
Internet Engineering Task Force (IETF) Y. Nir
Request for Comments: 7634 Check Point
Category: Standards Track August 2015
ISSN: 2070-1721

 ChaCha20, Poly1305, and Their Use
 in the Internet Key Exchange Protocol (IKE) and IPsec

Abstract

 This document describes the use of the ChaCha20 stream cipher along
 with the Poly1305 authenticator, combined into an AEAD algorithm for
 the Internet Key Exchange Protocol version 2 (IKEv2) and for IPsec.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7634.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Nir Standards Track [Page 1]

RFC 7634 ChaCha20 & Poly1305 for IPsec August 2015

Table of Contents

 1. Introduction . 2
 1.1. Conventions Used in This Document 3
 2. ChaCha20 and Poly1305 for ESP 3
 2.1. AAD Construction . 5
 3. Use in IKEv2 . 6
 4. Negotiation in IKEv2 . 6
 5. Security Considerations 6
 6. IANA Considerations . 7
 7. References . 7
 7.1. Normative References 7
 7.2. Informative References 8
 Appendix A. ESP Example . 9
 Appendix B. IKEv2 Example 11
 Acknowledgements . 13
 Author’s Address . 13

1. Introduction

 The Advanced Encryption Standard (AES) [FIPS-197] has become the go-
 to algorithm for encryption. It is now the most commonly used
 algorithm in many areas, including IPsec Virtual Private Networks
 (VPNs). On most modern platforms, AES is anywhere from four to ten
 times as fast as the previously popular cipher, Triple Data
 Encryption Standard (3DES) [SP800-67]. 3DES also uses a 64-bit
 block; this means that the amount of data that can be encrypted
 before rekeying is required is limited. These reasons make AES not
 only the best choice, but the only viable choice for IPsec.

 The problem is that if future advances in cryptanalysis reveal a
 weakness in AES, VPN users will be in an unenviable position. With
 the only other widely supported cipher for IPsec implementations
 being the much slower 3DES, it is not feasible to reconfigure IPsec
 installations away from AES. [Standby-Cipher] describes this issue
 and the need for a standby cipher in greater detail.

 This document proposes the fast and secure ChaCha20 stream cipher as
 such a standby cipher in an Authenticated Encryption with Associated
 Data (AEAD) construction with the Poly1305 authenticator for use with
 the Encapsulated Security Protocol (ESP) [RFC4303] and the Internet
 Key Exchange Protocol version 2 (IKEv2) [RFC7296]. The algorithms
 are described in a separate document ([RFC7539]). This document only
 describes the IPsec-specific things.

Nir Standards Track [Page 2]

RFC 7634 ChaCha20 & Poly1305 for IPsec August 2015

1.1. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. ChaCha20 and Poly1305 for ESP

 AEAD_CHACHA20_POLY1305 ([RFC7539]) is a combined mode algorithm, or
 AEAD. Usage follows the AEAD construction in Section 2.8 of RFC
 7539:

 o The Initialization Vector (IV) is 64 bits and is used as part of
 the nonce. The IV MUST be unique for each invocation for a
 particular security association (SA) but does not need to be
 unpredictable. The use of a counter or a linear feedback shift
 register (LFSR) is RECOMMENDED.

 o A 32-bit Salt is prepended to the 64-bit IV to form the 96-bit
 nonce. The salt is fixed per SA, and it is not transmitted as
 part of the ESP packet.

 o The encryption key is 256 bits.

 o The Internet Key Exchange Protocol generates a bitstring called
 KEYMAT using a pseudorandom function (PRF). That KEYMAT is
 divided into keys for encryption, message authentication, and
 whatever else is needed. The KEYMAT requested for each
 ChaCha20-Poly1305 key is 36 octets. The first 32 octets are the
 256-bit ChaCha20 key, and the remaining 4 octets are used as the
 Salt value in the nonce.

 The ChaCha20 encryption algorithm requires the following parameters:
 a 256-bit key, a 96-bit nonce, and a 32-bit Initial Block Counter.
 For ESP, we set these as follows:

 o The key is set as mentioned above.

 o The 96-bit nonce is formed from a concatenation of the 32-bit Salt
 and the 64-bit IV, as described above.

 o The Initial Block Counter is set to one (1). The reason that one
 is used for the initial counter rather than zero is that zero is
 reserved for generating the one-time Poly1305 key (see below).

