
Internet Engineering Task Force (IETF) J. Lentini
Request for Comments: 7532 NetApp
Category: Standards Track R. Tewari
ISSN: 2070-1721 IBM Almaden
 C. Lever, Ed.
 Oracle Corporation
 March 2015

 Namespace Database (NSDB) Protocol for Federated File Systems

Abstract

 This document describes a file system federation protocol that
 enables file access and namespace traversal across collections of
 independently administered fileservers. The protocol specifies a set
 of interfaces by which fileservers with different administrators can
 form a fileserver federation that provides a namespace composed of
 the file systems physically hosted on and exported by the constituent
 fileservers.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7532.

Lentini, et al. Standards Track [Page 1]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Lentini, et al. Standards Track [Page 2]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

Table of Contents

 1. Introduction ..4
 1.1. Requirements Language5
 2. Overview of Features and Concepts5
 2.1. File-Access Protocol5
 2.2. File-Access Client ...5
 2.3. Fileserver ...5
 2.4. Referral ...5
 2.5. Namespace ..6
 2.6. Fileset ..6
 2.7. Fileset Name (FSN) ...6
 2.8. Fileset Location (FSL)7
 2.8.1. The NFS URI Scheme8
 2.8.2. Mutual Consistency across Fileset Locations10
 2.8.3. Caching of Fileset Locations11
 2.8.4. Generating a Referral from Fileset Locations12
 2.9. Namespace Database (NSDB)13
 2.9.1. NSDB Client ..14
 2.10. Junctions and Referrals14
 2.11. Unified Namespace and the Root Fileset15
 2.12. UUID Considerations15
 3. Examples ...16
 3.1. Creating a Fileset and Its FSL(s)16
 3.1.1. Creating a Fileset and an FSN17
 3.1.2. Adding a Replica of a Fileset17
 3.2. Junction Resolution17
 3.3. Example Use Cases for Fileset Annotations18
 4. NSDB Configuration and Schema19
 4.1. LDAP Configuration ..19
 4.2. LDAP Schema ...21
 4.2.1. LDAP Attributes23
 4.2.2. LDAP Object Classes38
 5. NSDB Operations ..42
 5.1. NSDB Operations for Administrators43
 5.1.1. Create an FSN43
 5.1.2. Delete an FSN44
 5.1.3. Create an FSL44
 5.1.4. Delete an FSL47
 5.1.5. Update an FSL48
 5.2. NSDB Operations for Fileservers49
 5.2.1. NSDB Container Entry (NCE) Enumeration49
 5.2.2. Lookup FSLs for an FSN49
 5.3. NSDB Operations and LDAP Referrals50
 6. Security Considerations ..51
 7. IANA Considerations ..52
 7.1. Registry for the fedfsAnnotation Key Namespace52
 7.2. Registry for FedFS Object Identifiers52

Lentini, et al. Standards Track [Page 3]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

 7.3. LDAP Descriptor Registration55
 8. Glossary ...58
 9. References ...60
 9.1. Normative References60
 9.2. Informative References62
 Acknowledgments ...64
 Authors’ Addresses ..65

1. Introduction

 A federated file system enables file access and namespace traversal
 in a uniform, secure, and consistent manner across multiple
 independent fileservers within an enterprise or across multiple
 enterprises.

 This document specifies a set of protocols that allow fileservers,
 possibly from different vendors and with different administrators, to
 cooperatively form a federation containing one or more federated file
 systems. Each federated file system’s namespace is composed of the
 file systems physically hosted on and exported by the federation’s
 fileservers. A federation comprises a common namespace across all
 its fileservers. A federation can project multiple namespaces and
 enable clients to traverse each one. A federation can contain an
 arbitrary number of namespace repositories, each belonging to a
 different administrative entity and each rendering a part of the
 namespace. A federation might also have an arbitrary number of
 administrative entities responsible for administering disjoint
 subsets of the fileservers.

 Traditionally, building a namespace that spans multiple fileservers
 has been difficult for two reasons. First, the fileservers that
 export pieces of the namespace are often not in the same
 administrative domain. Second, there is no standard mechanism for
 the fileservers to cooperatively present the namespace. Fileservers
 may provide proprietary management tools, and in some cases, an
 administrator may be able to use the proprietary tools to build a
 shared namespace out of the exported file systems. However, relying
 on vendor-specific proprietary tools does not work in larger
 enterprises or when collaborating across enterprises because the
 fileservers are likely to be from multiple vendors or use different
 software versions, each with their own namespace protocols, with no
 common mechanism to manage the namespace or exchange namespace
 information.

Lentini, et al. Standards Track [Page 4]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

 The federated file system protocols in this document define how to
 construct a namespace accessible by a Network File System (NFS)
 version 4.0 [RFC7530], NFSv4.1 [RFC5661], or newer client and have
 been designed to accommodate other file-access protocols in the
 future.

 The requirements for federated file systems are described in
 [RFC5716]. A protocol for administering a fileserver’s namespace is
 described in [RFC7533]. The mechanism for discovering the root of a
 federated namespace is described in [RFC6641].

 In the rest of the document, the term "fileserver" denotes a
 fileserver that is part of a federation.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Overview of Features and Concepts

2.1. File-Access Protocol

 A file-access protocol is a network protocol for accessing data. The
 NFSv4.0 protocol [RFC7530] is an example of a file-access protocol.

2.2. File-Access Client

 File-access clients are standard, off-the-shelf network-attached
 storage (NAS) clients that communicate with fileservers using a
 standard file-access protocol.

2.3. Fileserver

 Fileservers are servers that store physical fileset data or refer
 file-access clients to other fileservers. A fileserver provides
 access to its shared file system data via a file-access protocol. A
 fileserver may be implemented in a number of different ways,
 including a single system, a cluster of systems, or some other
 configuration.

2.4. Referral

 A referral is a mechanism by which a fileserver redirects a file-
 access client to a different fileserver or export. The exact
 information contained in a referral varies from one file-access
 protocol to another. The NFSv4.0 protocol, for example, defines the

Lentini, et al. Standards Track [Page 5]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

 fs_locations attribute for returning referral information to NFSv4.0
 clients. The NFSv4.1 protocol introduces the fs_locations_info
 attribute that can return richer referral information to its clients.
 NFSv4.1 fileservers may use either attribute during a referral. Both
 attributes are defined in [RFC5661].

2.5. Namespace

 The goal of a unified namespace is to make all managed data available
 to any file-access client via the same path in a common file system
 namespace. This should be achieved with minimal or zero
 configuration on file-access clients. In particular, updates to the
 common namespace should not require configuration changes to any
 file-access client.

 Filesets, which are the units of data management, are a set of files
 and directories. From the perspective of file-access clients, the
 common namespace is constructed by mounting filesets that are
 physically located on different fileservers. The namespace, which is
 defined in terms of fileset names and locations, is stored in a set
 of namespace repositories, each managed by an administrative entity.

 The namespace schema defines the model used for populating,
 modifying, and querying the namespace repositories. It is not
 required by the federation that the namespace be common across all
 fileservers. It should be possible to have several independently
 rooted namespaces.

2.6. Fileset

 A fileset is loosely defined as a set of files and the directory tree
 that contains them. The fileset abstraction is the basic unit of
 data management. Depending on the configuration, a fileset may be
 anything from an individual directory of an exported file system to
 an entire exported file system on a fileserver.

2.7. Fileset Name (FSN)

 A fileset is uniquely represented by its fileset name (FSN). An FSN
 is considered unique across a federation. After an FSN is created,
 it is associated with one or more fileset locations (FSLs) on one or
 more fileservers.

Lentini, et al. Standards Track [Page 6]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

 An FSN consists of:

 NsdbName: the network location of the Namespace Database (NSDB)
 node that contains authoritative information for this FSN.

 FsnUuid: a UUID (universally unique identifier), conforming to
 [RFC4122], that is used to uniquely identify an FSN.

 FsnTTL: the time-to-live of the FSN’s FSL information, in
 seconds. Fileservers MUST NOT use cached FSL records after the
 parent FSN’s FsnTTL has expired. An FsnTTL value of zero
 indicates that fileservers MUST NOT cache the results of
 resolving this FSN.

 The NsdbName is not physically stored as an attribute of the record.
 The NsdbName is obvious to any client that accesses an NSDB and is
 indeed authenticated in cases where Transport Layer Security (TLS) is
 in effect.

 The FsnUuid and NsdbName values never change during an FSN’s
 lifetime. However, an FSN’s FSL information can change over time and
 is typically cached on fileservers for performance. More detail on
 FSL caching is provided in Section 2.8.3.

 An FSN record may also contain:

 Annotations: name/value pairs that can be interpreted by a
 fileserver. The semantics of this field are not defined by
 this document. These tuples are intended to be used by higher-
 level protocols.

 Descriptions: text descriptions. The semantics of this field are
 not defined by this document.

2.8. Fileset Location (FSL)

 An FSL describes one physical location where a complete copy of the
 fileset’s data resides. An FSL contains generic and type-specific
 information that together describe how to access the fileset data at
 this location. An FSL’s attributes can be used by a fileserver to
 decide which locations it will return to a file-access client.

Lentini, et al. Standards Track [Page 7]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

 An FSL consists of:

 FslUuid: a UUID, conforming to [RFC4122], that is used to
 uniquely identify an FSL.

 FsnUuid: the UUID of the FSL’s FSN.

 NsdbName: the network location of the NSDB node that contains
 authoritative information for this FSL.

 The NsdbName is not stored as an attribute of an FSL record for the
 same reason it is not stored in FSN records.

 An FSL record may also contain:

 Annotations: name/value pairs that can be interpreted by a
 fileserver. The semantics of this field are not defined by
 this document. These tuples are intended to be used by higher-
 level protocols.

 Descriptions: text descriptions. The semantics of this field are
 not defined by this document.

 In addition to the attributes defined above, an FSL record contains
 attributes that allow a fileserver to construct referrals. For each
 file-access protocol, a corresponding FSL record subtype is defined.

 This document defines an FSL subtype for NFS. An NFS FSL contains
 information suitable for use in one of the NFSv4 referral attributes
 (e.g., fs_locations or fs_locations_info, described in [RFC5661]).
 Section 4.2.2.4 describes the contents of an NFS FSL record.

 A fileset may also be accessible by file-access protocols other than
 NFS. The contents and format of such FSL subtypes are not defined in
 this document.

2.8.1. The NFS URI Scheme

 To capture the location of an NFSv4 fileset, we extend the NFS URL
 scheme specified in [RFC2224]. This extension follows rules for
 defining Uniform Resource Identifier schemes (see [RFC3986]). In the
 following text, we refer to this extended NFS URL scheme as an NFS
 URI.

 An NFS URI MUST contain both an authority and a path component. It
 MUST NOT contain a query component or a fragment component. Use of
 the familiar "nfs" scheme name is retained.

Lentini, et al. Standards Track [Page 8]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

2.8.1.1. The NFS URI Authority Component

 The rules for encoding the authority component of a generic URI are
 specified in section 3.2 of [RFC3986]. The authority component of an
 NFS URI MUST contain the host subcomponent. For globally scoped NFS
 URIs, a hostname used in such URIs SHOULD be a fully qualified domain
 name. See section 3.2.2 of [RFC3986] for rules on encoding non-ASCII
 characters in hostnames.

 An NFS URI MAY contain a port subcomponent as described in section
 3.2.3 of [RFC3986]. If this subcomponent is missing, a port value of
 2049 is assumed, as specified in [RFC7530], Section 3.1.

2.8.1.2. The NFS URI Path Component

 The rules for encoding the path component of a generic URI are
 specified in Section 3.3 of [RFC3986].

 According to Sections 5 and 6 of [RFC2224], NFS URLs specify a
 pathname relative to an NFS fileserver’s public filehandle. However,
 NFSv4 fileservers do not expose a public filehandle. Instead, NFSv4
 pathnames contained in an NFS URI are evaluated relative to the
 pseudoroot of the fileserver identified in the URI’s authority
 component.

 Each component of an NFSv4 pathname is represented as a component4
 string (see Section 3.2, "Basic Data Types", of [RFC5661]). The
 component4 elements of an NFSv4 pathname are encoded as path segments
 in an NFS URI. NFSv4 pathnames MUST be expressed in an NFS URI as an
 absolute path. An NFS URI path component MUST NOT be empty. The NFS
 URI path component starts with a slash ("/") character, followed by
 one or more path segments that each start with a slash ("/")
 character [RFC3986].

 Therefore, a double slash always follows the authority component of
 an NFS URI. For example, the NFSv4 pathname "/" is represented by
 two slash ("/") characters following an NFS URI’s authority
 component.

 The component names of an NFSv4 pathname MUST be prepared using the
 component name rules defined in Section 12 ("Internationalization")
 of [RFC7530] prior to encoding the path component of an NFS URI. As
 specified in [RFC3986], any non-ASCII characters and any URI-reserved
 characters, such as the slash ("/") character, contained in a
 component4 element MUST be represented by URI percent encoding.

Lentini, et al. Standards Track [Page 9]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

2.8.1.3. Encoding an NFS Location in an FSL

 The path component of an NFS URI encodes the rootpath field of the
 NFSv4 fs_location4 data type or the "fli_rootpath" of the NFSv4
 fs_locations_item4 data type (see [RFC5661]).

 In its server field, the NFSv4 fs_location4 data type contains a list
 of universal addresses and DNS labels. Each may optionally include a
 port number. The exact encoding requirements for this information is
 found in Section 12.6 of [RFC7530]. The NFSv4 fs_locations_item4
 data type encodes the same data in its fli_entries field (see
 [RFC5661]). This information is encoded in the authority component
 of an NFS URI.

