
Internet Engineering Task Force (IETF)                          A. Bryan
Request for Comments: 6249                                      N. McNab
Category: Standards Track                                   T. Tsujikawa
ISSN: 2070-1721
                                                                P. Poeml
                                                             MirrorBrain
                                                            H. Nordstrom
                                                               June 2011

                   Metalink/HTTP: Mirrors and Hashes

Abstract

   This document specifies Metalink/HTTP: Mirrors and Cryptographic
   Hashes in HTTP header fields, a different way to get information that
   is usually contained in the Metalink XML-based download description
   format.  Metalink/HTTP describes multiple download locations
   (mirrors), Peer-to-Peer, cryptographic hashes, digital signatures,
   and other information using existing standards for HTTP header
   fields.  Metalink clients can use this information to make file
   transfers more robust and reliable.  Normative requirements for
   Metalink/HTTP clients and servers are described here.

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 5741.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc6249.

Bryan, et al.                Standards Track                    [Page 1]



RFC 6249            Metalink/HTTP: Mirrors and Hashes          June 2011

Copyright Notice

   Copyright (c) 2011 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1. Introduction ....................................................3
      1.1. Example Metalink Server Response ...........................4
      1.2. Notational Conventions .....................................4
      1.3. Terminology ................................................5
   2. Requirements ....................................................5
   3. Mirrors / Multiple Download Locations ...........................7
      3.1. Mirror Priority ............................................8
      3.2. Mirror Geographical Location ...............................8
      3.3. Coordinated Mirror Policies ................................8
      3.4. Mirror Depth ...............................................9
   4. Peer-to-Peer / Metainfo .........................................9
      4.1. Metalink/XML Files ........................................10
   5. Signatures .....................................................10
      5.1. OpenPGP Signatures ........................................10
      5.2. S/MIME Signatures .........................................10
   6. Cryptographic Hashes of Whole Documents ........................11
   7. Client / Server Multi-Source Download Interaction ..............11
      7.1. Error Prevention, Detection, and Correction ...............15
           7.1.1. Error Prevention (Early File Mismatch Detection) ...15
           7.1.2. Error Correction ...................................16
   8. IANA Considerations ............................................16
   9. Security Considerations ........................................17
      9.1. URIs and IRIs .............................................17
      9.2. Spoofing ..................................................17
      9.3. Cryptographic Hashes ......................................17
      9.4. Signing ...................................................17
   10. References ....................................................18
      10.1. Normative References .....................................18
      10.2. Informative References ...................................19
   Appendix A. Acknowledgements and Contributors .....................20

Bryan, et al.                Standards Track                    [Page 2]



RFC 6249            Metalink/HTTP: Mirrors and Hashes          June 2011

1.  Introduction

   Metalink/HTTP is an alternative and complementary representation of
   Metalink information, which is usually presented as an XML-based
   document format [RFC5854].  Metalink/HTTP attempts to provide as much
   functionality as the Metalink/XML format by using existing standards,
   such as Web Linking [RFC5988], Instance Digests in HTTP [RFC3230],
   and Entity Tags (also known as ETags) [RFC2616].  Metalink/HTTP is
   used to list information about a file to be downloaded.  This can
   include lists of multiple URIs (mirrors), Peer-to-Peer information,
   cryptographic hashes, and digital signatures.

   Identical copies of a file are frequently accessible in multiple
   locations on the Internet over a variety of protocols (such as FTP,
   HTTP, and Peer-to-Peer).  In some cases, users are shown a list of
   these multiple download locations (mirrors) and must manually select
   a single one on the basis of geographical location, priority, or
   bandwidth.  This distributes the load across multiple servers, and
   should also increase throughput and resilience.  At times, however,
   individual servers can be slow, outdated, or unreachable, but this
   cannot be determined until the download has been initiated.  Users
   will rarely have sufficient information to choose the most
   appropriate server and will often choose the first in a list, which
   might not be optimal for their needs, and will lead to a particular
   server getting a disproportionate share of load.  The use of
   suboptimal mirrors can lead to the user canceling and restarting the
   download to try to manually find a better source.  During downloads,
   errors in transmission can corrupt the file.  There are no easy ways
   to repair these files.  For large downloads, this can be extremely
   troublesome.  Any of the number of problems that can occur during a
   download lead to frustration on the part of users.

   Some popular sites automate the process of selecting mirrors using
   DNS load balancing, both to approximately balance load between
   servers, and to direct clients to nearby servers with the hope that
   this improves throughput.  Indeed, DNS load balancing can balance
   long-term server load fairly effectively, but it is less effective at
   delivering the best throughput to users when the bottleneck is not
   the server but the network.

