I nt ernet Engi neering Task Force (I ETF) R Enns, Ed.

Request for Comments: 6241 Juni per Networ ks
bsol etes: 4741 M Bj orkl und, Ed.
Cat egory: Standards Track Tail -f Systens
| SSN: 2070-1721 J. Schoenwael der, Ed

Jacobs University
A. Bierman, Ed.
Br ocade

June 2011

Net wor k Configuration Protocol (NETCONF)

Abstract
The Networ k Configuration Protocol (NETCONF) defined in this docunent
provi des mechanisns to install, nanipulate, and delete the
configuration of network devices. |t uses an Extensible Mrkup

Language (XM.)-based data encoding for the configuration data as well
as the protocol messages. The NETCONF protocol operations are
realized as renote procedure calls (RPCs). This docunent obsol etes
RFC 4741.

Status of This Meno
This is an Internet Standards Track docunent.

This docunent is a product of the Internet Engi neering Task Force
(IETF). It represents the consensus of the I ETF comunity. |t has
recei ved public review and has been approved for publication by the
I nternet Engineering Steering Goup (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,

and how to provide feedback on it nmay be obtai ned at
http://ww. rfc-editor.org/info/rfc6241

Enns, et al. St andards Track [Page 1]

RFC 6241 NETCONF Pr ot ocol June 2011

Copyright Notice

Copyright (c) 2011 I ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this document. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wi thout warranty as
described in the Sinplified BSD License.

Thi s docunent may contain material from|ETF Docunents or |ETF
Contributions published or made publicly avail abl e before Novenber
10, 2008. The person(s) controlling the copyright in sonme of this
material may not have granted the I ETF Trust the right to all ow

nodi fications of such material outside the | ETF Standards Process.
Wt hout obtaining an adequate |icense fromthe person(s) controlling
the copyright in such materials, this docunent may not be nodified
out side the | ETF Standards Process, and derivative works of it may
not be created outside the | ETF Standards Process, except to fornmat
it for publication as an RFC or to translate it into |anguages other
t han Engli sh.

Enns, et al. St andards Track [Page 2]

RFC 6241

NETCONF Pr ot ocol

Tabl e of Contents

1.

Enns,

ww

oo

il

NISIN

rAABRS

NNNNN

I nt roducti on

1
2.
3.
4
T

1
2.
. 3.
XML
1.
2.
RPC

1
2
3.
4,
5
Co

NNNNN

1
2
S
1
2
6
6
6
6.
6
3
4
6
6
6
6

ORPWONPTOO 0O

et al.

Ter m nol ogy .
Prot ocol Overview .
Capabilities

Separ ati on of Oonfl guratl on and St ate Data
ransport Protocol Requirements .

Connection-Oriented Operation .

Aut hentication, Integrity, and Confldentlallty

Mandat ory Transport Protocol
Consi der ati ons

Nanespace .

Docunent Type Decl ar atl ons
Model Coe e

<rpc> El enent .
<rpc-reply> El enent
<rpc-error> El enent

<ok> El enment

Pi pel i ni ng

onf i guration I\/bdei

Confi guration Datastores
Data Mbdeling .

ubtree Filtering .

Overvi ew . .

Subt r ee Fllter Oorrponents .

1. Nanespace Selection
2. Attribute Match Expressions .
3. Contai nment Nodes . -
4. Selection Nodes . . .

5. Content Match Nodes .
Subtree Filter Processing .
Subtree Filtering Exanpl es

No Filter .

Empty Filter

Sel ect the Entire <users> Subtree

PP

Subtree . .
One Specific <user> Entry .

Mul tiple Subtrees . .
El enents with Attribute Nam ng

©ONo O

tocol Operations .

<get - confi g>
<edit-config> .
<copy-config> .
<del ete-config> .
<l ock>

St andards Track

Sel ect Al <nane> El enents within the <users>

Specific El enents froma Speci f| c <user> Ent ry.

June 2011

10
10
11
11
12
12
13
13

13
13
15
16
19
19
19
19
20
20
20
21
21
22
23
23
24

26
26
26
27

29
30
31
32
33
35
35
37
43
44
44

[Page 3]

RFC 6241

Enns,

© @

000 m®m®™ 00 M©mW®™MN00DMDORN00DMD0N0RMDO0M0DMD00WDDD00NEHO0ND

NNNN

oo oo AbhbhLED LWLWLWWLW NMNNNNDN
D‘”F‘@F°?‘<SﬂP‘@F°?‘N‘”P‘@F°?‘Q‘”F‘@F°?‘QS”P‘@P°H

NNNNN

G 0 0

NETCONF Pr ot ocol

<unl ock>

<get> . . .

<cl ose- seSS|on>

<kill - sessi on>
pabllltles

Capabllltlés.Exchange

oH

L

ORAWNRPRCURNWNPR
e o N "l
&

et al.

Wit abl e- Runni ng Capabll;ty :

Descri ption .

Dependenci es .
Capability Identlfler

New Oper ati ons .

Modi fications to EX|st|ng

Descri ption .
Dependencies . .
Capability Identlfler

New QOper ati ons .

Modi fications to EX|st|ng

nflrnEd Conmi t Capablllty .

Descri ption .
Dependencies . .
Capability Identlfler

New QOper ati ons .

Modi fications to EX|st|ng
back-on- Error Capablllty
Descri ption .

Dependenci es .
Capability Identlfler

New QOper ati ons .

Modi fications to EX|st|ng

i date Capability .

Descri ption .
Dependencies . .
Capability Identlfler

New QOper ati ons .

Modi fications to EX|st|ng

stlnct Startup Capablllty .

Descri ption .
Dependencies . .
Capability Identlfler

New QOper ati ons .

Modi fications to EX|st|ng
Capability .o
Descri ption .

Dependenci es .
Capability Identlfler

New QOper ati ons .

Modi fications to EX|st|ng

Qaer at i

ndi dat e Conflguratlon Capablllty

Qaer ati

St andards Track

ons

ons

ons

ons

ons

ons

ons

June 2011

47
48
49
50
51
51
53
53
53
53
53
53
53
53
54
54
54
56
57
57
58
58
59
60
61
61
62
62
62
62
63
63
63
63
63
64
64
64
65
65
65
65
66
66
66
66
66
66

[Page 4]

RFC 6241 NETCONF Pr ot ocol June 2011

8.9 XPath Capability . 67
8.9.1. Description 67
8.9.2. Dependencies . . . e o8
8.9.3. Capability Identlfler T o1
8.9.4. New Qperations 08
8.9.5. Modifications to EX|st|ng Cperatlons ©8

9. Security Considerations 69
10. I ANA Considerations 11
10.1. NETCONF XML Nanespace 1
10.2. NETCONF XM. Schemra 1
10. 3. NETCONF YANG Mbdule 12
10. 4. NETCONF Capablllty URNs 712
11. Contributors . . . e <
12. Acknow edgenents . T3
13. References . . . T

13.1. Normative References e

13.2. Informative References 1715
Appendi x A NETCONF Error List . . . Y
Appendi x B. XM. Schema for NETCONF Nbssages Layer 80
Appendi x C. YANG Modul e for NETCONF Protocol Qperations 85
Appendi x D. Capability Tenplate - 105

D.1. capability-name (tenplate) e e 105
D.1.1. Overview . . . e 0]
D.1.2. Dependencies . . e (013
D.1.3. Capability Identlfler e 013
D.1.4. New Operations . . S 0]
D.1.5. Mdifications to EX|st|ng Cperatlons S 0]
D.1.6. Interactions with Gther Capabilities 105

Appendlx E. Configuring Multiple Devices with NETCCNF 106
E.1. Operations on Individual Devices 106
E.1.1. Acquiring the Configuration Lock 106
E.1.2. Checkpointing the Running Configuration 107
E.1.3. Loading and Validating the |nconing Cbnflguratlon . . 108
E.1.4. Changing the Running Configuration 108
E.1.5. Testing the New Configuration 109
E.1.6. Making the Change Pernmanent 109
E.1.7. Releasing the Configuration Lock 110

E.2. Operations on Multiple Devices 111

Appendi x F. Changes fromRFC 4741 112

Enns, et al. St andards Track [Page 5]

RFC 6241 NETCONF Pr ot ocol June 2011

1

I ntroduction

The NETCONF protocol defines a sinple nmechani smthrough which a
networ k devi ce can be managed, configuration data information can be
retrieved, and new configuration data can be upl oaded and
mani pul ated. The protocol allows the device to expose a full, fornal
application progranming interface (APl). Applications can use this
straightforward APl to send and receive full and partial
configuration data sets.

The NETCONF protocol uses a renmpte procedure call (RPC) paradigm A
client encodes an RPC in XM. [WBC. REC- xnl - 20001006] and sends it to a
server using a secure, connection-oriented session. The server
responds with a reply encoded in XM.. The contents of both the
request and the response are fully described in XM. DTDs or XM
schemas, or both, allowi ng both parties to recognize the syntax
constraints inposed on the exchange.

A key aspect of NETCONF is that it allows the functionality of the
managenent protocol to closely nmirror the native functionality of the
device. This reduces inplenentation costs and allows tinely access
to new features. |In addition, applications can access both the
syntactic and semantic content of the device' s native user interface.

NETCONF allows a client to discover the set of protocol extensions
supported by a server. These "capabilities" permt the client to
adjust its behavior to take advantage of the features exposed by the
device. The capability definitions can be easily extended in a
noncentral i zed manner. Standard and non-standard capabilities can be
defined with semantic and syntactic rigor. Capabilities are

di scussed in Section 8.

The NETCONF protocol is a building block in a system of automated
configuration. XM is the lingua franca of interchange, providing a
flexible but fully specified encodi ng mechani sm for hierarchica
content. NETCONF can be used in concert with XM-based
transformati on technol ogi es, such as XSLT [WBC. REC-xsl t-19991116], to
provide a system for automated generation of full and partial
configurations. The systemcan query one or nore databases for data
about networ ki ng topol ogies, links, policies, custoners, and
services. This data can be transformed using one or nore XSLT
scripts froma task-oriented, vendor-independent data schema into a
formthat is specific to the vendor, product, operating system and
software rel ease. The resulting data can be passed to the device
usi ng the NETCONF pr ot ocol

Enns, et al. St andards Track [Page 6]

RFC 6241 NETCONF Pr ot ocol June 2011

The key words "MJST", "MJST NOT", "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunment are to be interpreted as described in RFC 2119 [RFC2119].

1.1

(o]

Enns,

Ter m nol ogy

candi date configuration datastore: A configuration datastore that
can be mani pul ated wi thout inpacting the device' s current
configuration and that can be committed to the running
configuration datastore. Not all devices support a candi date
configuration datastore.

capability: A functionality that supplenents the base NETCONF
speci fication.

client: Invokes protocol operations on a server. |n addition, a
client can subscribe to receive notifications froma server

configuration data: The set of witable data that is required to
transforma systemfromits initial default state into its current
state.

dat astore: A conceptual place to store and access information. A
datastore nmight be inplenented, for exanple, using files, a
dat abase, flash nmenory | ocations, or conbinations thereof.

configuration datastore: The datastore holding the conplete set of
configuration data that is required to get a device fromits
initial default state into a desired operational state.

nessage: A protocol elenent sent over a session. Messages are
wel | -formed XML docunent s.

notification: A server-initiated nessage indicating that a certain
event has been recogni zed by the server

protocol operation: A specific renote procedure call, as used
wi thin the NETCONF pr ot ocol

renote procedure call (RPC): Realized by exchangi ng <rpc> and
<rpc-reply> nessages.

runni ng configuration datastore: A configuration datastore hol ding
the conplete configuration currently active on the device. The
runni ng configuration datastore always exists.

server: Executes protocol operations invoked by a client. 1In
addition, a server can send notifications to a client.

et al. St andards Track [Page 7]

RFC 6241 NETCONF Pr ot ocol June 2011

1

2.

0 session: Cient and server exchange nessages using a secure,
connection-oriented session.

0o startup configuration datastore: The configuration datastore
hol di ng the configuration | oaded by the device when it boots.
Only present on devices that separate the startup configuration
datastore fromthe running configuration datastore.

0 state data: The additional data on a systemthat is not
configuration data such as read-only status information and
coll ected statistics.

0 wuser: The authenticated identity of the client. The authenticated
identity of a client is cotmmonly referred to as the NETCONF
user name

Pr ot ocol Overvi ew

NETCONF uses a sinpl e RPC-based nechanismto facilitate conmunication
between a client and a server. The client can be a script or
application typically running as part of a network nanager. The
server is typically a network device. The terns "device" and
"server" are used interchangeably in this docunent, as are "client”
and "application".

A NETCONF session is the | ogical connection between a network
admi ni strator or network configuration application and a network
device. A device MIST support at |east one NETCONF session and
SHOULD support multiple sessions. d obal configuration attributes
can be changed during any authorized session, and the effects are
visible in all sessions. Session-specific attributes affect only the
session in which they are changed.

NETCONF can be conceptually partitioned into four layers as shown in
Fi gure 1.

Enns, et al. St andards Track [Page 8]

RFC 6241

(4) |

(3) |

(2) |

(1) |

(1

(2)

(3)

(4)

NETCONF Pr ot ocol June 2011
Layer Exanpl e
------------- + o e e e+ T
Cont ent | | Configuration | | Notification
| | dat a | | dat a |
------------- + S e e e e e o+
| | |
------------- + S
Qperations | | <edit-config> | |
| | | |
------------- + B
| | |
------------- + S e e e e oo+
Messages | | <r pc>, | | <notification>
| | <rpc-reply> | | |
------------- + o e e e+ T
| | |
------------- + T
Secure | | SSH, TLS, BEEP/TLS, SOAP/HTTP/TLS, ...
Transport | | |
------------- + T

Figure 1: NETCONF Protocol Layers

The Secure Transport |ayer provides a conmunication path between
the client and server. NETCONF can be |ayered over any
transport protocol that provides a set of basic requirenents.
Section 2 discusses these requirenents.

The Messages | ayer provides a sinple, transport-independent
fram ng nechani smfor encoding RPCs and notifications.
Section 4 docunents the RPC nessages, and [RFC5717] docunents
notifications.

The Operations |ayer defines a set of base protocol operations
i nvoked as RPC net hods with XM.-encoded paraneters. Section 7
details the Iist of base protocol operations.

The Content layer is outside the scope of this document. It is
expected that separate efforts to standardi ze NETCONF dat a
nmodel s wi || be undert aken.

The YANG data nodeling | anguage [RFC6020] has been devel oped for

speci

Oper a

Enns, et

fying NETCONF data nodel s and protocol operations, covering the
tions and the Content |ayers of Figure 1

al . St andards Track [Page 9]

RFC 6241 NETCONF Pr ot ocol June 2011

1.3. Capabilities

A NETCONF capability is a set of functionality that supplenents the
base NETCONF specification. The capability is identified by a
uniformresource identifier (URI) [RFC3986].

Capabi lities augnment the base operations of the device, describing
both additional operations and the content allowed inside operations.
The client can discover the server’s capabilities and use any
addi ti onal operations, paraneters, and content defined by those
capabilities.

The capability definition mght nane one or nore dependent
capabilities. To support a capability, the server MJST support any
capabilities upon which it depends.

Section 8 defines the capabilities exchange that allows the client to
di scover the server’'s capabilities. Section 8 also lists the set of
capabilities defined in this docunent.

Addi tional capabilities can be defined at any time in externa
docunents, allowing the set of capabilities to expand over tine.

St andards bodi es can define standardi zed capabilities, and

i npl enent ations can define proprietary ones. A capability URl MJST
sufficiently distinguish the naning authority to avoid naning

col I'i sions.

1.4. Separation of Configuration and State Data

The information that can be retrieved froma running systemis
separated into two classes, configuration data and state data.
Configuration data is the set of witable data that is required to
transforma systemfromits initial default state into its current
state. State data is the additional data on a systemthat is not
configuration data such as read-only status information and coll ected
statistics. Wien a device is perform ng configuration operations, a
nunber of problens would arise if state data were incl uded:

o Conparisons of configuration data sets would be doni nated by
irrelevant entries such as different statistics.

0 Inconing data could contain nonsensical requests, such as attenpts
to wite read-only data.

0 The data sets would be large

0 Archived data could contain values for read-only data itens,
conplicating the processing required to restore archived data.

Enns, et al. St andards Track [Page 10]

RFC 6241 NETCONF Pr ot ocol June 2011

To account for these issues, the NETCONF protocol recognizes the
di fference between configuration data and state data and provi des
operations for each. The <get-config> operation retrieves
configuration data only, while the <get> operation retrieves
configuration and state data.

Note that the NETCONF protocol is focused on the information required
to get the device into its desired running state. The inclusion of
other inportant, persistent data is inplenentation specific. For
exanpl e, user files and databases are not treated as configuration
data by the NETCONF pr ot ocol

For exanple, if a |ocal database of user authentication data is
stored on the device, it is an inplenmentation-dependent matter
whet her it is included in configuration data.

2. Transport Protocol Requirenents

NETCONF uses an RPC-based comuni cation paradigm A client sends a
series of one or nore RPC request nessages, which cause the server to
respond with a correspondi ng series of RPC reply nessages.

The NETCONF protocol can be layered on any transport protocol that
provides the required set of functionality. It is not bound to any
particul ar transport protocol, but allows a napping to define how it
can be inpl enented over any specific protocol

The transport protocol MJST provide a nmechanismto indicate the
session type (client or server) to the NETCONF protocol |ayer

This section details the characteristics that NETCONF requires from
t he underlying transport protocol

2.1. Connection-Oiented Qperation

NETCONF i s connection-oriented, requiring a persistent connection

bet ween peers. This connection MJST provide reliable, sequenced data
delivery. NETCONF connections are |long-lived, persisting between

pr ot ocol operations.

In addition, resources requested fromthe server for a particul ar
connection MJUST be automatically rel eased when the connection cl oses,
maki ng failure recovery sinpler and nore robust. For exanple, when a
lock is acquired by a client, the | ock persists until either it is
explicitly released or the server deternines that the connection has
been term nated. |If a connection is termnated while the client

hol ds a | ock, the server can perform any appropriate recovery. The
<l ock> operation is further discussed in Section 7.5.

Enns, et al. St andards Track [Page 11]

RFC 6241 NETCONF Pr ot ocol June 2011

2.2. Authentication, Integrity, and Confidentiality

NETCONF connections MJST provide authentication, data integrity,
confidentiality, and replay protection. NETCONF depends on the
transport protocol for this capability. A NETCONF peer assunes that
appropriate levels of security and confidentiality are provided

i ndependently of this docunent. For exanple, connections could be
encrypted using Transport Layer Security (TLS) [RFC5246] or Secure
Shel | (SSH) [RFC4251], dependi ng on the underlying protocol

NETCONF connections MJST be authenticated. The transport protocol is
responsi ble for authentication of the server to the client and

aut hentication of the client to the server. A NETCONF peer assunes
that the connection’s authentication information has been validated
by the underlying transport protocol using sufficiently trustworthy
mechani sms and that the peer’s identity has been sufficiently proven

One goal of NETCONF is to provide a programmatic interface to the
device that closely follows the functionality of the device's native
interface. Therefore, it is expected that the underlying protoco
uses existing authentication nmechani sns avail abl e on the device. For
exanpl e, a NETCONF server on a device that supports RAD US [RFC2865]
m ght allow the use of RADI US to authenticate NETCONF sessi ons.

The aut hentication process MIST result in an authenticated client

i dentity whose pernissions are known to the server. The
authenticated identity of a client is commonly referred to as the
NETCONF username. The usernane is a string of characters that match
the "Char" production from Section 2.2 of [WC REC xm -20001006] .
The al gorithmused to derive the usernane is transport protoco
specific and in addition specific to the authenticati on nechani sm
used by the transport protocol. The transport protocol MJST provide
a username to be used by the other NETCONF | ayers.

The access pernissions of a given client, identified by its NETCONF
usernane, are part of the configuration of the NETCONF server. These
per m ssions MJUST be enforced during the renai nder of the NETCONF
session. The details of how access control is configured is outside
the scope of this docunent.

2.3. Mandatory Transport Protoco

A NETCONF i npl enent ati on MJUST support the SSH transport protocol
mappi ng [RFC6242] .

Enns, et al. St andards Track [Page 12]

RFC 6241 NETCONF Pr ot ocol June 2011

3. XM Consi derations

XML serves as the encoding format for NETCONF, allowi ng conpl ex

hi erarchi cal data to be expressed in a text format that can be read,
saved, and mani pul ated with both traditional text tools and tools
specific to XM.