Nir Standards Track [Page 3]

RFC 7634 ChaCha20 & Poly1305 for IPsec August 2015

 As the ChaCha20 block function is not applied directly to the
 plaintext, no padding should be necessary. However, in keeping with
 the specification in RFC 4303, the plaintext always has a pad length
 octet and a Next Header octet, and it may require padding octets so
 as to align the buffer to an integral multiple of 4 octets.

 The same key and nonce, along with a block counter of zero, are
 passed to the ChaCha20 block function, and the top 256 bits of the
 result are used as the Poly1305 key.

 Finally, the Poly1305 function is run on the data to be
 authenticated, which is, as specified in Section 2.8 of [RFC7539], a
 concatenation of the following in the order below:

 o The Authenticated Additional Data (AAD); see Section 2.1.

 o Zero-octet padding that rounds the length up to 16 octets. This
 is 4 or 8 octets depending on the length of the AAD.

 o The ciphertext.

 o Zero-octet padding that rounds the total length up to an integral
 multiple of 16 octets.

 o The length of the AAD in octets (as a 64-bit integer encoded in
 little-endian byte order).

 o The length of the ciphertext in octets (as a 64-bit integer
 encoded in little-endian byte order).

 The 128-bit output of Poly1305 is used as the tag. All 16 octets are
 included in the packet.

Nir Standards Track [Page 4]

RFC 7634 ChaCha20 & Poly1305 for IPsec August 2015

 The figure below is a copy of Figure 2 in RFC 4303:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Security Parameters Index (SPI) |
 +-+
 | Sequence Number |
 +---
 | IV (optional) | ^ p
 +-+ | a
 | Rest of Payload Data (variable) | | y
 ˜ ˜ | l
 | | | o
 + +-+ | a
 | | TFC Padding * (optional, variable) | v d
 +-+-+-+-+-+-+-+-+ +---
 | | Padding (0-255 bytes) |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | Pad Length | Next Header |
 +-+
 | Integrity Check Value-ICV (variable) |
 ˜ ˜
 | |
 +-+

 o The IV field is 64 bits. It is the final 64 bits of the 96-bit
 nonce. If the counter method is used for generating unique IVs,
 then the final 32 bits of the IV will be equal to the Sequence
 Number field.

 o The length of the Padding field need not exceed 4 octets.
 However, neither RFC 4303 nor this specification require using the
 minimal padding length.

 o The Integrity Check Value field contains the 16-octet tag.

2.1. AAD Construction

 The construction of the Additional Authenticated Data (AAD) is
 similar to the one in [RFC4106]. For security associations (SAs)
 with 32-bit sequence numbers, the AAD is 8 octets: a 4-octet SPI
 followed by a 4-octet sequence number ordered exactly as it is in the
 packet. For SAs with an Extended Sequence Number (ESN), the AAD is
 12 octets: a 4-octet SPI followed by an 8-octet sequence number as a
 64-bit integer in big-endian byte order.

Nir Standards Track [Page 5]

RFC 7634 ChaCha20 & Poly1305 for IPsec August 2015

3. Use in IKEv2

 AEAD algorithms can be used in IKE, as described in [RFC5282]. More
 specifically:

 o The Encrypted Payload is as described in Section 3 of RFC 5282.

 o The ChaCha20-Poly1305 keying material is derived similarly to ESP:
 36 octets are requested for each of SK_ei and SK_er, of which the
 first 32 form the key and the last 4 form the salt. No octets are
 requested for SK_ai and SK_ar.

 o The IV is 64 bits, as described in Section 2, and is included
 explicitly in the Encrypted payload.

 o The sender SHOULD include no padding and set the Pad Length field
 to zero. The receiver MUST accept any length of padding.

 o The AAD is as described in Section 5.1 of RFC 5282, so it is 32
 octets (28 for the IKEv2 header plus 4 octets for the encrypted
 payload header), assuming no unencrypted payloads.

4. Negotiation in IKEv2

 When negotiating the ChaCha20-Poly1305 algorithm for use in IKE or
 IPsec, the value ENCR_CHACHA20_POLY1305 (28) should be used in the
 transform substructure of the SA payload as the ENCR (type 1)
 transform ID. As with other AEAD algorithms, INTEG (type 3)
 transform substructures MUST NOT be specified, or just one INTEG
 transform MAY be included with value NONE (0).