 The server and fli_entries fields can encode multiple server
 hostnames that share the same pathname. An NFS URI, and hence an FSL
 record, represents only a single hostname and pathname pair. An NFS
 fileserver MUST NOT combine a set of FSL records into a single
 fs_location4 or fs_locations_item4 unless each FSL record in the set
 contains the same rootpath value and extended file system
 information.

2.8.2. Mutual Consistency across Fileset Locations

 All of the FSLs that have the same FSN (and thereby reference the
 same fileset) are equivalent from the point of view of access by a
 file-access client. Different fileset locations for an FSN represent
 the same data, though potentially at different points in time.
 Fileset locations are equivalent but not identical. Locations may be
 either read-only or read-write. Typically, multiple read-write
 locations are backed by a clustered file system while read-only
 locations are replicas created by a federation-initiated or external
 replication operation. Read-only locations may represent consistent
 point-in-time copies of a read-write location. The federation
 protocols, however, cannot prevent subsequent changes to a read-only
 location nor guarantee point-in-time consistency of a read-only
 location if the read-write location is changing.

 Regardless of the type, one file-access client may be referred to a
 location described by one FSL while another client chooses to use a
 location described by another FSL. Since updates to each fileset
 location are not controlled by the federation protocol, it is the
 responsibility of administrators to guarantee the functional
 equivalence of the data.

 The federation protocols do not guarantee that different fileset
 locations are mutually consistent in terms of the currency of their
 data. However, they provide a means to publish currency information

Lentini, et al. Standards Track [Page 10]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

 so that all fileservers in a federation can convey the same
 information to file-access clients during referrals. Clients use
 this information to ensure they do not revert to an out-of-date
 version of a fileset’s data when switching between fileset locations.
 NFSv4.1 provides guidance on how replication can be handled in such a
 manner. In particular, see Section 11.7 of [RFC5661].

2.8.3. Caching of Fileset Locations

 To resolve an FSN to a set of FSL records, a fileserver queries the
 NSDB node named in the FSN for FSL records associated with this FSN.
 The parent FSN’s FsnTTL attribute (see Section 2.7) specifies the
 period of time during which a fileserver may cache these FSL records.

 The combination of FSL caching and FSL migration presents a
 challenge. For example, suppose there are three fileservers named A,
 B, and C. Suppose further that fileserver A contains a junction J to
 fileset X stored on fileserver B (see Section 2.10 for a description
 of junctions).

 Now suppose that fileset X is migrated from fileserver B to
 fileserver C, and the corresponding FSL information for fileset X in
 the authoritative NSDB is updated.

 If fileserver A has cached FSLs for fileset X, a file-access client
 traversing junction J on fileserver A will be referred to fileserver
 B, even though fileset X has migrated to fileserver C. If fileserver
 A had not cached the FSL records, it would have queried the NSDB and
 obtained the correct location of fileset X.

 Typically, the process of fileset migration leaves a redirection on
 the source fileserver in place of a migrated fileset (without such a
 redirection, file-access clients would find an empty space where the
 migrated fileset was, which defeats the purpose of a managed
 migration).

 This redirection might be a new junction that targets the same FSN as
 other junctions referring to the migrated fileset, or it might be
 some other kind of directive, depending on the fileserver
 implementation, that simply refers file-access clients to the new
 location of the migrated fileset.

Lentini, et al. Standards Track [Page 11]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

 Back to our example. Suppose, as part of the migration process, a
 junction replaces fileset X on fileserver B. Later, either:

 o New file-access clients are referred to fileserver B by stale FSL
 information cached on fileserver A, or

 o File-access clients continue to access fileserver B because they
 cache stale location data for fileset X.

 In either case, thanks to the redirection, file-access clients are
 informed by fileserver B that fileset X has moved to fileserver C.

 Such redirecting junctions (here, on fileserver B) would not be
 required to be in place forever. They need to stay in place at least
 until FSL entries cached on fileservers and locations cached on file-
 access clients for the target fileset are invalidated.

 The FsnTTL field in the FSL’s parent FSN (see Section 2.7) specifies
 an upper bound for the lifetime of cached FSL information and thus
 can act as a lower bound for the lifetime of redirecting junctions.

 For example, suppose the FsnTTL field contains the value 3600 seconds
 (one hour). In such a case, administrators SHOULD keep the
 redirection in place for at least one hour after a fileset migration
 has taken place because a referring fileserver might cache the FSL
 data during that time before refreshing it.

 To get file-access clients to access the destination fileserver more
 quickly, administrators SHOULD set the FsnTTL field of the migrated
 fileset to a low number or zero before migration begins. It can be
 reset to a more reasonable number at a later point.

 Note that some file-access protocols do not communicate location
 cache expiry information to file-access clients. In some cases, it
 may be difficult to determine an appropriate lifetime for redirecting
 junctions because file-access clients may cache location information
 indefinitely.

2.8.4. Generating a Referral from Fileset Locations

 After resolving an FSN to a set of FSL records, the fileserver
 generates a referral to redirect a file-access client to one or more
 of the FSN’s FSLs. The fileserver converts the FSL records to a
 referral format understood by a particular file-access client, such
 as an NFSv4 fs_locations or fs_locations_info attribute.

Lentini, et al. Standards Track [Page 12]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

 To give file-access clients as many options as possible, the
 fileserver SHOULD include the maximum possible number of FSL records
 in a referral. However, the fileserver MAY omit some of the FSL
 records from the referral. For example, the fileserver might omit an
 FSL record because of limitations in the file-access protocol’s
 referral format.

 For a given FSL record, the fileserver MAY convert or reduce the FSL
 record’s contents in a manner appropriate to the referral format.
 For example, an NFS FSL record contains all the data necessary to
 construct an fs_locations_info attribute, but an fs_locations_info
 attribute contains several pieces of information that are not found
 in the simpler fs_locations attribute. A fileserver constructs
 entries in an fs_locations attribute using the relevant contents of
 an NFS FSL record.

 Whenever the fileserver converts or reduces FSL data, the fileserver
 SHOULD attempt to maintain the original meaning where possible. For
 example, an NFS FSL record contains the rank and order information
 that is included in an fs_locations_info attribute (see NFSv4.1’s
 FSLI4BX_READRANK, FSLI4BX_READORDER, FSLI4BX_WRITERANK, and
 FSLI4BX_WRITEORDER). While this rank and order information is not
 explicitly expressible in an fs_locations attribute, the fileserver
 can arrange the fs_locations attribute’s locations list based on the
 rank and order values.

 Another example: A single NFS FSL record contains the hostname of one
 fileserver. A single fs_locations attribute can contain a list of
 fileserver names. An NFS fileserver MAY combine two or more FSL
 records into a single entry in an fs_locations or fs_locations_info
 array only if each FSL record contains the same pathname and extended
 file system information.

 Refer to Sections 11.9 and 11.10 of the NFSv4.1 protocol
 specification [RFC5661] for further details.

2.9. Namespace Database (NSDB)

 The NSDB service is a federation-wide service that provides
 interfaces to define, update, and query FSN information, FSL
 information, and FSN-to-FSL mapping information.

 An individual repository of namespace information is called an NSDB
 node. The difference between the NSDB service and an NSDB node is
 analogous to that between the DNS service and a particular DNS
 server.

Lentini, et al. Standards Track [Page 13]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

 Each NSDB node is managed by a single administrative entity. A
 single administrative entity can manage multiple NSDB nodes.

 Each NSDB node stores the definition of the FSNs for which it is
 authoritative. It also stores the definitions of the FSLs associated
 with those FSNs. An NSDB node is authoritative for the filesets that
 it defines.

 An NSDB MAY be replicated throughout the federation. If an NSDB is
 replicated, the NSDB MUST exhibit loose, converging consistency as
 defined in [RFC3254]. The mechanism by which this is achieved is
 outside the scope of this document. Many Lightweight Directory
 Access Protocol (LDAP) implementations support replication. These
 features MAY be used to replicate the NSDB.

2.9.1. NSDB Client

 Each NSDB node supports an LDAP [RFC4510] interface. An NSDB client
 is software that uses the LDAP protocol to access or update namespace
 information stored on an NSDB node.

 A domain’s administrative entity uses NSDB client software to manage
 information stored on NSDB nodes. Details of these transactions are
 discussed in Section 5.1.

 Fileservers act as an NSDB client when contacting a particular NSDB
 node to resolve an FSN to a set of FSL records. The resulting
 location information is then transferred to file-access clients via
 referrals. Therefore, file-access clients never need to access NSDBs
 directly. These transactions are described in Section 5.2.

2.10. Junctions and Referrals

 A junction is a point in a particular fileset namespace where a
 specific target fileset may be attached. If a file-access client
 traverses the path leading from the root of a federated namespace to
 the junction referring to a target fileset, it should be able to
 mount and access the data in that target fileset (assuming
 appropriate permissions). In other words, a junction can be viewed
 as a reference from a directory in one fileset to the root of the
 target fileset.

 A junction can be implemented as a special marker on a directory or
 by some other mechanism in the fileserver’s underlying file system.
 What data is used by the fileserver to represent junctions is not
 defined by this document. The essential property is that given a
 junction, a fileserver must be able to find the FSN for the target
 fileset.

Lentini, et al. Standards Track [Page 14]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

 When a file-access client reaches a junction, the fileserver refers
 the client to a list of FSLs associated with the FSN targeted by the
 junction. The client can then mount one of the associated FSLs.

 The federation protocols do not limit where and how many times a
 fileset is mounted in the namespace. Filesets can be nested; a
 fileset can be mounted under another fileset.

2.11. Unified Namespace and the Root Fileset

 The root fileset, when defined, is the top-level fileset of the
 federation-wide namespace. The root of the unified namespace is the
 top level directory of this fileset. A set of designated fileservers
 in the federation can export the root fileset to render the
 federation-wide unified namespace. When a file-access client mounts
 the root fileset from any of these designated fileservers, it can
 view a common federation-wide namespace.

2.12. UUID Considerations

 To ensure FSN and FSL records are unique across a domain, Federated
 File System (FedFS) employs UUIDs conforming to [RFC4122] to form the
 distinguished names of LDAP records containing FedFS data (see
 Section 4.2.2.2).

 Because junctions store a tuple containing an FSN UUID and the name
 and port of an NSDB node, an FSN UUID must be unique only on a single
 NSDB node. An FSN UUID collision can be detected immediately when an
 administrator attempts to publish an FSN or FSL by storing it under a
 specific NSDB Container Entry (NCE) on an authoritative NSDB host.

 Note that one NSDB node may store multiple NCEs, each under a
 different namingContext. If an NSDB node must contain more than one
 NCE, the federation’s admin entity SHOULD provide a robust method for
 preventing FSN UUID collisions between FSNs that reside on the same
 NSDB node but under different NCEs.

 Because FSLs are children of FSNs, FSL UUIDs must be unique for just
 a single FSN. As with FSNs, as soon as an FSL is published, its
 uniqueness is guaranteed.

 A fileserver performs the operations described in Section 5.2 as an
 unauthenticated user. Thus, distinguished names of FSN and FSL
 records, as well as the FSN and FSL records themselves, are required
 to be readable by anyone who can bind anonymously to an NSDB node.
 Therefore, FSN and FSL UUIDs should be considered public information.

Lentini, et al. Standards Track [Page 15]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

 Version 1 UUIDs contain a host’s Media Access Control (MAC) address
 and a timestamp in the clear. This gives provenance to each UUID,
 but attackers can use such details to guess information about the
 host where the UUID was generated. Security-sensitive installations
 should be aware that on externally facing NSDBs, UUIDs can reveal
 information about the hosts where they are generated.

 In addition, version 1 UUIDs depend on the notion that a hardware MAC
 address is unique across machines. As virtual machines do not depend
 on unique physical MAC addresses and, in any event, an administrator
 can modify the physical MAC address, version 1 UUIDs are no longer
 considered sufficient.

 To minimize the probability of UUIDs colliding, a consistent
 procedure for generating UUIDs should be used throughout a
 federation. Within a federation, UUIDs SHOULD be generated using the
 procedure described for version 4 of the UUID variant specified in
 [RFC4122].

3. Examples

 In this section we provide examples and discussion of the basic
 operations facilitated by the federated file system protocol:
 creating a fileset, adding a replica of a fileset, resolving a
 junction, and creating a junction.

3.1. Creating a Fileset and Its FSL(s)

 A fileset is the abstraction of a set of files and the directory tree
 that contains them. The fileset abstraction is the fundamental unit
 of data management in the federation. This abstraction is
 implemented by an actual directory tree whose root location is
 specified by a fileset location (FSL).

 In this section, we describe the basic requirements for starting with
 a directory tree and creating a fileset that can be used in the
 federation protocols. Note that we do not assume that the process of
 creating a fileset requires any transformation of the files or the
 directory hierarchy. The only thing that is required by this process
 is assigning the fileset a fileset name (FSN) and expressing the
 location of the implementation of the fileset as an FSL.

 There are many possible variations to this procedure, depending on
 how the FSN that binds the FSL is created and whether other replicas
 of the fileset exist, are known to the federation, and need to be
 bound to the same FSN.

Lentini, et al. Standards Track [Page 16]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

 It is easiest to describe this in terms of how to create the initial
 implementation of the fileset and then describe how to add replicas.

3.1.1. Creating a Fileset and an FSN

 The following administrative steps create an FSN, which is used to
 track all replicas of a single physical dataset.