Al'l NETCONF nmessages MUST be well-forned XM, encoded in UTF-8

[RFC3629]. |If a peer receives an <rpc> nmessage that is not well-
formed XML or not encoded in UTF-8, it SHOULD reply with a
"mal f or mred- message” error. |If a reply cannot be sent for any reason

the server MJUST term nate the session

A NETCONF nessage MAY begin with an XM. declaration (see Section 2.8
of [WBC. REC-xm -20001006]) .

This section discusses a snmall nunber of XM.-rel ated consi derations
pertai ning to NETCONF.

3.1. Nanespace
Al'l NETCONF protocol elenents are defined in the foll ow ng nanespace:
urn:ietf:parans: xm:ns: netconf: base: 1.0

NETCONF capability nanes MJUST be URIs [RFC3986]. NETCONF
capabilities are discussed in Section 8.

3.2. Document Type Decl arations

Docunent type declarations (see Section 2.8 of
[WBC. REC- xnl - 20001006]) MJST NOT appear in NETCONF content.

4. RPC Model
The NETCONF protocol uses an RPC-based communication nodel. NETCONF
peers use <rpc> and <rpc-reply> elenents to provide transport-
prot ocol -i ndependent framni ng of NETCONF requests and responses.

The syntax and XM. encodi ng of the Messages-layer RPCs are formally
defined in the XML schema in Appendi x B

4.1. <rpc> El enent

The <rpc> elenent is used to encl ose a NETCONF request sent fromthe
client to the server.

Enns, et al. St andards Track [Page 13]

RFC 6241 NETCONF Pr ot ocol June 2011

The <rpc> el enent has a nandatory attribute "nessage-id", which is a
string chosen by the sender of the RPC that will conmonly encode a
nonotoni cally increasing integer. The receiver of the RPC does not
decode or interpret this string but sinply saves it to be used as a
"nmessage-id" attribute in any resulting <rpc-reply> nmessage. The
sender MUST ensure that the "nessage-id" value is normalized
according to the XML attribute value nornalization rules defined in
[WBC. REC- xnl - 20001006] if the sender wants the string to be returned
unnodi fied. For exanple:

<rpc nessage-id="101"
xm ns="urn:ietf:parans: xm : ns: netconf: base: 1. 0" >
<sone- net hod>

<l-- method paraneters here... -->
</ some- met hod>
</rpc>

If additional attributes are present in an <rpc> elenent, a NETCONF
peer MJUST return themunnodified in the <rpc-reply> elenent. This
i ncl udes any "xnl ns" attributes.

The nane and paraneters of an RPC are encoded as the contents of the
<rpc> elenent. The nane of the RPCis an elenent directly inside the
<rpc> el enent, and any paraneters are encoded inside this el enent.

The followi ng exanpl e i nvokes a nethod cal |l ed <ny-own-net hod>, which
has two paraneters, <my-first-parameter>, with a value of "14", and
<anot her-paraneter>, with a value of "fred"

<rpc nessage-i d="101"
xm ns="urn:ietf:parans: xm : ns: netconf: base: 1. 0">
<ny- own- et hod xm ns="http://exanpl e. net/ne/ my-own/1.0">
<ny-first-paraneter>14</ny-first-paraneter>
<anot her - par anet er >f r ed</ anot her - par anet er >
</ nmy- own- net hod>
</rpc>

The foll owi ng exanpl e i nvokes a <rock-the-house> nethod with a
<zi p-code> paraneter of "27606-0100"

<rpc nessage-id="101"
xm ns="urn:ietf:parans: xm : ns: netconf: base: 1. 0" >
<rock-the-house xm ns="http://exanpl e. net/rock/1.0">
<zi p- code>27606- 0100</ zi p- code>
</ rock-t he-house>
</rpc>

Enns, et al. St andards Track [Page 14]

RFC 6241 NETCONF Pr ot ocol June 2011

The foll owi ng exanpl e i nvokes the NETCONF <get> nethod with no
paraneters

<rpc nmessage-id="101"
xm ns="urn:ietf:parans: xm : ns: netconf: base: 1. 0">
<get/>
</rpc>

4.2. <rpc-reply> El enent
The <rpc-reply> nessage is sent in response to an <rpc> nessage.

The <rpc-reply> el enent has a mandatory attribute "nessage-id", which
is equal to the "nessage-id" attribute of the <rpc> for which this is
a response.

A NETCONF server MJST also return any additional attributes included
in the <rpc> elenent unnodified in the <rpc-reply> el enent.

The response data is encoded as one or nore child elenents to the
<rpc-reply> el ement.

For exanpl e:

The followi ng <rpc> el enment invokes the NETCONF <get > net hod and

i ncludes an additional attribute called "user-id". Note that the
"user-id" attribute is not in the NETCONF namespace. The returned
<rpc-reply> elenment returns the "user-id" attribute, as well as the
requested content.

<rpc nessage-i d="101"
xm ns="urn:ietf:params: xm :ns:netconf: base: 1. 0"
xm ns: ex="http://exanpl e.net/content/1.0"
ex:user-id="fred">
<get/>
</rpc>

<rpc-reply nmessage-id="101"
xm ns="urn:ietf:paranms: xm :ns:netconf: base: 1. 0"
xm ns: ex="http://exanpl e.net/content/1.0"
ex:user-id="fred">
<dat a>
<!-- contents here... -->

</ dat a>

</rpc-reply>

Enns, et al. St andards Track [Page 15]

RFC 6241 NETCONF Pr ot ocol June 2011

4.3. <rpc-error> El enent

The <rpc-error> elenent is sent in <rpc-reply> nessages if an error
occurs during the processing of an <rpc> request.

If a server encounters nultiple errors during the processing of an
<rpc> request, the <rpc-reply> MAY contain nultiple <rpc-error>

el ements. However, a server is not required to detect or report nore
than one <rpc-error> elenment, if a request contains nultiple errors.
A server is not required to check for particular error conditions in
a specific sequence. A server MJIST return an <rpc-error> elenent if
any error conditions occur during processing.

A server MJST NOT return application-level- or data-nodel-specific
error information in an <rpc-error> element for which the client does
not have sufficient access rights.

The <rpc-error> el enent includes the follow ng information

error-type: Defines the conceptual |ayer that the error occurred.
Enurmer ation. One of:

* transport (layer: Secure Transport)
* rpc (layer: Messages)

* protocol (layer: QOperations)

* application (layer: Content)

error-tag: Contains a string identifying the error condition. See
Appendi x A for all owed val ues.

error-severity: Contains a string identifying the error severity, as
determ ned by the device. One of:

* error
* warning
Note that there are no <error-tag> val ues defined in this docunent
that utilize the "warning" enuneration. This is reserved for
future use

error-app-tag: Contains a string identifying the data-nodel -specific
or inplenmentation-specific error condition, if one exists. This

element will not be present if no appropriate application error-
tag can be associated with a particular error condition. |If a

Enns, et al. St andards Track [Page 16]

RFC 6241 NETCONF Pr ot ocol June 2011

dat a- nodel - specific and an i npl enentation-specific error-app-tag
bot h exist, then the data-nodel -specific value MIST be used by the
server.

error-path: Contains the absolute XPath [WBC. REC- xpat h- 19991116]
expression identifying the el enent path to the node that is
associated with the error being reported in a particul ar
<rpc-error> elenent. This elenent will not be present if no
appropriate payl oad el ement or datastore node can be associ ated
with a particular error condition.

The XPath expression is interpreted in the foll owi ng context:

* The set of nanespace declarations are those in scope on the
<rpc-error> el enent.

* The set of variable bindings is enpty.
* The function library is the core function library.

The context node depends on the node associated with the error
bei ng report ed:

* |f a payload el enent can be associated with the error, the
context node is the rpc request’s docunent node (i.e., the
<rpc> el ement).

* Otherwi se, the context node is the root of all data npdels,
i.e., the node that has the top-level nodes fromall data
nodel s as chil dren.

error-nessage: Contains a string suitable for hunman display that
describes the error condition. This elenment will not be present
if no appropriate nessage is provided for a particular error
condition. This element SHOULD i nclude an "xm :lang" attribute as
defined in [WBC. REC- xnml - 20001006] and di scussed in [RFC3470].

error-info: Contains protocol - or data-nodel -specific error content.
This element will not be present if no such error content is
provided for a particular error condition. The list in Appendix A
defines any mandatory error-info content for each error. After
any protocol -nmandated content, a data nodel definition MAY nandate
that certain application-layer error information be included in
the error-info container. An inplenentation MAY include
addi tional elenents to provide extended and/or inplenmentation-
speci fi ¢ debuggi ng i nformation

Appendi x A enunerates the standard NETCONF errors.

Enns, et al. St andards Track [Page 17]

RFC 6241 NETCONF Pr ot ocol June 2011

Exanple: An error is returned if an <rpc> elenent is received
wi thout a "nessage-id" attribute. Note that only in this case is
it acceptable for the NETCONF peer to onit the "nmessage-id"
attribute in the <rpc-reply> el ement.

<rpc xm ns="urn:ietf:parans:xm :ns: netconf: base: 1. 0">
<get -confi g>
<sour ce>
<runni ng/ >
</ sour ce>
</ get-config>
</rpc>

<rpc-reply xm ns="urn:ietf:parans: xm :ns: netconf:base: 1. 0">
<rpc-error>
<error-type>rpc</error-type>
<error-tag>m ssing-attribute</error-tag>
<error-severity>error</error-severity>
<error-info>
<bad- attri but e>message-i d</ bad-attri but e>
<bad- el erment >r pc</ bad- el enent >
</error-info>
</rpc-error>
</rpc-reply>

The following <rpc-reply> illustrates the case of returning multiple
<rpc-error> el ements.

Note that the data nmpdels used in the exanples in this section use
the <nane> el enent to distinguish between nultiple instances of the
<interface> el enent.

<rpc-reply nmessage-id="101"
xm ns="urn:ietf:paramnms: xm : ns: net conf: base: 1. 0"
xm ns: xc="urn:ietf:parans: xnm : ns: net conf: base: 1. 0" >
<rpc-error>
<error-type>application</error-type>
<error-tag>i nvalid-val ue</error-tag>
<error-severity>error</error-severity>
<error-path xmns:t="http://exanpl e.conf schema/ 1. 2/ config">
/t:top/t:interface[t: nane="Ethernet0/0"]/t:ntu
</ error-path>
<error-nessage xm :lang="en">
MIU val ue 25000 is not within range 256..9192
</ error-nmessage>
</rpc-error>
<rpc-error>
<error-type>application</error-type>

Enns, et al. St andards Track [Page 18]

RFC 6241 NETCONF Pr ot ocol June 2011

4.4,

4.

5.

<error-tag>invalid-val ue</error-tag>

<error-severity>error</error-severity>

<error-path xm ns:t="http://exanpl e.com schema/ 1. 2/ config">
/t:top/t:interface[t:name="Ethernet1/0"]/t:address/t:nane

</ error-path>

<error-nessage xml:lang="en">
Invalid I P address for interface Ethernetl/0

</ error-nmessage>

</rpc-error>
</rpc-reply>

<ok> El enent

The <ok> elenment is sent in <rpc-reply> nessages if no errors or
war ni ngs occurred during the processing of an <rpc> request, and no
data was returned fromthe operation. For exanple:

5.

1

<rpc-reply message-id="101"
xm ns="urn:ietf:parans: xm :ns: netconf: base: 1. 0">
<ok/ >
</rpc-reply>
Pi pelini ng

NETCONF <rpc> requests MJST be processed serially by the nanaged

device. Additional <rpc> requests MAY be sent before previous ones

have been conpl eted. The managed devi ce MJUST send responses only in

the order the requests were received.

Confi guration Mdel

NETCONF provides an initial set of operations and a nunber of
capabilities that can be used to extend the base. NETCONF peers
exchange device capabilities when the session is initiated as
described in Section 8. 1.

Configuration Datastores

NETCONF defines the existence of one or nore configuration datastores
and all ows configuration operations on them A configuration
datastore is defined as the conplete set of configuration data that
is required to get a device fromits initial default state into a
desired operational state. The configuration datastore does not

i nclude state data or executive commands

Enns, et al. St andards Track [Page 19]

RFC 6241 NETCONF Pr ot ocol June 2011

The running configuration datastore holds the conplete configuration
currently active on the network device. Only one configuration
datastore of this type exists on the device, and it is always
present. NETCONF protocol operations refer to this datastore using
t he <runni ng> el ement.

Only the <running> configuration datastore is present in the base
nmodel . Additional configuration datastores MAY be defined by
capabilities. Such configuration datastores are available only on
devices that advertise the capabilities.

The capabilities in Sections 8.3 and 8.7 define the <candi date> and
<startup> configuration datastores, respectively.

5.2. Data Mddeling

6.

6.

Data nodeling and content issues are outside the scope of the NETCONF
protocol. An assunption is nade that the device's data nodel is
wel | -known to the application and that both parties are aware of

i ssues such as the layout, contai nment, keying, |ookup, replacenent,
and nanagenent of the data, as well as any other constraints inposed
by the data nodel

NETCONF carries configuration data inside the <config> el enent that
is specific to the device’'s data nodel. The protocol treats the
contents of that el enent as opaque data. The device uses
capabilities to announce the set of data nodels that the device

i npl ements. The capability definition details the operation and
constraints inposed by data nodel

Devi ces and nmanagers can support multiple data nodels, including both
standard and proprietary data nodels.

Subtree Filtering
1. Overview

XML subtree filtering is a mechanismthat allows an application to
sel ect particular XM subtrees to include in the <rpc-reply> for a
<get> or <get-config> operation. A small set of filters for

i nclusion, sinple content exact-match, and selection is provided,
which all ows sone useful, but also very linted, selection

mechani snms. The server does not need to utilize any data-nodel -
specific semantics during processing, allowing for sinple and
centralized inplenmentation strategies.

Enns, et al. St andards Track [Page 20]

RFC 6241 NETCONF Pr ot ocol June 2011

Conceptual ly, a subtree filter is conprised of zero or nore el enent
subtrees, which represent the filter selection criteria. At each
contai nnment level within a subtree, the set of sibling nodes is

| ogically processed by the server to deternmine if its subtree and
path of elenments to the root are included in the filter output.

Each node specified in a subtree filter represents an inclusive
filter. Only associated nodes in underlying data nodel (s) within the
specified datastore on the server are selected by the filter. A node
is selected if it matches the selection criteria and hierarchy of
elements given in the filter data, except that the filter absolute
path nane is adjusted to start fromthe |layer below <filter>

Response nessages contain only the subtrees selected by the filter
Any selection criteria that were present in the request, within a
particul ar selected subtree, are also included in the response. Note
that sonme el enents expressed in the filter as |eaf nodes will be
expanded (i.e., subtrees included) in the filter output. Specific
data i nstances are not duplicated in the response in the event that
the request contains nultiple filter subtree expressions that select
t he sanme dat a.

6.2. Subtree Filter Conponents
A subtree filter is conprised of XM. el enents and their XM
attributes. There are five types of conponents that can be present
in a subtree filter:
0 Nanmespace Sel ection
o Attribute Match Expressions
0o Containnent Nodes
0 Sel ection Nodes
0 Content Match Nodes

6.2.1. Nanmespace Sel ection
A namespace is considered to match (for filter purposes) if the XM
nanespace associated with a particular node within the <filter>
element is the sane as in the underlying data nodel. Note that
nanespace sel ecti on cannot be used by itself. At |east one el enent

MUST be specified in the filter if any elenents are to be included in
the filter output.

Enns, et al. St andards Track [Page 21]

RFC 6241 NETCONF Pr ot ocol June 2011

An XML nanespace wi |l dcard mechanismis defined for subtree filtering
If an element within the <filter> elenent is not qualified by a
nanespace (e.g., xmns=""), then the server MJST evaluate all the XM
nanespaces it supports, when processing that subtree filter node.
This wildcard nechanismis not applicable to XM. attri butes.

Note that prefix values for qualified nanmespaces are not rel evant
when conparing filter elenents to elenents in the underlying data
nodel

Exanpl e:

<filter type="subtree">
<top xm ns="http://exanpl e. com schena/ 1. 2/ confi g"/>
</[filter>

In this exanple, the <top> elenent is a selection node, and only this
node in the "http://exanpl e. com schena/ 1. 2/ confi g" nanespace and any
child nodes (fromthe underlying data nodel) will be included in the
filter output.

6.2.2. Attribute Match Expressions

An attribute that appears in a subtree filter is part of an
"attribute match expression”. Any nunmber of (unqualified or
qualified) XML attributes MAY be present in any type of filter node.
In addition to the selection criteria normally applicable to that
node, the sel ected data MJST have matchi ng val ues for every attribute
specified in the node. |If an elenment is not defined to include a
specified attribute, then it is not selected in the filter output.

Exanpl e:

<filter type="subtree">
<t:top xmns:t="http://exanple.conl schema/1.2/config">
<t:interfaces>
<t:interface t:ifName="eth0"/>
</t:interfaces>
</t:top>
</[filter>

In this exanple, the <top> and <interfaces> el enents are contai nnent
nodes, the <interface> elenent is a selection node, and "ifName" is
an attribute match expression. Only "interface" nodes in the
"http://exanpl e.com schema/ 1. 2/ confi g" namespace that have an
"ifName" attribute with the value "eth0" and occur within
"interfaces" nodes within "top"” nodes will be included in the filter
out put .

Enns, et al. St andards Track [Page 22]

RFC 6241 NETCONF Pr ot ocol June 2011

6.2.3. Contai nnent Nodes

Nodes that contain child elenents within a subtree filter are called
"cont ai nment nodes". Each child el enment can be any type of node,

i ncl udi ng anot her contai nnent node. For each contai nment node
specified in a subtree filter, all data nodel instances that exactly
mat ch the specified nanespaces, el enent hierarchy, and any attribute
mat ch expressions are included in the filter output.

Exanpl e:

<filter type="subtree">
<top xm ns="http://exanpl e. com schena/ 1. 2/ confi g">
<users/>
</t op>
</filter>

In this exanple, the <top> elenent is a contai nnent node.
6.2.4. Selection Nodes

An empty leaf node within a filter is called a "sel ection node", and
it represents an "explicit selection"” filter on the underlying data
nodel . Presence of any selection nodes within a set of sibling nodes
will cause the filter to select the specified subtree(s) and suppress
automatic selection of the entire set of sibling nodes in the
underlying data nodel. For filtering purposes, an enpty |eaf node
can be declared either with an enpty tag (e.g., <foo/>) or wth
explicit start and end tags (e.g., <foo> </foo>). Any whitespace
characters are ignored in this form

Exanpl e:

<filter type="subtree">
<top xm ns="http://exanpl e. com schena/ 1. 2/ confi g">
<users/>
</t op>
</filter>

In this exanple, the <top> elenment is a containnent node, and the
<users> elenment is a selection node. Only "users"” nodes in the
"http://exanple. conf schema/ 1. 2/ config" namespace that occur within a
<top> elenent that is the root of the configuration datastore will be
included in the filter output.

Enns, et al. St andards Track [Page 23]

RFC 6241 NETCONF Pr ot ocol June 2011

6.2.5. Content Match Nodes

A leaf node that contains sinple content is called a "content match
node". It is used to select sone or all of its sibling nodes for
filter output, and it represents an exact-match filter on the |eaf
node el ement content. The follow ng constraints apply to content
mat ch nodes:

o A content match node MUST NOT contain nested el ements.

o Miltiple content match nodes (i.e., sibling nodes) are logically
conbined in an "AND' expression

o Filtering of mixed content is not supported.
o Filtering of list content is not supported.
o Filtering of whitespace-only content is not supported.

o0 A content match node MJST contain non-whitespace characters. An
enpty elenent (e.g., <foo></foo>) will be interpreted as a
sel ection node (e.g., <fool/>).

0 Leading and trailing whitespace characters are ignored, but any
whi t espace characters within a block of text characters are not
i gnored or nodified.

If all specified sibling content match nodes in a subtree filter
expression are "true", then the filter output nodes are selected in
the foll owi ng nmanner

0 Each content match node in the sibling set is included in the
filter output.

o |If any containnent nodes are present in the sibling set, then they
are processed further and included if any nested filter criteria
are al so net.

o |If any selection nodes are present in the sibling set, then all of
themare included in the filter output.

o |If any sibling nodes of the selection node are instance identifier

conmponents for a conceptual data structure (e.g., list key l|eaf),
then they MAY also be included in the filter output.

Enns, et al. St andards Track [Page 24]

RFC 6241 NETCONF Pr ot ocol June 2011

0 Oherwise (i.e., there are no selection or containment nodes in
the filter sibling set), all the nodes defined at this level in
the underlying data nodel (and their subtrees, if any) are
returned in the filter output.

If any of the sibling content nmatch node tests are "fal se", then no
further filter processing is perforned on that sibling set, and none
of the sibling subtrees are selected by the filter, including the
content match node(s).