   This document describes a mechanism by which the benefit of mirrors
   can be automatically and more effectively realized.  All the
   information about a download, including mirrors, cryptographic
   hashes, digital signatures, and more can be transferred in
   coordinated HTTP header fields, hereafter referred to as a
   "Metalink".  This Metalink transfers the knowledge of the download
   server (and mirror database) to the client.  Clients can fall back to
   other mirrors if the current one has an issue.  With this knowledge,

Bryan, et al.                Standards Track                    [Page 3]



RFC 6249            Metalink/HTTP: Mirrors and Hashes          June 2011

   the client is enabled to work its way to a successful download even
   under adverse circumstances.  All this can be done without
   complicated user interaction, and the download can be much more
   reliable and efficient.  In contrast, a traditional HTTP redirect to
   a mirror conveys only minimal information -- one link to one server
   -- and there is no provision in the HTTP protocol to handle failures.
   Furthermore, in order to provide better load distribution across
   servers and potentially faster downloads to users, Metalink/HTTP
   facilitates multi-source downloads, where portions of a file are
   downloaded from multiple mirrors (and, optionally, Peer-to-Peer)
   simultaneously.

   Upon connection to a Metalink/HTTP server, a client will receive
   information about other sources of the same resource and a
   cryptographic hash of the whole resource.  The client will then be
   able to request chunks of the file from the various sources,
   scheduling appropriately in order to maximize the download rate.

1.1.  Example Metalink Server Response

   This example shows a brief Metalink server response with ETag,
   mirrors, Peer-to-Peer information, Metalink/XML, OpenPGP signature,
   and a cryptographic hash of the whole file:

   Etag: "thvDyvhfIqlvFe+A9MYgxAfm1q5="
   Link: <http://www2.example.com/example.ext>; rel=duplicate
   Link: <ftp://ftp.example.com/example.ext>; rel=duplicate
   Link: <http://example.com/example.ext.torrent>; rel=describedby;
   type="application/x-bittorrent"
   Link: <http://example.com/example.ext.meta4>; rel=describedby;
   type="application/metalink4+xml"
   Link: <http://example.com/example.ext.asc>; rel=describedby;
   type="application/pgp-signature"
   Digest: SHA-256=MWVkMWQxYTRiMzk5MDQ0MzI3NGU5NDEyZTk5OWY1ZGFmNzgyZTJlO
   DYzYjRjYzFhOTlmNTQwYzI2M2QwM2U2MQ==

1.2.  Notational Conventions

   This specification describes conformance of Metalink/HTTP.

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in BCP 14, [RFC2119], as
   scoped to those conformance targets.

Bryan, et al.                Standards Track                    [Page 4]



RFC 6249            Metalink/HTTP: Mirrors and Hashes          June 2011

1.3.  Terminology

   The following terms, as used in this document, are defined here:

   o  Metalink server: HTTP server that provides a Metalink in HTTP
      response header fields.

   o  Metalink : A collection of HTTP response header fields from a
      Metalink server, which is the reply to a GET or HEAD request from
      a client and which includes Link header fields listing mirrors and
      Instance Digests listing a cryptographic hash.

   o  Link header field: HTTP response header field, defined in
      [RFC5988], that can list mirrors and, potentially, other download
      methods for obtaining a file, along with digital signatures.

   o  Instance Digest: HTTP response header field, defined in [RFC3230],
      that contains the cryptographic hash of a file, which is used by
      the Metalink client to verify the integrity of the file once the
      download has completed.

   o  Entity Tag or ETag: HTTP response header field, defined in
      [RFC2616], that, if synchronized between the Metalink server and
      mirror servers, allows Metalink clients to provide advanced
      features.

   o  Mirror server: Typically, FTP or HTTP servers that "mirror" the
      Metalink server, i.e., provide identical copies of (at least some)
      files that are also on the mirrored server.

   o  Metalink clients: Applications that process Metalinks and use them
      to provide an improved download experience.  They support HTTP and
      could also support other download protocols like FTP or various
      Peer-to-Peer methods.

   o  Metalink/XML: An XML file that can contain similar information to
      an HTTP response header Metalink, such as mirrors and
      cryptographic hashes.

2.  Requirements

   In this context, "Metalink" refers to Metalink/HTTP, which consists
   of mirrors and cryptographic hashes in HTTP header fields as
   described in this document.  "Metalink/XML" refers to the XML format
   described in [RFC5854].

Bryan, et al.                Standards Track                    [Page 5]



RFC 6249            Metalink/HTTP: Mirrors and Hashes          June 2011

   Metalink resources include Link header fields [RFC5988] to present a
   list of mirrors in the response to a client request for the resource.
   Metalink servers MUST include the cryptographic hash of a resource
   via Instance Digests in HTTP [RFC3230].  Algorithms used in the
   Instance Digest field are registered in the IANA registry named
   "Hypertext Transfer Protocol (HTTP) Digest Algorithm Values" at
   <http://www.iana.org/>.  This document restricts the use of these
   algorithms.  SHA-256 and SHA-512 were added to the registry by
   [RFC5843].  Metalinks contain whole file hashes as described in
   Section 6, and MUST include SHA-256, as specified in [FIPS-180-3].
   It MAY also include other hashes.