 1. Choose the NSDB node that will keep track of the FSL(s) and
 related information for the fileset.

 2. Create an FSN in the NSDB node.

 The FSN UUID is chosen by the administrator or generated
 automatically by administration software. The former case is
 used if the fileset is being restored, perhaps as part of
 disaster recovery, and the administrator wishes to specify the
 FSN UUID in order to permit existing junctions that reference
 that FSN to work again.

 At this point, the FSN exists, but its fileset locations are
 unspecified.

 3. For the FSN created above, create an FSL in the NSDB node that
 describes the physical location of the fileset data.

3.1.2. Adding a Replica of a Fileset

 Adding a replica is straightforward: the NSDB node and the FSN are
 already known. The only remaining step is to add another FSL.

 Note that the federation protocols provide only the mechanisms to
 register and unregister replicas of a fileset. Fileserver-to-
 fileserver replication protocols are not defined.

3.2. Junction Resolution

 A fileset may contain references to other filesets. These references
 are represented by junctions. If a file-access client requests
 access to a fileset object that is a junction, the fileserver
 resolves the junction to discover one or more FSLs that implement the
 referenced fileset.

 There are many possible variations to this procedure, depending on
 how the junctions are represented by the fileserver and how the
 fileserver performs junction resolution.

Lentini, et al. Standards Track [Page 17]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

 Step 4 is the only step that interacts directly with the federation
 protocols. The rest of the steps may use platform-specific
 interfaces.

 1. The fileserver determines that the object being accessed is a
 junction.

 2. The fileserver does a local lookup to find the FSN of the target
 fileset.

 3. Using the FSN, the fileserver finds the NSDB node responsible for
 the target FSN.

 4. The fileserver contacts that NSDB node and asks for the set of
 FSLs that implement the target FSN. The NSDB node responds with
 a (possibly empty) set of FSLs.

 5. The fileserver converts one or more of the FSLs to the location
 type used by the file-access client (e.g., an NFSv4 fs_locations
 attribute as described in [RFC5661]).

 6. The fileserver redirects (in whatever manner is appropriate for
 the client) the client to the location(s).

3.3. Example Use Cases for Fileset Annotations

 Fileset annotations can convey additional attributes of a fileset.
 For example, fileset annotations can be used to define relationships
 between filesets that can be used by an auxiliary replication
 protocol. Consider the scenario where a fileset is created and
 mounted at some point in the namespace. A snapshot of the read-write
 FSL of that fileset is taken periodically at different frequencies
 (say, a daily or weekly snapshot). The different snapshots are
 mounted at different locations in the namespace.

 The daily snapshots are considered as different filesets from the
 weekly ones, but both are related to the source fileset. We can
 define an annotation labeling the filesets as source and replica.
 The replication protocol can use this information to copy data from
 one or more FSLs of the source fileset to all the FSLs of the replica
 fileset. The replica filesets are read-only while the source fileset
 is read-write.

 This follows the traditional Andrew File System (AFS) model of
 mounting the read-only volume at a path in the namespace different
 from that of the read-write volume [AFS].

Lentini, et al. Standards Track [Page 18]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

 The federation protocol does not control or manage the relationship
 among filesets. It merely enables annotating the filesets with user-
 defined relationships.

 Another potential use for annotations is recording references to an
 FSN. A single annotation containing the number of references could
 be defined, or multiple annotations, one per reference, could be used
 to store detailed information on the location of each reference.

 As with the replication annotation described above, the maintenance
 of reference information would not be controlled by the federation
 protocol. The information would most likely be non-authoritative
 because the ability to create a junction does not require the
 authority to update the FSN record. In any event, such annotations
 could be useful to administrators for determining if an FSN is
 referenced by a junction.

4. NSDB Configuration and Schema

 This section describes how an NSDB is constructed using an LDAP
 Version 3 [RFC4510] directory. Section 4.1 describes the basic
 properties of the LDAP configuration that MUST be used in order to
 ensure compatibility between different implementations. Section 4.2
 defines the new LDAP attribute types and the new object types; it
 also specifies how the distinguished name (DN) of each object
 instance MUST be constructed.

4.1. LDAP Configuration

 An NSDB is constructed using an LDAP directory. This LDAP directory
 MAY have multiple naming contexts. The LDAP directory’s entry
 specific to Digital Signature Algorithm (DSA) (its rootDSE) has a
 multi-valued namingContext attribute. Each value of the
 namingContext attribute is the DN of a naming context’s root entry
 (see [RFC4512]).

 For each naming context that contains federation entries (e.g., FSNs
 and FSLs):

 1. There MUST be an LDAP entry that is superior to all of the naming
 context’s federation entries in the Directory Information Tree
 (DIT). This entry is termed the NSDB Container Entry (NCE). The
 NCE’s children are FSNs. An FSN’s children are FSLs.

 2. The naming context’s root entry MUST include
 "fedfsNsdbContainerInfo" (defined in Section 4.2.2.1) as one of
 its object classes. The fedfsNsdbContainerInfo’s fedfsNceDN
 attribute is used to locate the naming context’s NCE.

Lentini, et al. Standards Track [Page 19]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

 If a naming context does not contain federation entries, it will not
 contain an NCE, and its root entry will not include a
 "fedfsNsdbContainerInfo" as one of its object classes.

 A fedfsNsdbContainerInfo’s fedfsNceDN attribute contains the
 distinguished name (DN) of the NSDB Container Entry residing under
 this naming context. The fedfsNceDN attribute MUST NOT be empty.

 For example, an LDAP directory might have the following entries:

 -+ [root DSE]
 | namingContext: o=fedfs
 | namingContext: dc=example,dc=com
 | namingContext: ou=system
 |
 |
 +---- [o=fedfs]
 | fedfsNceDN: o=fedfs
 |
 |
 +---- [dc=example,dc=com]
 | fedfsNceDN: ou=fedfs,ou=corp-it,dc=example,dc=com
 |
 |
 +---- [ou=system]

 In this case, the "o=fedfs" namingContext has an NSDB Container Entry
 at "o=fedfs", the "dc=example,dc=com" namingContext has an NSDB
 Container Entry at "ou=fedfs,ou=corp-it,dc=example,dc=com", and the
 "ou=system" namingContext has no NSDB Container Entry.

 The NSDB SHOULD be configured with one or more privileged LDAP users.
 These users are able to modify the contents of the LDAP database. An
 administrator that performs the operations described in Section 5.1
 SHOULD authenticate using the DN of a privileged LDAP user.

 It MUST be possible for an unprivileged (unauthenticated) user to
 perform LDAP queries that access the NSDB data. A fileserver
 performs the operations described in Section 5.2 as an unprivileged
 user.

 All implementations SHOULD use the same schema. At minimum, each
 MUST use a schema that includes all objects named in the following
 sections, with all associated attributes. If it is necessary for an

Lentini, et al. Standards Track [Page 20]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

 implementation to extend the schema defined here, consider using one
 of the following ways to extend the schema:

 o Define a fedfsAnnotation key and values (see Section 4.2.1.6).
 Register the new key and values with IANA (see Section 7.1).

 o Define additional attribute types and object classes, then have
 entries inherit from a class defined in this document and from the
 implementation-defined ones.

 Given the above configuration guidelines, an NSDB SHOULD be
 constructed using a dedicated LDAP server. If LDAP directories are
 needed for other purposes, such as to store user account information,
 use of a separate LDAP server for those is RECOMMENDED. By using an
 LDAP server dedicated to storing NSDB records, there is no need to
 disturb the configuration of any other LDAP directories that store
 information unrelated to an NSDB.

4.2. LDAP Schema

 The schema definitions provided in this document use the LDAP schema
 syntax defined in [RFC4512]. The definitions are formatted to allow
 the reader to easily extract them from the document. The reader can
 use the following shell script to extract the definitions:

 <CODE BEGINS>

 #!/bin/sh
 grep ’^ *///’ | sed ’s?^ */// ??’ | sed ’s?^ *///$??’

 <CODE ENDS>

 If the above script is stored in a file called "extract.sh", and this
 document is in a file called "spec.txt", then the reader can do:

 <CODE BEGINS>

 sh extract.sh < spec.txt > fedfs.schema

 <CODE ENDS>

 The effect of the script is to remove leading white space from each
 line, plus a sentinel sequence of "///".

Lentini, et al. Standards Track [Page 21]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

 Code components extracted from this document must include the
 following license:

 <CODE BEGINS>

 /// #
 /// # Copyright (c) 2015 IETF Trust and the persons identified
 /// # as authors of the code. All rights reserved.
 /// #
 /// # The authors of the code are:
 /// # J. Lentini, C. Everhart, D. Ellard, R. Tewari, and M. Naik.
 /// #
 /// # Redistribution and use in source and binary forms, with
 /// # or without modification, are permitted provided that the
 /// # following conditions are met:
 /// #
 /// # - Redistributions of source code must retain the above
 /// # copyright notice, this list of conditions and the
 /// # following disclaimer.
 /// #
 /// # - Redistributions in binary form must reproduce the above
 /// # copyright notice, this list of conditions and the
 /// # following disclaimer in the documentation and/or other
 /// # materials provided with the distribution.
 /// #
 /// # - Neither the name of Internet Society, IETF or IETF
 /// # Trust, nor the names of specific contributors, may be
 /// # used to endorse or promote products derived from this
 /// # software without specific prior written permission.
 /// #
 /// # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
 /// # AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
 /// # WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 /// # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 /// # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
 /// # EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 /// # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 /// # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 /// # NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 /// # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 /// # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 /// # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 /// # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
 /// # IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 /// # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 /// #

 <CODE ENDS>

Lentini, et al. Standards Track [Page 22]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

4.2.1. LDAP Attributes

 The following definitions are used in this document:

 o The name attribute described in [RFC4519].

 o The Integer syntax (1.3.6.1.4.1.1466.115.121.1.27) described in
 [RFC4517].

 o The integerMatch rule described in [RFC4517].

 o The Octet String syntax (1.3.6.1.4.1.1466.115.121.1.40) described
 in [RFC4517].

 o The octetStringMatch rule described in [RFC4517].

 o The Boolean syntax (1.3.6.1.4.1.1466.115.121.1.7) described in
 [RFC4517].

 o The booleanMatch rule described in [RFC4517].

 o The distinguishedNameMatch rule described in [RFC4517].

 o The DN syntax (1.3.6.1.4.1.1466.115.121.1.12) described in
 [RFC4517].

 o The labeledURI attribute described in [RFC2079].

 o The UUID syntax (1.3.6.1.1.16.1) described in [RFC4530].

 o The UuidMatch rule described in [RFC4530].

 o The UuidOrderingMatch rule described in [RFC4530].

Lentini, et al. Standards Track [Page 23]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

4.2.1.1. fedfsUuid

 A fedfsUuid is the base type for all of the universally unique
 identifiers (UUIDs) used by the federated file system protocols.

 The fedfsUuid type is based on rules and syntax defined in [RFC4530].

 A fedfsUuid is a single-valued LDAP attribute.

 <CODE BEGINS>

 ///
 /// attributetype (
 /// 1.3.6.1.4.1.31103.1.1 NAME ’fedfsUuid’
 /// DESC ’A UUID used by NSDB’
 /// EQUALITY uuidMatch
 /// ORDERING uuidOrderingMatch
 /// SYNTAX 1.3.6.1.1.16.1
 /// SINGLE-VALUE
 ///)
 ///

 <CODE ENDS>

4.2.1.2. fedfsFsnUuid

 A fedfsFsnUuid represents the UUID component of an FSN. An NSDB
 SHOULD ensure that no two FSNs it stores have the same fedfsFsnUuid.

 This attribute is single-valued.

 <CODE BEGINS>

 ///
 /// attributetype (
 /// 1.3.6.1.4.1.31103.1.4 NAME ’fedfsFsnUuid’
 /// DESC ’The FSN UUID component of an FSN’
 /// SUP fedfsUuid
 /// SINGLE-VALUE
 ///)
 ///

 <CODE ENDS>

Lentini, et al. Standards Track [Page 24]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

4.2.1.3. fedfsFsnTTL

 A fedfsFsnTTL is the time-to-live in seconds of a cached FSN and its
 child FSL records. It corresponds to the FsnTTL as defined in
 Section 2.7. See also Section 2.8.3 for information about caching
 FSLs. A fedfsFsnTTL MUST be encoded as an Integer syntax value
 [RFC4517] in the range [0, 4294967295].

 This attribute is single-valued.

 <CODE BEGINS>

 ///
 /// attributetype (
 /// 1.3.6.1.4.1.31103.1.11 NAME ’fedfsFsnTTL’
 /// DESC ’Time to live of an FSN tree’
 /// EQUALITY integerMatch
 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
 /// SINGLE-VALUE
 ///)
 ///

 <CODE ENDS>

 OID 1.3.6.1.4.1.1466.115.121.1.27 is the Integer syntax [RFC4517].

4.2.1.4. fedfsNceDN

 A fedfsNceDN stores a distinguished name (DN).

 This attribute is single-valued.

 <CODE BEGINS>

 ///
 /// attributetype (
 /// 1.3.6.1.4.1.31103.1.14 NAME ’fedfsNceDN’
 /// DESC ’NCE Distinguished Name’
 /// EQUALITY distinguishedNameMatch
 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 /// SINGLE-VALUE
 ///)
 ///

 <CODE ENDS>

 OID 1.3.6.1.4.1.1466.115.121.1.12 is the DN syntax [RFC4517].

Lentini, et al. Standards Track [Page 25]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

4.2.1.5. fedfsFslUuid

 A fedfsFslUuid represents the UUID of an FSL. An NSDB SHOULD ensure
 that no two FSLs it stores have the same fedfsFslUuid.