Exanpl e:

<filter type="subtree">
<top xm ns="http://exanpl e. com schena/ 1. 2/ confi g">
<users>
<user >
<nane>f r ed</ nane>
</ user >
</ users>
</t op>
</filter>

In this exanple, the <users> and <user> nodes are both contai nnent
nodes, and <nane> is a content nmatch node. Since no sibling nodes of
<name> are specified (and therefore no contai nnent or selection
nodes), all of the sibling nodes of <name> are returned in the filter
output. Only "user" nodes in the
"http://exanpl e.com schema/ 1. 2/ config" namespace that match the

el ement hierarchy and for which the <nane> elenent is equal to "fred"
will be included in the filter output.

6.3. Subtree Filter Processing
The filter output (the set of selected nodes) is initially enpty.

Each subtree filter can contain one or nore data nodel fragnents,
whi ch represent portions of the data nodel that will be selected
(with all child nodes) in the filter output.

Each subtree data fragment is conpared by the server to the interna
data nodel s supported by the server. |If the entire subtree data-
fragment filter (starting fromthe root to the innernost el enent
specified in the filter) exactly matches a correspondi ng portion of
t he supported data nodel, then that node and all its children are
included in the result data.

The server processes all nodes with the sane parent node (sibling
set) together, starting fromthe root to the | eaf nodes. The root

Enns, et al. St andards Track [Page 25]

RFC 6241 NETCONF Pr ot ocol June 2011

elements in the filter are considered in the sane sibling set
(assuning they are in the sane nanespace), even though they do not
have a common parent.

For each sibling set, the server determ nes which nodes are included
(or potentially included) in the filter output, and which sibling
subtrees are excluded (pruned) fromthe filter output. The server
first determ nes which types of nodes are present in the sibling set
and processes the nodes according to the rules for their type. |If
any nodes in the sibling set are selected, then the process is
recursively applied to the sibling sets of each selected node. The
al gorithmcontinues until all sibling sets in all subtrees specified
inthe filter have been processed.

6.4. Subtree Filtering Exanpl es
6.4.1. No Filter

Leaving out the filter on the <get> operation returns the entire data
nodel .

<rpc nmessage-id="101"
xm ns="urn:ietf:paranms: xm : ns: netconf: base: 1. 0">
<get/>
</rpc>

<rpc-reply message-id="101"
xm ns="urn:ietf:paranms: xm : ns: netconf: base: 1. 0" >
<dat a>
<l-- ... entire set of data returned ... -->
</ dat a>
</rpc-reply>

6.4.2. Enpty Filter

An enpty filter will select nothing because no content match or
sel ection nodes are present. This is not an error. The <filter>
element’s "type" attribute used in these exanples is discussed
further in Section 7.1.

<rpc nessage-id="101"
xm ns="urn:ietf:parans: xm : ns: netconf: base: 1. 0" >

<get >
<filter type="subtree">
</filter>
</ get >
</rpc>

Enns, et al. St andards Track [Page 26]

RFC 6241 NETCONF Pr ot ocol June 2011

<rpc-reply message-id="101"
xm ns="urn:ietf:parans: xm :ns: netconf: base: 1. 0">
<dat a>
</ dat a>
</rpc-reply>

6.4.3. Select the Entire <users> Subtree
The filter in this exanpl e contains one sel ection node (<users>), so

just that subtree is selected by the filter. This exanple represents
the fully popul ated <users> data nodel in nost of the filter examples

that follow 1In a real data nodel, the <conpany-info> would not
likely be returned with the list of users for a particular host or
net wor k.

NOTE: The filtering and configuration exanples used in this docunent
appear in the nanespace "http://exanple.com schema/1.2/config". The
root element of this nanespace is <top> The <top> elenent and its

descendents represent an exanple configuration data nodel only.

<rpc nessage-id="101"
xm ns="urn:ietf:paranms: xm : ns: netconf: base: 1. 0" >
<get -confi g>
<sour ce>
<runni ng/ >
</ sour ce>
<filter type="subtree">
<top xm ns="http://exanpl e.com schena/ 1. 2/ confi g">
<users/>
</t op>
</filter>
</ get - config>
</rpc>

<rpc-reply nmessage-id="101"
xm ns="urn:ietf:parans: xm : ns: netconf: base: 1. 0">
<dat a>
<top xm ns="http://exanpl e. com schena/ 1. 2/ confi g">
<user s>
<user >
<name>r oot </ nane>
<t ype>super user</type>
<full -name>Charli e Root</full-name>
<conpany-i nf o>
<dept >1</ dept >
<id>1</id>
</ conpany-i nf o>
</ user >

Enns, et al. St andards Track [Page 27]

RFC 6241 NETCONF Pr ot ocol June 2011

<user >
<nane>f r ed</ nane>
<t ype>admi n</type>
<full -name>Fred Flintstone</full-name>
<conpany-i nf o>
<dept >2</ dept >

<id>2</id>
</ conmpany-i nf o>
</ user >
<user >

<nane>bar ney</ name>
<t ype>adm n</type>
<ful | - nanme>Bar ney Rubbl e</ful | - nane>
<conpany-i nf o>
<dept >2</ dept >

<i d>3</id>
</ conpany-i nf o>
</ user >
</ user s>
</t op>
</ dat a>

</rpc-reply>

The following filter request would have produced the sane result, but
only because the container <users> defines one child el enent
(<user>).

<rpc nessage-id="101"
xm ns="urn:ietf:paranms: xm : ns: netconf: base: 1. 0" >
<get -confi g>
<sour ce>
<runni ng/ >
</ sour ce>
<filter type="subtree">
<top xm ns="http://exanpl e. com schena/ 1. 2/ confi g">
<users>
<user/>
</ users>
</t op>
</[filter>
</ get-config>
</rpc>

Enns, et al. St andards Track [Page 28]

RFC 6241 NETCONF Pr ot ocol June 2011

6.4.4. Select Al <nane> Elenents within the <users> Subtree

This filter contains two contai nnent nodes (<users>, <user>) and one
sel ection node (<name>). All instances of the <nanme> elenent in the
same sibling set are selected in the filter output. The client night
need to know that <nanme> is used as an instance identifier in this
particul ar data structure, but the server does not need to know t hat
neta-data in order to process the request.

<rpc nessage-id="101"
xm ns="urn:ietf:paranms: xm : ns: netconf: base: 1. 0">
<get -confi g>
<sour ce>
<runni ng/ >
</ sour ce>
<filter type="subtree">
<top xm ns="http://exanpl e.com schema/ 1. 2/ confi g">
<users>
<user >
<nane/ >
</ user >
</ users>
</t op>
</filter>
</ get-config>
</rpc>

<rpc-reply message-id="101"
xm ns="urn:ietf:paranms: xm : ns: netconf: base: 1. 0" >
<dat a>
<top xm ns="http://exanpl e. com schena/ 1. 2/ confi g">
<user s>
<user >
<name>r oot </ nane>
</ user>
<user >
<name>fr ed</ nane>
</ user>
<user >
<name>bar ney</ name>
</ user>
</ users>
</t op>
</ dat a>
</rpc-reply>

Enns, et al. St andards Track [Page 29]

RFC 6241 NETCONF Pr ot ocol June 2011

6.4.5. One Specific <user> Entry

This filter contains two contai nnent nodes (<users>, <user>) and one
content match node (<name>). All instances of the sibling set
cont ai ni ng <nane> for which the value of <name> equals "fred" are
selected in the filter output.

<rpc nessage-i d="101"
xm ns="urn:ietf:paranms: xm : ns: netconf:base: 1. 0">
<get - confi g>
<sour ce>
<runni ng/ >
</ sour ce>
<filter type="subtree">
<top xm ns="http://exanpl e. com schena/ 1. 2/ confi g">
<user s>
<user >
<name>f r ed</ nane>
</ user >
</ users>
</t op>
</filter>
</ get-config>
</rpc>

<rpc-reply nmessage-id="101"
xm ns="urn:ietf:paranms: xm : ns: netconf: base: 1. 0">
<dat a>
<top xm ns="http://exanpl e. com schena/ 1. 2/ confi g">
<user s>
<user >
<nane>f r ed</ nane>
<t ype>admi n</type>
<full - name>Fred Flintstone</full-nane>
<conpany-i nf o>
<dept >2</ dept >

<id>2</id>
</ conmpany-i nf o>
</ user >
</ user s>
</t op>
</ dat a>

</rpc-reply>

Enns, et al. St andards Track [Page 30]

RFC 6241 NETCONF Pr ot ocol June 2011

6.4.6. Specific Elenments froma Specific <user> Entry

This filter contains two contai nnent nodes (<users>, <user>), one
content match node (<name>), and two sel ection nodes (<type>,
<full-nanme>). Al instances of the <type> and <full-nanme> el ements
in the same sibling set containing <nanme> for which the val ue of
<name> equals "fred" are selected in the filter output. The
<conpany-info> el enment is not included because the sibling set
contai ns sel ecti on nodes.

<rpc nessage-id="101"
xm ns="urn:ietf:parans: xm : ns: netconf: base: 1. 0" >
<get -confi g>
<sour ce>
<runni ng/ >
</ sour ce>
<filter type="subtree">
<top xm ns="http://exanpl e. com schena/ 1. 2/ confi g">
<user s>
<user >
<name>f r ed</ nane>
<type/ >
<full - nane/ >
</ user >
</ users>
</t op>
</[filter>
</ get-config>
</rpc>

<rpc-reply nmessage-id="101"
xm ns="urn:ietf:parans: xm : ns: netconf:base: 1. 0">
<dat a>
<top xm ns="http://exanpl e. com schena/ 1. 2/ confi g">
<user s>
<user >
<name>f r ed</ nane>
<t ype>admi n</type>
<full -name>Fred Flintstone</full-nane>
</ user >
</ users>
</t op>
</ dat a>
</rpc-reply>

Enns, et al. St andards Track [Page 31]

RFC 6241 NETCONF Pr ot ocol June 2011

6.4.7. Miltiple Subtrees
This filter contains three subtrees (nane=root, fred, barney).

The "root" subtree filter contains two contai nment nodes (<users>,
<user>), one content nmatch node (<name>), and one sel ecti on node
(<conpany-info>). The subtree selection criteria are net, and just
the conpany-info subtree for "root" is selected in the filter output.

The "fred" subtree filter contains three containnent nodes (<users>,
<user >, <conpany-info>), one content match node (<name>), and one
sel ection node (<id>). The subtree selection criteria are net, and
just the <id> elenent within the conpany-info subtree for "fred" is
selected in the filter output.

The "barney" subtree filter contains three containnent nodes
(<users>, <user>, <company-info>), two content match nodes (<nane>,
<type>), and one sel ection node (<dept>). The subtree sel ection
criteria are not net because user "barney" is not a "superuser", and
the entire subtree for "barney" (including its parent <user> entry)
is excluded fromthe filter output.

<rpc nessage-id="101"
xm ns="urn:ietf:parans: xm : ns: netconf: base: 1. 0">
<get -confi g>
<sour ce>
<runni ng/ >
</ sour ce>
<filter type="subtree">
<top xm ns="http://exanpl e. com schena/ 1. 2/ confi g">
<user s>
<user >
<nanme>r oot </ nane>
<conpany-i nf o/ >
</ user>
<user >
<name>f r ed</ nane>
<conpany-i nf o>
<id/>
</ conpany-i nf o>
</ user>
<user >
<nane>bar ney</ name>
<t ype>superuser</type>
<conpany-i nf o>
<dept/ >
</ conpany-i nf o>
</ user >

Enns, et al. St andards Track [Page 32]

RFC

6. 4.

6241 NETCONF Pr ot ocol June 2011

</ users>
</t op>
</filter>
</ get-config>
</rpc>

<rpc-reply message-id="101"
xm ns="urn:ietf:parans: xm :ns: netconf: base: 1. 0">
<dat a>
<top xm ns="http://exanpl e. com schena/ 1. 2/ confi g">
<user s>
<user >
<nanme>r oot </ nane>
<conpany-i nf o>
<dept >1</ dept >

<id>1</id>
</ conpany-i nf o>
</ user>
<user >

<nane>f r ed</ nane>
<conpany-i nf o>

<id>2</id>
</ conpany-i nf o>
</ user >
</ user s>
</t op>
</ dat a>

</rpc-reply>
8. Elenments with Attribute Naning

In this exanple, the filter contains one contai nnent node
(<interfaces>), one attribute match expression ("ifNanme"), and one
sel ection node (<interface>). Al instances of the <interface>
subtree that have an "ifNanme" attribute equal to "ethO" are selected
inthe filter output. The filter data elenments and attributes are
qual i fied because the "ifNane" attribute will not be considered part
of the "schema/1l.2" nanespace if it is unqualified

Enns, et al. St andards Track [Page 33]

RFC 6241 NETCONF Pr ot ocol June 2011

<rpc nessage-i d="101"
xm ns="urn:ietf:parans: xm :ns: netconf: base: 1. 0">
<get >
<filter type="subtree">
<t:top xmns:t="http://exanple.conf schenma/1.2/stats">
<t:interfaces>
<t:interface t:ifName="eth0"/>

</t:interfaces>

</t:top>
</filter>
</ get >
</rpc>

<rpc-reply nmessage-id="101"
xm ns="urn:ietf:paranms: xm : ns: netconf:base: 1. 0">
<dat a>
<t:top xmns:t="http://exanple.conf schenma/1.2/stats">
<t:interfaces>
<t:interface t:ifName="eth0">
<t:iflnCctets>45621</t:iflnCctets>
<t:ifQutCctets>774344</t:ifQutCctets>
</t:interface>
</t:interfaces>
</t:top>
</ dat a>
</rpc-reply>

If "ifName" were a child node instead of an attri bute, then the
foll owi ng request would produce simlar results.

<rpc nessage-i d="101"
xm ns="urn:ietf:parans: xm : ns: netconf:base: 1. 0">
<get >
<filter type="subtree">
<top xm ns="http://exanpl e.com schena/ 1. 2/stats">
<interfaces>
<interface>
<i f Nanme>et hO</i f Nanme>
</interface>
</interfaces>
</t op>
</filter>
</ get >
</rpc>

Enns, et al. St andards Track [Page 34]

RFC 6241 NETCONF Pr ot ocol June 2011

7.

7.

Prot ocol Qperations
The NETCONF protocol provides a snmall set of |owlevel operations to
manage device configurations and retrieve device state information
The base protocol provides operations to retrieve, configure, copy,
and del ete configuration datastores. Additional operations are
provi ded, based on the capabilities advertised by the device.

The base protocol includes the follow ng protocol operations:

o get

o get-config

o edit-config

o copy-config

o delete-config

o lock

o unl ock

0 close-session

o kill-session

A protocol operation can fail for various reasons, including
"operation not supported’. An initiator SHOULD NOT assune that any
operation will always succeed. The return values in any RPC reply
SHOULD be checked for error responses.

The syntax and XM. encodi ng of the protocol operations are formally
defined in the YANG nodule in Appendix C. The follow ng sections
descri be the semantics of each protocol operation

1. <get-config>

Description: Retrieve all or part of a specified configuration
dat ast or e.

Par anet ers:

source: Nanme of the configuration datastore being queried, such
as <runni ng/ >.

Enns, et al. St andards Track [Page 35]

RFC 6241 NETCONF Pr ot ocol June 2011

filter: This paraneter identifies the portions of the device
configuration datastore to retrieve. |If this paraneter is not
present, the entire configuration is returned.

The <filter> elenent MAY optionally contain a "type" attribute.
This attribute indicates the type of filtering syntax used
within the <filter> elenment. The default filtering nechanism
in NETCONF is referred to as subtree filtering and is descri bed
in Section 6. The value "subtree" explicitly identifies this
type of filtering.

If the NETCONF peer supports the :xpath capability

(Section 8.9), the value "xpath" MAY be used to indicate that
the "select" attribute on the <filter> el enent contains an
XPat h expressi on.

Positive Response: |If the device can satisfy the request, the server
sends an <rpc-reply> el enment containing a <data> elenent with the
results of the query.

Negati ve Response: An <rpc-error> elenment is included in the
<rpc-reply> if the request cannot be conpleted for any reason

Exanple: To retrieve the entire <users> subtree:

<rpc nessage-id="101"
xm ns="urn:ietf:paranms: xm : ns: netconf: base: 1. 0">
<get -confi g>
<sour ce>
<runni ng/ >
</ sour ce>
<filter type="subtree">
<top xm ns="http://exanpl e. com schena/ 1. 2/ confi g">
<users/>
</t op>
</filter>
</ get-config>
</rpc>

<rpc-reply message-id="101"
xm ns="urn:ietf:paranms: xm : ns: netconf:base: 1. 0">
<dat a>
<top xm ns="http://exanpl e. com schena/ 1. 2/ confi g">
<user s>
<user >
<name>r oot </ nane>
<t ype>superuser</type>
<full -name>Charlie Root</full-name>

Enns, et al. St andards Track [Page 36]

RFC 6241 NETCONF Pr ot ocol June 2011

7.2.

<conpany-i nf o>
<dept >1</ dept >

<id>1</i d>
</ conpany-i nf o>
</ user>
<l-- additional <user> elenents appear here... -->
</ users>
</t op>
</ dat a>

</rpc-reply>
Section 6 contains additional exanples of subtree filtering.

<edi t-config>

Descri ption:

The <edit-config> operation loads all or part of a specified
configuration to the specified target configuration datastore.
This operation allows the new configuration to be expressed in
several ways, such as using a local file, a renote file, or
inline. |If the target configuration datastore does not exist, it
wi || be created.

If a NETCONF peer supports the :url capability (Section 8.8), the
<url > el ement can appear instead of the <config> paraneter.

The devi ce anal yzes the source and target configurations and
perfornms the requested changes. The target configuration is not
necessarily replaced, as with the <copy-config> nessage. |nstead,
the target configuration is changed in accordance with the
source’s data and requested operations.

If the <edit-config> operation contains multiple sub-operations
that apply to the same conceptual node in the underlying data
nodel , then the result of the operation is undefined (i.e.

out side the scope of the NETCONF protocol).

Attributes:

Enns,

operation: Elenments in the <config> subtree MAY contain an
"operation" attribute, which belongs to the NETCONF nanespace
defined in Section 3.1. The attribute identifies the point in
the configuration to performthe operation and MAY appear on
mul tiple el enents throughout the <config> subtree.

If the "operation"” attribute is not specified, the
configuration is nerged into the configuration datastore.

et al. St andards Track [Page 37]

RFC 6241 NETCONF Pr ot ocol June 2011

The "operation" attribute has one of the follow ng val ues:

nmerge: The configuration data identified by the el enent
containing this attribute is merged with the configuration
at the corresponding level in the configuration datastore
identified by the <target> paraneter. This is the default
behavi or.

replace: The configuration data identified by the el enent
containing this attribute replaces any related configuration
in the configuration datastore identified by the <target>
paraneter. |If no such configuration data exists in the
configuration datastore, it is created. Unlike a
<copy-confi g> operation, which replaces the entire target
configuration, only the configuration actually present in
the <config> parameter is affected.

create: The configuration data identified by the el enent
containing this attribute is added to the configuration if
and only if the configuration data does not already exist in
the configuration datastore. |If the configuration data
exists, an <rpc-error> elenment is returned with an
<error-tag> val ue of "data-exists"

del ete: The configuration data identified by the el enent
containing this attribute is deleted fromthe configuration
if and only if the configuration data currently exists in
the configuration datastore. |If the configuration data does
not exist, an <rpc-error> elenment is returned with an
<error-tag> val ue of "data-m ssing".

remove: The configuration data identified by the el ement
containing this attribute is deleted fromthe configuration
if the configuration data currently exists in the

configuration datastore. |If the configuration data does not
exist, the "renove" operation is silently ignored by the
server.

Par anet ers:

Enns,

target: Nane of the configuration datastore being edited, such as
<runni ng/ > or <candi dat e/ >.

defaul t-operation: Selects the default operation (as described in

the "operation" attribute) for this <edit-config> request. The
default value for the <default-operation> paraneter is "nerge"

et al. St andards Track [Page 38]

RFC 6241 NETCONF Pr ot ocol June 2011

The <default-operation> paraneter is optional, but if provided,
it has one of the foll owi ng val ues:

nmerge: The configuration data in the <config> paraneter is
merged with the configuration at the corresponding |evel in
the target datastore. This is the default behavi or

replace: The configuration data in the <config> paraneter
completely replaces the configuration in the target
datastore. This is useful for |oading previously saved
configuration data.

none: The target datastore is unaffected by the configuration
in the <config> paraneter, unless and until the inconing
configuration data uses the "operation" attribute to request
a different operation. |If the configuration in the <config>
paraneter contains data for which there is not a
corresponding level in the target datastore, an <rpc-error>
is returned with an <error-tag> val ue of data-m ssing.
Using "none" allows operations |like "delete" to avoid
unintentionally creating the parent hierarchy of the el enent
to be del et ed.

test-option: The <test-option> el enent MAY be specified only if
the device advertises the :validate: 1.1 capability
(Section 8.6).
The <test-option> el enent has one of the follow ng val ues:
test-then-set: Performa validation test before attenpting to
set. If validation errors occur, do not performthe
<edit-config> operation. This is the default test-option

set : Performa set without a validation test first.

test-only: Performonly the validation test, wthout
attenpting to set.

error-option: The <error-option> el ement has one of the foll ow ng
val ues:

stop-on-error: Abort the <edit-config> operation on first
error. This is the default error-option

continue-on-error: Continue to process configuration data on

error; error is recorded, and negative response is generated
if any errors occur.

