I nt ernet Engi neering Task Force (I ETF) T. Bray, Ed
Request for Comments: 7158 Googl e, Inc.
osol etes: 4627 March 2013
Cat egory: Standards Track

| SSN: 2070-1721

The JavaScript bject Notation (JSON) Data Interchange Format

Abst r act

JavaScript Object Notation (JSON) is a |lightweight, text-based,

| anguage-i ndependent data interchange format. It was derived from
the ECMAScri pt Progranmm ng Language Standard. JSON defines a snall
set of formatting rules for the portable representation of structured
dat a.

Thi s docunent renoves inconsistencies with other specifications of
JSON, repairs specification errors, and offers experience-based
i nteroperability guidance.

Status of This Meno
This is an Internet Standards Track docunent.

This docunent is a product of the Internet Engi neering Task Force
(ITETF). It represents the consensus of the |IETF community. It has
recei ved public review and has been approved for publication by the
I nternet Engineering Steering Group (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,

and how to provide feedback on it may be obtai ned at
http://ww.rfc-editor.org/info/rfc7158

Br ay St andards Track [Page 1]

RFC 7158 JSON March 2013

Copyright Notice

Copyright (c) 2013 I ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this document. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wi thout warranty as
described in the Sinplified BSD License.

Thi s docunent may contain material from|ETF Docunents or |ETF
Contributions published or made publicly avail abl e before Novenber
10, 2008. The person(s) controlling the copyright in sonme of this
material may not have granted the I ETF Trust the right to all ow

nodi fications of such material outside the | ETF Standards Process.
Wt hout obtaining an adequate |icense fromthe person(s) controlling
the copyright in such materials, this docunent may not be nodified
out side the | ETF Standards Process, and derivative works of it may
not be created outside the | ETF Standards Process, except to fornmat
it for publication as an RFC or to translate it into |anguages other
t han Engli sh.

Br ay St andards Track [Page 2]

RFC 7158 JSON March 2013

Tabl e of Contents
1. IntroduCti ON e 3
1.1. Conventions Used in This Docunment 4
1.2. Specifications of JSON e 4
1.3. Introduction to This Revisionc.. .. 4
2. JSON G ammImBl .. e e e e 4
3. VAl UBS .o e 5
A D BCE S ot 6
D AN Y S .o 6
6. NUNMDEI S . . e 6
TSI NgS .o e 8
8. String and Character [SSUESi e, 9
8.1. Character Encoding 9
8.2. Unicode CharacCt ers e e e 9
8.3. String Conpari SONt 9
0. PAl S S L i e 10
10, GENEr Al OF S ittt e e e e e e 10
11. TANA Considerati ONSo e e e 10
12. Security Considerati OnNs 11
13, EXaNPl €S .o 12
14, ContribUL OrS ... e 13
15, Ref BrENCES .. o o 13
15.1. Normative References i, 13
15.2. Informative References 13
Appendi x A. Changes from RFC 4627 i, 15

1. I nt roducti on

JavaScript Object Notation (JSON) is a text format for the
serialization of structured data. It is derived fromthe object
literals of JavaScript, as defined in the ECMAScri pt Programi ng
Language Standard, Third Edition [ECVMA-262].

JSON can represent four primtive types (strings, nunbers, bool eans,
and null) and two structured types (objects and arrays).

A string is a sequence of zero or nore Unicode characters [UN CODE]
Note that this citation references the |atest version of Unicode
rather than a specific release. It is not expected that future
changes in the UNI CODE specification will inpact the syntax of JSON

An

object is an unordered collection of zero or nore nane/val ue

pairs, where a nane is a string and a value is a string, nunber,
bool ean, null, object, or array.

An

Br ay

array is an ordered sequence of zero or nore val ues.

St andards Track [Page 3]

RFC 7158 JSON March 2013

The terns "object"” and "array" cone fromthe conventions of
JavaScri pt.

JSON s design goals were for it to be mininmal, portable, textual, and
a subset of JavaScript.

1.1. Conventions Used in This Docunent
The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMVENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in [RFC2119].

The grammatical rules in this docunent are to be interpreted as
described in [RFC5234].

1.2. Specifications of JSON

Thi s docunent updates [RFC4627], which describes JSON and registers
the nmedia type "application/json".

A description of JSON in ECVMAScript ternms appears in Version 5.1 of
the ECMAScri pt specification [ECMA-262], Section 15.12. JSON is al so
descri bed in [ECVA-404].