   Metalink servers are HTTP servers with one or more Metalink
   resources.  Metalink servers MUST support the Link header fields for
   listing mirrors and MUST support Instance Digests in HTTP [RFC3230].
   Metalink servers MUST return the same Link header fields and Instance
   Digests on HEAD requests.  Metalink servers and their associated
   preferred mirror servers MUST all share the same ETag policy.
   Metalink servers and their associated normal mirror servers SHOULD
   all share the same ETag policy.  (See Section 3.3 for the definition
   of "preferred" and "normal" mirror servers.)  It is up to the
   administrator of the Metalink server to communicate the details of
   the shared ETag policy to the administrators of the mirror servers so
   that the mirror servers can be configured with the same ETag policy.
   To have the same ETag policy means that ETags are synchronized across
   servers for resources that are mirrored; i.e., byte-for-byte
   identical files will have the same ETag on mirrors that they have on
   the Metalink server.  For example, it would be better to derive an
   ETag from a cryptographic hash of the file contents than on server-
   unique filesystem metadata.  Metalink servers SHOULD offer Metalink/
   XML documents that contain cryptographic hashes of parts of the file
   (and other information) if error recovery is desirable.

   Mirror servers are typically FTP or HTTP servers that "mirror"
   another server.  That is, they provide identical copies of (at least
   some) files that are also on the mirrored server.  Mirror servers
   SHOULD support serving partial content.  HTTP mirror servers SHOULD
   share the same ETag policy as the originating Metalink server.  HTTP
   mirror servers SHOULD support Instance Digests in HTTP [RFC3230]
   using the same algorithm as the Metalink server.  Optimally, HTTP
   mirror servers will share the same ETag policy and support Instance
   Digests in HTTP.  Mirror servers that share the same ETag policy
   and/or support Instance Digests in HTTP using the same algorithm as a
   Metalink server are known as preferred mirror servers.

   Metalink clients use the mirrors provided by a Metalink server in
   Link header fields [RFC5988] but these clients are restricted to
   using the mirrors provided by the initial Metalink server they

Bryan, et al.                Standards Track                    [Page 6]



RFC 6249            Metalink/HTTP: Mirrors and Hashes          June 2011

   contacted.  If Metalink clients find Link header fields [RFC5988]
   from mirrors that in turn list mirrors, or from a Metalink server
   listing itself as a mirror, they MUST discard such Link header fields
   [RFC5988] to prevent a possible infinite loop.  Metalink clients MUST
   support HTTP and SHOULD support FTP [RFC0959].  Metalink clients MAY
   support BitTorrent [BITTORRENT] or other download methods.  Metalink
   clients SHOULD switch downloads from one mirror to another if a
   mirror becomes unreachable.  Metalink clients MAY support multi-
   source, or parallel, downloads, where portions of a file can be
   downloaded from multiple mirrors simultaneously (and, optionally,
   from Peer-to-Peer sources).  Metalink clients MUST support Instance
   Digests in HTTP [RFC3230] by requesting and verifying cryptographic
   hashes.  Metalink clients SHOULD support error recovery by using the
   cryptographic hashes of parts of the file listed in Metalink/XML
   files.  Metalink clients SHOULD support checking digital signatures.

3.  Mirrors / Multiple Download Locations

   Mirrors are specified with the Link header fields [RFC5988] and a
   relation type of "duplicate" as defined in Section 8.

   The following list contains OPTIONAL attributes, which are defined
   elsewhere in this document:

   o  "depth" : mirror depth (see Section 3.4).

   o  "geo" : mirror geographical location (see Section 3.2).

   o  "pref" : a preferred mirror server (see Section 3.3).

   o  "pri" : mirror priority (see Section 3.1).

   This example shows a brief Metalink server response with two mirrors
   only:

   Link: <http://www2.example.com/example.ext>; rel=duplicate;
   pri=1; pref
   Link: <ftp://ftp.example.com/example.ext>; rel=duplicate;
   pri=2; geo=gb; depth=1

   As some organizations can have many mirrors, it is up to the
   organization to configure the amount of Link header fields the
   Metalink server will provide.  Such a decision could be a random
   selection or a hard-coded limit based on network proximity, file
   size, server load, or other factors.

Bryan, et al.                Standards Track                    [Page 7]



RFC 6249            Metalink/HTTP: Mirrors and Hashes          June 2011

3.1.  Mirror Priority

   Entries for mirror servers MAY have a "pri" value to designate the
   priority of a mirror.  Valid ranges for the "pri" attribute are from
   1 to 999999.  Mirror servers with a lower value of the "pri"
   attribute have a higher priority, while mirrors with an undefined
   "pri" attribute are considered to have a value of 999999, which is
   the lowest priority.  For example, a mirror with "pri=10" has higher
   priority than a mirror with "pri=20".  Metalink clients SHOULD use
   mirrors with lower "pri" values first, but depending on other
   conditions, they MAY decide to use other mirrors.

