_fallocate]
 The Open Group, "Section ’posix_fallocate()’ of System
 Interfaces of The Open Group Base Specifications Issue 7",
 IEEE Std 1003.1, 2016 Edition (HTML Version),
 ISBN 1937218812, September 2016,
 <http://www.opengroup.org/>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

 [RFC5661] Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed.,
 "Network File System (NFS) Version 4 Minor Version 1
 Protocol", RFC 5661, DOI 10.17487/RFC5661, January 2010,
 <http://www.rfc-editor.org/info/rfc5661>.

 [RFC5662] Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed.,
 "Network File System (NFS) Version 4 Minor Version 1
 External Data Representation Standard (XDR) Description",
 RFC 5662, DOI 10.17487/RFC5662, January 2010,
 <http://www.rfc-editor.org/info/rfc5662>.

 [RFC7569] Quigley, D., Lu, J., and T. Haynes, "Registry
 Specification for Mandatory Access Control (MAC) Security
 Label Formats", RFC 7569, DOI 10.17487/RFC7569, July 2015,
 <http://www.rfc-editor.org/info/rfc7569>.

Haynes Standards Track [Page 100]

RFC 7862 NFSv4.2 November 2016

 [RFC7861] Adamson, A. and N. Williams, "Remote Procedure Call (RPC)
 Security Version 3", RFC 7861, DOI 10.17487/RFC7861,
 November 2016, <http://www.rfc-editor.org/info/rfc7861>.

 [RFC7863] Haynes, T., "Network File System (NFS) Version 4 Minor
 Version 2 External Data Representation Standard (XDR)
 Description", RFC 7863, DOI 10.17487/RFC7863,
 November 2016, <http://www.rfc-editor.org/info/rfc7863>.

19.2. Informative References

 [Ashdown08]
 Ashdown, L., "Chapter 15: Validating Database Files and
 Backups", Oracle Database Backup and Recovery User’s
 Guide 11g Release 1 (11.1), August 2008,
 <http://download.oracle.com/docs/cd/B28359_01/backup.111/
 b28270/rcmvalid.htm>.

 [Baira08] Bairavasundaram, L., Goodson, G., Schroeder, B.,
 Arpaci-Dusseau, A., and R. Arpaci-Dusseau, "An Analysis of
 Data Corruption in the Storage Stack", Proceedings of the
 6th USENIX Symposium on File and Storage Technologies
 (FAST ’08), 2008,
 <http://www.usenix.org/events/fast08/tech/full_papers/
 bairavasundaram/bairavasundaram.pdf>.

 [IESG08] IESG, "IESG Processing of RFC Errata for the IETF Stream",
 July 2008, <https://www.ietf.org/iesg/statement/
 errata-processing.html>.

 [LB96] LaPadula, L. and D. Bell, "MITRE Technical Report 2547,
 Volume II", Journal of Computer Security, Volume 4,
 Issue 2-3, 239-263, IOS Press, Amsterdam, The Netherlands,
 January 1996.

 [McDougall07]
 McDougall, R. and J. Mauro, "Section 11.4.3: Detecting
 Memory Corruption", Solaris Internals: Solaris 10 and
 OpenSolaris Kernel Architecture, 2nd Edition, 2007.

 [NFSv4-Versioning]
 Noveck, D., "Rules for NFSv4 Extensions and Minor
 Versions", Work in Progress,
 draft-ietf-nfsv4-versioning-07, October 2016.

 [RFC959] Postel, J. and J. Reynolds, "File Transfer Protocol",
 STD 9, RFC 959, DOI 10.17487/RFC0959, October 1985,
 <http://www.rfc-editor.org/info/rfc959>.

Haynes Standards Track [Page 101]

RFC 7862 NFSv4.2 November 2016

 [RFC1108] Kent, S., "U.S. Department of Defense Security Options for
 the Internet Protocol", RFC 1108, DOI 10.17487/RFC1108,
 November 1991, <http://www.rfc-editor.org/info/rfc1108>.

 [RFC2401] Kent, S. and R. Atkinson, "Security Architecture for the
 Internet Protocol", RFC 2401, DOI 10.17487/RFC2401,
 November 1998, <http://www.rfc-editor.org/info/rfc2401>.

 [RFC4506] Eisler, M., Ed., "XDR: External Data Representation
 Standard", STD 67, RFC 4506, DOI 10.17487/RFC4506,
 May 2006, <http://www.rfc-editor.org/info/rfc4506>.

 [RFC4949] Shirey, R., "Internet Security Glossary, Version 2",
 FYI 36, RFC 4949, DOI 10.17487/RFC4949, August 2007,
 <http://www.rfc-editor.org/info/rfc4949>.