Al'l of the specifications of JSON syntax agree on the syntactic
el ements of the | anguage.

1.3. Introduction to This Revision
In the years since the publication of RFC 4627, JSON has found very
wi de use. This experience has reveal ed certain patterns, which
while allowed by its specifications, have caused interoperability
probl ens.

Al so, a small nunber of errata have been reported (see RFC Errata |Ds
607 [Err607] and 3607 [Err3607]).

This docunent’s goal is to apply the errata, renove inconsistencies
wi th other specifications of JSON, and hi ghlight practices that can
lead to interoperability problens.

2. JSON G ammar

A JSON text is a sequence of tokens. The set of tokens includes six
structural characters, strings, nunbers, and three literal nanes.

A JSON text is a serialized value. Note that certain previous
specifications of JSON constrained a JSON text to be an object or an

Br ay St andards Track [Page 4]

RFC 7158

JSON

March 2013

array. |Inplenentations that generate only objects or arrays where a

JSON text is called for wll

i mpl enentations wll

JSON-text = ws val ue ws

These are the six structural characters:

begi n-array =

begi n- obj ect

end- array

end- obj ect

5 % 5 b

nane- separ at or

val ue- separ at or

Ws

WS

5B ws ; [left square bracket
Ww7B ws ; { left curly bracket
%5D ws ;] right square bracket
W7D ws ; } right curly bracket
W3A ws ; : colon

2C ws ; , conma

be interoperable in the sense that all
accept these as conform ng JSON texts.

I nsignificant whitespace is allowed before or after any of the six
structural characters

ws = *(
%20 /
%x09 /
o 0A /
%O0D)

3. Val ues

Space

Hori zontal tab

Line feed or New line
Carriage return

A JSON val ue MJUST be an object, array, nunber, or string,
the following three literal nanes:

false null true

or one of

The literal nanmes MJUST be | owercase. No other literal nanes are

al | owned.
value = false / null / true / object / array / number / string
fal se = %66.61. 6¢C. 73. 65 ; false
null = %6e. 75. 6¢. 6C ;o null
true = %&74.72.75.65 ; true
Br ay St andards Track

[Page 5]

RFC 7158 JSON March 2013

4.

hj ects

An object structure is represented as a pair of curly brackets
surroundi ng zero or nore nane/value pairs (or nenbers). A nane is a
string. A single colon cones after each nane, separating the nane
fromthe value. A single conma separates a value froma foll ow ng
nane. The nanmes within an object SHOULD be uni que.

obj ect begi n-obj ect [nenmber *(val ue-separator nenmber)]

end- obj ect
menber = string nane-separator val ue

An obj ect whose nanmes are all unique is interoperable in the sense
that all software inplenmentations receiving that object will agree on
t he nane-val ue mappi ngs. When the nanes wthin an object are not

uni que, the behavior of software that receives such an object is
unpredi ctable. Many inplenentations report the |ast nane/val ue pair
only. Oher inplenentations report an error or fail to parse the

obj ect, and sone inplenentations report all of the nane/val ue pairs,

i ncl udi ng dupli cates.

JSON parsing libraries have been observed to differ as to whether or
not they make the ordering of object nenbers visible to calling
software. | nplenentati ons whose behavi or does not depend on nenber
ordering will be interoperable in the sense that they will not be

af fected by these differences.

Arrays

An array structure is represented as square brackets surrounding zero
or nore values (or elenents). Elenents are separated by conmas.

array = begin-array [value *(val ue-separator value)] end-array

There is no requirenent that the values in an array be of the same
type.

Nunber s

The representation of nunbers is simlar to that used in nost
progranm ng | anguages. A nunber is represented in base 10 using
decinmal digits. It contains an integer conponent that nmay be
prefixed with an optional mnus sign, which nmay be followed by a
fraction part and/or an exponent part. Leading zeros are not

al | owned.

A fraction part is a decimal point followed by one or nore digits.

Br ay St andards Track [Page 6]

RFC 7158 JSON March 2013

An exponent part begins with the letter E in upper or |ower case,
whi ch may be followed by a plus or mnus sign. The E and optiona
sign are followed by one or nore digits.