 This attribute is single-valued.

 <CODE BEGINS>

 ///
 /// attributetype (
 /// 1.3.6.1.4.1.31103.1.8 NAME ’fedfsFslUuid’
 /// DESC ’UUID of an FSL’
 /// SUP fedfsUuid
 /// SINGLE-VALUE
 ///)
 ///

 <CODE ENDS>

4.2.1.6. fedfsAnnotation

 A fedfsAnnotation contains an object annotation formatted as a key/
 value pair.

 This attribute is multi-valued; an object type that permits
 annotations may have any number of annotations per instance.

 A fedfsAnnotation attribute is a human-readable sequence of UTF-8
 characters with no non-terminal NUL characters. The value MUST be
 formatted according to the following ABNF [RFC5234] rules:

 ANNOTATION = KEY "=" VALUE
 KEY = ITEM
 VALUE = ITEM
 ITEM = *WSP DQUOTE UTF8-octets DQUOTE *WSP

 DQUOTE and WSP are defined in [RFC5234], and UTF8-octets is defined
 in [RFC3629].

 The following escape sequences are allowed:

 +-----------------+-------------+
 | escape sequence | replacement |
 +-----------------+-------------+
 | \\ | \ |
 | \" | " |
 +-----------------+-------------+

Lentini, et al. Standards Track [Page 26]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

 A fedfsAnnotation value might be processed as follows:

 1. Parse the attribute value according to the ANNOTATION rule,
 ignoring the escape sequences above.

 2. Scan through results of the previous step and replace the escape
 sequences above.

 A fedfsAnnotation attribute that does not adhere to this format
 SHOULD be ignored in its entirety. It MUST NOT prevent further
 processing of its containing entry.

 The following are examples of valid fedfsAnnotation attributes:

 "key1" = "foo"
 "another key" = "x=3"
 "key-2" = "A string with \" and \\ characters."
 "key3"="bar"

 These correspond to the following key/value pairs:

 +-------------+-----------------------------------+
 | key | value |
 +-------------+-----------------------------------+
 | key1 | foo |
 | another key | x=3 |
 | key-2 | A string with " and \ characters. |
 | key3 | bar |
 +-------------+-----------------------------------+

 <CODE BEGINS>

 ///
 /// attributetype (
 /// 1.3.6.1.4.1.31103.1.12 NAME ’fedfsAnnotation’
 /// DESC ’Annotation of an object’
 /// SUP name
 ///)
 ///

 <CODE ENDS>

Lentini, et al. Standards Track [Page 27]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

4.2.1.7. fedfsDescr

 A fedfsDescr stores an object description. The description MUST be
 encoded as a UTF-8 string.

 This attribute is multi-valued, which permits any number of
 descriptions per entry.

 <CODE BEGINS>

 ///
 /// attributetype (
 /// 1.3.6.1.4.1.31103.1.13 NAME ’fedfsDescr’
 /// DESC ’Description of an object’
 /// SUP name
 ///)
 ///

 <CODE ENDS>

4.2.1.8. fedfsNfsURI

 A fedfsNfsURI stores the host and pathname components of an FSL. A
 fedfsNfsURI MUST be encoded as an NFS URI (see Section 2.8.1).

 The fedfsNfsURI is a subtype of the labeledURI type [RFC2079], with
 the same encoding rules.

 This attribute is single-valued.

 <CODE BEGINS>

 ///
 /// attributetype (
 /// 1.3.6.1.4.1.31103.1.120 NAME ’fedfsNfsURI’
 /// DESC ’Location of fileset’
 /// SUP labeledURI
 /// SINGLE-VALUE
 ///)
 ///

 <CODE ENDS>

Lentini, et al. Standards Track [Page 28]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

4.2.1.9. fedfsNfsCurrency

 A fedfsNfsCurrency stores the NFSv4.1 fs_locations_server’s
 fls_currency value [RFC5661]. A fedfsNfsCurrency MUST be encoded as
 an Integer syntax value [RFC4517] in the range [-2147483648,
 2147483647].

 This attribute is single-valued.

 <CODE BEGINS>

 ///
 /// attributetype (
 /// 1.3.6.1.4.1.31103.1.103 NAME ’fedfsNfsCurrency’
 /// DESC ’up-to-date measure of the data’
 /// EQUALITY integerMatch
 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
 /// SINGLE-VALUE
 ///)
 ///

 <CODE ENDS>

 OID 1.3.6.1.4.1.1466.115.121.1.27 is the Integer syntax [RFC4517].

4.2.1.10. fedfsNfsGenFlagWritable

 A fedfsNfsGenFlagWritable stores the value of an FSL’s NFSv4.1
 FSLI4GF_WRITABLE bit [RFC5661]. A value of "TRUE" indicates the bit
 is set. A value of "FALSE" indicates the bit is not set.

 <CODE BEGINS>

 ///
 /// attributetype (
 /// 1.3.6.1.4.1.31103.1.104 NAME ’fedfsNfsGenFlagWritable’
 /// DESC ’Indicates if the file system is writable’
 /// EQUALITY booleanMatch
 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
 /// SINGLE-VALUE
 ///)
 ///

 <CODE ENDS>

 OID 1.3.6.1.4.1.1466.115.121.1.7 is the Boolean syntax [RFC4517].

Lentini, et al. Standards Track [Page 29]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

4.2.1.11. fedfsNfsGenFlagGoing

 A fedfsNfsGenFlagGoing stores the value of an FSL’s NFSv4.1
 FSLI4GF_GOING bit [RFC5661]. A value of "TRUE" indicates the bit is
 set. A value of "FALSE" indicates the bit is not set.

 <CODE BEGINS>

 ///
 /// attributetype (
 /// 1.3.6.1.4.1.31103.1.105 NAME ’fedfsNfsGenFlagGoing’
 /// DESC ’Indicates if the file system is going’
 /// EQUALITY booleanMatch
 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
 /// SINGLE-VALUE
 ///)
 ///

 <CODE ENDS>

 OID 1.3.6.1.4.1.1466.115.121.1.7 is the Boolean syntax [RFC4517].

4.2.1.12. fedfsNfsGenFlagSplit

 A fedfsNfsGenFlagSplit stores the value of an FSL’s NFSv4.1
 FSLI4GF_SPLIT bit [RFC5661]. A value of "TRUE" indicates the bit is
 set. A value of "FALSE" indicates the bit is not set.

 <CODE BEGINS>

 ///
 /// attributetype (
 /// 1.3.6.1.4.1.31103.1.106 NAME ’fedfsNfsGenFlagSplit’
 /// DESC ’Indicates if there are multiple file systems’
 /// EQUALITY booleanMatch
 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
 /// SINGLE-VALUE
 ///)
 ///

 <CODE ENDS>

 OID 1.3.6.1.4.1.1466.115.121.1.7 is the Boolean syntax [RFC4517].

Lentini, et al. Standards Track [Page 30]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

4.2.1.13. fedfsNfsTransFlagRdma

 A fedfsNfsTransFlagRdma stores the value of an FSL’s NFSv4.1
 FSLI4TF_RDMA bit [RFC5661]. A value of "TRUE" indicates the bit is
 set. A value of "FALSE" indicates the bit is not set.

 <CODE BEGINS>

 ///
 /// attributetype (
 /// 1.3.6.1.4.1.31103.1.107 NAME ’fedfsNfsTransFlagRdma’
 /// DESC ’Indicates if the transport supports RDMA’
 /// EQUALITY booleanMatch
 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
 /// SINGLE-VALUE
 ///)
 ///

 <CODE ENDS>

 OID 1.3.6.1.4.1.1466.115.121.1.7 is the Boolean syntax [RFC4517].

4.2.1.14. fedfsNfsClassSimul

 A fedfsNfsClassSimul contains the FSL’s NFSv4.1 FSLI4BX_CLSIMUL
 [RFC5661] value. A fedfsNfsClassSimul MUST be encoded as an Integer
 syntax value [RFC4517] in the range [0, 255].

 <CODE BEGINS>

 ///
 /// attributetype (
 /// 1.3.6.1.4.1.31103.1.108 NAME ’fedfsNfsClassSimul’
 /// DESC ’The simultaneous-use class of the file system’
 /// EQUALITY integerMatch
 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
 /// SINGLE-VALUE
 ///)
 ///

 <CODE ENDS>

 OID 1.3.6.1.4.1.1466.115.121.1.27 is the Integer syntax [RFC4517].

Lentini, et al. Standards Track [Page 31]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

4.2.1.15. fedfsNfsClassHandle

 A fedfsNfsClassHandle contains the FSL’s NFSv4.1 FSLI4BX_CLHANDLE
 [RFC5661] value. A fedfsNfsClassHandle MUST be encoded as an Integer
 syntax value [RFC4517] in the range [0, 255].

 <CODE BEGINS>

 ///
 /// attributetype (
 /// 1.3.6.1.4.1.31103.1.109 NAME ’fedfsNfsClassHandle’
 /// DESC ’The handle class of the file system’
 /// EQUALITY integerMatch
 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
 /// SINGLE-VALUE
 ///)
 ///

 <CODE ENDS>

 OID 1.3.6.1.4.1.1466.115.121.1.27 is the Integer syntax [RFC4517].

4.2.1.16. fedfsNfsClassFileid

 A fedfsNfsClassFileid contains the FSL’s NFSv4.1 FSLI4BX_CLFILEID
 [RFC5661] value. A fedfsNfsClassFileid MUST be encoded as an Integer
 syntax value [RFC4517] in the range [0, 255].

 <CODE BEGINS>

 ///
 /// attributetype (
 /// 1.3.6.1.4.1.31103.1.110 NAME ’fedfsNfsClassFileid’
 /// DESC ’The fileid class of the file system’
 /// EQUALITY integerMatch
 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
 /// SINGLE-VALUE
 ///)
 ///

 <CODE ENDS>

 OID 1.3.6.1.4.1.1466.115.121.1.27 is the Integer syntax [RFC4517].

Lentini, et al. Standards Track [Page 32]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

4.2.1.17. fedfsNfsClassWritever

 A fedfsNfsClassWritever contains the FSL’s NFSv4.1 FSLI4BX_CLWRITEVER
 [RFC5661] value. A fedfsNfsClassWritever MUST be encoded as an
 Integer syntax value [RFC4517] in the range [0, 255].

 <CODE BEGINS>

 ///
 /// attributetype (
 /// 1.3.6.1.4.1.31103.1.111 NAME ’fedfsNfsClassWritever’
 /// DESC ’The write-verifier class of the file system’
 /// EQUALITY integerMatch
 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
 /// SINGLE-VALUE
 ///)
 ///

 <CODE ENDS>

 OID 1.3.6.1.4.1.1466.115.121.1.27 is the Integer syntax [RFC4517].

4.2.1.18. fedfsNfsClassChange

 A fedfsNfsClassChange contains the FSL’s NFSv4.1 FSLI4BX_CLCHANGE
 [RFC5661] value. A fedfsNfsClassChange MUST be encoded as an Integer
 syntax value [RFC4517] in the range [0, 255].

 <CODE BEGINS>

 ///
 /// attributetype (
 /// 1.3.6.1.4.1.31103.1.112 NAME ’fedfsNfsClassChange’
 /// DESC ’The change class of the file system’
 /// EQUALITY integerMatch
 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
 /// SINGLE-VALUE
 ///)
 ///

 <CODE ENDS>

 OID 1.3.6.1.4.1.1466.115.121.1.27 is the Integer syntax [RFC4517].

Lentini, et al. Standards Track [Page 33]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

4.2.1.19. fedfsNfsClassReaddir

 A fedfsNfsClassReaddir contains the FSL’s NFSv4.1 FSLI4BX_CLREADDIR
 [RFC5661] value. A fedfsNfsClassReaddir MUST be encoded as an
 Integer syntax value [RFC4517] in the range [0, 255].

 <CODE BEGINS>

 ///
 /// attributetype (
 /// 1.3.6.1.4.1.31103.1.113 NAME ’fedfsNfsClassReaddir’
 /// DESC ’The readdir class of the file system’
 /// EQUALITY integerMatch
 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
 /// SINGLE-VALUE
 ///)
 ///

 <CODE ENDS>

 OID 1.3.6.1.4.1.1466.115.121.1.27 is the Integer syntax [RFC4517].

4.2.1.20. fedfsNfsReadRank

 A fedfsNfsReadRank contains the FSL’s NFSv4.1 FSLI4BX_READRANK
 [RFC5661] value. A fedfsNfsReadRank MUST be encoded as an Integer
 syntax value [RFC4517] in the range [0, 255].

 <CODE BEGINS>

 ///
 /// attributetype (
 /// 1.3.6.1.4.1.31103.1.114 NAME ’fedfsNfsReadRank’
 /// DESC ’The read rank of the file system’
 /// EQUALITY integerMatch
 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
 /// SINGLE-VALUE
 ///)
 ///

 <CODE ENDS>

 OID 1.3.6.1.4.1.1466.115.121.1.27 is the Integer syntax [RFC4517].

Lentini, et al. Standards Track [Page 34]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

4.2.1.21. fedfsNfsReadOrder

 A fedfsNfsReadOrder contains the FSL’s NFSv4.1 FSLI4BX_READORDER
 [RFC5661] value. A fedfsNfsReadOrder MUST be encoded as an Integer
 syntax value [RFC4517] in the range [0, 255].