   This is purely an expression of the server’s preferences; it is up to
   the client what it does with this information, particularly with
   reference to how many servers to use at any one time.

3.2.  Mirror Geographical Location

   Entries for a mirror server MAY have a "geo" value, which is an
   [ISO3166-1] alpha-2 two-letter country code for the geographical
   location of the physical server the URI is used to access.  A client
   MAY use this information to select a mirror, or set of mirrors, that
   is geographically near (if the client has access to such
   information), with the aim of reducing network load at inter-country
   bottlenecks.

3.3.  Coordinated Mirror Policies

   There are two types of mirror servers: preferred and normal.  Entries
   for preferred HTTP mirror servers have a "pref" value and entries for
   normal mirrors don’t.  Preferred mirror servers are HTTP mirror
   servers that MUST share the same ETag policy as the originating
   Metalink server, or if the ETag is not used MUST provide an Instance
   Digest using the same algorithm as the Metalink server.  Preferred
   mirrors make it possible for Metalink clients to detect early on,
   before data is transferred, if the file requested matches the desired
   file.  This early file mismatch detection is described in
   Section 7.1.1.  Normal mirrors do not necessarily share the same ETag
   policy or support Instance Digests using the same algorithm as the
   Metalink server.  FTP mirrors are considered "normal", as they do not
   emit ETags or support Instance Digests.

Bryan, et al.                Standards Track                    [Page 8]



RFC 6249            Metalink/HTTP: Mirrors and Hashes          June 2011

3.4.  Mirror Depth

   Some mirrors can mirror single files, whole directories, or multiple
   directories.

   Entries for mirror servers can have a "depth" value, where "depth=0"
   is the default.  A value of 0 means that only that file is mirrored
   and that other URI path segments are not.  A value of 1 means that
   the file and all other files and URI path segments contained in the
   rightmost URI path segment are mirrored.  For values of N, N-1 URI
   path segments closer to the Host are mirrored.  A value of 2 means
   one URI path segment closer to the Host is mirrored, and all files
   and URI path segments contained are mirrored.  For each higher value,
   another URI path segment closer to the Host is mirrored.

   This example shows a mirror with a depth value of 4:

   Link: <http://www2.example.com/dir1/dir2/dir3/dir4/dir5/example.ext>;
   rel=duplicate; pri=1; pref; depth=4

   In the above example, four URI path segments closer to the Host are
   mirrored, from /dir2/ and all files and directories included.

4.  Peer-to-Peer / Metainfo

   Entries for metainfo files, which describe ways to download a file
   over Peer-to-Peer networks or otherwise, are specified with the Link
   header fields [RFC5988] and a relation type of "describedby" and a
   type parameter that indicates the MIME type of the metadata available
   at the URI.  Since metainfo files can sometimes describe multiple
   files, or the filename MAY not be the same on the Metalink server and
   in the metainfo file but MAY still have the same content, an OPTIONAL
   "name" attribute can be used.

   The following list contains an OPTIONAL attribute, which is defined
   in this document:

   o  "name" : a file described within the metainfo file.

   This example shows a brief Metalink server response with .torrent and
   .meta4:

   Link: <http://example.com/example.ext.torrent>; rel=describedby;
   type="application/x-bittorrent"; name="differentname.ext"
   Link: <http://example.com/example.ext.meta4>; rel=describedby;
   type="application/metalink4+xml"

Bryan, et al.                Standards Track                    [Page 9]



RFC 6249            Metalink/HTTP: Mirrors and Hashes          June 2011

   Metalink clients MAY support the use of metainfo files for
   downloading files.

4.1.  Metalink/XML Files

   Metalink/XML files for a given resource MAY be provided in a Link
   header field as shown in the example in Section 4.  Metalink/XML
   files are specified in [RFC5854], and they are particularly useful
   for providing metadata such as cryptographic hashes of parts of a
   file, allowing a client to recover from errors (see Section 7.1.2).
   Metalink servers SHOULD provide Metalink/XML files with partial file
   hashes in Link header fields, and Metalink clients SHOULD use them
   for error recovery.

5.  Signatures

5.1.  OpenPGP Signatures

   OpenPGP signatures [RFC3156] of requested files are specified with
   the Link header fields [RFC5988] and a relation type of "describedby"
   and a type parameter of "application/pgp-signature".

   This example shows a brief Metalink server response with OpenPGP
   signature only:

   Link: <http://example.com/example.ext.asc>; rel=describedby;
   type="application/pgp-signature"

   Metalink clients SHOULD support the use of OpenPGP signatures.

5.2.  S/MIME Signatures

   Secure/Multipurpose Internet Mail Extensions (S/MIME) signatures
   [RFC5751] of requested files are specified with the Link header
   fields [RFC5988] and a relation type of "describedby" and a type
   parameter of "application/pkcs7-mime".

