
Internet Engineering Task Force (IETF) G. Camarillo
Request for Comments: 6078 J. Melen
Category: Experimental Ericsson
ISSN: 2070-1721 January 2011

 Host Identity Protocol (HIP) Immediate Carriage and Conveyance
 of Upper-Layer Protocol Signaling (HICCUPS)

Abstract

 This document defines a new Host Identity Protocol (HIP) packet type
 called DATA. HIP DATA packets are used to reliably convey
 authenticated arbitrary protocol messages over various overlay
 networks.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for examination, experimental implementation, and
 evaluation.

 This document defines an Experimental Protocol for the Internet
 community. This document is a product of the Internet Engineering
 Task Force (IETF). It represents the consensus of the IETF
 community. It has received public review and has been approved for
 publication by the Internet Engineering Steering Group (IESG). Not
 all documents approved by the IESG are a candidate for any level of
 Internet Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6078.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Camarillo & Melen Experimental [Page 1]

RFC 6078 HICCUPS January 2011

Table of Contents

 1. Introduction . 3
 2. Terminology . 3
 3. Background on HIP . 4
 3.1. Message Formats . 4
 3.1.1. HIP Fixed Header 4
 3.1.2. HIP Parameter Format 5
 3.2. HIP Base Exchange, Updates, and State Removal 5
 4. Definition of the HIP_DATA Packet 6
 4.1. Definition of the SEQ_DATA Parameter 8
 4.2. Definition of the ACK_DATA Parameter 8
 4.3. Definition of the PAYLOAD_MIC Parameter 9
 4.4. Definition of the TRANSACTION_ID Parameter 10
 5. Generation and Reception of HIP_DATA Packets 10
 5.1. Handling of SEQ_DATA and ACK_DATA 10
 5.2. Generation of a HIP_DATA Packet 11
 5.3. Reception of a HIP_DATA Packet 12
 5.3.1. Handling of SEQ_DATA in a Received HIP_DATA Packet . . 13
 5.3.2. Handling of ACK_DATA in a Received HIP_DATA Packet . . 14
 6. Use of the HIP_DATA Packet 14
 7. Security Considerations 15
 8. IANA Considerations . 16
 9. Acknowledgments . 16
 10. References . 16
 10.1. Normative References 16
 10.2. Informative references 16

Camarillo & Melen Experimental [Page 2]

RFC 6078 HICCUPS January 2011

1. Introduction

 Two hosts can use HIP [RFC5201] to establish a security association
 (SA) between them in order to exchange arbitrary protocol messages
 over that security association. The establishment of such a security
 association involves a four-way handshake referred to as the HIP base
 exchange. When handling communications between the hosts, HIP
 supports mobility, multihoming, security, and NAT traversal. Some
 applications require these features for their communications but
 cannot accept the overhead involved in establishing a security
 association (i.e., the HIP base exchange) before those communications
 can start.

 In this document, we define the HIP DATA packet, which can be used to
 convey (in a authenticated and reliable way) protocol messages to a
 remote host without running the HIP base exchange. The HIP_DATA
 packet has the following semantics: unordered, duplicate free,
 reliable, and authenticated message-based delivery service. We also
 discuss the trade-offs involved in using this packet (i.e., less
 overhead but also less denial-of-service (DoS) protection) and the
 situations where it is appropriate to use this packet. The HIP_DATA
 packet is not intended to be a replacement for the Encapsulating
 Security Payload (ESP) transport; instead, it SHOULD NOT be used to
 exchange more than a few packets between peers. If a continuous
 communication is required or communication that requires
 confidentiality protection then hosts MUST run the HIP base exchange
 to set up an ESP security association. Additionally, APIs to higher-
 level protocols that might use this service are outside of the scope
 of this document.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].
 In addition, this document uses the terms defined in [RFC5201].