Enns, et al. St andards Track [Page 39]

RFC 6241 NETCONF Pr ot ocol June 2011

rol I back-on-error: |f an error condition occurs such that an
error severity <rpc-error> elenent is generated, the server
will stop processing the <edit-config> operation and restore
the specified configuration to its conplete state at the
start of this <edit-config> operation. This option requires
the server to support the :rollback-on-error capability
described in Section 8.5.

config: A hierarchy of configuration data as defined by one of
the device's data nodels. The contents MJST be placed in an
appropriate nanespace, to allow the device to detect the
appropriate data nodel, and the contents MJST foll ow the
constraints of that data nodel, as defined by its capability
definition. Capabilities are discussed in Section 8.

Positive Response: |f the device was able to satisfy the request, an
<rpc-reply> is sent containing an <ok> el ement.

Negati ve Response: An <rpc-error> response is sent if the request
cannot be conpleted for any reason.

Exanpl e: The <edit-config> exanples in this section utilize a sinple
data nodel, in which multiple instances of the <interface> el enent
can be present, and an instance is distinguished by the <nane>
el ement within each <interface> el enent.

Set the MIU to 1500 on an interface naned "Ethernet0/0" in the
runni ng configuration

<rpc nessage-i d="101"
xm ns="urn:ietf:parans: xm : ns: netconf: base: 1. 0">
<edi t-config>
<t ar get >
<runni ng/ >
</target>
<confi g>
<top xm ns="http://exanpl e. com schena/ 1. 2/ confi g">
<interface>
<name>Et her net 0/ 0</ nanme>
<nt u>1500</ nt u>
</interface>
</t op>
</ config>
</ edit-config>
</rpc>

Enns, et al. St andards Track [Page 40]

RFC 6241 NETCONF Pr ot ocol June 2011

<rpc-reply message-id="101"
xm ns="urn:ietf:parans: xm :ns: netconf: base: 1. 0">
<ok/ >
</rpc-reply>

Add an interface naned "Ethernet0/0" to the running configuration
replacing any previous interface with that nane:

<rpc nessage-id="101"
xm ns="urn:ietf:paranms: xm : ns: netconf: base: 1. 0" >
<edit-config>
<target >
<runni ng/ >
</target>
<config xm ns: xc="urn:ietf:parans: xm : ns: net conf: base: 1. 0" >
<top xm ns="http://exanpl e. com schena/ 1. 2/ confi g">
<interface xc:operation="replace">
<name>Et her net 0/ 0</ nane>
<mt u>1500</ nt u>
<addr ess>
<nanme>192. 0. 2. 4</ name>
<prefix-1engt h>24</ prefi x-1engt h>
</ addr ess>
</interface>
</t op>
</ config>
</ edit-config>
</rpc>

<rpc-reply nmessage-id="101"
xm ns="urn:ietf:parans: xm : ns: netconf: base: 1. 0">
<ok/ >
</rpc-reply>

Del ete the configuration for an interface naned "Ethernet0/0" from
the running configuration

<rpc nessage-i d="101"
xm ns="urn:ietf:paranms: xm : ns: netconf:base: 1. 0">
<edit-config>

<t arget >
<runni ng/ >

</target>

<def aul t - oper ati on>none</ def aul t - oper ati on>

<config xm ns: xc="urn:ietf:parans: xnm : ns: net conf: base: 1. 0" >
<top xm ns="http://exanpl e. com schena/ 1. 2/ confi g">

<interface xc:operation="del ete">
<nanme>Et her net 0/ 0</ nane>

Enns, et al. St andards Track [Page 41]

RFC 6241 NETCONF Pr ot ocol June 2011

</interface>
</t op>
</ config>
</edit-config>
</rpc>

<rpc-reply message-id="101"
xm ns="urn:ietf:parans: xm :ns: netconf: base: 1. 0">
<ok/ >
</rpc-reply>

Delete interface 192.0.2.4 froman OSPF area (other interfaces
configured in the sane area are unaffected):

<rpc nessage-id="101"
xm ns="urn:ietf:paranms: xm : ns: netconf: base: 1. 0" >
<edit-config>
<target >
<runni ng/ >
</target>
<def aul t - oper ati on>none</ def aul t - oper ati on>
<config xm ns:xc="urn:ietf:paranms: xm : ns: netconf:base: 1. 0">
<top xm ns="http://exanpl e. com schenma/ 1. 2/ confi g">
<pr ot ocol s>
<ospf >
<ar ea>
<nane>0. 0. 0. 0</ nanme>
<interfaces>
<interface xc:operation="del ete">
<name>192. 0. 2. 4</ nanme>
</interface>
</interfaces>
</ ar ea>
</ ospf >
</ pr ot ocol s>
</t op>
</ config>
</ edit-config>
</rpc>

<rpc-reply nmessage-id="101"
xm ns="urn:ietf:parans: xm : ns: netconf: base: 1. 0" >
<ok/ >
</rpc-reply>

Enns, et al. St andards Track [Page 42]

RFC 6241 NETCONF Pr ot ocol June 2011

7.3. <copy-config>

Description: Create or replace an entire configuration datastore
with the contents of another conplete configuration datastore. |If
the target datastore exists, it is overwitten. Oherw se, a new
one is created, if allowed.

If a NETCONF peer supports the :url capability (Section 8.8), the
<url > el enent can appear as the <source> or <target> paraneter

Even if it advertises the :witable-running capability, a device
MAY choose not to support the <running/> configuration datastore
as the <target> paraneter of a <copy-config> operation. A device
MAY choose not to support renote-to-renote copy operations, where
both the <source> and <target> paraneters use the <url> el enent.
If the <source> and <target> paraneters identify the sane URL or
configuration datastore, an error MJST be returned with an error-
tag containing "invalid-val ue"

Par anet ers:

target: Nane of the configuration datastore to use as the
destination of the <copy-config> operation

source: Nanme of the configuration datastore to use as the source
of the <copy-config> operation, or the <config> el enent
contai ning the conplete configuration to copy.

Positive Response: |If the device was able to satisfy the request, an
<rpc-reply> is sent that includes an <ok> el enent.

Negati ve Response: An <rpc-error> elenment is included within the
<rpc-reply> if the request cannot be conpleted for any reason

Exanpl e:

<rpc nessage-i d="101"
xm ns="urn:ietf:paranms: xm :ns: netconf:base: 1. 0">
<copy- confi g>
<t ar get >
<runni ng/ >
</target>
<sour ce>
<url >https://user: password@xanpl e. com cf g/ new. t xt </ url >
</ sour ce>
</ copy- confi g>
</rpc>

Enns, et al. St andards Track [Page 43]

RFC 6241 NETCONF Pr ot ocol June 2011

<rpc-reply message-id="101"
xm ns="urn:ietf:parans: xm :ns: netconf: base: 1. 0">
<ok/ >
</rpc-reply>

7.4. <del ete-config>

Description: Delete a configuration datastore. The <runni ng>
configuration datastore cannot be del et ed.

If a NETCONF peer supports the :url capability (Section 8.8), the
<url > el enent can appear as the <target> paraneter.

Par anet ers:
target: Nane of the configuration datastore to del ete.

Positive Response: |f the device was able to satisfy the request, an
<rpc-reply> is sent that includes an <ok> el enent.

Negati ve Response: An <rpc-error> elenment is included within the
<rpc-reply> if the request cannot be conpleted for any reason

Exanpl e:

<rpc nessage-id="101"
xm ns="urn:ietf:paranms: xm : ns: netconf: base: 1. 0">
<del et e-confi g>
<t ar get >
<startup/>
</target>
</ del et e- confi g>
</rpc>

<rpc-reply nmessage-id="101"
xm ns="urn:ietf:parans: xm : ns: netconf: base: 1. 0">
<ok/ >
</rpc-reply>

7.5. <lock>

Description: The <l ock> operation allows the client to | ock the
entire configuration datastore systemof a device. Such |ocks are
i ntended to be short-lived and allow a client to nake a change
wi thout fear of interaction with other NETCONF clients, non-
NETCONF clients (e.g., SNMP and conmand line interface (CLI)
scripts), and human users.

Enns, et al. St andards Track [Page 44]

RFC 6241 NETCONF Pr ot ocol June 2011

Enns,

An attenpt to lock the configuration datastore MJST fail if an
existing session or other entity holds a | ock on any portion of
the | ock target.

When the lock is acquired, the server MJST prevent any changes to
the | ocked resource other than those requested by this session
SNMP and CLI requests to nodify the resource MJST fail with an
appropriate error.

The duration of the lock is defined as begi nning when the lock is
acquired and lasting until either the lock is released or the
NETCONF session closes. The session closure can be explicitly
performed by the client, or inplicitly perforned by the server
based on criteria such as failure of the underlying transport,
sinmple inactivity timeout, or detection of abusive behavior on the
part of the client. These criteria are dependent on the

i npl enent ati on and the underlying transport.

The <l ock> operation takes a nandatory paranmeter, <target>. The
<target> paraneter nanes the configuration datastore that will be
| ocked. When a lock is active, using the <edit-config> operation
on the | ocked configuration datastore and using the | ocked
configuration as a target of the <copy-config> operation will be
di sal | owed by any ot her NETCONF session. Additionally, the system
will ensure that these | ocked configuration resources will not be
nmodi fi ed by ot her non- NETCONF managenent operations such as SNWP
and CLI. The <kill-session> operation can be used to force the
rel ease of a | ock owned by anot her NETCONF session. It is beyond
the scope of this docunent to define how to break | ocks held by
other entities.

A lock MJUST NOT be granted if any of the following conditions is
true:

* Alock is already held by any NETCONF session or another
entity.

* The target configuration is <candidate>, it has already been
nodi fi ed, and these changes have not been conmitted or rolled
back.

* The target configuration is <running> and another NETCONF
session has an ongoing confirmed conmit (Section 8.4).

The server MUST respond with either an <ok> el enent or an
<rpc-error>,

et al. St andards Track [Page 45]

RFC 6241 NETCONF Pr ot ocol June 2011

A lock will be released by the systemif the session holding the
lock is ternminated for any reason

Par anet ers:
target: Nane of the configuration datastore to |ock

Positive Response: |f the device was able to satisfy the request, an
<rpc-reply> is sent that contains an <ok> el enent.

Negati ve Response: An <rpc-error> elenent is included in the
<rpc-reply> if the request cannot be conpleted for any reason

If the lock is already held, the <error-tag> elenent will be

"l ock-deni ed" and the <error-info> elenent will include the
<session-id> of the lock ower. |If the lock is held by a non-
NETCONF entity, a <session-id> of O (zero) is included. Note that
any other entity performng a |ock on even a partial piece of a
target will prevent a NETCONF | ock (which is global) from being
obtai ned on that target.

Exanpl e: The foll owi ng exanpl e shows a successful acquisition of a
| ock.

<rpc nessage-i d="101"
xm ns="urn:ietf:parans: xm :ns: netconf:base: 1. 0">
<l ock>
<t ar get >
<runni ng/ >
</target>
</l ock>
</rpc>

<rpc-reply message-id="101"
xm ns="urn:ietf:paranms: xm : ns: netconf:base: 1. 0">
<ok/> <!-- |ock succeeded -->
</rpc-reply>

Exanpl e: The followi ng exanple shows a failed attenpt to acquire a
| ock when the lock is already in use.

Enns, et al. St andards Track [Page 46]

RFC 6241 NETCONF Pr ot ocol June 2011

<rpc nessage-i d="101"
xm ns="urn:ietf:parans: xm :ns: netconf: base: 1. 0">
<l ock>
<t ar get >
<runni ng/ >
</target>
</l ock>
</rpc>

<rpc-reply message-id="101"
xm ns="urn:ietf:paranms: xm : ns: netconf: base: 1. 0">
<rpc-error> <!-- |lock failed -->
<error-type>protocol </error-type>
<error-tag>l ock-deni ed</error-tag>
<error-severity>error</error-severity>
<error-nessage>
Lock failed, lock is already held
</ error-nessage>
<error-info>
<sessi on-i d>454</ sessi on-i d>
<I-- lock is held by NETCONF session 454 -->
</error-info>
</rpc-error>
</rpc-reply>

7.6. <unl ock>

Description: The <unlock> operation is used to release a
configuration | ock, previously obtained with the <l ock> operation

An <unl ock> operation will not succeed if either of the foll ow ng
conditions is true:

* The specified lock is not currently active.

* The session issuing the <unl ock> operation is not the sanme
session that obtained the | ock

The server MUST respond with either an <ok> el enent or an
<rpc-error>,

Par anet ers:
target: Nane of the configuration datastore to unl ock

A NETCONF client is not pernmitted to unlock a configuration
datastore that it did not |ock

Enns, et al. St andards Track [Page 47]

RFC 6241 NETCONF Pr ot ocol June 2011

Positive Response: |f the device was able to satisfy the request, an
<rpc-reply> is sent that contains an <ok> el enment.

Negati ve Response: An <rpc-error> elenment is included in the
<rpc-reply> if the request cannot be conpleted for any reason

Exanpl e:

<rpc nessage-id="101"
xm ns="urn:ietf:paranms: xm : ns: netconf: base: 1. 0" >
<unl ock>
<target >
<runni ng/ >
</target>
</ unl ock>
</rpc>

<rpc-reply message-id="101"
xm ns="urn:ietf:parans: xm : ns: netconf: base: 1. 0">
<ok/ >
</rpc-reply>

7.7. <get>

Description: Retrieve running configuration and device state
i nformation.

Par anet ers:

filter: This paraneter specifies the portion of the system
configuration and state data to retrieve. |If this paraneter is
not present, all the device configuration and state infornation
i s returned.

The <filter> elenent MAY optionally contain a "type" attribute.
This attribute indicates the type of filtering syntax used
within the <filter> elenment. The default filtering nechanism
in NETCONF is referred to as subtree filtering and is descri bed
in Section 6. The value "subtree" explicitly identifies this
type of filtering.

If the NETCONF peer supports the :xpath capability

(Section 8.9), the value "xpath" MAY be used to indicate that
the "select" attribute of the <filter> el enent contains an
XPat h expressi on.

Enns, et al. St andards Track [Page 48]

RFC 6241 NETCONF Pr ot ocol June 2011

Positive Response: |f the device was able to satisfy the request, an
<rpc-reply> is sent. The <data> section contains the appropriate
subset .

Negati ve Response: An <rpc-error> elenent is included in the
<rpc-reply> if the request cannot be conpleted for any reason

Exanpl e:

<rpc nessage-id="101"
xm ns="urn:ietf:paranms: xm : ns: netconf: base: 1. 0">
<get >
<filter type="subtree">
<top xm ns="http://exanpl e.com schema/ 1. 2/ stats">
<interfaces>
<interface>
<i f Name>et h0</i f Name>
</interface>
</interfaces>
</t op>
</[filter>
</ get >
</rpc>

<rpc-reply nmessage-id="101"
xm ns="urn:ietf:parans: xm :ns: netconf:base: 1. 0">
<dat a>
<top xm ns="http://exanpl e.com schema/ 1. 2/stats">
<i nterfaces>
<interface>
<i f Name>et hO</ i f Nane>
<iflnCctets>45621</iflnCct et s>
<i f Qut Cct et s>774344</i f Qut Cct et s>
</interface>
</interfaces>
</t op>
</ dat a>
</rpc-reply>

7.8. <cl ose-session>
Description: Request graceful term nation of a NETCONF session
Wien a NETCONF server receives a <cl ose-session> request, it wll
gracefully close the session. The server will release any |ocks
and resources associated with the session and gracefully cl ose any

associ ated connections. Any NETCONF requests received after a
<cl ose-sessi on> request will be ignored.

Enns, et al. St andards Track [Page 49]

RFC 6241 NETCONF Pr ot ocol June 2011

Positive Response: |f the device was able to satisfy the request, an
<rpc-reply> is sent that includes an <ok> el enment.

Negati ve Response: An <rpc-error> elenment is included in the
<rpc-reply> if the request cannot be conpleted for any reason

Exanpl e:

<rpc nessage-id="101"
xm ns="urn:ietf:paranms: xm : ns: netconf: base: 1. 0" >
<cl ose-session/ >
</rpc>

<rpc-reply nmessage-id="101"
xm ns="urn:ietf:paranms: xm : ns: netconf:base: 1. 0">
<ok/ >
</rpc-reply>

7.9. <kill-session>
Description: Force the term nation of a NETCONF session

When a NETCONF entity receives a <kill-session> request for an
open session, it will abort any operations currently in process
rel ease any | ocks and resources associated with the session, and
cl ose any associ ated connecti ons.

If a NETCONF server receives a <kill-session> request while
processing a confirmed conmmt (Section 8.4), it MJIST restore the
configuration to its state before the confirmed commt was issued.

O herwi se, the <kill-session> operation does not roll back
configuration or other device state nodifications nade by the
entity holding the | ock
Par anet ers:
session-id: Session identifier of the NETCONF session to be
termnated. |If this value is equal to the current session |ID
an "invalid-value" error is returned.

Positive Response: |f the device was able to satisfy the request, an
<rpc-reply> is sent that includes an <ok> el enent.

Negati ve Response: An <rpc-error> elenment is included in the
<rpc-reply> if the request cannot be conpleted for any reason

Enns, et al. St andards Track [Page 50]

RFC 6241 NETCONF Pr ot ocol June 2011

Exanpl e:

<rpc nessage-id="101"
xm ns="urn:ietf:paranms: xm : ns: netconf: base: 1. 0" >

<kill - sessi on>
<sessi on-i d>4</ sessi on-i d>
</kill-session>
</rpc>

<rpc-reply message-id="101"
xm ns="urn:ietf:paranms: xm : ns: netconf: base: 1. 0">
<ok/ >
</rpc-reply>

8. Capabilities

This section defines a set of capabilities that a client or a server
MAY i npl enent. Each peer advertises its capabilities by sending them
during an initial capabilities exchange. Each peer needs to
understand only those capabilities that it m ght use and MJST ignore
any capability received fromthe other peer that it does not require
or does not understand.

Addi tional capabilities can be defined using the tenplate in
Appendi x D. Future capability definitions can be published as
standards by standards bodi es or published as proprietary extensions.

A NETCONF capability is identified with a URI. The base capabilities
are defined using URNs follow ng the nmethod described in RFC 3553

[RFC3553]. Capabilities defined in this docunent have the follow ng
fornmat:

urn:ietf:parans: netconf:capability: {name}:1.x

where {nane} is the name of the capability. Capabilities are often
referenced in discussions and enail using the shorthand :{nane}, or
:{nane}:{version} if the capability exists in multiple versions. For
exanpl e, the foo capability would have the fornmal name
"urn:ietf:parans: netconf:capability:foo:1.0" and be called ":foo"

The shorthand form MUST NOT be used inside the protocol

8.1. Capabilities Exchange
Capabilities are advertised in nessages sent by each peer during
session establishment. Wen the NETCONF session is opened, each peer

(both client and server) MIST send a <hell o> el ement containing a
list of that peer’s capabilities. Each peer MIST send at |east the

Enns, et al. St andards Track [Page 51]

RFC 6241 NETCONF Pr ot ocol June 2011

base NETCONF capability, "urn:ietf:parans: netconf:base:1.1". A peer
MAY i ncl ude capabilities for previous NETCONF versions, to indicate
that it supports multiple protocol versions.

Bot h NETCONF peers MJST verify that the other peer has advertised a
conmon protocol version. Wen conparing protocol version capability
URI's, only the base part is used, in the event any paraneters are
encoded at the end of the URI string. |If no protocol version
capability in common is found, the NETCONF peer MJUST NOT continue the
session. If nore than one protocol version URl in conmon is present,
then the highest nunbered (nobst recent) protocol version MJST be used
by bot h peers.

A server sending the <hello> el ement MJUST include a <session-id>
el ement containing the session ID for this NETCONF session. A client
sendi ng the <hell o> el ement MJST NOT include a <session-id> el ement.

A server receiving a <hell o> nessage with a <session-id> el enent MJST
term nate the NETCONF session. Simlarly, a client that does not
receive a <session-id> elenent in the server’'s <hell o> nessage MJST
term nate the NETCONF session (w thout first sending a

<cl ose-sessi on>).