5. Security Considerations

 The ChaCha20 cipher is designed to provide 256-bit security.

 The Poly1305 authenticator is designed to ensure that forged messages
 are rejected with a probability of 1-(n/(2^102)) for a 16n-octet
 message, even after sending 2^64 legitimate messages, so it is
 SUF-CMA (strong unforgeability against chosen-message attacks) in the
 terminology of [AE].

 The most important security consideration in implementing this
 document is the uniqueness of the nonce used in ChaCha20. The nonce
 should be selected uniquely for a particular key, but
 unpredictability of the nonce is not required. Counters and LFSRs
 are both acceptable ways of generating unique nonces.

Nir Standards Track [Page 6]

RFC 7634 ChaCha20 & Poly1305 for IPsec August 2015

 Another issue with implementing these algorithms is avoiding side
 channels. This is trivial for ChaCha20, but requires some care for
 Poly1305. Considerations for implementations of these algorithms are
 in [RFC7539].

 The Salt value in used nonce construction in ESP and IKEv2 is derived
 from the keystream, same as the encryption key. It is never
 transmitted on the wire, but the security of the algorithm does not
 depend on its secrecy. Thus, implementations that keep keys and
 other secret material within some security boundary MAY export the
 Salt from the security boundary. This may be useful if the API
 provided by the library accepts the nonce as a parameter rather than
 the IV.

6. IANA Considerations

 IANA has assigned the value 28 as a transform identifier for the
 algorithm described in this document in the "Transform Type 1 -
 Encryption Algorithm Transform IDs" registry with name
 ENCR_CHACHA20_POLY1305 and this document as reference for both ESP
 and IKEv2.

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC4303] Kent, S., "IP Encapsulating Security Payload (ESP)",
 RFC 4303, DOI 10.17487/RFC4303, December 2005,
 <http://www.rfc-editor.org/info/rfc4303>.

 [RFC5282] Black, D. and D. McGrew, "Using Authenticated Encryption
 Algorithms with the Encrypted Payload of the Internet Key
 Exchange version 2 (IKEv2) Protocol", RFC 5282,
 DOI 10.17487/RFC5282, August 2008,
 <http://www.rfc-editor.org/info/rfc5282>.

 [RFC7296] Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
 Kivinen, "Internet Key Exchange Protocol Version 2
 (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October
 2014, <http://www.rfc-editor.org/info/rfc7296>.

Nir Standards Track [Page 7]

RFC 7634 ChaCha20 & Poly1305 for IPsec August 2015

 [RFC7539] Nir, Y. and A. Langley, "ChaCha20 and Poly1305 for IETF
 Protocols", RFC 7539, DOI 10.17487/RFC7539, May 2015,
 <http://www.rfc-editor.org/info/rfc7539>.

7.2. Informative References

 [AE] Bellare, M. and C. Namprempre, "Authenticated Encryption:
 Relations among notions and analysis of the generic
 composition paradigm", DOI 10.1007/s00145-008-9026-x,
 September 2008,
 <http://cseweb.ucsd.edu/˜mihir/papers/oem.html>.

 [FIPS-197]
 National Institute of Standards and Technology, "Advanced
 Encryption Standard (AES)", FIPS PUB 197, November 2001,
 <http://csrc.nist.gov/publications/fips/fips197/
 fips-197.pdf>.

 [RFC1761] Callaghan, B. and R. Gilligan, "Snoop Version 2 Packet
 Capture File Format", RFC 1761, DOI 10.17487/RFC1761,
 February 1995, <http://www.rfc-editor.org/info/rfc1761>.

 [RFC4106] Viega, J. and D. McGrew, "The Use of Galois/Counter Mode
 (GCM) in IPsec Encapsulating Security Payload (ESP)",
 RFC 4106, DOI 10.17487/RFC4106, June 2005,
 <http://www.rfc-editor.org/info/rfc4106>.

 [SP800-67]
 National Institute of Standards and Technology,
 "Recommendation for the Triple Data Encryption Algorithm
 (TDEA) Block Cipher", FIPS SP800-67, January 2012,
 <http://csrc.nist.gov/publications/nistpubs/800-67-Rev1/
 SP-800-67-Rev1.pdf>.