 [RFC5663] Black, D., Fridella, S., and J. Glasgow, "Parallel NFS
 (pNFS) Block/Volume Layout", RFC 5663,
 DOI 10.17487/RFC5663, January 2010,
 <http://www.rfc-editor.org/info/rfc5663>.

 [RFC7204] Haynes, T., "Requirements for Labeled NFS", RFC 7204,
 DOI 10.17487/RFC7204, April 2014,
 <http://www.rfc-editor.org/info/rfc7204>.

 [RFC7230] Fielding, R., Ed., and J. Reschke, Ed., "Hypertext
 Transfer Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

 [RFC7530] Haynes, T., Ed., and D. Noveck, Ed., "Network File System
 (NFS) Version 4 Protocol", RFC 7530, DOI 10.17487/RFC7530,
 March 2015, <http://www.rfc-editor.org/info/rfc7530>.

 [Strohm11] Strohm, R., "Chapter 2: Data Blocks, Extents, and
 Segments", Oracle Database Concepts 11g Release 1 (11.1),
 January 2011,
 <http://download.oracle.com/docs/cd/B28359_01/server.111/
 b28318/logical.htm>.

 [T10-SBC2] Elliott, R., Ed., "ANSI INCITS 405-2005, Information
 Technology - SCSI Block Commands - 2 (SBC-2)",
 November 2004,
 <ftp://www.t10.org/t10/document.05/05-344r0.pdf>.

Haynes Standards Track [Page 102]

RFC 7862 NFSv4.2 November 2016

Acknowledgments

 Tom Haynes would like to thank NetApp, Inc. for its funding of his
 time on this project.

 For the topic "sharing change attribute implementation
 characteristics with NFSv4 clients", the original document was by
 Trond Myklebust.

 For the NFS server-side copy, the original document was by James
 Lentini, Mike Eisler, Deepak Kenchammana, Anshul Madan, and Rahul
 Iyer. Tom Talpey co-authored an unpublished version of that
 document. It was also reviewed by a number of individuals: Pranoop
 Erasani, Tom Haynes, Arthur Lent, Trond Myklebust, Dave Noveck,
 Theresa Lingutla-Raj, Manjunath Shankararao, Satyam Vaghani, and Nico
 Williams. Anna Schumaker’s early prototyping experience helped us
 avoid some traps. Also, both Olga Kornievskaia and Andy Adamson
 brought implementation experience to the use of copy stateids in the
 inter-server copy. Jorge Mora was able to optimize the handling of
 errors for the result of COPY.

 For the NFS space reservation operations, the original document was
 by Mike Eisler, James Lentini, Manjunath Shankararao, and Rahul Iyer.

 For the sparse file support, the original document was by Dean
 Hildebrand and Marc Eshel. Valuable input and advice was received
 from Sorin Faibish, Bruce Fields, Benny Halevy, Trond Myklebust, and
 Richard Scheffenegger.

 For the application I/O hints, the original document was by Dean
 Hildebrand, Mike Eisler, Trond Myklebust, and Sam Falkner. Some
 early reviewers included Benny Halevy and Pranoop Erasani.

 For Labeled NFS, the original document was by David Quigley, James
 Morris, Jarrett Lu, and Tom Haynes. Peter Staubach, Trond Myklebust,
 Stephen Smalley, Sorin Faibish, Nico Williams, and David Black also
 contributed in the final push to get this accepted.

 Christoph Hellwig was very helpful in getting the WRITE_SAME
 semantics to model more of what T10 was doing for WRITE SAME (10)
 [T10-SBC2]. And he led the push to get space reservations to more
 closely model the posix_fallocate() operation.

 Andy Adamson picked up the RPCSEC_GSSv3 work, which enabled both
 Labeled NFS and server-side copy to provide more secure options.

 Christoph Hellwig provided the update to GETDEVICELIST.

Haynes Standards Track [Page 103]

RFC 7862 NFSv4.2 November 2016

 Jorge Mora provided a very detailed review and caught some important
 issues with the tables.

 During the review process, Talia Reyes-Ortiz helped the sessions run
 smoothly. While many people contributed here and there, the core
 reviewers were Andy Adamson, Pranoop Erasani, Bruce Fields, Chuck
 Lever, Trond Myklebust, David Noveck, Peter Staubach, and Mike
 Kupfer.

 Elwyn Davies was the General Area Reviewer for this document, and his
 insights as to the relationship of this document and both [RFC5661]
 and [RFC7530] were very much appreciated!

Author’s Address

 Thomas Haynes
 Primary Data, Inc.
 4300 El Camino Real Ste 100
 Los Altos, CA 94022
 United States of America

 Phone: +1 408 215 1519
 Email: thomas.haynes@primarydata.com

Haynes Standards Track [Page 104]