In the followi ng exanple, a server advertises the base NETCONF
capability, one NETCONF capability defined in the base NETCONF
document, and one inpl ementation-specific capability.

<hell 0o xm ns="urn:ietf:parans: xm : ns: net conf: base: 1. 0" >
<capabilities>
<capability>
urn:ietf:parans: netconf:base: 1.1
</ capability>
<capability>
urn:ietf:parans: netconf:capability:startup:1.0
</ capability>
<capability>
http://exanpl e. net/router/2. 3/ nyfeature
</ capability>
</capabilities>
<sessi on-i d>4</ sessi on-i d>
</ hel | o>

Each peer sends its <hell o> el enent sinultaneously as soon as the

connection is open. A peer MIST NOT wait to receive the capability
set fromthe other side before sending its own set.

Enns, et al. St andards Track [Page 52]

RFC 6241 NETCONF Pr ot ocol June 2011

8.

8.

2. Witabl e-Running Capability
2.1. Description

The :witable-running capability indicates that the device supports
direct wites to the <running> configuration datastore. |n other

wor ds, the device supports <edit-config> and <copy-confi g> operations
where the <running> configuration is the target.

.2.2. Dependencies

None.
2.3. Capability Identifier

The :witable-running capability is identified by the follow ng
capability string:

urn:ietf:parans: netconf:capability:witable-running: 1.0

.2.4. New Qperations

None.

.2.5. Modifications to Existing Operations

2.5.1. <edit-config>

The :witable-running capability nodifies the <edit-config> operation
to accept the <running> el enent as a <target>.

.2.5.2. <copy-config>

The :witable-running capability nodifies the <copy-config> operation
to accept the <running> el enent as a <target>.

.3. Candidate Configuration Capability

.3.1. Description

The candi date configuration capability, :candidate, indicates that
the device supports a candi date configuration datastore, which is
used to hold configuration data that can be nani pul ated wit hout

i mpacting the device's current configuration. The candidate
configuration is a full configuration data set that serves as a work
pl ace for creating and mani pul ati ng configuration data. Additions,
del etions, and changes can be nade to this data to construct the

Enns, et al. St andards Track [Page 53]

RFC 6241 NETCONF Pr ot ocol June 2011

desired configuration data. A <commit> operation MAY be perfornmed at
any tinme that causes the device's running configuration to be set to
the val ue of the candi date configuration

The <commit> operation effectively sets the running configuration to
the current contents of the candidate configuration. Wile it could
be nodel ed as a sinple copy, it is done as a distinct operation for a
number of reasons. |In keeping high-level concepts as first-class
operations, we allow developers to see nore clearly both what the
client is requesting and what the server must perform This keeps
the intentions nore obvious, the special cases |ess conplex, and the
i nteracti ons between operations nore straightforward. For exanpl e,
the :confirned-commit: 1.1 capability (Section 8.4) would make no
sense as a "copy confirmed" operation

The candi date configuration can be shared anong nultipl e sessions.
Unl ess a client has specific information that the candi date
configuration is not shared, it MJST assune that other sessions are
able to nodify the candi date configuration at the sane tine. It is
therefore prudent for a client to | ock the candi date configuration
before nodifying it.
The client can discard any uncomm tted changes to the candi date
configuration by executing the <discard-changes> operation. This
operation reverts the contents of the candidate configuration to the
contents of the running configuration

8.3.2. Dependencies
None.

8.3.3. Capability ldentifier

The :candidate capability is identified by the follow ng capability
string:

urn:ietf: parans: netconf:capability: candidate: 1.0
8.3.4. New Qperations
8.3.4.1. <commit>
Descri ption:
When the candi date configuration’'s content is conplete, the
configuration data can be committed, publishing the data set to

the rest of the device and requesting the device to conformto
t he behavi or described in the new configuration

Enns, et al. St andards Track [Page 54]

RFC 6241

Posi ti

Negat i

Exanpl

NETCONF Pr ot ocol June 2011

To comit the candidate configuration as the device's new
current configuration, use the <commit> operation

The <commit> operation instructs the device to inplenment the
configuration data contained in the candi date configuration
If the device is unable to commit all of the changes in the
candi date configuration datastore, then the running
configuration MIST remai n unchanged. |If the device does
succeed in commtting, the running configuration MJST be
updated with the contents of the candi date configuration

If the running or candidate configuration is currently |ocked
by a different session, the <conmit> operation MJST fail wth
an <error-tag> value of "in-use"

If the system does not have the :candidate capability, the
<commit> operation is not avail able.

ve Response

If the device was able to satisfy the request, an <rpc-reply>
is sent that contains an <ok> el ement.

ve Response

An <rpc-error> element is included in the <rpc-reply> if the
request cannot be conpleted for any reason

e:

<rpc nessage-i d="101"

xm ns="urn:ietf:parans: xm : ns: netconf:base: 1. 0">

<conmi t/ >
</rpc>

<rpc-reply nmessage-id="101"

xm ns="urn:ietf:parans: xm : ns: netconf: base: 1. 0">

<ok/ >
</rpc-reply>

8.3.4.2.

<di scar d- changes>

If the client decides that the candidate configuration is not to be
committed, the <discard-changes> operation can be used to revert the
candi date configuration to the current running configuration

Enns, et

al . St andards Track [Page 55]

RFC 6241 NETCONF Pr ot ocol June 2011

<rpc nessage-i d="101"
xm ns="urn:ietf:parans: xm :ns: netconf: base: 1. 0">
<di scar d- changes/ >
</rpc>

Thi s operation discards any unconmitted changes by resetting the
candi date configuration with the content of the running
configuration.

8.3.5. Modifications to Existing Qperations
8.3.5.1. <get-config> <edit-config> <copy-config> and <validate>

The candi date configuration can be used as a source or target of any
<get-config> <edit-config> <copy-config> or <validate> operation
as a <source> or <target> paraneter. The <candi date> elenment is used
to indicate the candi date configuration

<rpc nessage-i d="101"
xm ns="urn:ietf:parans: xm :ns: netconf: base: 1. 0">
<get - confi g>
<sour ce>
<candi dat e/ >
</ sour ce>
</ get-config>
</rpc>

8.3.5.2. <lock> and <unl ock>

The candi date configuration can be | ocked using the <l ock> operation
with the <candi date> el enent as the <target> paraneter:

<rpc nessage-id="101"
xm ns="urn:ietf:paranms: xm : ns: netconf: base: 1. 0">
<l ock>
<target >
<candi dat e/ >
</target>
</l ock>
</rpc>

Simlarly, the candidate configuration is unl ocked using the
<candi date> el enent as the <target> paraneter:

Enns, et al. St andards Track [Page 56]

RFC 6241 NETCONF Pr ot ocol June 2011

<rpc nessage-i d="101"
xm ns="urn:ietf:parans: xm :ns: netconf: base: 1. 0">
<unl ock>
<t ar get >
<candi dat e/ >
</target>
</ unl ock>
</rpc>

When a client fails with outstandi ng changes to the candidate
configuration, recovery can be difficult. To facilitate easy
recovery, any outstandi ng changes are di scarded when the lock is
rel eased, whether explicitly with the <unl ock> operation or
implicitly fromsession failure

8.4. Confirnmed Commit Capability
8.4.1. Description

The :confirned-commit: 1.1 capability indicates that the server wll
support the <cancel -conmt> operation and the <confirmed>,
<confirmtimeout>, <persist> and <persist-id> paraneters for the
<commit> operation. See Section 8.3 for further details on the
<commi t > operation.

A confirmed <conmit> operation MIST be reverted if a confirmng
comrmit is not issued within the timeout period (by default 600
seconds = 10 minutes). The confirmng comrit is a <conmit> operation
wi t hout the <confirmed> paraneter. The tineout period can be
adjusted with the <confirmtinmeout> paraneter. |If a follow up
confirnmed <commit> operation is issued before the timer expires, the
timer is reset to the new value (600 seconds by default). Both the
confirmng commt and a followup confirned <commit> operation NMAY

i ntroduce additional changes to the configuration

If the <persist> elenent is not given in the confirned comit
operation, any followup comit and the confirnmng comit MJIST be

i ssued on the sanme session that issued the confirmed conmit. |If the
<persist> elenment is given in the confirned <comit> operation, a
followup commit and the confirmng commit can be given on any
session, and they MJST include a <persist-id> element with a val ue
equal to the given value of the <persist> el enent.

If the server also advertises the :startup capability, a

<copy-config> fromrunning to startup is al so necessary to save the
changes to startup.

Enns, et al. St andards Track [Page 57]

RFC 6241 NETCONF Pr ot ocol June 2011

If the session issuing the confirmed conmit is termnated for any
reason before the confirmtineout expires, the server MIST restore
the configuration to its state before the confirmed conmit was

i ssued, unless the confirmed conmit al so included a <persist>

el ement .

If the device reboots for any reason before the confirmtineout
expires, the server MJST restore the configuration to its state
before the confirmed commit was issued.

If a confirmng conmt is not issued, the device will revert its
configuration to the state prior to the issuance of the confirned
commit. To cancel a confirned conmit and revert changes wi t hout
waiting for the confirmtineout to expire, the client can explicitly
restore the configuration to its state before the confirnmed conmit
was issued, by using the <cancel -conmm t> operation

For shared configurations, this feature can cause other configuration
changes (for exanple, via other NETCONF sessions) to be inadvertently
altered or renoved, unless the configuration |ocking feature is used
(in other words, the lock is obtained before the <edit-config>
operation is started). Therefore, it is strongly suggested that in
order to use this feature with shared configurati on datastores
configuration | ocking SHOULD al so be used.

Version 1.0 of this capability was defined in [RFC4741]. Version 1.1
is defined in this docunent, and extends version 1.0 by adding a new
operation, <cancel-comit>, and two new optional paraneters,
<persist> and <persist-id> For backwards conpatibility with old
clients, servers conformng to this specification MAY advertise
version 1.0 in addition to version 1.1.

8.4.2. Dependencies

The :confirned-commit: 1.1 capability is only relevant if the
:candi date capability is al so supported.

8.4.3. Capability ldentifier

The :confirned-commit: 1.1 capability is identified by the foll ow ng
capability string:

urn:ietf:parans: netconf:capability:confirned-commit:1. 1

Enns, et al. St andards Track [Page 58]

RFC 6241 NETCONF Pr ot ocol June 2011

8.4.4. New Operations
8.4.4.1. <cancel-conmit>
Descri ption:

Cancel s an ongoing confirmed commit. |If the <persist-id>
paraneter is not given, the <cancel-comit> operation MJST be
i ssued on the sanme session that issued the confirmed conmit.

Par anet ers:
persist-id:

Cancel s a persistent confirmed commit. The val ue MJST be
equal to the value given in the <persist> paraneter to the
<commit> operation. |If the value does not match, the
operation fails with an "invalid-value" error

Posi ti ve Response

If the device was able to satisfy the request, an <rpc-reply>
is sent that contains an <ok> el enment.

Negati ve Response

An <rpc-error> element is included in the <rpc-reply> if the
request cannot be conpleted for any reason

Exanpl e:

<rpc nessage-id="101"
xm ns="urn:ietf:paranms: xm : ns: netconf: base: 1. 0">
<commi t >
<confirmed/ >
</ conmit >
</rpc>

<rpc-reply message-id="101"
xm ns="urn:ietf:paranms: xm : ns: netconf: base: 1. 0" >
<ok/ >
</rpc-reply>

<rpc nessage-i d="102"
xm ns="urn:ietf:paranms: xm : ns: netconf:base: 1. 0">
<cancel -commi t/>
</rpc>

Enns, et al. St andards Track [Page 59]

RFC 6241 NETCONF Pr ot ocol June 2011

<rpc-reply nmessage-id="102"
xm ns="urn:ietf:parans: xm :ns: netconf: base: 1. 0">
<ok/ >
</rpc-reply>

8.4.5. Modifications to Existing Operations
8.4.5.1. <commit>

The :confirned-commit: 1.1 capability allows 4 additional paraneters
to the <commit> operation

Par anet ers:
confirned:
Performa confirmed <conmit> operation.
confirmtimeout:

Ti meout period for confirmed cormit, in seconds. |If
unspecified, the confirmtinmout defaults to 600 seconds.

persi st:

Make the confirned conmt survive a session term nation, and
set a token on the ongoing confirmed commit.

persist-id:

Used to issue a followup confirmed commit or a confirmng
commit from any session, with the token fromthe previous
<conmi t > operati on.

Exanpl e:

<rpc nessage-i d="101"
xm ns="urn:ietf:paranms: xm :ns: netconf:base: 1. 0">
<commi t >
<confirmed/ >
<confirmtimeout>120</confirmti meout >
</conmit >
</rpc>

<rpc-reply message-id="101"
xm ns="urn:ietf:paranms: xm : ns: netconf: base: 1. 0" >
<ok/ >
</rpc-reply>

Enns, et al. St andards Track [Page 60]

RFC 6241 NETCONF Pr ot ocol June 2011

8. 5.

8. 5.

Exanpl e:

<l-- start a persistent confirned-commit -->
<rpc nmessage-id="101"
xm ns="urn:ietf:parans: xm : ns: netconf: base: 1. 0">
<commit >
<confirned/ >
<persi st >l Q d4668</ per si st >
</ conmi t >
</rpc>

<rpc-reply nmessage-id="101"
xm ns="urn:ietf:parans: xm :ns: netconf: base: 1. 0">
<ok/ >
</rpc-reply>

<I-- confirmthe persistent confirnmed-comt,
possi bly from anot her session -->
<rpc nessage-i d="102"
xm ns="urn:ietf:parans: xm :ns: netconf: base: 1. 0">
<conmi t >
<persist-id>l Q d4668</ persi st-id>
</conm t >
</rpc>

<rpc-reply nmessage-id="102"
xm ns="urn:ietf:paranms: xm : ns: netconf: base: 1. 0">
<ok/ >
</rpc-reply>
Rol | back-on-Error Capability
1. Description

This capability indicates that the server will support the

"rol | back-on-error"” value in the <error-option> paraneter to the
<edi t-config> operation.

For shared configurations, this feature can cause other configuration
changes (for exanple, via other NETCONF sessions) to be inadvertently
altered or renoved, unless the configuration |ocking feature is used

(in other words,

the |l ock is obtained before the <edit-config>

operation is started). Therefore, it is strongly suggested that in
order to use this feature with shared configuration datastores
configuration | ocking al so be used.

Enns,

et al.

St andards Track [Page 61]

RFC 6241 NETCONF Pr ot ocol June 2011

8.5.2. Dependencies
None.
8.5.3. Capability ldentifier

The :roll back-on-error capability is identified by the follow ng
capability string:

urn:ietf:parans: netconf:capability:roll back-on-error:1.0
8.5.4. New Operations
None.
8.5.5. Modifications to Existing Operations
8.5.5.1. <edit-config>

The :roll back-on-error capability allows the "roll back-on-error”
value to the <error-option> paraneter on the <edit-config> operation

<rpc nessage-id="101"
xm ns="urn:ietf:parans: xm : ns: netconf: base: 1. 0">
<edit-config>
<target>
<runni ng/ >
</target>
<error-option>roll back-on-error</error-option>
<confi g>
<top xm ns="http://exanpl e. com schena/ 1. 2/ confi g">
<interface>
<nane>Et her net 0/ 0</ nanme>
<mt u>100000</ nt u>
</interface>
</t op>
</ config>
</ edit-config>
</rpc>

<rpc-reply nmessage-id="101"
xm ns="urn:ietf:parans: xm : ns: netconf: base: 1. 0" >
<ok/ >
</rpc-reply>

Enns, et al. St andards Track [Page 62]

RFC 6241 NETCONF Pr ot ocol June 2011

8.6. Validate Capability

8.6.1. Description
Val i dati on consists of checking a conplete configuration for
syntactical and semantic errors before applying the configuration to
t he device
If this capability is advertised, the device supports the <validate>
protocol operation and checks at |east for syntax errors. In
addition, this capability supports the <test-option> paraneter to the
<edit-config> operation and, when it is provided, checks at |east for
syntax errors.
Version 1.0 of this capability was defined in [RFC4741]. Version 1.1
is defined in this docunent, and extends version 1.0 by adding a new
val ue, "test-only", to the <test-option> paraneter of the
<edit-config> operation. For backwards conpatibility with old
clients, servers conformng to this specification MAY advertise
version 1.0 in addition to version 1.1.

8.6.2. Dependencies
None.

8.6.3. Capability ldentifier

The :validate:1.1 capability is identified by the foll ow ng
capability string:

urn:ietf:parans: netconf:capability:validate: 1.1
8.6.4. New Qperations
8.6.4.1. <validate>
Descri ption:

This protocol operation validates the contents of the specified
configuration.

Par anet ers:
sour ce:
Name of the configuration datastore to validate, such as

<candi date>, or the <config> el ement containing the conplete
configuration to validate.

Enns, et al. St andards Track [Page 63]

RFC 6241 NETCONF Pr ot ocol June 2011

Positive Response

If the device was able to satisfy the request, an <rpc-reply>
is sent that contains an <ok> el enent.

Negati ve Response

An <rpc-error> element is included in the <rpc-reply> if the
request cannot be conpleted for any reason

A <val idate> operation can fail for a nunber of reasons, such
as syntax errors, mssing paraneters, references to undefined
configuration data, or any other violations of rules
establ i shed by the underlying data nodel.

Exanpl e:

<rpc nessage-i d="101"
xm ns="urn:ietf:parans: xm : ns: netconf: base: 1. 0">
<val i dat e>
<sour ce>
<candi dat e/ >
</ sour ce>
</val i dat e>
</rpc>

<rpc-reply message-id="101"
xm ns="urn:ietf:paranms: xm : ns: netconf: base: 1. 0" >
<ok/ >
</rpc-reply>

8.6.5. Modifications to Existing Qperations
8.6.5.1. <edit-config>

The :validate:1.1 capability nodifies the <edit-config> operation to
accept the <test-option> paraneter.

8.7. Distinct Startup Capability
8.7.1. Description

The devi ce supports separate running and startup configuration
datastores. The startup configuration is |oaded by the device when
it boots. QOperations that affect the running configuration will not
be automatically copied to the startup configuration. An explicit
<copy-config> operation fromthe <running> to the <startup> is used
to update the startup configuration to the current contents of the

Enns, et al. St andards Track [Page 64]

RFC 6241 NETCONF Pr ot ocol June 2011
runni ng configuration. NETCONF protocol operations refer to the
startup datastore using the <startup> el enent.

8.7.2. Dependencies
None.

8.7.3. Capability ldentifier

The :startup capability is identified by the followi ng capability
string:

urn:ietf:parans: netconf:capability:startup:1.0
8.7.4. New Qperations
None.
8.7.5. Modifications to Existing Qperations
8.7.5.1. Genera
The :startup capability adds the <startup/> configuration datastore

to argunents of several NETCONF operations. The server MJST support
the foll ow ng additional val ues:

<get -confi g> <sour ce>

<copy-confi g> <source> <target>

<l ock>	<target>	

<unl ock>	<target>	
<validate>	<source>	I'f :validate:1.1

| | | is advertised |
| | | |
| <del ete-config> | <target> | Resets the device

| | | toits factory

| | | defaults |
e e e ek o e e e e e e e e e e e ek +

To save the startup configuration, use the <copy-config> operation to
copy the <running> configuration datastore to the <startup>
configuration datastore.

Enns, et al. St andards Track [Page 65]

RFC 6241 NETCONF Pr ot ocol June 2011

<rpc nessage-i d="101"
xm ns="urn:ietf:parans: xm :ns: netconf: base: 1. 0">
<copy- confi g>
<t arget >
<startup/>
</target>
<sour ce>
<runni ng/ >
</ sour ce>
</ copy- confi g>
</rpc>
8.8. URL Capability
8.8.1. Description
The NETCONF peer has the ability to accept the <url> element in
<source> and <target> paraneters. The capability is further
identified by URL argunments indicating the URL schenmes support ed.
8.8.2. Dependencies
None.
8.8.3. Capability ldentifier
The :url capability is identified by the follow ng capability string:
urn:ietf: parans: netconf:capability:url:1. 0?scheme={nane, ...}
The :url capability URI MJST contain a "schenme" argunent assigned a
conma- separated |ist of scheme names indicating which schenes the
NETCONF peer supports. For exanpl e:
urn:ietf:paranms: netconf:capability:url:1. 0?scheme=http,ftp,file
8.8.4. New Operations
None.
8.8.5. Modifications to Existing Operations
8.8.5.1. <edit-config>

The :url capability nodifies the <edit-config> operation to accept
the <url> elenment as an alternative to the <config> paraneter.