 Message Integrity Code (MIC) is a collision-resistant hash sum
 calculated over the message that is being integrity protected.
 The MIC does not use secret keys, and thus it needs additional
 means to ensure that it has not been tampered with during
 transmission. Essentially, the MIC is same as the Message
 Authentication Code (MAC) with the distinction that the MIC does
 not use secret keys. The MIC is also often referred as the
 Integrity Check Value (ICV), fingerprint, or unkeyed MAC.

Camarillo & Melen Experimental [Page 3]

RFC 6078 HICCUPS January 2011

3. Background on HIP

 The HIP specification [RFC5201] defines a number of messages and
 parameters. The parameters are encoded as TLVs, as shown in
 Section 3.1.2. Furthermore, the HIP header carries a Next Header
 field, allowing other arbitrary packets to be carried within HIP
 packets.

3.1. Message Formats

3.1.1. HIP Fixed Header

 The HIP packet format consists of a fixed header followed by a
 variable number of parameters. The parameter format is described in
 Section 3.1.2.

 The fixed header is defined in Section 5.1 of [RFC5201] and copied
 below.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Next Header | Header Length |0| Packet Type | VER. | RES.|1|
 +-+
 | Checksum | Controls |
 +-+
 | Sender’s Host Identity Tag (HIT) |
 | |
 | |
 | |
 +-+
 | Receiver’s Host Identity Tag (HIT) |
 | |
 | |
 | |
 +-+
 | |
 / HIP Parameters /
 / /
 | |
 +-+

 The HIP header is logically an IPv6 extension header. The HIP
 specification [RFC5201] defines handling only for Next Header value
 decimal 59, IPv6-NoNxt [PROTOCOL-NUMBERS], the IPv6 ’no next header’
 value. This document describes processing for Next Header values
 other than decimal 59, which indicates that there are either more
 extension headers and/or data following the HIP header.

Camarillo & Melen Experimental [Page 4]

RFC 6078 HICCUPS January 2011

3.1.2. HIP Parameter Format

 The HIP parameter format is defined in Section 5.2.1 of [RFC5201],
 and copied below.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type |C| Length |
 +-+
 | |
 / Contents /
 / +-+-+-+-+-+-+-+-+
 | | Padding |
 +-+

 Type Type code for the parameter. 16 bits long, C-bit
 being part of the Type code.
 C Critical. One if this parameter is critical, and
 MUST be recognized by the recipient; zero otherwise.
 The C bit is considered to be a part of the Type
 field. Consequently, critical parameters are always
 odd and non-critical ones have an even value.
 Length Length of the Contents, in octets.
 Contents Parameter specific, defined by Type.
 Padding Padding, 0-7 octets, added if needed.

3.2. HIP Base Exchange, Updates, and State Removal

 The HIP base exchange is a four-message authentication and key
 exchange protocol that creates shared, mutually authenticated keying
 material at the communicating parties. These keying materials,
 together with associated public keys and IP addresses, form a HIP
 security association (SA). The details of the protocol are defined
 in the HIP base exchange specification [RFC5201].

 In addition to creating the HIP SA, the base exchange messages may
 carry additional parameters that are used to create additional state.
 For example, the HIP ESP specification [RFC5202] defines how HIP can
 be used to create end-to-end, host-to-host IPsec ESP security
 associations, used to carry data packets. However, it is important
 to understand that the HIP base exchange is by no means bound to
 IPsec; using IPsec ESP to carry data traffic forms just a baseline
 and ensures interoperability between initial HIP implementations.

Camarillo & Melen Experimental [Page 5]

RFC 6078 HICCUPS January 2011

 Once there is a HIP SA between two HIP-enabled hosts, they can
 exchange further HIP control messages. Typically, UPDATE messages
 are used. For example, the HIP mobility and multihoming
 specification [RFC5206] defines how to use UPDATE messages to change
 the set of IP addresses associated with a HIP SA.

 In addition to the base exchange and updates, the HIP base protocol
 specification also defines how one can remove a HIP SA once it is no
 longer needed.