 <CODE BEGINS>

 ///
 /// attributetype (
 /// 1.3.6.1.4.1.31103.1.115 NAME ’fedfsNfsReadOrder’
 /// DESC ’The read order of the file system’
 /// EQUALITY integerMatch
 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
 /// SINGLE-VALUE
 ///)
 ///

 <CODE ENDS>

 OID 1.3.6.1.4.1.1466.115.121.1.27 is the Integer syntax [RFC4517].

4.2.1.22. fedfsNfsWriteRank

 A fedfsNfsWriteRank contains the FSL’s FSLI4BX_WRITERANK [RFC5661]
 value. A fedfsNfsWriteRank MUST be encoded as an Integer syntax
 value [RFC4517] in the range [0, 255].

 <CODE BEGINS>

 ///
 /// attributetype (
 /// 1.3.6.1.4.1.31103.1.116 NAME ’fedfsNfsWriteRank’
 /// DESC ’The write rank of the file system’
 /// EQUALITY integerMatch
 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
 /// SINGLE-VALUE
 ///)
 ///

 <CODE ENDS>

 OID 1.3.6.1.4.1.1466.115.121.1.27 is the Integer syntax [RFC4517].

Lentini, et al. Standards Track [Page 35]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

4.2.1.23. fedfsNfsWriteOrder

 A fedfsNfsWriteOrder contains the FSL’s FSLI4BX_WRITEORDER [RFC5661]
 value. A fedfsNfsWriteOrder MUST be encoded as an Integer syntax
 value [RFC4517] in the range [0, 255].

 <CODE BEGINS>

 ///
 /// attributetype (
 /// 1.3.6.1.4.1.31103.1.117 NAME ’fedfsNfsWriteOrder’
 /// DESC ’The write order of the file system’
 /// EQUALITY integerMatch
 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
 /// SINGLE-VALUE
 ///)
 ///

 <CODE ENDS>

 OID 1.3.6.1.4.1.1466.115.121.1.27 is the Integer syntax [RFC4517].

4.2.1.24. fedfsNfsVarSub

 A fedfsNfsVarSub stores the value of an FSL’s NFSv4.1 FSLI4IF_VAR_SUB
 bit [RFC5661]. A value of "TRUE" indicates the bit is set. A value
 of "FALSE" indicates the bit is not set.

 <CODE BEGINS>

 ///
 /// attributetype (
 /// 1.3.6.1.4.1.31103.1.118 NAME ’fedfsNfsVarSub’
 /// DESC ’Indicates if variable substitution is present’
 /// EQUALITY booleanMatch
 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
 /// SINGLE-VALUE
 ///)
 ///

 <CODE ENDS>

 OID 1.3.6.1.4.1.1466.115.121.1.7 is the Boolean syntax [RFC4517].

Lentini, et al. Standards Track [Page 36]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

4.2.1.25. fedfsNfsValidFor

 A fedfsNfsValidFor stores an FSL’s NFSv4.1 fs_locations_info
 fli_valid_for value [RFC5661]. A fedfsNfsValidFor MUST be encoded as
 an Integer syntax value [RFC4517] in the range [-2147483648,
 2147483647].

 An FSL’s parent’s fedfsFsnTTL value and its fedfsNfsValidFor value
 MAY be different.

 This attribute is single-valued.

 <CODE BEGINS>

 ///
 /// attributetype (
 /// 1.3.6.1.4.1.31103.1.19 NAME ’fedfsNfsValidFor’
 /// DESC ’Valid for time’
 /// EQUALITY integerMatch
 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
 /// SINGLE-VALUE
 ///)
 ///

 OID 1.3.6.1.4.1.1466.115.121.1.27 is the Integer syntax [RFC4517].

 <CODE ENDS>

Lentini, et al. Standards Track [Page 37]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

4.2.2. LDAP Object Classes

4.2.2.1. fedfsNsdbContainerInfo

 A fedfsNsdbContainerInfo describes the location of the NCE.

 A fedfsNsdbContainerInfo’s fedfsNceDN attribute is REQUIRED.

 A fedfsNsdbContainerInfo’s fedfsAnnotation and fedfsDescr attributes
 are OPTIONAL.

 <CODE BEGINS>

 ///
 /// objectclass (
 /// 1.3.6.1.4.1.31103.1.1001 NAME ’fedfsNsdbContainerInfo’
 /// DESC ’Describes NCE location’
 /// SUP top AUXILIARY
 /// MUST (
 /// fedfsNceDN
 ///)
 /// MAY (
 /// fedfsAnnotation
 /// $ fedfsDescr
 ///))
 ///

 <CODE ENDS>

Lentini, et al. Standards Track [Page 38]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

4.2.2.2. fedfsFsn

 A fedfsFsn represents an FSN.

 A fedfsFsn’s fedfsFsnUuid and fedfsFsnTTL attributes are REQUIRED.

 A fedfsFsn’s fedfsAnnotation and fedfsDescr attributes are OPTIONAL.

 The DN of an FSN is REQUIRED to take the following form:
 "fedfsFsnUuid=$FSNUUID,$NCE", where $FSNUUID is the UUID of the FSN
 and $NCE is the DN of the NCE. Since LDAP requires a DN to be
 unique, this ensures that each FSN entry has a unique UUID value
 within the LDAP directory.

 <CODE BEGINS>

 ///
 /// objectclass (
 /// 1.3.6.1.4.1.31103.1.1002 NAME ’fedfsFsn’
 /// DESC ’Represents a fileset’
 /// SUP top STRUCTURAL
 /// MUST (
 /// fedfsFsnUuid
 /// $ fedfsFsnTTL
 ///)
 /// MAY (
 /// fedfsAnnotation
 /// $ fedfsDescr
 ///))
 ///

 <CODE ENDS>

Lentini, et al. Standards Track [Page 39]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

4.2.2.3. fedfsFsl

 The fedfsFsl object class represents an FSL.

 The fedfsFsl is an abstract object class. Protocol-specific subtypes
 of this object class are used to store FSL information. The
 fedfsNfsFsl object class defined in Section 4.2.2.4 is used to record
 an NFS FSL’s location. Other subtypes MAY be defined for other
 protocols (e.g., Common Internet File System (CIFS)).

 A fedfsFsl’s fedfsFslUuid and fedfsFsnUuid attributes are REQUIRED.

 A fedfsFsl’s fedfsAnnotation and fedfsDescr attributes are OPTIONAL.

 The DN of an FSL is REQUIRED to take the following form:
 "fedfsFslUuid=$FSLUUID,fedfsFsnUuid=$FSNUUID,$NCE", where $FSLUUID is
 the FSL’s UUID, $FSNUUID is the FSN’s UUID, and $NCE is the DN of the
 NCE. Since LDAP requires a DN to be unique, this ensures that each
 FSL entry has a unique UUID value within the LDAP directory.

 <CODE BEGINS>

 ///
 /// objectclass (
 /// 1.3.6.1.4.1.31103.1.1003 NAME ’fedfsFsl’
 /// DESC ’A physical location of a fileset’
 /// SUP top ABSTRACT
 /// MUST (
 /// fedfsFslUuid
 /// $ fedfsFsnUuid
 ///)
 /// MAY (
 /// fedfsAnnotation
 /// $ fedfsDescr
 ///))
 ///

 <CODE ENDS>

Lentini, et al. Standards Track [Page 40]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

4.2.2.4. fedfsNfsFsl

 A fedfsNfsFsl is used to represent an NFS FSL. The fedfsNfsFsl
 inherits all of the attributes of the fedfsFsl and extends the
 fedfsFsl with information specific to the NFS protocol.

 The DN of an NFS FSL is REQUIRED to take the following form:
 "fedfsFslUuid=$FSLUUID,fedfsFsnUuid=$FSNUUID,$NCE", where $FSLUUID is
 the FSL’s UUID, $FSNUUID is the FSN’s UUID, and $NCE is the DN of the
 NCE. Since LDAP requires a DN to be unique, this ensures that each
 NFS FSL entry has a unique UUID value within the LDAP directory.

 <CODE BEGINS>

 ///
 /// objectclass (
 /// 1.3.6.1.4.1.31103.1.1004 NAME ’fedfsNfsFsl’
 /// DESC ’An NFS location of a fileset’
 /// SUP fedfsFsl STRUCTURAL
 /// MUST (
 /// fedfsNfsURI
 /// $ fedfsNfsCurrency
 /// $ fedfsNfsGenFlagWritable
 /// $ fedfsNfsGenFlagGoing
 /// $ fedfsNfsGenFlagSplit
 /// $ fedfsNfsTransFlagRdma
 /// $ fedfsNfsClassSimul
 /// $ fedfsNfsClassHandle
 /// $ fedfsNfsClassFileid
 /// $ fedfsNfsClassWritever
 /// $ fedfsNfsClassChange
 /// $ fedfsNfsClassReaddir
 /// $ fedfsNfsReadRank
 /// $ fedfsNfsReadOrder
 /// $ fedfsNfsWriteRank
 /// $ fedfsNfsWriteOrder
 /// $ fedfsNfsVarSub
 /// $ fedfsNfsValidFor
 ///))
 ///

 <CODE ENDS>

Lentini, et al. Standards Track [Page 41]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

5. NSDB Operations

 The operations defined by the protocol can be described as several
 sub-protocols that are used by entities within a federation to
 perform different roles.

 The first of these sub-protocols defines how the state of an NSDB
 node can be initialized and updated. The primary use of this sub-
 protocol is by an administrator to add, edit, or delete filesets,
 their properties, and their fileset locations.

 The second of these sub-protocols defines the queries that are sent
 to an NSDB node in order to perform resolution (or to find other
 information about the data stored within that NSDB node) and the
 responses returned by the NSDB node. The primary use of this sub-
 protocol is by a fileserver in order to perform resolution, but it
 may also be used by an administrator to query the state of the
 system.

 The first and second sub-protocols are defined as LDAP operations,
 using the schema defined in the previous section. If each NSDB node
 is a standard LDAP server, then, in theory, it is unnecessary to
 describe the LDAP operations in detail because the operations are
 ordinary LDAP operations to query and update records. However, we do
 not require that an NSDB node implement a complete LDAP service.
 Therefore, we define the minimum level of LDAP functionality required
 to implement an NSDB node.

 The NSDB sub-protocols are defined in Section 5.1 and Section 5.2.
 The descriptions of LDAP messages in these sections use the LDAP Data
 Interchange Format (LDIF) [RFC2849]. In order to differentiate
 constant and variable strings in the LDIF specifications, variables
 are prefixed by a $ character and use all uppercase characters. For
 example, a variable named FOO would be specified as $FOO.

 This document uses the term "NSDB client" to refer to an LDAP client
 that uses either of the NSDB sub-protocols.

 The third sub-protocol defines the queries and other requests that
 are sent to a fileserver in order to get information from it or to
 modify the state of the fileserver in a manner related to the
 federation protocols. The primary purpose of this protocol is for an
 administrator to create or delete a junction or discover related
 information about a particular fileserver.

 The third sub-protocol is defined as an Open Network Computing (ONC)
 Remote Procedure Call (RPC) protocol. The reason for using ONC RPC

Lentini, et al. Standards Track [Page 42]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

 instead of LDAP is that all fileservers support ONC RPC, but some do
 not support an LDAP directory server.

 The ONC RPC administration protocol is defined in [RFC7533].

5.1. NSDB Operations for Administrators

 The admin entity initiates and controls the commands to manage
 fileset and namespace information. The protocol used for
 communicating between the admin entity and each NSDB node MUST be the
 LDAPv3 [RFC4510] protocol.

 The names we assign to these operations are entirely for the purpose
 of exposition in this document and are not part of the LDAP dialogs.

5.1.1. Create an FSN

 This operation creates a new FSN in the NSDB by adding a new fedfsFsn
 entry in the NSDB’s LDAP directory.

 A fedfsFsn entry contains a fedfsFsnUuid. The administrator chooses
 the fedfsFsnUuid by the process described in Section 2.12. A
 fedfsFsn entry also contains a fedfsFsnTTL. The fedfsFsnTTL is
 chosen by the administrator as described in Section 2.8.3.

5.1.1.1. LDAP Request

 This operation is implemented using the LDAP ADD request described by
 the LDIF below.

 dn: fedfsFsnUuid=$FSNUUID,$NCE
 changeType: add
 objectClass: fedfsFsn
 fedfsFsnUuid: $FSNUUID
 fedfsFsnTTL: $TTL

 For example, if $FSNUUID is "e8c4761c-eb3b-4307-86fc-f702da197966",
 $TTL is "300" seconds, and $NCE is "o=fedfs", the operation would be:

 dn: fedfsFsnUuid=e8c4761c-eb3b-4307-86fc-f702da197966,o=fedfs
 changeType: add
 objectClass: fedfsFsn
 fedfsFsnUuid: e8c4761c-eb3b-4307-86fc-f702da197966
 fedfsFsnTTL: 300

Lentini, et al. Standards Track [Page 43]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

5.1.2. Delete an FSN

 This operation deletes an FSN by removing a fedfsFsn entry in the
 NSDB’s LDAP directory.

 If the FSN entry being deleted has child FSL entries, this function
 MUST return an error. This ensures that the NSDB will not contain
 any orphaned FSL entries. A compliant LDAP implementation will meet
 this requirement since Section 4.8 of [RFC4511] defines the LDAP
 delete operation to only be capable of removing leaf entries.

 Note that the FSN delete function removes the fileset only from a
 federation namespace (by removing the records for that FSN from the
 NSDB node that receives this request). The fileset and its data are
 not deleted. Any junction that has this FSN as its target may
 continue to point to this non-existent FSN. A dangling reference may
 be detected when a fileserver tries to resolve a junction that refers
 to the deleted FSN.