Enns, et al. St andards Track [Page 66]

RFC 6241 NETCONF Pr ot ocol June 2011

The file that the url refers to contains the configuration data
hi erarchy to be nodified, encoded in XM. under the el enent <config>
in the "urn:ietf:paranms: xm :ns: netconf: base: 1. 0" nanespace.

8.8.5.2. <copy-config>
The :url capability nodifies the <copy-config> operation to accept
the <url> el ement as the value of the <source> and the <target>
par anmeters
The file that the url refers to contains the conplete datastore,
encoded in XM. under the el enent <config> in the
"urn:ietf:parans: xnl : ns: netconf: base: 1. 0" nanmespace.

8.8.5.3. <delete-config>

The :url capability nodifies the <del ete-config> operation to accept
the <url> elenent as the value of the <target> paraneters.

8.8.5.4. <validate>

The :url capability nodifies the <validate> operation to accept the
<url> elenent as the value of the <source> paraneter.

8.9. XPath Capability

8.9.1. Description
The XPath capability indicates that the NETCONF peer supports the use
of XPath expressions in the <filter> elenent. XPath is described in
[WBC. REC- xpat h- 19991116] .
The data nodel used in the XPath expression is the sane as that used
in XPath 1.0 [WBC. REC- xpat h-19991116], with the same extension for
root node children as used by XSLT 1.0 ([WBC. REC-xslt-19991116],
Section 3.1). Specifically, it neans that the root node MAY have any
nunmber of el ement nodes as its children.
The XPath expression is evaluated in the follow ng context:

o The set of nanmespace decl arations are those in scope on the
<filter> el ement.

0 The set of variable bindings is defined by the data nodel. If no
such variabl e bindings are defined, the set is enpty.

o The function library is the core function library, plus any
functions defined by the data nodel.

Enns, et al. St andards Track [Page 67]

RFC 6241 NETCONF Pr ot ocol June 2011

o The context node is the root node.

The XPath expression MJST return a node set. |If it does not return a
node set, the operation fails with an "invalid-value" error.

The response nessage contains the subtrees selected by the filter
expression. For each such subtree, the path fromthe data nodel root
node down to the subtree, including any el ements or attributes
necessary to uniquely identify the subtree, are included in the
response nmessage. Specific data instances are not duplicated in the
response.

8.9.2. Dependencies
None.
8.9.3. Capability ldentifier

The : xpath capability is identified by the follow ng capability
string:

urn:ietf:parans: netconf:capability: xpath:1.0
8.9.4. New Operations
None.
8.9.5. Modifications to Existing Operations
8.9.5.1. <get-config> and <get >

The : xpath capability nodifies the <get> and <get-config> operations
to accept the value "xpath" in the "type" attribute of the <filter>
el ement. Wen the "type" attribute is set to "xpath", a "select"
attribute MJST be present on the <filter> elenent. The "select"”
attribute will be treated as an XPath expression and used to filter
the returned data. The <filter> elenent itself MJIST be enpty in this
case.

The XPath result for the select expression MJST be a node-set. Each
node in the node-set MJST correspond to a node in the underlying data
nodel . In order to properly identify each node, the follow ng
encodi ng rul es are defi ned:

o Al ancestor nodes of the result node MJUST be encoded first, so

the <data> el enent returned in the reply contains only fully
speci fied subtrees, according to the underlying data nodel.

Enns, et al. St andards Track [Page 68]

RFC 6241 NETCONF Pr ot ocol June 2011

o |If any sibling or ancestor nodes of the result node are needed to
identify a particular instance within a conceptual data structure,
then these nodes MJUST al so be encoded in the response.

For exanpl e:
<rpc nessage-i d="101"

xm ns="urn:ietf:parans: xm :ns: netconf: base: 1. 0">
<get - confi g>

<sour ce>
<runni ng/ >
</ sour ce>
<l-- get the user naned fred -->
<filter xmns:t="http://exanple.con schema/ 1. 2/config"
t ype="xpat h"

select="/t:top/t:users/t:user[t:name="fred]"/>
</ get-config>
</rpc>

<rpc-reply nmessage-id="101"
xm ns="urn:ietf:paranms: xm : ns: netconf: base: 1. 0" >

<dat a>
<top xm ns="http://exanpl e. com schenma/ 1. 2/ confi g">
<users>
<user >
<nane>f r ed</ nane>
<conpany-i nf o>
<id>2</id>
</ conpany-i nf o>
</ user>
</ users>
</t op>
</ dat a>

</rpc-reply>
9. Security Considerations

Thi s section provides security considerations for the base NETCONF
nmessage | ayer and the base operations of the NETCONF protocol
Security considerations for the NETCONF transports are provided in
the transport docunments, and security considerations for the content
mani pul at ed by NETCONF can be found in the docunents defining data
nodel s.

Thi s docunent does not specify an authorization schene, as such a
schene will likely be tied to a nmeta-data nodel or a data nodel

| mpl enentors SHOULD provi de a conprehensive authorization scheme with
NETCONF.

Enns, et al. St andards Track [Page 69]

RFC 6241 NETCONF Pr ot ocol June 2011

Aut hori zation of individual users via the NETCONF server nay or nay
not map 1:1 to other interfaces. First, the data nodels m ght be

i nconpatible. Second, it could be desirable to authorize based on
mechani snms avail able in the Secure Transport |ayer (e.g., SSH, Bl ocks
Ext ensi bl e Exchange Protocol (BEEP), etc.).

In addition, operations on configurations could have unintended
consequences if those operations are also not guarded by the gl oba
lock on the files or objects being operated upon. For instance, if
the running configuration is not |ocked, a partially conplete access
list could be commtted fromthe candi date configurati on unbeknownst
to the owner of the |Iock of the candidate configuration, leading to
ei ther an insecure or inaccessible device.

Configuration information is by its very nature sensitive. |Its
transmi ssion in the clear and without integrity checking |eaves

devi ces open to classic eavesdropping and fal se data injection
attacks. Configuration information often contains passwords, user
nanes, service descriptions, and topol ogical information, all of

whi ch are sensitive. Because of this, this protocol SHOULD be

i npl emented carefully with adequate attention to all manner of attack
one might expect to experience with other managenent interfaces.

The protocol, therefore, MJUST mninmally support options for both

confidentiality and authentication. It is anticipated that the
underlying protocol (SSH, BEEP, etc.) will provide for both
confidentiality and authentication, as is required. It is further

expected that the identity of each end of a NETCONF session wll be
available to the other in order to determ ne authorization for any
given request. One could also easily envision additiona

i nformati on, such as transport and encryption nethods, being nade
avail abl e for purposes of authorization. NETCONF itself provides no
nmeans to re-authenticate, nmuch | ess authenticate. Al such actions
occur at |ower |ayers.

Different environnents may well allow different rights prior to and
then after authentication. Thus, an authorization nodel is not
specified in this docunent. Wien an operation is not properly

aut hori zed, a sinple "access denied" is sufficient. Note that

aut hori zation informati on can be exchanged in the form of
configuration information, which is all the nore reason to ensure the
security of the connection.

That having been said, it is inportant to recognize that some
operations are clearly nore sensitive by nature than others. For

i nstance, <copy-config> to the startup or running configurations is
clearly not a normal provisioning operation, whereas <edit-config>
is. Such global operations MJST disallow the changing of information

Enns, et al. St andards Track [Page 70]

RFC 6241 NETCONF Pr ot ocol June 2011

10.

10.

10.

that an individual does not have authorization to perform For
exanple, if user Ais not allowed to configure an I P address on an
interface but user B has configured an I P address on an interface in
t he <candi date> configuration, user A MUST NOT be allowed to comnrt
t he <candi dat e> configuration.

Simlarly, just because soneone says "go wite a configuration
through the URL capability at a particular place", this does not nean
that an element will do it w thout proper authorization.

The <l ock> operation will denonstrate that NETCONF is intended for
use by systens that have at |east sone trust of the adm nistrator.
As specified in this docunent, it is possible to |ock portions of a
configuration that a principal night not otherw se have access to.
After all, the entire configuration is |locked. To nitigate this
problem there are two approaches. It is possible to kill another
NETCONF session programmatically fromw thin NETCONF i f one knows the
session identifier of the offending session. The other possible way
to break a lock is to provide a function within the device's native
user interface. These two nechanisns suffer froma race condition
that could be aneliorated by renoving the offending user froman

Aut henti cation, Authorization, and Accounting (AAA) server. However,
such a solution is not useful in all deploynent scenarios, such as
those where SSH public/private key pairs are used.

| ANA Consi derati ons
1. NETCONF XM. Nanespace

This docunent registers a URI for the NETCONF XML nanespace in the
| ETF XM. registry [RFC3688].

| ANA has updated the following URI to reference this docunent.
URI: urn:ietf:parans: xm : ns: netconf: base: 1.0

Regi strant Contact: The | ESG

XM.: N A, the requested URI is an XM. nanespace.

2. NETCONF XML Schema

This docunent registers a URI for the NETCONF XM. schenma in the | ETF
XM registry [RFC3688].

| ANA has updated the following URI to reference this docunent.

URI: urn:ietf:parans: xnl : schena: net conf

Enns, et al. St andards Track [Page 71]

RFC 6241 NETCONF Pr ot ocol June 2011

Regi strant Contact: The | ESG
XM.: Appendi x B of this docunent.
10. 3. NETCONF YANG Modul e

This docunent registers a YANG nodul e in the YANG Modul e Nanes
regi stry [RFC6020] .

nane: i etf-netconf
nanespace: urn:ietf:paranms: xm :ns: netconf: base: 1.0
prefix: nc

ref erence: RFC 6241
10.4. NETCONF Capability URNs

| ANA has created and now naintains a registry "Network Configuration
Prot ocol (NETCONF) Capability URNs" that allocates NETCONF capability
identifiers. Additions to the registry require | ETF Standards

Acti on.

| ANA has updated the allocations of the follow ng capabilities to
reference this docunent.

| ndex
Capability ldentifier

writabl e-running
urn:ietf:parans: netconf:capability:witable-running:1.0

: candi dat e
urn:ietf:parans: netconf:capability: candidate: 1.0

:rol | back-on-error
urn:ietf:parans: netconf:capability:rollback-on-error:1.0

cstartup
urn:ietf:parans: netconf:capability:startup:1.0

surl
urn:ietf:parans: netconf:capability:url:1.0

»xpath
urn:ietf:parans: netconf:capability: xpath:1.0

Enns, et al. St andards Track [Page 72]

RFC 6241 NETCONF Pr ot ocol June 2011

| ANA has added the following capabilities to the registry:
| ndex
Capability ldentifier

:base: 1.1
urn:ietf:parans: netconf:base: 1.1

cconfirmed-conmit: 1.1
urn:ietf:paranms: netconf:capability:confirned-commit:1.1

rvalidate: 1.1
urn:ietf:paranms: netconf:capability:validate: 1.1

11. Contributors
In addition to the editors, this docunment was witten by:
Ken Crozier, C sco Systens
Ted CGoddard, |ceSoft
Eliot Lear, Ci sco Systens
Phi | Shafer, Juni per Networks
St eve Wal dbusser
Mar gar et Wasserman, Painless Security, LLC
12. Acknow edgenents
The authors would like to acknow edge the nenbers of the NETCONF
working group. In particular, we would like to thank Wes Hardaker
for his persistence and patience in assisting us with security
considerations. W would also like to thank Randy Presuhn, Sharon
Chi sholm d enn Waters, David Perkins, Wijing Chen, Sinon Leinen

Keith Al len, Dave Harrington, Ladislav Lhotka, Tom Petch, and Kent
Watsen for all of their val uabl e advice.

Enns, et al. St andards Track [Page 73]

RFC 6241 NETCONF Pr ot ocol June 2011

13. References
13.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Levels", BCP 14, RFC 2119, March 1997.

[RFC3553] Mealling, M, Msinter, L., Hardie, T., and G Kl yne, "An
| ETF URN Sub- nanmespace for Regi stered Protocol
Paraneters", BCP 73, RFC 3553, June 2003.

[RFC3629] Yergeau, F., "UTF-8, a transformation format of |SO
10646", STD 63, RFC 3629, Novenber 2003.

[RFC3688] Mealling, M, "The | ETF XM. Registry", BCP 81, RFC 3688,
January 2004.

[RFC3986] Berners-Lee, T., Fielding, R, and L. Masinter, "Uniform
Resource ldentifier (URI): Generic Syntax", STD 66,
RFC 3986, January 2005.

[RFC5717] Lengyel, B. and M Bjorklund, "Partial Lock Renote
Procedure Call (RPC) for NETCONF', RFC 5717,
Decenber 2009.

[RFC6020] Bjorklund, M, "YANG - A Data Mddeling Language for the
Net wor k Configuration Protocol (NETCONF)", RFC 6020,
Cct ober 2010.

[RFC6021] Schoenwael der, J., "Common YANG Data Types", RFC 6021,
Cct ober 2010.

[RFC6242] Wasserman, M, "Using the NETCONF Configuration Protocol
over Secure Shell (SSH", RFC 6242, June 2011.

[VBC. REC- xml - 20001006]
Sper ber g- McQueen, C., Bray, T., Paoli, J., and E. Maler,
"Ext ensi bl e Markup Language (XM.) 1.0 (Second Edition)",
Wrld Wde Wb Consortium REC xm - 20001006, Cct ober 2000,
<ht t p: // ww. w3. or g/ TR/ 2000/ REC- xm - 20001006>.

[VBC. REC- xpat h-19991116]
DeRose, S. and J. dark, "XM. Path Language (XPath)
Version 1.0", Wrld Wde Wb Consortium
Recomendat i on REC- xpat h-19991116, Novenber 1999,
<htt p://ww. W3. or g/ TR/ 1999/ REC- xpat h- 19991116>.

Enns, et al. St andards Track [Page 74]

RFC 6241

13. 2.

[RFC2865]

[RFC3470]

[RFC4251]

[RECA741]

[RFC5246]

NETCONF Pr ot ocol June 2011

I nformati ve References

Rigney, C., Wllens, S., Rubens, A, and W Sinpson,
"Renot e Authentication Dial In User Service (RADI US)",
RFC 2865, June 2000.

Hol | enbeck, S., Rose, M, and L. Masinter, "Cuidelines for
the Use of Extensible Markup Language (XM)
within | ETF Protocol s", BCP 70, RFC 3470, January 2003.

Yl onen, T. and C. Lonvick, "The Secure Shell (SSH)
Protocol Architecture", RFC 4251, January 2006.

Enns, R, "NETCONF Configuration Protocol", RFC 4741,
Decenber 2006.

Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246, August 2008.

[WVBC. REC- xs| t - 19991116]

Enns,

et al.

Cark, J., "XSL Transformations (XSLT) Version 1.0", Wrld
W de Wb Consortium Reconmmrendati on REC-xslt-19991116,
Novenber 1999,

<http://ww. w3. org/ TR/ 1999/ REC- xsl t - 19991116>.

St andards Track [Page 75]

Appendi x A

Enns,

RFC 6241

NETCONF Err or

NETCONF Pr ot ocol June 2011

Li st

This section is normati ve.

For each error-tag,
together with any mandatory error-info,

are |isted,

error-tag:
error-type:

error-severity:

error-info:
Descri ption:

error-tag:
error-type:

error-severity:

error-info:
Descri ption:

error-tag:
error-type:

error-severity:

error-info:
Descri pti on:

error-tag:
error-type:

error-severity:

error-info:

Descri ption:

error-tag:
error-type:

error-severity:

error-info:

Descri ption:

et al.

the valid error-type and error-severity val ues
i f any.

i n-use
pr ot ocol
error
none

The request
use.

application

requires a resource that already is in

i nval i d-val ue

protocol, application

error

none

The request specifies an unacceptabl e value for one
or nore paraneters.

too-big
transport,
error
none

The request or response (that woul d be generated) is
too large for the inplenmentation to handle.

rpc, protocol, application

m ssing-attribute

rpc, protocol, application

error

<bad-attribute> : nane of the mssing attribute

<bad-el erent> : name of the element that is supposed
to contain the mssing attribute

An expected attribute is m ssing.

bad-attri bute
rpc, protocol
error
<bad-attribute> : nane of the attribute w bad val ue
<bad-el enent> : nanme of the el enent that contains

the attribute with the bad val ue
An attribute value is not correct;
out of range, pattern m snatch.

application

e.g., wong type,

St andards Track [Page 76]

Enns,

RFC 6241

error-tag:
error-type:

error-severity:

error-info:

Descri ption:

error-tag:
error-type:

error-severity:

error-info:
Descri ption:

error-tag:
error-type:

error-severity:

error-info:
Descri ption:

error-tag:
error-type:

error-severity:

error-info:
Descri pti on:

error-tag:
error-type:

error-severity:

error-info:

Descri ption:

error-tag:
error-type:

error-severity:

error-info:
Descri ption:

et al.

NETCONF Pr ot ocol

unknown-attri bute

rpc, protocol, application

error

<bad-attribute> : name of the unexpected attribute

<bad-el enment> : name of the element that contains
t he unexpected attribute

An unexpected attribute is present.

m ssi ng- el enent

protocol, application

error

<bad-el enent> : nane of the m ssing el enent
An expected el enent is mssing.

bad- el enent

protocol, application

error

<bad-el ement> : nane of the elenent w bad val ue
An el enent value is not correct; e.g., wong type,
out of range, pattern m snatch.

unknown- el enment

protocol, application

error

<bad-el enment> : name of the unexpected el enent
An unexpected el enent is present.

unknown- nanespace

protocol, application

error

<bad- el ement> : nane of the el ement that contains
t he unexpect ed nanmespace

<bad- nanespace> : nane of the unexpected nanespace

An unexpected nanespace is present.

access-deni ed

protocol, application

error

none

Access to the requested protocol operation or
data nodel is denied because authorization fail ed.

St andards Track

June 2011

[Page 77]

Enns,

RFC 6241

error-tag:
error-type:

error-severity:

error-info:

Descri ption:

error-tag:
error-type:

error-severity:

error-info:
Descri pti on:

error-tag:
error-type:

error-severity:

error-info:
Descri pti on:

error-tag:
error-type:

error-severity:

error-info:
Descri ption:

error-tag:
error-type:

error-severity:

error-info:
Descri pti on:

error-tag:
error-type:

error-severity:

error-info:
Descri ption:

et al.

NETCONF Pr ot ocol June 2011

| ock-deni ed

pr ot ocol

error

<session-id> : session ID of session holding the
requested lock, or zero to indicate a non- NETCONF
entity holds the Iock

Access to the requested | ock is denied because the

lock is currently held by another entity.

resour ce-deni ed
transport, rpc,
error

none

Request coul d not be conpl eted because of
i nsufficient resources.

protocol, application

rol | back-failed

protocol, application

error

none

Request to roll back some configuration change (via
rol I back-on-error or <discard-changes> operations)
was not conpleted for sonme reason

dat a- exi sts

application

error

none

Request coul d not be conpl eted because the rel evant
data nodel content already exists. For exanple,

a "create" operation was attenpted on data that

al ready exists.

dat a- m ssi ng

application

error

none

Request coul d not be conpl eted because the rel evant
data nodel content does not exist. For exanple,

a "delete" operation was attenpted on

data that does not exist.

oper ati on-not - support ed

protocol, application

error

none

Request coul d not be conpl eted because the requested
operation is not supported by this inplenentation

St andards Track [Page 78]

RFC 6241

error-tag:
error-type:

error-severity:

error-info:
Descri ption:

error-tag:
error-type:

error-severity:

error-info:

Descri ption:

Enns, et al.

NETCONF Pr ot ocol June 2011

operation-failed

rpc, protocol, application

error

none

Request coul d not be conpl eted because the requested
operation failed for sone reason not covered by

any other error condition.

parti al - operation
application

error

<ok-element> : identifies an elenent in the data
nodel for which the requested operation has been
conpl eted for that node and all its child nodes.

This el ement can appear zero or nore tinmes in the
<error-info> container.

<err-elenent> : identifies an elenent in the data
nodel for which the requested operation has failed
for that node and all its child nodes.

This el ement can appear zero or nore tinmes in the
<error-info> container.

<noop-elenent> : identifies an elenent in the data
nodel for which the requested operation was not
attenpted for that node and all its child nodes.

This el ement can appear zero or nore tinmes in the
<error-info> container.

This error-tag is obsolete, and SHOULD NOT be sent
by servers conformng to this docunent.

Some part of the requested operation failed or was
not attenpted for sone reason. Full cleanup has

not been perforned (e.g., rollback not supported)

by the server. The error-info container is used

to identify which portions of the application

data nodel content for which the requested operation
has succeeded (<ok-el enment>), failed (<bad-el enent>),
or not been attenpted (<noop-el ement>).