 [Standby-Cipher]
 McGrew, D., Grieco, A., and Y. Sheffer, "Selection of
 Future Cryptographic Standards", Work in Progress
 draft-mcgrew-standby-cipher-00, January 2013.

Nir Standards Track [Page 8]

RFC 7634 ChaCha20 & Poly1305 for IPsec August 2015

Appendix A. ESP Example

 For this example, we will use a tunnel-mode ESP SA using the
 ChaCha20-Poly1305 algorithm. The keying material is as follows:

 KEYMAT:
 000 80 81 82 83 84 85 86 87 88 89 8a 8b 8c 8d 8e 8f
 016 90 91 92 93 94 95 96 97 98 99 9a 9b 9c 9d 9e 9f
 032 a0 a1 a2 a3

 Obviously not a great PRF. The first 32 octets are the key and the
 final 4 octets (0xa0 0xa1 0xa2 0xa3) are the salt. For the packet,
 we will use an ICMP packet from 198.51.100.5 to 192.0.2.5:

 Source Packet:
 000 45 00 00 54 a6 f2 00 00 40 01 e7 78 c6 33 64 05 E..T....@..x.3d.
 016 c0 00 02 05 08 00 5b 7a 3a 08 00 00 55 3b ec 10 [z:...U;..
 032 00 07 36 27 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 ..6’............
 048 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 !"#
 064 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 $%&’()*+,-./0123
 080 34 35 36 37 4567

 The SA details are as follows:

 o The key and Salt are as above.

 o The SPI is 0x01 0x02 0x03 0x04.

 o The next sequence number is 5; ESN is not enabled.

 o The gateway IP address for this side is 203.0.113.153; The peer
 address is 203.0.113.5.

 o NAT was not detected.

 The 64-bit IV is 0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17. Putting
 together the salt and IV we get the nonce:

 The nonce:
 000 a0 a1 a2 a3 10 11 12 13 14 15 16 17

Nir Standards Track [Page 9]

RFC 7634 ChaCha20 & Poly1305 for IPsec August 2015

 The plaintext to encrypt consists of the source IP packet plus the
 padding:

 Plaintext (includes padding and pad length):
 000 45 00 00 54 a6 f2 00 00 40 01 e7 78 c6 33 64 05 E..T....@..x.3d.
 016 c0 00 02 05 08 00 5b 7a 3a 08 00 00 55 3b ec 10 [z:...U;..
 032 00 07 36 27 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 ..6’............
 048 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 !"#
 064 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 $%&’()*+,-./0123
 080 34 35 36 37 01 02 02 04 4567....

 With the key, nonce, and plaintext available, we can call the
 ChaCha20 function and encrypt the packet, producing the ciphertext:

 Ciphertext:
 000 24 03 94 28 b9 7f 41 7e 3c 13 75 3a 4f 05 08 7b $..(..A˜<.u:O..{
 016 67 c3 52 e6 a7 fa b1 b9 82 d4 66 ef 40 7a e5 c6 g.R.......f.@z..
 032 14 ee 80 99 d5 28 44 eb 61 aa 95 df ab 4c 02 f7 (D.a....L..
 048 2a a7 1e 7c 4c 4f 64 c9 be fe 2f ac c6 38 e8 f3 *..|LOd.../..8..
 064 cb ec 16 3f ac 46 9b 50 27 73 f6 fb 94 e6 64 da ...?.F.P’s....d.
 080 91 65 b8 28 29 f6 41 e0 .e.().A.

 To calculate the tag, we need a one-time Poly1305 key, which we
 calculate by calling the ChaCha20 function again with the same key
 and nonce, but a block count of zero.

 Poly1305 one-time key:
 000 af 1f 41 2c c1 15 ad ce 5e 4d 0e 29 d5 c1 30 bf ..A,....^M.)..0.
 016 46 31 21 0e 0f ef 74 31 c0 45 4f e7 0f d7 c2 d1 F1!...t1.EO.....