   This example shows a brief Metalink server response with S/MIME
   signature only:

   Link: <http://example.com/example.ext.p7m>; rel=describedby;
   type="application/pkcs7-mime"

   Metalink clients SHOULD support the use of S/MIME signatures.

Bryan, et al.                Standards Track                   [Page 10]



RFC 6249            Metalink/HTTP: Mirrors and Hashes          June 2011

6.  Cryptographic Hashes of Whole Documents

   If Instance Digests are not provided by the Metalink servers, the
   Link header fields pertaining to this specification MUST be ignored.

   This example shows a brief Metalink server response with ETag,
   mirror, and cryptographic hash:

   Etag: "thvDyvhfIqlvFe+A9MYgxAfm1q5="
   Link: <http://www2.example.com/example.ext>; rel=duplicate
   Digest: SHA-256=MWVkMWQxYTRiMzk5MDQ0MzI3NGU5NDEyZTk5OWY1ZGFmNzgyZTJlO
   DYzYjRjYzFhOTlmNTQwYzI2M2QwM2U2MQ==

7.  Client / Server Multi-Source Download Interaction

   Metalink clients begin a download with a standard HTTP [RFC2616] GET
   request to the Metalink server.  Metalink clients MAY use a range
   limit if desired.

   GET /distribution/example.ext HTTP/1.1
   Host: www.example.com

   The Metalink server responds with the data and these header fields:

   HTTP/1.1 200 OK
   Accept-Ranges: bytes
   Content-Length: 14867603
   Content-Type: application/x-cd-image
   Etag: "thvDyvhfIqlvFe+A9MYgxAfm1q5="
   Link: <http://www2.example.com/example.ext>; rel=duplicate; pref
   Link: <ftp://ftp.example.com/example.ext>; rel=duplicate
   Link: <http://example.com/example.ext.torrent>; rel=describedby;
   type="application/x-bittorrent"
   Link: <http://example.com/example.ext.meta4>; rel=describedby;
   type="application/metalink4+xml"
   Link: <http://example.com/example.ext.asc>; rel=describedby;
   type="application/pgp-signature"
   Digest: SHA-256=MWVkMWQxYTRiMzk5MDQ0MzI3NGU5NDEyZTk5OWY1ZGFmNzgyZTJlO
   DYzYjRjYzFhOTlmNTQwYzI2M2QwM2U2MQ==

   Alternatively, Metalink clients can begin with a HEAD request to the
   Metalink server to discover mirrors via Link header fields and then
   skip to making the following decisions on every available mirror
   server found via the Link header fields.

   After that, the client follows with a GET request to the desired
   mirrors.

Bryan, et al.                Standards Track                   [Page 11]



RFC 6249            Metalink/HTTP: Mirrors and Hashes          June 2011

   From the Metalink server response, the client learns some or all of
   the following metadata about the requested object, in addition to
   starting to receive the object:

   o  Mirror locations, with optional attributes describing the mirror’s
      priority, whether it shares the ETag policy of the originating
      Metalink server, geographical location, and mirror depth.

   o  Instance Digest, which is the whole file cryptographic hash.

   o  ETag.

   o  Object size from the Content-Length header field.

   o  Metalink/XML, which can include partial file cryptographic hashes
      to repair a file.

   o  Peer-to-Peer information.

   o  Digital signature.

   Next, the Metalink client requests a range of the object from a
   preferred mirror server, so it can use If-Match conditions:

   GET /example.ext HTTP/1.1
   Host: www2.example.com
   Range: bytes=7433802-
   If-Match: "thvDyvhfIqlvFe+A9MYgxAfm1q5="
   Referer: http://www.example.com/distribution/example.ext

   Metalink clients SHOULD use preferred mirrors, if possible, as they
   allow early file mismatch detection as described in Section 7.1.1.
   Preferred mirrors have coordinated ETags, as described in
   Section 3.3, and Metalink clients SHOULD use If-Match conditions
   based on the ETag to quickly detect out-of-date mirrors by using the
   ETag from the Metalink server response.  Metalink clients SHOULD use
   partial file cryptographic hashes as described in Section 7.1.2, if
   available, to detect if the mirror server returned the correct data.

   Optimally, the mirror server also will include an Instance Digest in
   the mirror response to the client GET request, which the client can
   also use to detect a mismatch early.  Metalink clients MUST reject
   individual downloads from mirrors that support Instance Digests if
   the Instance Digest from the mirror does not match the Instance
   Digest as reported by the Metalink server and the same algorithm is

Bryan, et al.                Standards Track                   [Page 12]



RFC 6249            Metalink/HTTP: Mirrors and Hashes          June 2011

   used.  If normal mirrors are used, then a mismatch cannot be detected
   until the completed object is verified.  Errors in transmission and
   substitutions of incorrect data on mirrors, whether deliberate or
   accidental, can be detected with error correction as described in
   Section 7.1.2.