St andards Track [Page 79]

RFC 6241 NETCONF Pr ot ocol June 2011

error-tag: mal f or red- nessage

error-type: rpc

error-severity: error

error-info: none

Descri ption: A nmessage could not be handl ed because it failed to

be parsed correctly. For exanple, the nessage is not
well -formed XML or it uses an invalid character set.

This error-tag is newin :base:1.1 and MJST NOT be
sent to old clients.

Appendi x B. XM. Schema for NETCONF Messages Layer
This section is nornative.
<CODE BEA NS> file "netconf.xsd"

<?xm version="1.0" encodi ng="UTF-8"?>

<xs: scherma xnl ns: xs="http://ww. w3. or g/ 2001/ XM_Schenma"
xm ns="urn:ietf:params: xm :ns:netconf:base:1.0
t ar get Namespace="urn:ietf: parans: xnl : ns: net conf: base: 1. 0"
el ement For mDef aul t =" qual i fi ed"
attri but eFor nDef aul t ="unqual i fi ed"
xnl : | ang="en"
version="1.1">

<xs:annotati on>
<xs: docunent ati on>
This schema defines the syntax for the NETCONF Messages | ayer
messages 'hello’, '"rpc’, and 'rpc-reply’.
</ xs: docunent ati on>
</ xs: annot ati on>

<l--
i mport standard XM. definitions
-->
<xs:inport nanespace="http://ww. w3. org/ XM./ 1998/ nanespace"
schemaLocati on="http://ww. w3. or g/ 2001/ xm . xsd" >
<Xs:annot ati on>
<xs: docunent ati on>
This inport accesses the xm: attribute groups for the
xm :lang as declared on the error-nessage el enent.
</ xs: docunent ati on>
</ xs:annot at i on>
</ xs:inport>
<l--
message-id attribute
-->

Enns, et al. St andards Track [Page 80]

RFC 6241 NETCONF Pr ot ocol June 2011

<xs: si npl eType nane="nessagel dType" >
<xs:restriction base="xs:string">
<xs: maxLengt h val ue="4095"/>
</xs:restriction>
</ xs:si npl eType>
<I--
Types used for session-id
-->
<xs: si npl eType nanme="Sessionl d">
<xs:restriction base="xs: unsignedlnt">
<xs: m nlncl usive val ue="1"/>
</xs:restriction>
</ xs: si npl eType>
<xs: si npl eType nanme="Sessi onl dOr Zer 0" >
<xs:restriction base="xs:unsignedlnt"/>
</ xs:si npl eType>
<l--
<rpc> el enent
-->
<xs: conpl exType nane="rpcType">
<Xs:sequence>
<xs:element ref="rpcQOperation"/>
</ xs: sequence>
<xs:attribute name="nessage-id" type="nessagel dType"
use="required"/>
<l--
Arbitrary attributes can be supplied with <rpc> el enment.
-->
<xs:anyAttribute processContents="1ax"/>
</ xs: conpl exType>
<xs: el enent nane="rpc" type="rpcType"/>
<l--
data types and el enments used to construct rpc-errors
-->
<xs:si npl eType nane="Error Type" >
<xs:restriction base="xs:string">
<xs:enuneration value="transport"/>
<xs: enuneration val ue="rpc"/>
<xs:enuneration val ue="protocol "/>
<xs:enuneration val ue="application"/>
</xs:restriction>
</ xs: si npl eType>
<xs: si npl eType nane="FError Tag">
<xs:restriction base="xs:string">
<xs:enuneration val ue="in-use"/>
<xs:enuneration val ue="invalid-val ue"/>
<xs:enuneration val ue="t oo-bhi g"/ >
<xs:enuneration value="m ssing-attribute"/>

Enns, et al. St andards Track [Page 81]

RFC 6241

<XS:
<XS:
senunerati
<XS:
<XS:
<XS:
<XS:
<XS:
<XS:
<XS:
<XS:
<XS:
<XS:
senunerati
<XS:
<XS:

<XS

<XS

enuner at i
enumner at i

enuner at i
enuner at i
enumner at i
enuner at i
enumner at i
enuner at i
enuner at i
enuner at i
enumner at i
enuner at i

enuner at i
enuner at i

on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on

</ Xxs:restriction>
</ xs: si npl eType>

<xs: si npl eType nane="ErrorSeverity">
<xs:restriction base="xs:string">
<xs:enuneration value="error"/>

Enns, et

NETCONF Pr ot ocol

val ue="bad-attri bute"/>

val ue="unknown-attri bute"/>
val ue="nmi ssi ng-el enent"/ >
val ue="bad- el enmrent "/ >

val ue="unknown- el enent "/ >
val ue="unknown- nanespace"/ >
val ue="access-deni ed"/ >

val ue="1 ock-deni ed"/ >

val ue="resour ce-deni ed"/ >
val ue="rol | back-fail ed"/>
val ue="dat a- exi sts"/ >

val ue="dat a- m ssi ng"/ >

val ue="operati on-not - supported"/ >

val ue="operation-failed"/>
val ue="partial -operation"/>
val ue="rmal f or med- nessage"/ >

<xs:enuneration val ue="war ni ng"/ >
</xs:restriction>
</ xs: si npl eType>
<xs: conpl exType nane="errorl|nfoType">
<XS:sequence>

<XS:

choi ce>

June 2011

<xs: el ement nane="session-id" type="SessionldO Zero"/>

<xs:sequence m nCccurs="0"

</ xs: sequence>

<XS:sequence>

<xs: el enent nane="bad-attribute" type="xs: QNane"

m nCccur s="0"

<xs: el ement

m nCccur s="0"
<xs: el enent

m nCccur s="0"
<xs: el enent

m nCccur s="0"
<xs: el enment

m nCccur s="0"
<xs: el enent

m nCccur s="0"

</ xs: sequence>

</ xs: choi ce>
el ements from any ot her nanespace are al so all owed

<I--

to foll ow the NETCONF el ements
<xs:any nanmespace="##ot her"

maxQccur s="unbounded" >

maxQccur s="1"/>

nane="bad- el ement" type="xs: QNane"

maxQccur s="1"/>

nane="ok- el enent"” type="xs: QNane"

maxCQccur s="1"/ >

nane="err-el ement" type="xs: QNane"

maxQccur s="1"/>

nane="noop-el erent" type="xs: QNane"

maxQccur s="1"/>

maxCQccur s="1"/ >

>

processCont ent s="1| ax

St andards Track

nane="bad- nanespace" type="xs:string"

[Page 82]

RFC 6241

</ xs: sequence>

NETCONF Pr ot ocol June 2011

m nCccur s="0" maxQOccur s="unbounded"/ >

</ xs: conpl exType>

<xs: conpl exType
<Xs:sequence>
<XS:
<XS:
<XSs:
<Xs:

<XS.
<XS:

el ement
el ement
el ement
el ement

el enent
el ement

name="r pcError Type" >

nane="error-type" type="ErrorType"/>
nane="error-tag" type="ErrorTag"/>
name="error-severity" type="ErrorSeverity"/>
name="error-app-tag" type="xs:string"

m nOccur s="0"/ >

nane="error-path" type="xs:string" mnCccurs="0"/>
nane="error - nessage" m nCccurs="0">

<xs: conpl exType>
<xs: si npl eCont ent >
<xs: extension base="xs:string">
<xs:attribute ref="xm:1ang" use="optional"/>
</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>
</ xs: el emrent >
<xs:el enment nane="error-info" type="errorlnfoType"

</ xs: sequence>

m nCccur s="0"/>

</ xs: conpl exType>

<l--

operation attribute used in <edit-config>

S

<xs:si npl eType nane="edit Operati onType" >
<xs:restriction base="xs:string">
<xs: enuneration val ue="nerge"/>
<xs: enuneration val ue="repl ace"/ >
<xs:enuneration value="create"/>
<xs:enuneration value="del ete"/>
<xs:enuneration val ue="renove"/ >
</xs:restriction>

</ xs: si npl eType>

<xs:attribute name="operation" type="editQperationType"/>

<l--

<rpc-reply> el enent

-->

<xs: conpl exType name="r pcRepl yType">
<xs: choi ce>
<xs: el enent nane="ok"/>
<XS:sequence>
<xs:elenment ref="rpc-error"

m nCccur s="0" maxCccur s="unbounded"/ >

<xs: el ement ref="rpcResponse"”

Enns, et al.

m nCccur s="0" maxQCccur s="unbounded"/ >

St andards Track [Page 83]

RFC 6241 NETCONF Pr ot ocol June 2011

</ xs: sequence>
</ xs: choi ce>
<xs:attribute name="nessage-id" type="nessagel dType"
use="optional "/ >
<l--
Any attributes supplied with <rpc> el enment nust be returned
on <rpc-reply>.
-->
<xs:anyAttribute processContents="|ax"/>
</ xs: conpl exType>
<xs: el ement nane="rpc-reply" type="rpcRepl yType"/>

<I--
<rpc-error> el enent
-->
<xs: el enment nane="rpc-error" type="rpcErrorType"/>
<I--

rpcOperationType: used as a base type for al
NETCONF oper ati ons
-->
<xs: conpl exType nanme="rpcOperati onType"/ >
<xs: el ement nane="rpcQperation" type="rpcQperationType"
abstract="true"/>
<l--
rpcResponseType: used as a base type for al
NETCONF r esponses
-->
<xs: conpl exType name="rpcResponseType"/ >
<xs: el ement nane="r pcResponse" type="rpcResponseType"
abstract="true"/>
<I--
<hel | 0> el enent
-->
<xs: el enent nane="hell 0" >
<xs: conpl exType>
<XS: sequence>
<xs: el ement nane="capabilities">
<xs: conpl exType>
<XS:sequence>
<xs: el ement nane="capability" type="xs:anyURl"
maxQccur s=" unbounded"/ >
</ xs: sequence>
</ xs: conpl exType>
</ xs: el emrent >
<xs: el enent nane="session-id" type="Sessionld"
m nCccurs="0"/>

Enns, et al. St andards Track [Page 84]

RFC 6241 NETCONF Pr ot ocol June 2011

</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
</ xs: schenma>
<CODE ENDS>
Appendi x C. YANG Modul e for NETCONF Protocol Operations
This section is nornative.
The ietf-netconf YANG nodule inports typedefs from [RFC6021].
<CODE BEG NS> file "ietf-netconf@O011-06-01.yang"
nmodul e i etf-netconf {
/1 the nanespace for NETCONF XML definitions is unchanged
/1 from RFC 4741, which this docunent replaces
nanespace "urn:ietf:parans: xnl:ns: netconf: base: 1. 0";
prefix nc;
inmport ietf-inet-types {
prefix inet;
}
organi zati on
"I ETF NETCONF (Networ k Configuration) Wrking G oup”;
cont act
"WG Web: <http://tools.ietf.org/wy/ netconf/>
WG List: <netconf@etf.org>

WG Chair: Bert Wjnen
<bertietf @w j nen. net >

WG Chair: Mehnet Ersue
<nehnet . er sue@sn. conr

Edi t or: Martin Bjorkl und
<nbj @ail-f.conpr

Edi t or: Juer gen Schoenwael der
<j . schoenwael der @ acobs- uni versity. de>

Edi t or: Andy Bi er man
<andy. bi er man@r ocade. conp";

Enns, et al. St andards Track [Page 85]

RFC 6241 NETCONF Pr ot ocol June 2011

description
"NETCONF Protocol Data Types and Protocol Operations.

Copyright (c) 2011 I ETF Trust and the persons identified as
the docunent authors. Al rights reserved.

Redi stribution and use in source and binary forns, with or

wi t hout nodification, is pernitted pursuant to, and subject
to the license ternms contained in, the Sinplified BSD License
set forth in Section 4.c of the IETF Trust’s Legal Provisions
Rel ating to | ETF Docunents
(http://trustee.ietf.org/license-info).

This version of this YANG nodule is part of RFC 6241; see
the RFC itself for full |egal notices."
revision 2011-06-01 {
description
"Initial revision";
reference
"RFC 6241: Network Configuration Protocol"
}

extension get-filter-elenment-attributes {
description

"If this extension is present within an 'anyxm’
statement nanmed 'filter’, which nust be conceptually
defined within the RPC i nput section for the <get>
and <get-config> protocol operations, then the
followi ng unqualified XML attribute is supported
within the <filter> elenent, within a <get> or
<get-confi g> protocol operation:

type : optional attribute with all owed
val ue strings 'subtree’ and ’'xpath’
If mssing, the default value is ’subtree’

If the "xpath’' feature is supported, then the
followi ng unqualified XML attribute is
al so supported:

select: optional attribute containing a
string representing an XPath expression
The 'type’ attribute nust be equal to 'xpath’
if this attribute is present.”

}

/1 NETCONF capabilities defined as features
feature witable-running {

Enns, et al. St andards Track [Page 86]

RFC 6241 NETCONF Pr ot ocol June 2011

description
"NETCONF :writable-running capability;
If the server advertises the :witable-running
capability for a session, then this feature nust
al so be enabled for that session. O herw se,
this feature nust not be enabled."
reference "RFC 6241, Section 8.2"

}

feature candi date {
description
"NETCONF : candi date capability;
If the server advertises the :candidate
capability for a session, then this feature nust
al so be enabled for that session. Oherw se,
this feature nust not be enabl ed."”
reference "RFC 6241, Section 8.3";

}

feature confirnmed-commit {
i f-feature candi dat e;
description
"NETCONF :confirmed-conmt:1.1 capability;

If the server advertises the :confirnmed-commit:1.1
capability for a session, then this feature nust
al so be enabled for that session. Oherw se,
this feature nmust not be enabled.”

reference "RFC 6241, Section 8.4";
}

feature rol |l back-on-error {

description
"NETCONF :roll back-on-error capability;
If the server advertises the :roll back-on-error
capability for a session, then this feature nust
al so be enabled for that session. Oherw se,
this feature nust not be enabled.”

reference "RFC 6241, Section 8.5"

}

feature validate {
description
"NETCONF :validate: 1.1 capability;
If the server advertises the :validate:1.1
capability for a session, then this feature nust
al so be enabled for that session. O herw se,
this feature nust not be enabled.”

Enns, et al. St andards Track [Page 87]

RFC 6241 NETCONF Pr ot ocol June 2011

reference "RFC 6241, Section 8.6"
}

feature startup {
description
"NETCONF :startup capability;
If the server advertises the :startup
capability for a session, then this feature nust
al so be enabled for that session. O herwi se,
this feature nust not be enabled.”
reference "RFC 6241, Section 8.7";

}

feature url {
description
"NETCONF :url capability;
If the server advertises the :url
capability for a session, then this feature nust
al so be enabled for that session. Oherw se,
this feature nmust not be enabled.”
reference "RFC 6241, Section 8.8"

}

feature xpath {
description
"NETCONF : xpath capability;
If the server advertises the :xpath
capability for a session, then this feature nust
al so be enabled for that session. O herw se,
this feature nust not be enabled."
reference "RFC 6241, Section 8.9"

}
/1 NETCONF Sinple Types

typedef session-id-type {
type uint32 {
range "1..max";
}
description
"NETCONF Session |d";

}
typedef session-id-or-zero-type {
type uint32;
description
"NETCONF Session Id or Zero to indicate none"
}

Enns, et al. St andards Track [Page 88]

RFC 6241 NETCONF Pr ot ocol June 2011

typedef error-tag-type {
type enuneration {
enum i n-use {
description
"The request requires a resource that
already is in use.”
}
enum i nval i d-val ue {
description
"The request specifies an unacceptabl e value for one
or nore paraneters.";
}
enum t oo-bi g {
description
"The request or response (that would be generated) is
too large for the inplenmentation to handle."
}
enum m ssing-attribute {
description
"An expected attribute is missing."

enum bad-attribute {
description
"An attribute value is not correct; e.g., wong type,
out of range, pattern msnatch."”
}
enum unknown-attribute {
description
"An unexpected attribute is present.”
}

enum ni ssi ng-el enent {
description
"An expected element is mssing."
}

enum bad- el enent {
description
"An el enent value is not correct; e.g., wong type,
out of range, pattern m snatch."”
}
enum unknown- el enrent {
description
"An unexpected el enent is present.”
}

enum unknown- nanmespace {
description
"An unexpected nanespace is present.”

}

enum access-deni ed {

Enns, et al. St andards Track [Page 89]

RFC 6241 NETCONF Pr ot ocol June 2011

description
"Access to the requested protocol operation or
data nodel is denied because authorization failed."

enum | ock-deni ed {
description
"Access to the requested | ock is denied because the
lock is currently held by another entity.";
}
enum r esour ce- deni ed {
description
"Request could not be conpl eted because of
i nsufficient resources."

enum rol | back-fail ed {
description
"Request to roll back sone configuration change (via
rol | back-on-error or <discard-changes> operations)
was not conpl eted for sone reason.”

enum dat a- exi sts {
description
"Request could not be conpl eted because the rel evant
data nodel content already exists. For exanpl e,
a 'create’ operation was attenpted on data that
al ready exists.";

enum dat a- m ssi ng {
description
"Request could not be conpl eted because the rel evant
data nodel content does not exist. For exanple,
a 'delete’ operation was attenpted on
data that does not exist.";
}
enum oper ati on-not - supported {
description
"Request could not be conpl eted because the requested
operation is not supported by this inplenentation."
}
enum operation-failed {
description
"Request could not be conpl eted because the requested
operation failed for sonme reason not covered by
any other error condition.";
}
enum parti al -operation {
description

Enns, et al. St andards Track [Page 90]

RFC 6241 NETCONF Pr ot ocol June 2011

"This error-tag is obsolete, and SHOULD NOT be sent
by servers conformng to this docunment.";

enum mal f or med- nessage {
description
"A nmessage could not be handl ed because it failed to
be parsed correctly. For exanple, the nessage is not
well -formed XML or it uses an invalid character set."

}

}
description "NETCONF Error Tag";

reference "RFC 6241, Appendi x A"
}

typedef error-severity-type {
type enuneration {
enum error {
description "Error severity";
}

enum war ni ng {
description "Warning severity";
}

}
description "NETCONF Error Severity";

reference "RFC 6241, Section 4.3"
}

typedef edit-operation-type {
type enuneration {
enum nerge {
description
"The configuration data identified by the
el ement containing this attribute is merged
with the configuration at the corresponding
level in the configuration datastore identified
by the target paraneter.”
}
enum repl ace {
description
"The configuration data identified by the el enent
containing this attribute replaces any rel ated
configuration in the configuration datastore
identified by the target paraneter. |f no such
configuration data exists in the configuration
datastore, it is created. Unlike a
<copy-confi g> operation, which replaces the
entire target configuration, only the configuration
actually present in the config paraneter is affected.”

Enns, et al. St andards Track [Page 91]

RFC 6241 NETCONF Pr ot ocol June 2011

enum create {
description

"The configuration data identified by the el enent
containing this attribute is added to the
configuration if and only if the configuration
data does not already exist in the configuration
datastore. |If the configuration data exists, an
<rpc-error> elenment is returned with an
<error-tag> value of ’'data-exists’."

enum del ete {
description
"The configuration data identified by the el enent
containing this attribute is deleted fromthe
configuration if and only if the configuration
data currently exists in the configuration
datastore. |If the configuration data does not
exist, an <rpc-error> elenent is returned with
an <error-tag> value of 'data-nissing’ .";
}
enum renove {
description
"The configuration data identified by the el enent
containing this attribute is deleted fromthe
configuration if the configuration
data currently exists in the configuration
datastore. |If the configuration data does not
exist, the 'renove operation is silently ignored
by the server.";

}

default "nerge"
description "NETCONF ’'operation’ attribute val ues”
reference "RFC 6241, Section 7.2";

}
/1 NETCONF Standard Protocol Operations
rpc get-config {
description
"Retrieve all or part of a specified configuration."
reference "RFC 6241, Section 7.1";
i nput {

cont ai ner source {
description

Enns, et al. St andards Track [Page 92]

RFC 6241 NETCONF Pr ot ocol June 2011

"Particular configuration to retrieve."

choi ce config-source {
mandat ory true;
description
"The configuration to retrieve."
| eaf candi date {
i f-feature candidate;
type enpty;
description
"The candi date configuration is the config source.”
}
| eaf running {
type enpty;
description
"The running configuration is the config source."

| eaf startup {
if-feature startup;
type enpty;
description
"The startup configuration is the config source.
This is optional-to-inplement on the server because
not all servers will support filtering for this
datastore.";
}
}
}

anyxm filter {
description
"Subtree or XPath filter to use."
nc:get-filter-elenment-attributes;
}
}

out put {
anyxnm data {
description
"Copy of the source datastore subset that matched
the filter criteria (if any). An enpty data contai ner
i ndi cates that the request did not produce any results.”
}
}
}

rpc edit-config {
description

Enns, et al. St andards Track [Page 93]

RFC 6241 NETCONF Pr ot ocol June 2011

"The <edit-config> operation loads all or part of a specified
configuration to the specified target configuration."”

reference "RFC 6241, Section 7.2"

i nput {
contai ner target {
description
"Particular configuration to edit.";

choi ce config-target {
mandat ory true
description
"The configuration target."

| eaf candi date {
i f-feature candidate;
type enpty;
description
"The candi date configuration is the config target."
}
| eaf running {
if-feature witabl e-running;
type enpty;
description
"The running configuration is the config source.”
}
}
}

| eaf default-operation {
type enuneration {
enum mer ge {
description
"The default operation is merge."
}
enum repl ace {
description
"The default operation is replace."
}
enum none {
description
"There is no default operation.”
}
}

default "nerge"
description
"The default operation to use."