 The AAD is constructed by concatenating the SPI to the sequence
 number:

 000 01 02 03 04 00 00 00 05

 The input to the Poly1305 function is constructed by concatenating
 and padding the AAD and ciphertext:

 Poly1305 Input:
 000 01 02 03 04 00 00 00 05 00 00 00 00 00 00 00 00
 016 24 03 94 28 b9 7f 41 7e 3c 13 75 3a 4f 05 08 7b $..(..A˜<.u:O..{
 032 67 c3 52 e6 a7 fa b1 b9 82 d4 66 ef 40 7a e5 c6 g.R.......f.@z..
 048 14 ee 80 99 d5 28 44 eb 61 aa 95 df ab 4c 02 f7 (D.a....L..
 064 2a a7 1e 7c 4c 4f 64 c9 be fe 2f ac c6 38 e8 f3 *..|LOd.../..8..
 080 cb ec 16 3f ac 46 9b 50 27 73 f6 fb 94 e6 64 da ...?.F.P’s....d.
 096 91 65 b8 28 29 f6 41 e0 00 00 00 00 00 00 00 00 .e.().A.........
 112 08 00 00 00 00 00 00 00 58 00 00 00 00 00 00 00 X.......

Nir Standards Track [Page 10]

RFC 7634 ChaCha20 & Poly1305 for IPsec August 2015

 The resulting tag is:

 Tag:
 000 76 aa a8 26 6b 7f b0 f7 b1 1b 36 99 07 e1 ad 43 v..&k.....6....C

 Putting it all together, the resulting packet is as follows:

 ESP packet:
 000 45 00 00 8c 23 45 00 00 40 32 de 5b cb 00 71 99 E...#E..@2.[..q.
 016 cb 00 71 05 01 02 03 04 00 00 00 05 10 11 12 13 ..q.............
 032 14 15 16 17 24 03 94 28 b9 7f 41 7e 3c 13 75 3a $..(..A˜<.u:
 048 4f 05 08 7b 67 c3 52 e6 a7 fa b1 b9 82 d4 66 ef O..{g.R.......f.
 064 40 7a e5 c6 14 ee 80 99 d5 28 44 eb 61 aa 95 df @z.......(D.a...
 080 ab 4c 02 f7 2a a7 1e 7c 4c 4f 64 c9 be fe 2f ac .L..*..|LOd.../.
 096 c6 38 e8 f3 cb ec 16 3f ac 46 9b 50 27 73 f6 fb .8.....?.F.P’s..
 112 94 e6 64 da 91 65 b8 28 29 f6 41 e0 76 aa a8 26 ..d..e.().A.v..&
 128 6b 7f b0 f7 b1 1b 36 99 07 e1 ad 43 k.....6....C

Appendix B. IKEv2 Example

 For the IKEv2 example, we’ll use the following:

 o The key is 0x80..0x9f, the same as in Appendix A.

 o The Salt is 0xa0 0xa1 0xa2 0xa3.

 o The IV will also be the same as in the previous example. The fact
 that the IV and Salt are both the same means that the nonce is
 also the same.

 o Because the key and nonce are the same, so is the one-time
 Poly1305 key.

 o The packet will be an INFORMATIONAL request carrying a single
 payload: a Notify payload with type SET_WINDOW_SIZE, setting the
 window size to 10.

 o iSPI = 0xc0 0xc1 0xc2 0xc3 0xc4 0xc5 0xc6 0xc7.

 o rSPI = 0xd0 0xd1 0xd2 0xd3 0xd4 0xd5 0xd6 0xd7.

 o Message ID shall be 9.

 The Notify Payload:
 000 00 00 00 0c 00 00 40 01 00 00 00 0a @.....

 Plaintext (with no padding and a zero pad length):
 000 00 00 00 0c 00 00 40 01 00 00 00 0a 00 @......

Nir Standards Track [Page 11]

RFC 7634 ChaCha20 & Poly1305 for IPsec August 2015

 Ciphertext:
 000 61 03 94 70 1f 8d 01 7f 7c 12 92 48 89 a..p....|..H.

 The AAD is constructed by appending the IKE header to the encrypted
 payload header. Note that the length field in the IKE header and the
 length field in the encrypted payload header have to be calculated
 before constructing the AAD:

 AAD:
 000 c0 c1 c2 c3 c4 c5 c6 c7 d0 d1 d2 d3 d4 d5 d6 d7
 016 2e 20 25 00 00 00 00 09 00 00 00 45 29 00 00 29 . %........E)..)

 In this case, the length of the AAD is an integral multiple of 16, so
 when constructing the input to Poly1305 there was no need for
 padding. The ciphertext is 13 octets long, so it is followed by 3
 zero octets. The input to Poly1305 is 32 octets of AAD, 13 octets of
 ciphertext, 3 octets of zero padding, and two 8-octet length fields
 in little-endian byte order.