4. Definition of the HIP_DATA Packet

 The HIP DATA packet can be used to convey protocol messages to a
 remote host without running the HIP base exchange. HIP DATA packets
 are transmitted reliably, as discussed in Section 5. The payload of
 a HIP_DATA packet is placed after the HIP header and protected by a
 PAYLOAD_MIC parameter, which is defined in Section 4.3. The
 following is the definition of the HIP_DATA packet (see the
 definition of notation in [RFC5201], Section 2.2):

 Header:
 Packet Type = 32
 SRC HIT = Sender’s HIT
 DST HIT = Receiver’s HIT

 IP (HIP ([HOST_ID,] SEQ_DATA, PAYLOAD_MIC, [PAYLOAD_MIC, ...,]
 HIP_SIGNATURE) PAYLOAD)

 IP (HIP ([HOST_ID,] SEQ_DATA, ACK_DATA, PAYLOAD_MIC,
 [PAYLOAD_MIC, ...,] HIP_SIGNATURE) PAYLOAD)

 IP (HIP ([HOST_ID,] ACK_DATA, HIP_SIGNATURE))

 The SEQ_DATA and ACK_DATA parameters are defined in Sections 4.1 and
 4.2, respectively. They are used to provide a reliable delivery of
 HIP_DATA packets, as discussed in Section 5.

 The HOST_ID parameter is defined in Section 5.2.8 of [RFC5201]. This
 parameter is the sender’s Host Identifier that is used to compute the
 HIP_DATA packet’s signature and to verify it against the received
 signature. The HOST_ID parameter is optional as it MAY have been
 delivered using out-of-band mechanism to the receiver. If the host
 doesn’t have reliable information that the corresponding node has its
 HOST_ID, it MUST always include the HOST_ID in the packet. If the
 receiver is unable to verify the SIGNATURE, then the packet MUST be
 dropped and the appropriate NOTIFY packet SHOULD be sent to the
 sender indicating AUTHENTICATION_FAILED as described in [RFC5201],
 Section 5.2.16.

Camarillo & Melen Experimental [Page 6]

RFC 6078 HICCUPS January 2011

 The PAYLOAD_MIC parameter is defined in Section 4.3. This parameter
 contains the MIC of the payload carried by the HIP_DATA packet. The
 PAYLOAD_MIC contains the collision-resistant hash of the payload
 following the HIP DATA. The PAYLOAD_MIC is included in the signed
 part of the HIP DATA packet and gives integrity protection for the
 packet as well as the payload carried after it.

 The HIP_SIGNATURE parameter is defined in Section 5.2.11 of
 [RFC5201]. It contains a signature over the contents of the HIP_DATA
 packet. The calculation and verification of the signature is defined
 in Section 6.4.2. of [RFC5201].

 Section 5.3 of [RFC5201] states the following:

 In the future, an OPTIONAL upper-layer payload MAY follow the HIP
 header. The Next Header field in the header indicates if there is
 additional data following the HIP header.

 We have chosen to place the payload after the HIP extension header
 and only to place a MIC of the payload into the HIP extension header
 in a PAYLOAD_MIC parameter because that way the data integrity is
 protected by a public key signature with the help of the MIC. The
 payload that is protected by the PAYLOAD_MIC parameter has been
 linked to the appropriate upper-layer protocol by storing the upper-
 layer protocol number, 8 octets of payload data, and by calculating a
 hash sum (MIC) over the data. The HIP_DATA packet MAY contain one or
 more PAYLOAD_MIC parameters, each bound to a different Next Header
 type. The hash algorithm used to generate the MIC is the same as the
 algorithm used to generate the Host Identity Tag [RFC5201].

 Upper-layer protocol messages, such as overlay network control
 traffic, sent in HIP DATA messages may need to be matched to
 different transactions. For this purpose, a DATA message MAY also
 contain a TRANSACTION_ID parameter. The identifier value is a
 variable length bit string in network byte order that is unique for
 each transaction. A response to a request uses the same identifier
 value, thereby allowing the receiver to match requests to responses.