Enns, et al. St andards Track [Page 94]

RFC 6241 NETCONF Pr ot oco

}

| eaf test-option {
if-feature validate;
type enuneration {
enum test-then-set {
description
"The server will test and then set if no errors
}

enum set {
description
"The server will set without a test first."
}

enumtest-only {
description
"The server will only test and not set, even
if there are no errors.";
}
}
default "test-then-set";

description
"The test option to use.”
}

| eaf error-option {
type enuneration {
enum st op-on-error {
description
"The server will stop on errors.”
}

enum conti nue-on-error {
description
"The server may continue on errors."

enum rol | back-on-error {
description
"The server will roll back on errors.
This value can only be used if the ’'rollback-o
feature is supported.”
}
}
default "stop-on-error"”;
description
"The error option to use."
}

choice edit-content {

Enns, et al. St andards Track

June 2011

n-error’

[Page 95]

RFC 6241 NETCONF Pr ot ocol June 2011

mandat ory true
description
"The content for the edit operation."”

anyxm config {
description
"Inline Config content."

leaf url {
if-feature url;
type inet:uri;
description
"URL- based config content."
}

}
}
}

rpc copy-config {
description
"Create or replace an entire configuration datastore with the
contents of another conplete configuration datastore."

ref erence "RFC 6241, Section 7.3"

i nput {
contai ner target {
description
"Particular configuration to copy to."

choi ce config-target {
mandat ory true
description
"The configuration target of the copy operation.”

| eaf candi date {
i f-feature candidate;
type enpty;
description
"The candi date configuration is the config target."
}
| eaf running {
if-feature witabl e-running;
type enpty;
description
"The running configuration is the config target.
This is optional -to-inplenment on the server.”

Enns, et al. St andards Track [Page 96]

RFC 6241 NETCONF Pr ot ocol June 2011

| eaf startup {
if-feature startup;
type enpty;
description
"The startup configuration is the config target."
}

| eaf url {
if-feature url;
type inet:uri;
description
"The URL-based configuration is the config target."
}

}
}

cont ai ner source {
description
"Particular configuration to copy from";

choi ce config-source {
mandat ory true
description
"The configuration source for the copy operation.”

| eaf candi date {
i f-feature candidate;
type enpty;
description
"The candi date configuration is the config source.”
}

| eaf running {
type enpty;
description
"The running configuration is the config source."

| eaf startup {
if-feature startup;
type enpty;
description
"The startup configuration is the config source."

| eaf url {
if-feature url;
type inet:uri;
description
"The URL-based configuration is the config source.”

}
anyxm config {

Enns, et al. St andards Track [Page 97]

RFC 6241 NETCONF Pr ot ocol June 2011

description
"Inline Config content: <config> elenment. Represents
an entire configuration datastore, not
a subset of the running datastore.";

rpc delete-config {
description
"Del ete a configuration datastore."

reference "RFC 6241, Section 7.4";

i nput {
contai ner target {
description
"Particular configuration to delete."

choi ce config-target {
mandat ory true
description
"The configuration target to delete.”

| eaf startup {
if-feature startup;
type enpty;
description
"The startup configuration is the config target."

leaf url {
if-feature url;
type inet:uri;
description
"The URL-based configuration is the config target."

rpc lock {
description
"The | ock operation allows the client to | ock the configuration
system of a device."

Enns, et al. St andards Track [Page 98]

RFC 6241 NETCONF Pr ot ocol June 2011

reference "RFC 6241, Section 7.5"

i nput {
contai ner target {
description
"Particular configuration to |ock."

choi ce config-target {
mandat ory true
description
"The configuration target to |ock."

| eaf candi date {
i f-feature candidate;
type enpty;
description
"The candi date configuration is the config target.";
}
| eaf running {
type enpty;
description
"The running configuration is the config target."
}
| eaf startup {
if-feature startup;
type enpty;
description
"The startup configuration is the config target."

rpc unl ock {
description
"The unl ock operation is used to rel ease a configuration |ock
previously obtained with the '|ock’ operation."

reference "RFC 6241, Section 7.6"
i nput {
contai ner target {
description
"Particular configuration to unlock."

choi ce config-target {
mandat ory true

Enns, et al. St andards Track [Page 99]

RFC 6241 NETCONF Pr ot ocol June 2011

description
"The configuration target to unl ock."

| eaf candi date {
i f-feature candidate;
type enpty;
description
"The candi date configuration is the config target."
}

| eaf running {
type enpty;
description
"The running configuration is the config target."

| eaf startup {
if-feature startup;
type enpty;
description
"The startup configuration is the config target."

rpc get {
description
"Retrieve running configuration and device state information."

ref erence "RFC 6241, Section 7.7"

i nput {
anyxm filter {
description
"This parameter specifies the portion of the system
configuration and state data to retrieve.";
nc:get-filter-elenent-attributes;
}
}

out put {
anyxnm data {
description
"Copy of the running datastore subset and/or state
data that matched the filter criteria (if any).
An enpty data container indicates that the request did not
produce any results."”;

Enns, et al. St andards Track [Page 100]

RFC 6241 NETCONF Pr ot ocol June 2011

}
}

rpc close-session {
description
"Request graceful termnation of a NETCONF session."

reference "RFC 6241, Section 7.8"
}

rpc kill-session {
description
"Force the termination of a NETCONF session."

reference "RFC 6241, Section 7.9"

i nput {
| eaf session-id {
type session-id-type;
mandat ory true
description
"Particular session to kill.";
}
}
}

rpc commt {
i f-feature candi date;

description
"Commit the candidate configuration as the device' s new
current configuration."

reference "RFC 6241, Section 8.3.4.1"

i nput {
| eaf confirned {
if-feature confirnmed-conmit;
type enpty;
description
"Requests a confirmed commit.";
reference "RFC 6241, Section 8.3.4.1"

}

| eaf confirmtineout {
i f-feature confirned-conmmt;
type uint32 {
range "1..max";

Enns, et al. St andards Track [Page 101]

RFC 6241 NETCONF Pr ot ocol June 2011

}
units "seconds"
default "600"; // 10 m nutes

description
"The tinmeout interval for a confirnmed commt.";
ref erence "RFC 6241, Section 8.3.4.1"

}

| eaf persist {

i f-feature confirnmed-conmit;

type string;

description

"This parameter is used to nmake a confirned conmit

persistent. A persistent confirmed commit is not aborted
if the NETCONF session ternminates. The only way to abort
a persistent confirmed conmit is to let the tiner expire,
or to use the <cancel-comit> operation

The value of this paranmeter is a token that nmust be given
in the '"persist-id parameter of <commit> or

<cancel -comrit> operations in order to confirmor cance
the persistent confirmed conmit.

The token should be a random string."
reference "RFC 6241, Section 8.3.4.1"

}

| eaf persist-id {
if-feature confirnmed-conmit;
type string;
description
"This paraneter is given in order to commit a persistent
confirmed conmit. The value nmust be equal to the val ue
given in the 'persist’ paraneter to the <conmt> operation
If it does not match, the operation fails with an
"invalid-value error."
reference "RFC 6241, Section 8.3.4.1"

}

}
}

rpc di scard-changes {
i f-feature candidate;

description

"Revert the candidate configuration to the current
runni ng configuration.”

Enns, et al. St andards Track [Page 102]

RFC 6241 NETCONF Pr ot ocol June 2011

reference "RFC 6241, Section 8.3.4.2"
}

rpc cancel -commit {
if-feature confirnmed-conmit;
description
"This operation is used to cancel an ongoing confirned conmt.
If the confirned commit is persistent, the paraneter
"persist-id must be given, and it nmust match the val ue of the
‘persist’ paraneter.”;
reference "RFC 6241, Section 8.4.4.1";

i nput {
| eaf persist-id {
type string;

description
"This parameter is given in order to cancel a persistent
confirmed conmit. The value nust be equal to the val ue
given in the 'persist’ paraneter to the <commt> operation
If it does not match, the operation fails with an
"invalid-value error."
}
}
}

rpc validate {
if-feature validate;

description
"Val i dates the contents of the specified configuration."

reference "RFC 6241, Section 8.6.4.1"

i nput {
cont ai ner source {
description
"Particular configuration to validate."

choi ce config-source {
mandat ory true;
description
"The configuration source to validate."

| eaf candi date {
i f-feature candidate;
type enpty;
description
"The candi date configuration is the config source.”

Enns, et al. St andards Track [Page 103]

RFC 6241 NETCONF Pr ot ocol June 2011

}
| eaf running {
type enpty;
description
"The running configuration is the config source.”
}

| eaf startup {
if-feature startup;
type enpty;
description
"The startup configuration is the config source.”

| eaf url {
if-feature url;
type inet:uri;
description
"The URL-based configuration is the config source.”

}
anyxm config {
description
"Inline Config content: <config> elenment. Represents
an entire configuration datastore, not
a subset of the running datastore.”;

<CODE ENDS>

Enns, et al. St andards Track [Page 104]

RFC 6241 NETCONF Pr ot ocol June 2011

Appendi x D. Capability Tenplate

© U U U

D.

O U U U

This non-normative section defines a tenplate that can be used to
define protocol capabilities. Data nodels witten in YANG usually do
not need to define protocol capabilities since the usage of YANG
autonatically leads to a capability announcing the data nodel and any
optional portions of the data nodel, so called features in YANG
term nol ogy. The capabilities tenplate is intended to be used in
cases where the YANG nechani sms are not powerful enough (e.g., for
handl i ng paraneterized features) or a different data nodeling
| anguage i s used.
1. capability-name (tenplate)
1.1. Overview
1. 2. Dependencies
1.3. Capability ldentifier

The {nanme} capability is identified by the followi ng capability
string:

{capability uri}
1.4. New Operations
1.4.1. <op-nanme>
1.5. Modifications to Existing Operations
1.5.1. <op-nane>

If existing operations are not nodified by this capability, this
section nmay be omitted.

1.6. Interactions with Oher Capabilities

If this capability does not interact with other capabilities, this
section rmay be omitted.

Enns, et al. St andards Track [Page 105]

RFC 6241 NETCONF Pr ot ocol June 2011

Appendi x E. Configuring Miultiple Devices with NETCONF
This section is non-normative.

E.1. Operations on Individual Devices
Consi der the work involved in performng a configuration update
agai nst a single individual device. In nmaking a change to the
configuration, the application needs to build trust that its change
has been made correctly and that it has not inpacted the operation of
the device. The application (and the application user) should fee
confident that their change has not danaged the network.
Protecting each individual device consists of a nunmber of steps:
0 Acquiring the configuration |ock
0 Checkpointing the running configuration
0 Loading and validating the incom ng configuration
0 Changing the running configuration
0 Testing the new configuration
o Making the change permanent (if desired).
0 Releasing the configuration |ock
Let's |l ook at the details of each step

E.1.1. Acquiring the Configuration Lock
A |l ock should be acquired to prevent sinultaneous updates from
multiple sources. |If multiple sources are affecting the device, the
application is hanpered in both testing of its change to the
configuration and in recovery if the update fails. Acquiring a
short-lived lock is a sinple defense to prevent other parties from

i ntroduci ng unrel ated changes.

The | ock can be acquired using the <lock> operation

Enns, et al. St andards Track [Page 106]

RFC 6241 NETCONF Pr ot ocol June 2011

<rpc nessage-i d="101"
xm ns="urn:ietf:parans: xm :ns: netconf: base: 1. 0">
<l ock>
<t ar get >
<runni ng/ >
</target>
</l ock>
</rpc>

If the :candidate capability is supported, the candi date
configuration should be | ocked.

<rpc nessage-i d="101"
xm ns="urn:ietf:parans: xm :ns: netconf: base: 1. 0">
<l ock>
<t ar get >
<candi dat e/ >
</target>
</l ock>
</rpc>

E.1.2. Checkpointing the Running Configuration

The running configuration can be saved into a local file as a
checkpoi nt before | oading the new configuration. |f the update
fails, the configuration can be restored by rel oadi ng the checkpoi nt
file.

The checkpoint file can be created using the <copy-config> operation

<rpc nessage-i d="101"
xm ns="urn:ietf:parans: xm : ns: netconf:base: 1. 0">
<copy- confi g>
<t ar get >
<url>file://checkpoint.conf</url>
</target>
<sour ce>
<runni ng/ >
</ sour ce>
</ copy- confi g>
</rpc>

To restore the checkpoint file, reverse the <source> and <target>
paraneters

Enns, et al. St andards Track [Page 107]

RFC 6241 NETCONF Pr ot ocol June 2011

E.1.3. Loading and Validating the Inconm ng Configuration

If the :candidate capability is supported, the configuration can be
| oaded onto the device without inpacting the running system

<rpc nessage-i d="101"
xm ns="urn:ietf:parans: xm : ns: netconf: base: 1. 0">
<edi t-config>
<t arget >
<candi dat e/ >
</target>
<confi g>
<l-- place incom ng configuration changes here -->
</ config>
</ edit-config>
</rpc>

If the device supports the :validate:1.1 capability, it will by
default validate the inconing configuration when it is |oaded into
the candidate. To avoid this validation, pass the <test-option>
paranmeter with the value "set". Full validation can be requested
with the <validate> operation.

<rpc nessage-i d="101"
xm ns="urn:ietf:parans: xm : ns: netconf: base: 1. 0">
<val i dat e>
<sour ce>
<candi dat e/ >
</ sour ce>
</val i dat e>
</rpc>

E.1.4. Changing the Runni ng Configuration

When the incom ng configuration has been safely | oaded onto the
device and validated, it is ready to inpact the running system

I f the device supports the :candidate capability, use the <conmt>
operation to set the running configuration to the candidate
configuration. Use the <confirmed> paraneter to allow autonatic
reversion to the original configuration if connectivity to the device
fails.

Enns, et al. St andards Track [Page 108]

RFC 6241 NETCONF Pr ot ocol June 2011

<rpc nessage-i d="101"
xm ns="urn:ietf:parans: xm :ns: netconf: base: 1. 0">
<commi t >
<confirmed/ >
<confirmtimeout>120</confirmti meout >
</conmit >
</rpc>

If the candidate is not supported by the device, the incom ng
configuration change is |oaded directly into running.

<rpc nessage-i d="101"
xm ns="urn:ietf:parans: xm :ns: netconf: base: 1. 0">
<edi t-config>
<t ar get >
<runni ng/ >
</target>
<confi g>
<l-- place incom ng configuration changes here -->
</ config>
</ edit-config>
</rpc>

E.1.5. Testing the New Configuration

Now that the inconming configuration has been integrated into the
runni ng configuration, the application needs to gain trust that the
change has affected the device in the way intended w thout affecting
it negatively.

To gain this confidence, the application can run tests of the
operational state of the device. The nature of the test is dependent
on the nature of the change and is outside the scope of this
docunent. Such tests may include reachability fromthe system
runni ng the application (using ping), changes in reachability to the
rest of the network (by conparing the device's routing table), or

i nspection of the particular change (Il ooking for operational evidence
of the BGP peer that was just added).

E.1.6. Making the Change Pernanent
When the configuration change is in place and the application has
sufficient faith in the proper function of this change, the
application is expected to make the change pernanent.
If the device supports the :startup capability, the current

configuration can be saved to the startup configuration by using the
startup configuration as the target of the <copy-config> operation

Enns, et al. St andards Track [Page 109]

RFC 6241 NETCONF Pr ot ocol June 2011

<rpc nessage-i d="101"
xm ns="urn:ietf:parans: xm :ns: netconf: base: 1. 0">
<copy- confi g>
<t ar get >
<startup/>
</target>
<sour ce>
<runni ng/ >
</ sour ce>
</ copy- confi g>
</rpc>

If the device supports the :candidate capability and a confirned
commit was requested, the confirmng commt mnust be sent before the
ti meout expires.

<rpc nessage-id="101"
xm ns="urn:ietf:parans: xm : ns: netconf: base: 1. 0" >
<conmi t/ >
</rpc>

E.1.7. Releasing the Configuration Lock

When the configuration update is conplete, the |ock nust be rel eased,
al | owi ng other applications access to the configuration

Use the <unl ock> operation to release the configuration |ock

<rpc nessage-id="101"
xm ns="urn:ietf:parans: xm : ns: netconf: base: 1. 0">
<unl ock>
<target>
<runni ng/ >
</target>
</ unl ock>
</rpc>

If the :candidate capability is supported, the candi date
configuration shoul d be unl ocked.

<rpc nessage-id="101"
xm ns="urn:ietf:parans: xm : ns: netconf: base: 1. 0" >
<unl ock>
<target>
<candi dat e/ >
</target>
</ unl ock>
</rpc>

Enns, et al. St andards Track [Page 110]

RFC 6241 NETCONF Pr ot ocol June 2011

E.2. Qperations on Miltiple Devices

When a configuration change requires updates across a nunber of
devices, care needs to be taken to provide the required transaction
semantics. The NETCONF protocol contains sufficient prinmitives upon
whi ch transaction-oriented operations can be built. Providing

conpl ete transactional senmantics across nultiple devices is

prohi bitively expensive, but the size and nunber of w ndows for
failure scenarios can be reduced.

There are two classes of multi-device operations. The first class
all ows the operation to fail on individual devices w thout requiring
all devices to revert to their original state. The operation can be
retried at a later time, or its failure sinply reported to the user
An exanpl e of this class mght be adding an NTP server. For this

cl ass of operations, failure avoi dance and recovery are focused on
the individual device. This neans recovery of the device, reporting
the failure, and perhaps scheduling another attenpt.

The second class is nore interesting, requiring that the operation
shoul d conplete on all devices or be fully reversed. The network
shoul d either be transforned into a new state or be reset to its
original state. For exanple, a change to a VPN nay require updates
to a nunber of devices. Another exanple of this nmight be adding a
cl ass-of-service definition. Leaving the network in a state where
only a portion of the devices have been updated with the new
definition will lead to future failures when the definition is

ref erenced.

To give transactional semantics, the same steps used in single-device
operations |listed above are used, but are perforned in parallel
across all devices. Configuration |ocks should be acquired on al
target devices and kept until all devices are updated and the changes
made permanent. Configuration changes shoul d be upl oaded and
val i dation performed across all devices. Checkpoints should be nmade
on each device. Then the running configuration can be changed,
tested, and nade permanent. |If any of these steps fail, the previous
configurations can be restored on any devices upon which they were
changed. After the changes have been conpletely inplenmented or

conpl etely discarded, the | ocks on each device can be rel eased.

Enns, et al. St andards Track [Page 111]

RFC 6241 NETCONF Pr ot ocol June 2011

Appendi x F. Changes from RFC 4741
This section lists najor changes between this docunent and RFC 4741.
0 Added the "nal f or med- message” error-tag.
0 Added "renove" enuneration value to the "operation" attribute.
0 Obsoleted the "partial -operation” error-tag enuneration val ue.

0 Added <persist> and <persist-id> paraneters to the <conmmit>
operation.

o Updated the base protocol URI and clarified the <hell o> nessage
exchange to select and identify the base protocol version in use
for a particul ar session.

0 Added a YANG nodul e to nodel the operations and renoved the
operation |layer fromthe XSD

o darified | ock behavior for the candi date dat astore.

o Carified the error response server requirenments for the "del ete"
enuner ation value of the "operation" attribute.

0 Added a nanespace w | dcardi ng nechani smfor subtree filtering

0 Added a "test-only" value for the <test-option> paraneter to the
<edi t-confi g> operation.

0 Added a <cancel -commit> operation

0 Introduced a NETCONF usernane and a requirenent for transport
protocols to explain how a usernane is derived

Enns, et al. St andards Track [Page 112]

RFC 6241 NETCONF Pr ot ocol June 2011

Aut hors’ Addr esses

Rob Enns (editor)
Juni per Networ ks

EMai |l : rob.enns@nuil.com

Martin Bjorklund (editor)

Tail -f Systens

EMail: nbj@ail-f.com

Juer gen Schoenwael der (editor)

Jacobs University

EMai | : j.schoenwael der @ acobs-uni versity. de
Andy Bierman (editor)

Br ocade

EMai | : andy. bi er ran@r ocade. com

Enns, et al. St andards Track [Page 113]