 Poly1305 Input:
 000 c0 c1 c2 c3 c4 c5 c6 c7 d0 d1 d2 d3 d4 d5 d6 d7
 016 2e 20 25 00 00 00 00 09 00 00 00 45 29 00 00 29 . %........E)..)
 032 61 03 94 70 1f 8d 01 7f 7c 12 92 48 89 00 00 00 a..p....|..H....
 048 20 00 00 00 00 00 00 00 0d 00 00 00 00 00 00 00

 Tag:
 000 6b 71 bf e2 52 36 ef d7 cd c6 70 66 90 63 15 b2 kq..R6....pf.c..

 Encrypted Payload:
 000 29 00 00 29 10 11 12 13 14 15 16 17 61 03 94 70)..)........a..p
 016 1f 8d 01 7f 7c 12 92 48 89 6b 71 bf e2 52 36 ef |..H.kq..R6.
 032 d7 cd c6 70 66 90 63 15 b2 ...pf.c..

 The IKE Message:
 000 c0 c1 c2 c3 c4 c5 c6 c7 d0 d1 d2 d3 d4 d5 d6 d7
 016 2e 20 25 00 00 00 00 09 00 00 00 45 29 00 00 29 . %........E)..)
 032 10 11 12 13 14 15 16 17 61 03 94 70 1f 8d 01 7f a..p....
 048 7c 12 92 48 89 6b 71 bf e2 52 36 ef d7 cd c6 70 |..H.kq..R6....p
 064 66 90 63 15 b2 f.c..

Nir Standards Track [Page 12]

RFC 7634 ChaCha20 & Poly1305 for IPsec August 2015

 The below file in the snoop format [RFC1761] contains three packets:
 The first is the ICMP packet from the example in Appendix A, the
 second is the ESP packet from the same appendix, and the third is the
 IKEv2 packet from this appendix. To convert this text back into a
 file, you can use a Unix command line tool such as
 "openssl enc -d -a":

 c25vb3AAAAAAAAACAAAABAAAAGIAAABiAAAAegAAAABVPq8PAAADVdhs6fUQBHgx
 wbcpwggARQAAVKbyAABAAed4xjNkBcAAAgUIAFt6OggAAFU77BAABzYnCAkKCwwN
 Dg8QERITFBUWFxgZGhscHR4fICEiIyQlJicoKSorLC0uLzAxMjM0NTY3AAAAmgAA
 AJoAAACyAAAAAFU+rw8AAAo62Gzp9RAEeDHBtynCCABFAACMI0UAAEAy3lvLAHGZ
 ywBxBQECAwQAAAAFEBESExQVFhckA5QouX9BfjwTdTpPBQh7Z8NS5qf6sbmC1Gbv
 QHrlxhTugJnVKETrYaqV36tMAvcqpx58TE9kyb7+L6zGOOjzy+wWP6xGm1Anc/b7
 lOZk2pFluCgp9kHgdqqoJmt/sPexGzaZB+GtQwAAAG8AAABvAAAAhwAAAABVPq8P
 AAARH9hs6fUQBHgxwbcpwggARQAAYSNFAABAEd6nywBxmcsAcQUB9AH0AE0IUcDB
 wsPExcbH0NHS09TV1tcuICUAAAAACQAAAEUpAAApEBESExQVFhdhA5RwH40Bf3wS
 kkiJa3G/4lI279fNxnBmkGMVsg==

Acknowledgements

 All of the algorithms in this document were designed by D. J.
 Bernstein. The AEAD construction was designed by Adam Langley. The
 author would also like to thank Adam for helpful comments, as well as
 Yaron Sheffer for telling me to write the algorithms document.
 Thanks also to Martin Willi for pointing out the discrepancy with the
 final version of the algorithm document, and to Valery Smyslov and
 Tero Kivinen for helpful comments on this document. Thanks to Steve
 Doyle and Martin Willi for pointing out mistakes in my examples.

Author’s Address

 Yoav Nir
 Check Point Software Technologies Ltd.
 5 Hasolelim St.
 Tel Aviv 6789735
 Israel

 Email: ynir.ietf@gmail.com

Nir Standards Track [Page 13]