5.1.2.1. LDAP Request

 This operation is implemented using the LDAP DELETE request described
 by the LDIF below.

 dn: fedfsFsnUuid=$FSNUUID,$NCE
 changeType: delete

 For example, if $FSNUUID is "e8c4761c-eb3b-4307-86fc-f702da197966"
 and $NCE is "o=fedfs", the operation would be:

 dn: fedfsFsnUuid=e8c4761c-eb3b-4307-86fc-f702da197966,o=fedfs
 changeType: delete

5.1.3. Create an FSL

 This operation creates a new FSL for the given FSN by adding a new
 fedfsFsl entry in the NSDB’s LDAP directory.

 A fedfsFsl entry contains a fedfsFslUuid and fedfsFsnUuid. The
 administrator chooses the fedfsFslUuid. The process for choosing the
 fedfsFslUuid is described in Section 2.12. The fedfsFsnUuid is the
 UUID of the FSL’s FSN.

 The administrator will also set additional attributes depending on
 the FSL type.

Lentini, et al. Standards Track [Page 44]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

5.1.3.1. LDAP Request

 This operation is implemented using the LDAP ADD request described by
 the LDIF below (Note: the LDIF shows the creation of an NFS FSL.)

 dn: fedfsFslUuid=$FSLUUID,fedfsFsnUuid=$FSNUUID,$NCE
 changeType: add
 objectClass: fedfsNfsFsl
 fedfsFslUuid: $FSLUUID
 fedfsFsnUuid: $FSNUUID
 fedfsNfsURI: nfs://$HOST:$PORT//$PATH
 fedfsNfsCurrency: $CURRENCY
 fedfsNfsGenFlagWritable: $WRITABLE
 fedfsNfsGenFlagGoing: $GOING
 fedfsNfsGenFlagSplit: $SPLIT
 fedfsNfsTransFlagRdma: $RDMA
 fedfsNfsClassSimul: $CLASS_SIMUL
 fedfsNfsClassHandle:$CLASS_HANDLE
 fedfsNfsClassFileid:$CLASS_FILEID
 fedfsNfsClassWritever:$CLASS_WRITEVER
 fedfsNfsClassChange: $CLASS_CHANGE
 fedfsNfsClassReaddir: $CLASS_READDIR
 fedfsNfsReadRank: $READ_RANK
 fedfsNfsReadOrder: $READ_ORDER
 fedfsNfsWriteRank: $WRITE_RANK
 fedfsNfsWriteOrder: $WRITE_ORDER
 fedfsNfsVarSub: $VAR_SUB
 fedfsNfsValidFor: $TIME
 fedfsAnnotation: $ANNOTATION
 fedfsDescr: $DESCR

 For example, if $FSNUUID is "e8c4761c-eb3b-4307-86fc-f702da197966",
 $FSLUUID is "ba89a802-41a9-44cf-8447-dda367590eb3", $HOST is
 "server.example.com", $PORT is "20049", $PATH is stored in the file
 "/tmp/fsl_path", $CURRENCY is "0" (an up-to-date copy), the FSL is
 writable, but not going, split, or accessible via Remote Direct
 Memory Access (RDMA), the simultaneous-use class is "1", the handle
 class is "0", the fileid class is "1", the write-verifier class is
 "1", the change class is "1", the readdir class is "9", the read rank
 is "7", the read order is "8", the write rank is "5", the write order
 is "6", variable substitution is false, $TIME is "300" seconds,
 $ANNOTATION is ""foo" = "bar"", $DESC is "This is a description.",
 and $NCE is "o=fedfs", the operation would be (for readability, the
 DN is split into two lines):

Lentini, et al. Standards Track [Page 45]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

 dn: fedfsFslUuid=ba89a802-41a9-44cf-8447-dda367590eb3,
 fedfsFsnUuid=e8c4761c-eb3b-4307-86fc-f702da197966,o=fedfs
 changeType: add
 objectClass: fedfsNfsFsl
 fedfsFslUuid: ba89a802-41a9-44cf-8447-dda367590eb3
 fedfsFsnUuid: e8c4761c-eb3b-4307-86fc-f702da197966
 fedfsNfsURI: nfs://server.example.com:20049//tmp/fsl_path
 fedfsNfsCurrency: 0
 fedfsNfsGenFlagWritable: TRUE
 fedfsNfsGenFlagGoing: FALSE
 fedfsNfsGenFlagSplit: FALSE
 fedfsNfsTransFlagRdma: FALSE
 fedfsNfsClassSimul: 1
 fedfsNfsClassHandle: 0
 fedfsNfsClassFileid: 1
 fedfsNfsClassWritever: 1
 fedfsNfsClassChange: 1
 fedfsNfsClassReaddir: 9
 fedfsNfsReadRank: 7
 fedfsNfsReadOrder: 8
 fedfsNfsWriteRank: 5
 fedfsNfsWriteOrder: 6
 fedfsNfsVarSub: FALSE
 fedfsNfsValidFor: 300
 fedfsAnnotation: "foo" = "bar"
 fedfsDescr: This is a description.

5.1.3.2. Selecting fedfsNfsFsl Values

 The fedfsNfsFSl object class is used to describe NFSv4-accessible
 filesets. For the reasons described in Section 2.8.4, administrators
 SHOULD choose reasonable values for all LDAP attributes of an
 NFSv4-accessible fedfsNfsFsl even though some of these LDAP
 attributes are not explicitly contained in an NFSv4 fs_locations
 attribute.

 When the administrator is unable to choose reasonable values for the
 LDAP attributes not explicitly contained in an NFSv4 fs_locations
 attribute, the values in the following table are RECOMMENDED.

Lentini, et al. Standards Track [Page 46]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

 +-------------------------+----------+------------------------------+
 | LDAP attribute | LDAP | Notes |
 | | value | |
 +-------------------------+----------+------------------------------+
fedfsNfsCurrency	negative	Indicates that the server
	value	does not know the currency
		(see Section 11.10.1 of
		[RFC5661]).
fedfsNfsGenFlagWritable	FALSE	Leaving unset is not harmful
		(see Section 11.10.1 of
		[RFC5661]).
fedfsNfsGenFlagGoing	FALSE	NFS client will detect a
		migration event if the FSL
		becomes unavailable.
fedfsNfsGenFlagSplit	TRUE	Safe to assume that the FSL
		is split.
fedfsNfsTransFlagRdma	TRUE	NFS client will detect if
		RDMA access is available.
fedfsNfsClassSimul	0	0 is treated as non-matching
		(see Section 11.10.1 of
		[RFC5661]).
fedfsNfsClassHandle	0	See fedfsNfsClassSimul note.
fedfsNfsClassFileid	0	See fedfsNfsClassSimul note.
fedfsNfsClassWritever	0	See fedfsNfsClassSimul note.
fedfsNfsClassChange	0	See fedfsNfsClassSimul note.
fedfsNfsClassReaddir	0	See fedfsNfsClassSimul note.
fedfsNfsReadRank	0	Highest value ensures FSL
		will be tried.
fedfsNfsReadOrder	0	See fedfsNfsReadRank note.
fedfsNfsWriteRank	0	See fedfsNfsReadRank note.
fedfsNfsWriteOrder	0	See fedfsNfsReadRank note.
fedfsNfsVarSub	FALSE	NFSv4 does not define
		variable substitution in
		paths.
fedfsNfsValidFor	0	Indicates no appropriate
		refetch interval (see
		Section 11.10.2 of
		[RFC5661]).
 +-------------------------+----------+------------------------------+

5.1.4. Delete an FSL

 This operation deletes an FSL record. The admin requests the NSDB
 node storing the fedfsFsl to delete it from its database. This
 operation does not result in fileset data being deleted on any
 fileserver.

Lentini, et al. Standards Track [Page 47]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

5.1.4.1. LDAP Request

 The admin sends an LDAP DELETE request to the NSDB node to remove the
 FSL.

 dn: fedfsFslUuid=$FSLUUID,fedfsFsnUuid=$FSNUUID,$NCE
 changeType: delete

 For example, if $FSNUUID is "e8c4761c-eb3b-4307-86fc-f702da197966",
 $FSLUUID is "ba89a802-41a9-44cf-8447-dda367590eb3", and $NCE is
 "o=fedfs", the operation would be (for readability, the DN is split
 into two lines):

 dn: fedfsFslUuid=ba89a802-41a9-44cf-8447-dda367590eb3,
 fedfsFsnUuid=e8c4761c-eb3b-4307-86fc-f702da197966,o=fedfs
 changeType: delete

5.1.5. Update an FSL

 This operation updates the attributes of a given FSL. This command
 results in a change in the attributes of the fedfsFsl at the NSDB
 node maintaining this FSL. The values of the fedfsFslUuid and
 fedfsFsnUuid attributes MUST NOT change during an FSL update.

5.1.5.1. LDAP Request

 The admin sends an LDAP MODIFY request to the NSDB node to update the
 FSL.

 dn: fedfsFslUuid=$FSLUUID,fedfsFsnUuid=$FSNUUID,$NCE
 changeType: modify
 replace: $ATTRIBUTE-TYPE

 For example, if $FSNUUID is "e8c4761c-eb3b-4307-86fc-f702da197966",
 $FSLUUID is "ba89a802-41a9-44cf-8447-dda367590eb3", $NCE is
 "o=fedfs", and the administrator wished to change the NFS read rank
 to 10, the operation would be (for readability, the DN is split into
 two lines):

 dn: fedfsFslUuid=ba89a802-41a9-44cf-8447-dda367590eb3,
 fedfsFsnUuid=e8c4761c-eb3b-4307-86fc-f702da197966,o=fedfs
 changeType: modify
 replace: fedfsNfsReadClass
 fedfsNfsReadRank: 10

Lentini, et al. Standards Track [Page 48]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

5.2. NSDB Operations for Fileservers

5.2.1. NSDB Container Entry (NCE) Enumeration

 To find the NCEs for the NSDB nsdb.example.com, a fileserver would do
 the following:

 nce_list = empty
 connect to the LDAP directory at nsdb.example.com
 for each namingContext value $BAR in the root DSE
 /* $BAR is a DN */
 query for a fedfsNceDN value at $BAR
 /*
 * The RFC 4516 LDAP URL for this search would be
 *
 * ldap://nsdb.example.com:389/$BAR?fedfsNceDN??
 * (objectClass=fedfsNsdbContainerInfo)
 *
 */
 if a fedfsNceDN value is found
 add the value to the nce_list

5.2.2. Lookup FSLs for an FSN

 Using an LDAP search, the fileserver can obtain all of the FSLs for a
 given FSN. The FSN’s fedfsFsnUuid is used as the search key. The
 following examples use the LDAP Uniform Resource Identifier (URI)
 format defined in [RFC4516].

 To obtain a list of all FSLs for $FSNUUID on the NSDB named
 $NSDBNAME, the following search can be used (for readability, the URI
 is split into two lines):

 for each $NCE in nce_list
 ldap://$NSDBNAME/fedfsFsnUuid=$FSNUUID,$NCE??one?
 (objectClass=fedfsFsl)

 This search is for the children of the object with DN
 "fedfsFsnUuid=$FSNUUID,$NCE" with a filter for
 "objectClass=fedfsFsl". The scope value of "one" restricts the
 search to the entry’s children (rather than the entire subtree below
 the entry), and the filter ensures that only FSL entries are
 returned.

 For example, if $NSDBNAME is "nsdb.example.com", $FSNUUID is
 "e8c4761c-eb3b-4307-86fc-f702da197966", and $NCE is "o=fedfs", the
 search would be (for readability, the URI is split into three lines):

Lentini, et al. Standards Track [Page 49]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

 ldap://nsdb.example.com/
 fedfsFsnUuid=e8c4761c-eb3b-4307-86fc-f702da197966,o=fedfs
 ??one?(objectClass=fedfsFsl)

 The following search can be used to obtain only the NFS FSLs for
 $FSNUUID on the NSDB named $NSDBNAME (for readability, the URI is
 split into two lines):

 for each $NCE in nce_list
 ldap://$NSDBNAME/fedfsFsnUuid=$FSNUUID,$NCE??one?
 (objectClass=fedfsNfsFsl)

 This also searches for the children of the object with DN
 "fedfsFsnUuid=$FSNUUID,$NCE", but the filter for "objectClass =
 fedfsNfsFsl" restricts the results to only NFS FSLs.

 For example, if $NSDBNAME is nsdb.example.com, $FSNUUID is "e8c4761c-
 eb3b-4307-86fc-f702da197966", and $NCE is "o=fedfs", the search would
 be (for readability, the URI is split into three lines):

 ldap://nsdb.example.com/
 fedfsFsnUuid=e8c4761c-eb3b-4307-86fc-f702da197966,o=fedfs
 ??one?(objectClass=fedfsNfsFsl)

 The fileserver will generate a referral based on the set of FSLs
 returned by these queries using the process described in
 Section 2.8.4.

5.3. NSDB Operations and LDAP Referrals

 The LDAPv3 protocol defines an LDAP referral mechanism that allows an
 LDAP server to redirect an LDAP client. LDAPv3 defines two types of
 LDAP referrals: the Referral type defined in Section 4.1.10 of
 [RFC4511] and the SearchResultReference type defined in Section 4.5.3
 of [RFC4511]. In both cases, the LDAP referral lists one or more
 URIs for services that can be used to complete the operation. In the
 remainder of this document, the term "LDAP referral" is used to
 indicate either of these types.