   Here, the preferred mirror server has the correct file (the If-Match
   conditions match) and responds with a 206 Partial Content HTTP status
   code and appropriate "Content-Length", "Content-Range", ETag, and
   Instance Digest header fields.  In this example, the mirror server
   responds, with data, to the above request:

   HTTP/1.1 206 Partial Content
   Accept-Ranges: bytes
   Content-Length: 7433801
   Content-Range: bytes 7433802-14867602/14867603
   Etag: "thvDyvhfIqlvFe+A9MYgxAfm1q5="
   Digest: SHA-256=MWVkMWQxYTRiMzk5MDQ0MzI3NGU5NDEyZTk5OWY1ZGFmNzgyZTJlO
   DYzYjRjYzFhOTlmNTQwYzI2M2QwM2U2MQ==

   Metalink clients MAY start a number of parallel range requests (one
   per selected mirror server other than the first) using mirrors
   provided by the Link header fields with "duplicate" relation type.
   Metalink clients MUST limit the number of parallel connections to
   mirror servers, ideally based on observing how the aggregate
   throughput changes as connections are opened.  It would be pointless
   to blindly open connections once the path bottleneck is filled.
   After establishing a new connection, a Metalink client SHOULD monitor
   whether the aggregate throughput increases over all connections that
   are part of the download.  The client SHOULD NOT open additional
   connections during this period.  If the aggregate throughput has
   increased, the client MAY open an additional connection and repeat
   these steps.  Otherwise, the client SHOULD NOT open a new connection
   until an established one closes.  Metalink clients SHOULD use the
   location of the original GET request in the "Referer" header field
   for these range requests.

   The Metalink client can determine the size and number of ranges
   requested from each server, based upon the type and number of mirrors
   and performance observed from each mirror.  Note that range requests
   impose an overhead on servers, and clients need to be aware of that
   and not abuse them.  When downloading a particular file, Metalink
   clients MUST NOT make more than one concurrent request to each mirror
   server from which it downloads.

   Metalink clients SHOULD close all but the fastest connection if any
   range requests generated after the first request end up with a
   complete response, instead of a partial response (as some mirrors

Bryan, et al.                Standards Track                   [Page 13]



RFC 6249            Metalink/HTTP: Mirrors and Hashes          June 2011

   might not support HTTP ranges), if the goal is the fastest transfer.
   Metalink clients MAY monitor mirror conditions and dynamically switch
   between mirrors to achieve the fastest download possible.  Similarly,
   Metalink clients SHOULD abort extremely slow or stalled range
   requests and finish the request on other mirrors.  If all ranges have
   finished except for the final one, the Metalink client can split the
   final range into multiple range requests to other mirrors so the
   transfer finishes faster.

   If the first request was a GET, no Range header field was sent, and
   the client determines later that it will issue a range request, then
   the client SHOULD close the first connection when it catches up with
   the other parallel range requests of the same object.  This means the
   first connection was sacrificed.  Metalink clients can use a HEAD
   request first, if possible, so that the client can find out if there
   are any Link header fields, and then range-based requests are
   undertaken to the mirror servers without sacrificing a first
   connection.

   Metalink clients MUST reject individual downloads from mirrors where
   the file size does not match the file size as reported by the
   Metalink server.

   If a Metalink client does not support certain download methods (such
   as FTP or BitTorrent) that a file is available from, and there are no
   available download methods that the client supports, then the
   download will have no way to complete.

   Metalink clients MUST verify the cryptographic hash of the file once
   the download has completed.  If the cryptographic hash offered by the
   Metalink server with Instance Digests does not match the
   cryptographic hash of the downloaded file, see Section 7.1.2 for a
   possible way to repair errors.

   If the download cannot be repaired, it is considered corrupt.  The
   client can attempt to re-download the file.

   Metalink clients that support verifying digital signatures MUST
   verify digital signatures of requested files if they are included.
   Digital signatures MUST validate back to a trust anchor as described
   in the validation rules in [RFC3156] and [RFC5280].

Bryan, et al.                Standards Track                   [Page 14]



RFC 6249            Metalink/HTTP: Mirrors and Hashes          June 2011

7.1.  Error Prevention, Detection, and Correction

   Error prevention, or early file mismatch detection, is possible
   before file transfers with the use of file sizes, ETags, and Instance
   Digests provided by Metalink servers.  Error detection requires
   Instance Digests to detect errors in transfer after the transfers
   have completed.  Error correction, or download repair, is possible
   with partial file cryptographic hashes.

   Note that cryptographic hashes obtained from Instance Digests are in
   base64 encoding, while those from Metalink/XML are in hexadecimal.