Nurmeri c val ues that cannot be represented in the grammar bel ow (such
as Infinity and NaN) are not permtted.

nunber = [mnus] int [frac] [exp]
deci mal - poi nt = W2E ;

digitl-9 = %31-39 ; 1-9

e = 65 / 45 ; e E

exp = e[mnus / plus] 1*DAT

frac = decinal-point 1*DIGAT

int =zero/ (digitl-9 *DIAT)

m nus = %2D co-

plus = %2B ;+

zero = %30 ;0

This specification allows inplenentations to set limts on the range
and precision of nunbers accepted. Since software that inplenents

| EEE 754- 2008 bi nary64 (doubl e precision) nunbers [| EEE754] is
general ly avail abl e and widely used, good interoperability can be
achi eved by inpl enentations that expect no nore precision or range
than these provide, in the sense that inplenmentations wll

approxi mate JSON nunbers within the expected precision. A JSON
nunmber such as 1E400 or 3.141592653589793238462643383279 may i ndi cate
potential interoperability problens, since it suggests that the
software that created it expects receiving software to have greater
capabilities for nunmeric magni tude and precision than is widely
avai | abl e.

Not e that when such software is used, numbers that are integers and
are in the range [-(2**53)+1, (2**53)-1] are interoperable in the
sense that inplenmentations will agree exactly on their nunmeric

val ues.

Br ay St andards Track [Page 7]

RFC 7158 JSON March 2013

7. Strings

The representation of strings is simlar to conventions used in the C
fam ly of progranm ng | anguages. A string begins and ends with
quotation marks. All Unicode characters may be placed within the
quot ati on marks, except for the characters that nust be escaped:

quot ation mark, reverse solidus, and the control characters (U+0000

t hr ough U+001F).

Any character may be escaped. |If the character is in the Basic

Mul tilingual Plane (W0000 through U+FFFF), then it may be
represented as a six-character sequence: a reverse solidus, followed
by the | owercase letter u, followed by four hexadecinal digits that
encode the character’s code point. The hexadecinmal letters A though
F can be upper or |lower case. So, for exanple, a string containing
only a single reverse solidus character may be represented as
"\'u005C".

Alternatively, there are two-character sequence escape
representations of some popul ar characters. So, for exanple, a
string containing only a single reverse solidus character nmay be
represented nore conpactly as "\\".

To escape an extended character that is not in the Basic Miltilingua
Pl ane, the character is represented as a 12-character sequence,
encodi ng the UTF-16 surrogate pair. So, for exanple, a string
containing only the G clef character (U+1D11E) nmay be represented as
"\ uD834\ uDD1E".

string = quotation-mark *char quotation-nmark

char = unescaped /

escape (
w22 |/ ;" quot ation mark W+0022
% 5C / P\ reverse solidus U+005C
W 2F / v sol i dus W002F
%62 / ;b backspace U+0008
%66 / ; f form feed W000C
% 6E / ;on line feed U+000A
W72 |/ por carriage return W000D
W74 | ;ot tab U+0009
W75 AHEXDI G) ; UuXXXX U+ XXXX
escape = %5C ;o\

quot ati on-mark = %22 ;"

unescaped = %20-21 / %23-5B / 95D 10FFFF

Br ay St andards Track [Page 8]

RFC 7158 JSON March 2013

8. String and Character |ssues
8.1. Character Encoding

JSON text SHALL be encoded in UTF-8, UTF-16, or UTF-32. The default
encoding is UTF-8, and JSON texts that are encoded in UTF-8 are
interoperable in the sense that they will be read successfully by the
maxi mum nunber of inplenentations; there are many inplenmentations
that cannot successfully read texts in other encodings (such as

UTF- 16 and UTF-32).

| mpl enent ati ons MUST NOT add a byte order nark to the beginning of a
JSON text. In the interests of interoperability, inplenentations
that parse JSON texts MAY ignore the presence of a byte order mark
rather than treating it as an error.

8. 2. Uni code Characters

When all the strings represented in a JSON text are conposed entirely
of Uni code characters [UNI CODE] (however escaped), then that JSON
text is interoperable in the sense that all software inplenmentations
that parse it will agree on the contents of nanmes and of string

val ues in objects and arrays.

However, the ABNF in this specification allows nenber names and
string values to contain bit sequences that cannot encode Uni code
characters; for exanple, "\uDEAD' (a single unpaired UTF-16
surrogate). Instances of this have been observed, for exanple, when
a library truncates a UTF-16 string w thout checking whether the
truncation split a surrogate pair. The behavior of software that
recei ves JSON texts containing such values is unpredictable; for
exanpl e, inplenentations night return different values for the length
of a string value or even suffer fatal runtinme exceptions.