 If an NSDB operation results in an LDAP referral, the NSDB client MAY
 follow the LDAP referral. An NSDB client’s decision to follow an
 LDAP referral is implementation and configuration dependent. For
 example, an NSDB client might be configured to follow only those LDAP
 referrals that were received over a secure channel or only those that
 target an NSDB that supports encrypted communication. If an NSDB
 client chooses to follow an LDAP referral, the NSDB client MUST
 process the LDAP referral and prevent looping as described in
 Section 4.1.10 of [RFC4511].

Lentini, et al. Standards Track [Page 50]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

6. Security Considerations

 Both the NFSv4 and LDAPv3 protocols provide security mechanisms.
 When used in conjunction with the federated file system protocols
 described in this document, the use of these mechanisms is
 RECOMMENDED. Specifically, the use of RPCSEC_GSS [RFC2203], which is
 built on the Generic Security Service Application Program Interface
 (GSS-API) [RFC2743], is RECOMMENDED on all NFS connections between a
 file-access client and fileserver. The security considerations
 sections of the NFSv4.0 [RFC7530] and NFSv4.1 [RFC5661]
 specifications contain special considerations for the handling of
 GETATTR operations for the fs_locations and fs_locations_info
 attributes.

 NSDB nodes and NSDB clients MUST implement support for TLS [RFC5246],
 as described in [RFC4513]. For all LDAP connections established by
 the federated file system protocols, the use of TLS is RECOMMENDED.

 If an NSDB client chooses to follow an LDAP referral, the NSDB client
 SHOULD authenticate the LDAP referral’s target NSDB using the target
 NSDB’s credentials (not the credentials of the NSDB that generated
 the LDAP referral). The NSDB client SHOULD NOT follow an LDAP
 referral that targets an NSDB for which it does not know the NSDB’s
 credentials.

 Within a federation, there are two types of components an attacker
 may compromise: a fileserver and an NSDB.

 If an attacker compromises a fileserver, the attacker can interfere
 with a file-access client’s file system input/output (I/O) operations
 (e.g., by returning fictitious data in the response to a read
 request) or can fabricate a referral. The attacker’s abilities are
 the same regardless of whether or not the federation protocols are in
 use. While the federation protocols do not give the attacker
 additional capabilities, they are additional targets for attack. The
 LDAP protocol described in Section 5.2 SHOULD be secured using the
 methods described above to defeat attacks on a fileserver via this
 channel.

 If an attacker compromises an NSDB, the attacker will be able to
 forge FSL information and thus poison the fileserver’s referral
 information. Therefore, an NSDB should be as secure as the
 fileservers that query it. The LDAP operations described in
 Section 5 SHOULD be secured using the methods described above to
 defeat attacks on an NSDB via this channel.

Lentini, et al. Standards Track [Page 51]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

 A fileserver binds anonymously when performing NSDB operations.
 Thus, the contents and distinguished names of FSN and FSL records are
 required to be readable by anyone who can bind anonymously to an NSDB
 service. Section 2.12 presents the security considerations in the
 choice of the type of UUID used in these records.

 It should be noted that the federation protocols do not directly
 provide access to file system data. The federation protocols only
 provide a mechanism for building a namespace. All data transfers
 occur between a file-access client and fileserver just as they would
 if the federation protocols were not in use. As a result, the
 federation protocols do not require new user authentication and
 authorization mechanisms or require a fileserver to act as a proxy
 for a client.

7. IANA Considerations

7.1. Registry for the fedfsAnnotation Key Namespace

 This document defines the fedfsAnnotation key in Section 4.2.1.6.
 The fedfsAnnotation key namespace is managed by IANA. IANA has
 created and now maintains a new registry entitled "FedFS Annotation
 Keys". The location of this registry is under a new heading called
 "Federated File System (FedFS) Parameters". The URL address is
 <http://www.iana.org/assignments/fedfs-parameters>.

 Future registrations are to be administered by IANA using the "First
 Come First Served" policy defined in [RFC5226]. Registration
 requests MUST include the key (a valid UTF-8 string of any length), a
 brief description of the key’s purpose, and an email contact for the
 registration. For viewing, the registry should be sorted
 lexicographically by key. There are no initial assignments for this
 registry.

7.2. Registry for FedFS Object Identifiers

 Using the process described in [RFC2578], one of the authors was
 assigned the Internet Private Enterprise Numbers range
 1.3.6.1.4.1.31103.x. Within this range, the subrange
 1.3.6.1.4.1.31103.1.x is permanently dedicated for use by the
 federated file system protocols. Unassigned OIDs in this range MAY
 be used for Private Use or Experimental Use as defined in [RFC5226].
 New permanent FedFS OID assignments MUST NOT be made using OIDs in
 this range.

Lentini, et al. Standards Track [Page 52]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

 IANA has created and now maintains a new registry entitled "FedFS
 Object Identifiers" for the purpose of recording the allocations of
 FedFS Object Identifiers (OIDs) specified by this document. No
 future allocations in this registry are allowed.

 The location of this registry is under the heading "Federated File
 System (FedFS) Parameters", created in Section 7.1. The URL address
 is <http://www.iana.org/assignments/fedfs-parameters>.

 For viewing, the registry has been sorted numerically by OID value.
 The contents of the "FedFS Object Identifiers" registry are given in
 Table 1.

 Note: A descriptor designated below as "historic" reserves an OID
 used in a past version of the NSDB protocol. Registering such OIDs
 retains compatibility among existing implementations of the NSDB
 protocol. This document does not otherwise refer to historic OIDs.

Lentini, et al. Standards Track [Page 53]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

 +---------------------------+--------------------------+-----------+
 | OID | Description | Reference |
 +---------------------------+--------------------------+-----------+
1.3.6.1.4.1.31103.1.1	fedfsUuid	RFC 7532
1.3.6.1.4.1.31103.1.2	fedfsNetAddr	historic
1.3.6.1.4.1.31103.1.3	fedfsNetPort	historic
1.3.6.1.4.1.31103.1.4	fedfsFsnUuid	RFC 7532
1.3.6.1.4.1.31103.1.5	fedfsNsdbName	historic
1.3.6.1.4.1.31103.1.6	fedfsNsdbPort	historic
1.3.6.1.4.1.31103.1.7	fedfsNcePrefix	historic
1.3.6.1.4.1.31103.1.8	fedfsFslUuid	RFC 7532
1.3.6.1.4.1.31103.1.9	fedfsFslHost	historic
1.3.6.1.4.1.31103.1.10	fedfsFslPort	historic
1.3.6.1.4.1.31103.1.11	fedfsFslTTL	historic
1.3.6.1.4.1.31103.1.12	fedfsAnnotation	RFC 7532
1.3.6.1.4.1.31103.1.13	fedfsDescr	RFC 7532
1.3.6.1.4.1.31103.1.14	fedfsNceDN	RFC 7532
1.3.6.1.4.1.31103.1.15	fedfsFsnTTL	RFC 7532
1.3.6.1.4.1.31103.1.100	fedfsNfsPath	historic
1.3.6.1.4.1.31103.1.101	fedfsNfsMajorVer	historic
1.3.6.1.4.1.31103.1.102	fedfsNfsMinorVer	historic
1.3.6.1.4.1.31103.1.103	fedfsNfsCurrency	RFC 7532
1.3.6.1.4.1.31103.1.104	fedfsNfsGenFlagWritable	RFC 7532
1.3.6.1.4.1.31103.1.105	fedfsNfsGenFlagGoing	RFC 7532
1.3.6.1.4.1.31103.1.106	fedfsNfsGenFlagSplit	RFC 7532
1.3.6.1.4.1.31103.1.107	fedfsNfsTransFlagRdma	RFC 7532
1.3.6.1.4.1.31103.1.108	fedfsNfsClassSimul	RFC 7532
1.3.6.1.4.1.31103.1.109	fedfsNfsClassHandle	RFC 7532
1.3.6.1.4.1.31103.1.110	fedfsNfsClassFileid	RFC 7532
1.3.6.1.4.1.31103.1.111	fedfsNfsClassWritever	RFC 7532
1.3.6.1.4.1.31103.1.112	fedfsNfsClassChange	RFC 7532
1.3.6.1.4.1.31103.1.113	fedfsNfsClassReaddir	RFC 7532
1.3.6.1.4.1.31103.1.114	fedfsNfsReadRank	RFC 7532
1.3.6.1.4.1.31103.1.115	fedfsNfsReadOrder	RFC 7532
1.3.6.1.4.1.31103.1.116	fedfsNfsWriteRank	RFC 7532
1.3.6.1.4.1.31103.1.117	fedfsNfsWriteOrder	RFC 7532
1.3.6.1.4.1.31103.1.118	fedfsNfsVarSub	RFC 7532
1.3.6.1.4.1.31103.1.119	fedfsNfsValidFor	RFC 7532
1.3.6.1.4.1.31103.1.120	fedfsNfsURI	RFC 7532
1.3.6.1.4.1.31103.1.1001	fedfsNsdbContainerInfo	RFC 7532
1.3.6.1.4.1.31103.1.1002	fedfsFsn	RFC 7532
1.3.6.1.4.1.31103.1.1003	fedfsFsl	RFC 7532
1.3.6.1.4.1.31103.1.1004	fedfsNfsFsl	RFC 7532
 +---------------------------+--------------------------+-----------+

 Table 1

Lentini, et al. Standards Track [Page 54]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

7.3. LDAP Descriptor Registration

 In accordance with Sections 3.4 and 4 of [RFC4520], the object
 identifier descriptors defined in this document (listed below) have
 been registered via the Expert Review process.

 Subject: Request for LDAP Descriptor Registration
 Person & email address to contact for further information: See
 "Author/Change Controller"
 Specification: RFC 7532
 Author/Change Controller: IESG (iesg@ietf.org)

 Object Identifier: 1.3.6.1.4.1.31103.1.1
 Descriptor (short name): fedfsUuid
 Usage: attribute type

 Object Identifier: 1.3.6.1.4.1.31103.1.2
 Descriptor (short name): fedfsNetAddr
 Usage: attribute type (historic)

 Object Identifier: 1.3.6.1.4.1.31103.1.3
 Descriptor (short name): fedfsNetPort
 Usage: attribute type (historic)

 Object Identifier: 1.3.6.1.4.1.31103.1.4
 Descriptor (short name): fedfsFsnUuid
 Usage: attribute type

 Object Identifier: 1.3.6.1.4.1.31103.1.5
 Descriptor (short name): fedfsNsdbName
 Usage: attribute type (historic)

 Object Identifier: 1.3.6.1.4.1.31103.1.6
 Descriptor (short name): fedfsNsdbPort
 Usage: attribute type (historic)

 Object Identifier: 1.3.6.1.4.1.31103.1.7
 Descriptor (short name): fedfsNcePrefix
 Usage: attribute type (historic)

 Object Identifier: 1.3.6.1.4.1.31103.1.8
 Descriptor (short name): fedfsFslUuid
 Usage: attribute type

 Object Identifier: 1.3.6.1.4.1.31103.1.9
 Descriptor (short name): fedfsFslHost
 Usage: attribute type (historic)

Lentini, et al. Standards Track [Page 55]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

 Object Identifier: 1.3.6.1.4.1.31103.1.10
 Descriptor (short name): fedfsFslPort
 Usage: attribute type (historic)

 Object Identifier: 1.3.6.1.4.1.31103.1.11
 Descriptor (short name): fedfsFslTTL
 Usage: attribute type (historic)

 Object Identifier: 1.3.6.1.4.1.31103.1.12
 Descriptor (short name): fedfsAnnotation
 Usage: attribute type

 Object Identifier: 1.3.6.1.4.1.31103.1.13
 Descriptor (short name): fedfsDescr
 Usage: attribute type

 Object Identifier: 1.3.6.1.4.1.31103.1.14
 Descriptor (short name): fedfsNceDN
 Usage: attribute type

 Object Identifier: 1.3.6.1.4.1.31103.1.15
 Descriptor (short name): fedfsFsnTTL
 Usage: attribute type

 Object Identifier: 1.3.6.1.4.1.31103.1.100
 Descriptor (short name): fedfsNfsPath
 Usage: attribute type (historic)

 Object Identifier: 1.3.6.1.4.1.31103.1.101
 Descriptor (short name): fedfsNfsMajorVer
 Usage: attribute type (historic)

 Object Identifier: 1.3.6.1.4.1.31103.1.102
 Descriptor (short name): fedfsNfsMinorVer
 Usage: attribute type (historic)

 Object Identifier: 1.3.6.1.4.1.31103.1.103
 Descriptor (short name): fedfsNfsCurrency
 Usage: attribute type

 Object Identifier: 1.3.6.1.4.1.31103.1.104
 Descriptor (short name): fedfsNfsGenFlagWritable
 Usage: attribute type

 Object Identifier: 1.3.6.1.4.1.31103.1.105
 Descriptor (short name): fedfsNfsGenFlagGoing
 Usage: attribute type

Lentini, et al. Standards Track [Page 56]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

 Object Identifier: 1.3.6.1.4.1.31103.1.106
 Descriptor (short name): fedfsNfsGenFlagSplit
 Usage: attribute type

 Object Identifier: 1.3.6.1.4.1.31103.1.107
 Descriptor (short name): fedfsNfsTransFlagRdma
 Usage: attribute type

 Object Identifier: 1.3.6.1.4.1.31103.1.108
 Descriptor (short name): fedfsNfsClassSimul
 Usage: attribute type

 Object Identifier: 1.3.6.1.4.1.31103.1.109
 Descriptor (short name): fedfsNfsClassHandle
 Usage: attribute type