7.1.1.  Error Prevention (Early File Mismatch Detection)

   In HTTP terms, the merging of ranges from multiple responses SHOULD
   be verified with a strong validator, which in this context is either
   an Instance Digest or a shared ETag from that Metalink server that
   matches with the Instance Digest or ETag provided by a preferred
   mirror server.  In most cases, it is sufficient that the Metalink
   server provides mirrors and Instance Digest information, but
   operation will be more robust and efficient if the mirror servers do
   implement a shared ETag policy or Instance Digests as well.  There is
   no need to specify how the ETag is generated, just that it needs to
   be shared between the Metalink server and the mirror servers.  The
   benefit of having mirror servers return an Instance Digest is that
   the client then can detect mismatches early even if ETags are not
   used.  Mirrors that support both a shared ETag and Instance Digests
   do provide value, but just one is sufficient for early detection of
   mismatches.  If the mirror server provides neither shared ETag nor
   Instance Digest, then early detection of mismatches is not possible
   unless file length also differs.  Finally, errors are still
   detectable after the download has completed, when the cryptographic
   hash of the merged response is verified.

   ETags cannot be used for verifying the integrity of the received
   content.  If the ETag given by the mirror server matches the ETag
   given by the Metalink server, then the Metalink client assumes the
   responses are valid for that object.

   This guarantees that a mismatch will be detected by using only the
   shared ETag from a Metalink server and mirror server.  Metalink
   clients will detect an error if ETags do not match, which will
   prevent accidental merges of ranges from different versions of files
   with the same name.

   A shared ETag or Instance Digest cannot strictly protect against
   malicious attacks or server or network errors replacing content.  An
   attacker can make a mirror server seemingly respond with the expected

Bryan, et al.                Standards Track                   [Page 15]



RFC 6249            Metalink/HTTP: Mirrors and Hashes          June 2011

   Instance Digest or ETags even if the file contents have been
   modified.  The same goes for various system failures, which would
   also cause bad data (i.e., corrupted files) to be returned.  The
   Metalink client has to rely on the Instance Digest returned by the
   Metalink server in the first response for the verification of the
   downloaded object as a whole.  To verify the individual ranges, which
   might have been requested from different sources, see Section 7.1.2.

7.1.2.  Error Correction

   Partial file cryptographic hashes can be used to detect errors during
   the download.  Metalink servers SHOULD provide Metalink/XML files
   with partial file hashes in Link header fields as specified in
   Section 4.1, and Metalink clients SHOULD use them for error
   correction.

   An error in transfer or a substitution attack will be detected by a
   cryptographic hash of the object not matching the Instance Digest
   from the Metalink server.  If the cryptographic hash of the object
   does not match the Instance Digest from the Metalink server, then the
   client SHOULD fetch the Metalink/XML (if available).  This may
   contain partial file cryptographic hashes, which will allow detection
   of which mirror server returned incorrect data.  Metalink clients
   SHOULD use the Metalink/XML data to figure out what ranges of the
   downloaded data can be recovered and what needs to be fetched again.

   Other methods can be used for error correction.  For example, some
   other metainfo files also include partial file hashes that can be
   used to check for errors.

8.  IANA Considerations

   Accordingly, IANA has made the following registration to the "Link
   Relation Types" registry at <http://www.iana.org/>.

   o  Relation Name: duplicate

   o  Description: Refers to a resource whose available representations
      are byte-for-byte identical with the corresponding representations
      of the context IRI.

   o  Reference: This specification.

   o  Notes: This relation is for static resources.  That is, an HTTP
      GET request on any duplicate will return the same representation.
      It does not make sense for dynamic or POSTable resources and
      should not be used for them.

Bryan, et al.                Standards Track                   [Page 16]



RFC 6249            Metalink/HTTP: Mirrors and Hashes          June 2011

9.  Security Considerations

9.1.  URIs and IRIs

   Metalink clients handle URIs and Internationalized Resource
   Identifiers (IRIs).  See Section 7 of [RFC3986] and Section 8 of
   [RFC3987] for security considerations related to their handling
   and use.

9.2.  Spoofing

   There is potential for spoofing attacks where the attacker publishes
   Metalinks with false information.  In that case, this could deceive
   unaware downloaders into downloading a malicious or worthless file.
   Metalink clients are advised to prevent loops, possibly from a mirror
   server to a Metalink server and back again, in Section 2.  As with
   all downloads, users should only download from trusted sources.
   Also, malicious publishers could attempt a distributed denial-of-
   service attack by inserting unrelated URIs into Metalinks.  [RFC4732]
   contains information on amplification attacks and denial-of-service
   attacks.

9.3.  Cryptographic Hashes

   Currently, some of the digest values defined in Instance Digests in
   HTTP [RFC3230] are considered insecure.  These include the whole
   Message Digest family of algorithms, which are not suitable for
   cryptographically strong verification.  Malicious people could
   provide files that appear to be identical to another file because of
   a collision; i.e., the weak cryptographic hashes of the intended file
   and a substituted malicious file could match.