8.3. String Conparison

Software inplenentations are typically required to test names of

obj ect nenbers for equality. Inplenentations that transformthe
textual representation into sequences of Unicode code units and then
performthe conparison nunerically, code unit by code unit, are
interoperable in the sense that inplenentations will agree in all
cases on equality or inequality of two strings. For exanple,

i mpl enentations that conpare strings with escaped characters
unconverted may incorrectly find that "a\\b" and "a\u005Cb" are not
equal .

Br ay St andards Track [Page 9]

RFC 7158 JSON March 2013

9.

10.

11.

Par sers
A JSON parser transforms a JSON text into another representation. A
JSON parser MJST accept all texts that conformto the JSON grammar.
A JSON parser MAY accept non-JSON forns or extensions.
An inplenentation may set linmits on the size of texts that it
accepts. An inplenmentation nmay set limts on the nmaxi num depth of
nesting. An inplenentation nay set linmts on the range and precision
of numbers. An inplenentation may set linmts on the |length and
character contents of strings.

Generators

A JSON generator produces JSON text. The resulting text MJST
strictly conformto the JSON gramar.

| ANA Consi derati ons
The M ME nedia type for JSON text is application/json.
Type nane: application
Subt ype name: json
Requi red paraneters: n/a
Optional paraneters: n/a
Encodi ng consi derations: binary
Security considerations: See [RFC7158], Section 12.
Interoperability considerations: Described in [RFC7158]
Publ i shed specification: [RFC7158]
Applications that use this media type:

JSON has been used to exchange data between applications witten

in all of these programm ng | anguages: ActionScript, C, C#,
d oj ure, Col dFusion, Common Lisp, E, Erlang, CGo, Java, JavaScri pt,

Lua, Objective CAM,, Perl, PHP, Python, Rebol, Ruby, Scala, and
Schene.

Br ay St andards Track [Page 10]

RFC 7158 JSON March 2013

12.

Addi tional information:
Magi ¢ nunber(s): n/a
File extension(s): .json
Maci ntosh file type code(s): TEXT

Person & email address to contact for further information:
| ESG
<iesg@etf.org>

I ntended usage: COMVON
Restrictions on usage: none

Aut hor :
Dougl as Crockford
<dougl as@r ockf ord. conr

Change controller:
| ESG
<iesg@etf.org>

Note: No "charset" paraneter is defined for this registration.
Addi ng one really has no effect on conpliant recipients.

Security Considerations

Cenerally, there are security issues with scripting | anguages. JSON
is a subset of JavaScript but excludes assignment and invocati on.

Since JSON s syntax is borrowed from JavaScript, it is possible to
use that |anguage’'s "eval ()" function to parse JSON texts. This
general ly constitutes an unacceptable security risk, since the text
coul d contain executable code along with data declarations. The same
consi deration applies to the use of eval ()-like functions in any

ot her progranm ng | anguage in which JSON texts conformto that

| anguage’ s synt ax.

Br ay St andards Track [Page 11]

RFC 7158

13.

Exanpl es

JSON

This is a JSON object:

Its I mage nenber is an object whose Thunbnai l

}

"I mage": {
"Wdth": 800,
"Hei ght": 600,
"Title": "View from 15th Floor",
"Thunbnail ": {
"Ul":
"Hei ght": 125,
"Wdth": 100
},
"Ani mat ed" : fal se,
"IDs": [116, 943, 234, 38793]

March 2013

"http://ww. exanpl e. conli mage/ 481989943",

whose | Ds nmenber is an array of nunbers.

This is a JSON array containing two objects:

Br ay

[

{

A

"precision":
"Latitude":
"Longi t ude":
" Addr ess":
"Gty":
"State":

" Zi p":
"Country":

"precision":
"Latitude":
"Longi t ude":
" Address":
"Gty":
"State":

"Zi p":
"Country":

"zip",

37. 7668,

-122. 3959,

" SAN FRANCI SCO',
" A"

"94107",

" LS

"zip",
37.371991,
-122. 026020,
" SUNNYVALE" ,
" A"
"94085",

" S

St andards Track

menber is an object and

[Page 12]

RFC 7158 JSON March 2013

14.

15.