 Object Identifier: 1.3.6.1.4.1.31103.1.110
 Descriptor (short name): fedfsNfsClassFileid
 Usage: attribute type

 Object Identifier: 1.3.6.1.4.1.31103.1.111
 Descriptor (short name): fedfsNfsClassWritever
 Usage: attribute type

 Object Identifier: 1.3.6.1.4.1.31103.1.112
 Descriptor (short name): fedfsNfsClassChange
 Usage: attribute type

 Object Identifier: 1.3.6.1.4.1.31103.1.113
 Descriptor (short name): fedfsNfsClassReaddir
 Usage: attribute type

 Object Identifier: 1.3.6.1.4.1.31103.1.114
 Descriptor (short name): fedfsNfsReadRank
 Usage: attribute type

 Object Identifier: 1.3.6.1.4.1.31103.1.115
 Descriptor (short name): fedfsNfsReadOrder
 Usage: attribute type

 Object Identifier: 1.3.6.1.4.1.31103.1.116
 Descriptor (short name): fedfsNfsWriteRank
 Usage: attribute type

 Object Identifier: 1.3.6.1.4.1.31103.1.117
 Descriptor (short name): fedfsNfsWriteOrder
 Usage: attribute type

Lentini, et al. Standards Track [Page 57]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

 Object Identifier: 1.3.6.1.4.1.31103.1.118
 Descriptor (short name): fedfsNfsVarSub
 Usage: attribute type

 Object Identifier: 1.3.6.1.4.1.31103.1.119
 Descriptor (short name): fedfsNfsValidFor
 Usage: attribute type

 Object Identifier: 1.3.6.1.4.1.31103.1.120
 Descriptor (short name): fedfsNfsURI
 Usage: attribute type

 Object Identifier: 1.3.6.1.4.1.31103.1.1001
 Descriptor (short name): fedfsNsdbContainerInfo
 Usage: object class

 Object Identifier: 1.3.6.1.4.1.31103.1.1002
 Descriptor (short name): fedfsFsn
 Usage: object class

 Object Identifier: 1.3.6.1.4.1.31103.1.1003
 Descriptor (short name): fedfsFsl
 Usage: object class

 Object Identifier: 1.3.6.1.4.1.31103.1.1004
 Descriptor (short name): fedfsNfsFsl
 Usage: object class

8. Glossary

 Administrator: A user with the necessary authority to initiate
 administrative tasks on one or more servers.

 Admin Entity: A server or agent that administers a collection of
 fileservers and persistently stores the namespace information.

 File-Access Client: Standard off-the-shelf, network-attached storage
 (NAS) client software that communicates with fileservers using a
 standard file-access protocol.

 Federation: A set of fileserver collections and singleton
 fileservers that use a common set of interfaces and protocols in
 order to provide to file-access clients a federated namespace
 accessible through a file system access protocol.

 Fileserver: A server that stores physical fileset data or refers
 file-access clients to other fileservers. A fileserver provides
 access to its shared file system data via a file-access protocol.

Lentini, et al. Standards Track [Page 58]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

 Fileset: The abstraction of a set of files and the directory tree
 that contains them. A fileset is the fundamental unit of data
 management in the federation.

 Note that all files within a fileset are descendants of one
 directory and that filesets do not span file systems.

 File System: A self-contained unit of export for a fileserver and
 the mechanism used to implement filesets. The fileset does not
 need to be rooted at the root of the file system, nor at the
 export point for the file system.

 A single file system MAY implement more than one fileset, if the
 file-access protocol and the fileserver permit this.

 File-Access Protocol: A network file system access protocol such as
 NFSv3 [RFC1813], NFSv4 [RFC7530], or CIFS (Common Internet File
 System) [MS-SMB] [MS-SMB2] [MS-CIFS].

 FSL (Fileset Location): The location of the implementation of a
 fileset at a particular moment in time. An FSL MUST be something
 that can be translated into a protocol-specific description of a
 resource that a file-access client can access directly, such as an
 fs_locations attribute (for NFSv4) or a share name (for CIFS).

 FSN (Fileset Name): A platform-independent and globally unique name
 for a fileset. Two FSLs that implement replicas of the same
 fileset MUST have the same FSN, and if a fileset is migrated from
 one location to another, the FSN of that fileset MUST remain the
 same.

 Junction: A file system object used to link a directory name in the
 current fileset with an object within another fileset. The
 server-side "link" from a leaf node in one fileset to the root of
 another fileset.

 Namespace: A filename/directory tree that a sufficiently authorized
 file-access client can observe.

 NSDB (Namespace Database) Service: A service that maps FSNs to FSLs.
 The NSDB may also be used to store other information, such as
 annotations for these mappings and their components.

 NSDB Node: The name or location of a server that implements part of
 the NSDB service and is responsible for keeping track of the FSLs
 (and related information) that implement a given partition of the
 FSNs.

Lentini, et al. Standards Track [Page 59]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

 Referral: A server response to a file-access client access that
 directs the client to evaluate the current object as a reference
 to an object at a different location (specified by an FSL) in
 another fileset and possibly hosted on another fileserver. The
 client re-attempts the access to the object at the new location.

 Replica: A redundant implementation of a fileset. Each replica
 shares the same FSN but has a different FSL.

 Replicas may be used to increase availability or performance.
 Updates to replicas of the same fileset MUST appear to occur in
 the same order; therefore, each replica is self-consistent at any
 moment.

 We do not assume that updates to each replica occur
 simultaneously. If a replica is offline or unreachable, the other
 replicas may be updated.

 Server Collection: A set of fileservers administered as a unit. A
 server collection may be administered with vendor-specific
 software.

 The namespace provided by a server collection could be part of the
 federated namespace.

 Singleton Server: A server collection containing only one server; a
 stand-alone fileserver.

9. References

9.1. Normative References

 [RFC2079] Smith, M., "Definition of an X.500 Attribute Type and an
 Object Class to Hold Uniform Resource Identifiers (URIs)",
 RFC 2079, January 1997,
 <http://www.rfc-editor.org/info/rfc2079>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2203] Eisler, M., Chiu, A., and L. Ling, "RPCSEC_GSS Protocol
 Specification", RFC 2203, September 1997,
 <http://www.rfc-editor.org/info/rfc2203>.

Lentini, et al. Standards Track [Page 60]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

 [RFC2578] McCloghrie, K., Ed., Perkins, D., Ed., and J.
 Schoenwaelder, Ed., "Structure of Management Information
 Version 2 (SMIv2)", STD 58, RFC 2578, April 1999,
 <http://www.rfc-editor.org/info/rfc2578>.

 [RFC2743] Linn, J., "Generic Security Service Application Program
 Interface Version 2, Update 1", RFC 2743, January 2000,
 <http://www.rfc-editor.org/info/rfc2743>.

 [RFC2849] Good, G., "The LDAP Data Interchange Format (LDIF) -
 Technical Specification", RFC 2849, June 2000,
 <http://www.rfc-editor.org/info/rfc2849>.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003,
 <http://www.rfc-editor.org/info/rfc3629>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC
 3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

 [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally
 Unique IDentifier (UUID) URN Namespace", RFC 4122, July
 2005, <http://www.rfc-editor.org/info/rfc4122>.

 [RFC4510] Zeilenga, K., Ed., "Lightweight Directory Access Protocol
 (LDAP): Technical Specification Road Map", RFC 4510, June
 2006, <http://www.rfc-editor.org/info/rfc4510>.

 [RFC4511] Sermersheim, J., Ed., "Lightweight Directory Access
 Protocol (LDAP): The Protocol", RFC 4511, June 2006,
 <http://www.rfc-editor.org/info/rfc4511>.

 [RFC4512] Zeilenga, K., Ed., "Lightweight Directory Access Protocol
 (LDAP): Directory Information Models", RFC 4512, June
 2006, <http://www.rfc-editor.org/info/rfc4512>.

 [RFC4513] Harrison, R., Ed., "Lightweight Directory Access Protocol
 (LDAP): Authentication Methods and Security Mechanisms",
 RFC 4513, June 2006,
 <http://www.rfc-editor.org/info/rfc4513>.

 [RFC4516] Smith, M., Ed. and T. Howes, "Lightweight Directory Access
 Protocol (LDAP): Uniform Resource Locator", RFC 4516, June
 2006, <http://www.rfc-editor.org/info/rfc4516>.

Lentini, et al. Standards Track [Page 61]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

 [RFC4517] Legg, S., Ed., "Lightweight Directory Access Protocol
 (LDAP): Syntaxes and Matching Rules", RFC 4517, June 2006,
 <http://www.rfc-editor.org/info/rfc4517>.

 [RFC4519] Sciberras, A., Ed., "Lightweight Directory Access Protocol
 (LDAP): Schema for User Applications", RFC 4519, June
 2006, <http://www.rfc-editor.org/info/rfc4519>.

 [RFC4520] Zeilenga, K., "Internet Assigned Numbers Authority (IANA)
 Considerations for the Lightweight Directory Access
 Protocol (LDAP)", BCP 64, RFC 4520, June 2006,
 <http://www.rfc-editor.org/info/rfc4520>.

 [RFC4530] Zeilenga, K., "Lightweight Directory Access Protocol
 (LDAP) entryUUID Operational Attribute", RFC 4530, June
 2006, <http://www.rfc-editor.org/info/rfc4530>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008, <http://www.rfc-editor.org/info/rfc5226>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008,
 <http://www.rfc-editor.org/info/rfc5234>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC5661] Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed.,
 "Network File System (NFS) Version 4 Minor Version 1
 Protocol", RFC 5661, January 2010,
 <http://www.rfc-editor.org/info/rfc5661>.

 [RFC7530] Haynes, T., Ed. and D. Noveck, Ed., "Network File System
 (NFS) Version 4 Protocol", RFC 7530, March 2015,
 <http://www.rfc-editor.org/info/rfc7530>.

9.2. Informative References

 [AFS] Howard, J., "An Overview of the Andrew File System",
 Proceedings of the USENIX Winter Technical Conference ,
 1988.

 [MS-CIFS] Microsoft Corporation, "Common Internet File System (CIFS)
 Protocol Specification", MS-CIFS 24.0, May 2014.

Lentini, et al. Standards Track [Page 62]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

 [MS-SMB] Microsoft Corporation, "Server Message Block (SMB)
 Protocol Specification", MS-SMB 43.0, May 2014.

 [MS-SMB2] Microsoft Corporation, "Server Message Block (SMB) Version
 2 Protocol Specification", MS-SMB2 46.0, May 2014.

 [RFC1813] Callaghan, B., Pawlowski, B., and P. Staubach, "NFS
 Version 3 Protocol Specification", RFC 1813, June 1995,
 <http://www.rfc-editor.org/info/rfc1813>.

 [RFC2224] Callaghan, B., "NFS URL Scheme", RFC 2224, October 1997,
 <http://www.rfc-editor.org/info/rfc2224>.

 [RFC3254] Alvestrand, H., "Definitions for talking about
 directories", RFC 3254, April 2002,
 <http://www.rfc-editor.org/info/rfc3254>.

 [RFC5662] Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed.,
 "Network File System (NFS) Version 4 Minor Version 1
 External Data Representation Standard (XDR) Description",
 RFC 5662, January 2010,
 <http://www.rfc-editor.org/info/rfc5662>.

 [RFC5716] Lentini, J., Everhart, C., Ellard, D., Tewari, R., and M.
 Naik, "Requirements for Federated File Systems", RFC 5716,
 January 2010, <http://www.rfc-editor.org/info/rfc5716>.

 [RFC6641] Everhart, C., Adamson, W., and J. Zhang, "Using DNS SRV to
 Specify a Global File Namespace with NFS Version 4", RFC
 6641, June 2012, <http://www.rfc-editor.org/info/rfc6641>.

 [RFC7533] Lentini, J., Tewari, R., and C. Lever, Ed.,
 "Administration Protocol for Federated File Systems", RFC
 7533, March 2015,
 <http://www.rfc-editor.org/info/rfc7533>.

Lentini, et al. Standards Track [Page 63]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

Acknowledgments

 Daniel Ellard contributed significant parts of this document.

 The authors and editor would like to thank Craig Everhart and Manoj
 Naik, who were co-authors of an earlier draft version of this
 document. In addition, we would like to thank Andy Adamson, Paul
 Lemahieu, Mario Wurzl, and Robert Thurlow for helping to author this
 document.

 We would like to thank George Amvrosiadis, Trond Myklebust, Howard
 Chu, and Nicolas Williams for their comments and review.

 The editor gratefully acknowledges the IESG reviewers, whose
 constructive comments helped make this a much stronger document.

 Finally, we would like to thank Andy Adamson, Rob Thurlow, and Tom
 Haynes for helping to get this document out the door.

 The extract.sh shell script and formatting conventions were first
 described by the authors of the NFSv4.1 XDR specification [RFC5662].

Lentini, et al. Standards Track [Page 64]

RFC 7532 NSDB Protocol for Federated File Systems March 2015

Authors’ Addresses

 James Lentini
 NetApp
 1601 Trapelo Rd, Suite 16
 Waltham, MA 02451
 United States

 Phone: +1 781-768-5359
 EMail: jlentini@netapp.com

 Renu Tewari
 IBM Almaden
 650 Harry Rd
 San Jose, CA 95120
 United States

 EMail: tewarir@us.ibm.com

 Charles Lever (editor)
 Oracle Corporation
 1015 Granger Avenue
 Ann Arbor, MI 48104
 United States

 Phone: +1 248-614-5091
 EMail: chuck.lever@oracle.com

Lentini, et al. Standards Track [Page 65]