9.4.  Signing

   Metalinks SHOULD include digital signatures, as described in
   Section 5.

   Digital signatures provide authentication and message integrity, and
   enable non-repudiation with proof of origin.

Bryan, et al.                Standards Track                   [Page 17]



RFC 6249            Metalink/HTTP: Mirrors and Hashes          June 2011

10.  References

10.1.  Normative References

   [BITTORRENT]  Cohen, B., "The BitTorrent Protocol Specification",
                 BITTORRENT 11031, February 2008,
                 <http://www.bittorrent.org/beps/bep_0003.html>.

   [FIPS-180-3]  National Institute of Standards and Technology (NIST),
                 "Secure Hash Standard (SHS)", FIPS PUB 180-3,
                 October 2008.

   [ISO3166-1]   International Organization for Standardization, "ISO
                 3166-1:2006.  Codes for the representation of names of
                 countries and their subdivisions -- Part 1: Country
                 codes", November 2006.

   [RFC0959]     Postel, J. and J. Reynolds, "File Transfer Protocol",
                 STD 9, RFC 0959, October 1985.

   [RFC2119]     Bradner, S., "Key words for use in RFCs to Indicate
                 Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC2616]     Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
                 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
                 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

   [RFC3156]     Elkins, M., Del Torto, D., Levien, R., and T. Roessler,
                 "MIME Security with OpenPGP", RFC 3156, August 2001.

   [RFC3230]     Mogul, J. and A. Van Hoff, "Instance Digests in HTTP",
                 RFC 3230, January 2002.

   [RFC3986]     Berners-Lee, T., Fielding, R., and L. Masinter,
                 "Uniform Resource Identifier (URI): Generic Syntax",
                 STD 66, RFC 3986, January 2005.

   [RFC3987]     Duerst, M. and M. Suignard, "Internationalized Resource
                 Identifiers (IRIs)", RFC 3987, January 2005.

   [RFC5280]     Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
                 Housley, R., and W. Polk, "Internet X.509 Public Key
                 Infrastructure Certificate and Certificate Revocation
                 List (CRL) Profile", RFC 5280, May 2008.

   [RFC5751]     Ramsdell, B. and S. Turner, "Secure/Multipurpose
                 Internet Mail Extensions (S/MIME) Version 3.2 Message
                 Specification", RFC 5751, January 2010.

Bryan, et al.                Standards Track                   [Page 18]



RFC 6249            Metalink/HTTP: Mirrors and Hashes          June 2011

   [RFC5854]     Bryan, A., Tsujikawa, T., McNab, N., and P. Poeml, "The
                 Metalink Download Description Format", RFC 5854,
                 June 2010.

   [RFC5988]     Nottingham, M., "Web Linking", RFC 5988, October 2010.

10.2.  Informative References

   [RFC4732]     Handley, M., Ed., Rescorla, E., Ed., and IAB, "Internet
                 Denial-of-Service Considerations", RFC 4732,
                 December 2006.

   [RFC5843]     Bryan, A., "Additional Hash Algorithms for HTTP
                 Instance Digests", RFC 5843, April 2010.

Bryan, et al.                Standards Track                   [Page 19]



RFC 6249            Metalink/HTTP: Mirrors and Hashes          June 2011

Appendix A.  Acknowledgements and Contributors

   Thanks to the Metalink community, Alexey Melnikov, Julian Reschke,
   Mark Nottingham, Daniel Stenberg, Matt Domsch, Micah Cowan, David
   Morris, Yves Lafon, Juergen Schoenwaelder, Ben Campbell, Lars Eggert,
   Sean Turner, Robert Sparks, and the HTTPBIS Working Group.

   Thanks to Alan Ford and Mark Handley for spurring us on to publish
   this document.

   This document is dedicated to Zimmy Bryan, Juanita Anthony, and Janie
   Burnett.

Bryan, et al.                Standards Track                   [Page 20]



RFC 6249            Metalink/HTTP: Mirrors and Hashes          June 2011

Authors’ Addresses

   Anthony Bryan
   Pompano Beach, FL
   USA

   EMail: anthonybryan@gmail.com
   URI:   http://www.metalinker.org

   Neil McNab

   EMail: neil@nabber.org
   URI:   http://www.nabber.org

   Tatsuhiro Tsujikawa
   Shiga
   Japan

   EMail: tatsuhiro.t@gmail.com
   URI:   http://aria2.sourceforge.net

   Dr. med. Peter Poeml
   MirrorBrain
   Venloer Str. 317
   Koeln  50823
   DE

   Phone: +49 221 6778 333 8
   EMail: peter@poeml.de
   URI:   http://mirrorbrain.org/˜poeml/

   Henrik Nordstrom

   EMail: henrik@henriknordstrom.net
   URI:   http://www.henriknordstrom.net/

Bryan, et al.                Standards Track                   [Page 21]