15.

15.

Here are three snall JSON texts containing only val ues:
"Hello world!"
42
true
Contributors
RFC 4627 was witten by Douglas Crockford. This docunment was
constructed by making a relatively small nunber of changes to that
docunent; thus, the vast najority of the text here is his.
Ref er ences
1. Normative References
[EEE754] | EEE, "IEEE Standard for Floating-Point Arithnetic", |EEE
Standard 754, August 2008,
<http://grouper.ieee.org/ groups/ 754/ >.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Levels", BCP 14, RFC 2119, March 1997.

[RFC5234] Crocker, D. and P. COverell, "Augnented BNF for Syntax
Speci fications: ABNF', STD 68, RFC 5234, January 2008.

[UNl CODE] The Uni code Consortium "The Uni code Standard”
<ht t p: // ww. uni code. or g/ versi ons/ | at est/ >,

2. Informati ve References

[ECMA- 262] Ecma I nternational, "ECMAScript Language Specification
Edition 5.1", Standard ECMA-262, June 2011
<http://ww. ecma-international.org/publications/standards/
Ecma- 262. ht e,

[ECMA- 404] Ecma International, "The JSON Data | nterchange Fornmat"
St andard ECVA- 404, Cctober 2013
<http://ww. ecma-international.org/publications/standards/
Ecma- 404. ht e,

[Err3607] RFC Errata, Errata |ID 3607, RFC 3607,
<http://ww.rfc-editor.org>

Br ay St andards Track [Page 13]

RFC 7158 JSON March 2013

[Err607] RFC Errata, Errata ID 607, RFC 607,
<http://ww.rfc-editor.org>.

[RFC4627] Crockford, D., "The application/json Media Type for
JavaScript Object Notation (JSON)", RFC 4627, July 2006.

Br ay St andards Track [Page 14]

RFC 7158 JSON March 2013

Appendi x A, Changes from RFC 4627

This section lists changes between this document and the text in RFC

4627.

0 Changed the title and abstract of the docunent.

0 Changed the reference to [UNICODE] to be not version specific.

0 Added a "Specifications of JSON' section.

0 Added an "Introduction to This Revision" section

0 Changed the definition of "JSON text" so that it can be any JSON
val ue, renoving the constraint that it be an object or array.

0 Added | anguage about duplicate object nenber nanes, nenber
ordering, and interoperability.

o Carified the absence of a requirenent that values in an array be
of the sane JSON type

0o Applied erratum #607 from RFC 4627 to correctly align the artwork
for the definition of "object".

0 Changed "as sequences of digits" to "in the grammar below' in the
"Number s" section, and made base- 10-ness explicit.

0 Added | anguage about nunber interoperability as a function of
| EEE754, and added an | EEE754 ref erence.

0 Added | anguage about interoperability and Uni code characters and
about string conparisons. To do this, turned the old "Encodi ng"
section into a "String and Character |ssues" section, with three
subsections: "Character Encoding", "Unicode Characters", and
"String Conparison".

0 Changed guidance in the "Parsers" section to point out that
i mpl ementations may set limits on the range "and precision” of
nunbers.

0 Updated and tidied the "I ANA Consi derations" section

0 Mude a real "Security Considerations" section and lifted the text
out of the previous "I ANA Consi derati ons" section

Br ay St andards Track [Page 15]

RFC 7158 JSON March 2013

Applied erratum #3607 from RFC 4627 by renoving the security
consi deration that begins "A JSON text can be safely passed" and
the JavaScript code that went with that consideration.

Added a note to the "Security Considerations" section pointing out
the risks of using the "eval ()" function in JavaScript or any

ot her |anguage in which JSON texts conformto that |anguage’s

synt ax.

Added a note to the "I ANA Consi derations" clarifying the absence
of a "charset" paraneter for the application/json nedia type.

Changed "100" to 100 and added a boolean field, both in the first
exanpl e.

Added exanpl es of JSON texts with sinple values, neither objects
nor arrays.

Added a "Contributors" section crediting Douglas Crockford.
Added a reference to RFC 4627.
Moved the ECVMAScript reference from Normative to Informative and

updated it to reference ECMAScri pt 5.1, and added a reference to
ECVA 404.

Aut hor’ s Addr ess

Tim Bray (editor)
Googl e, Inc.

EMai | : tbray@extuality.com

Br ay

St andards Track [Page 16]