Camarillo & Melen Experimental [Page 7]

RFC 6078 HICCUPS January 2011

4.1. Definition of the SEQ_DATA Parameter

 The following is the definition of the SEQ_DATA parameter:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Sequence number |
 +-+

 Type 4481
 Length 4
 Sequence number 32-bit unsigned integer in network byte order that
 MUST NOT be reused before it has been acknowledged
 by the receiver.

 This parameter has the critical bit set. If it is not supported by
 the receiver, the packet MUST be dropped and the appropriate NOTIFY
 packet SHOULD be sent to the sender indicating
 UNSUPPORTED_CRITICAL_PARAMETER_TYPE as described in [RFC5201],
 Section 5.2.16.

4.2. Definition of the ACK_DATA Parameter

 The following is the definition of the ACK_DATA parameter:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Acked Sequence number /
 / /
 +-+

 Type 4545
 Length variable (multiple of 4)
 Acked Sequence number A sequence of 32-bit unsigned integers in
 network byte order corresponding to the
 sequence numbers being acknowledged.

 This parameter has the critical bit set. If it is not supported by
 the receiver, the packet MUST be dropped and the appropriate NOTIFY
 packet SHOULD be sent to the sender indicating
 UNSUPPORTED_CRITICAL_PARAMETER_TYPE as described in [RFC5201],
 Section 5.2.16.

Camarillo & Melen Experimental [Page 8]

RFC 6078 HICCUPS January 2011

4.3. Definition of the PAYLOAD_MIC Parameter

 The following is the definition of the PAYLOAD_MIC parameter:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Next Header | Reserved |
 +-+
 | Payload Data |
 +-+
 | |
 / MIC Value /
 / +-+-+-+-+-+-+-+-+
 | | Padding |
 +-+

 Type 4577
 Length Length in octets, excluding Type, Length, and
 Padding.
 Next Header Identifies the data that is protected by this MIC.
 The values for this field are defined by IANA
 "Protocol Numbers" [PROTOCOL-NUMBERS].
 Payload Data Last 8 octets of the payload data over which the
 MIC is calculated. This field is used to
 uniquely bind the PAYLOAD_MIC parameter to the Next
 Header, in case there are multiple copies of the
 same type.
 MIC Value MIC computed over the data to which the Next
 Header and Payload Data point. The size of the MIC
 is the natural size of the computation output
 depending on the function used.

 This parameter has the critical bit set. If it is not supported by
 the receiver, the packet MUST be dropped and the appropriate NOTIFY
 packet SHOULD be sent to the sender indicating
 UNSUPPORTED_CRITICAL_PARAMETER_TYPE as described in [RFC5201],
 Section 5.2.16.

 There is a theoretical possibility that when generating multiple
 PAYLOAD_MIC parameters that will be carried in a single packet, they
 would have identical Next Header and Payload Data fields; thus, it is
 required that PAYLOAD_MIC parameters MUST follow the natural order of
 extension headers in the packet so that it’s possible to bind
 PAYLOAD_MICs to correct payload data. In case the receiving host is
 still unable to identify the payloads, it MUST drop the packet and

Camarillo & Melen Experimental [Page 9]

RFC 6078 HICCUPS January 2011

 SHOULD send a NOTIFY packet to the sender indicating INVALID_SYNTAX
 as described in [RFC5201], Section 5.2.16.

4.4. Definition of the TRANSACTION_ID Parameter

 The following is the definition of the TRANSACTION_ID parameter:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Identifier /
 +-+
 / | Padding |
 +-+

 Type 4580
 Length Length of the Identifier, in octets
 Identifier The identifier value
 Padding 0-7 octets of padding if needed

 Figure 1

5. Generation and Reception of HIP_DATA Packets

 HIP_DATA packets are transmitted reliably. Reliable delivery is
 achieved through the use of retransmissions and of the SEQ_DATA and
 ACK_DATA parameters.

5.1. Handling of SEQ_DATA and ACK_DATA

 A HIP_DATA packet MUST contain at least one of a SEQ_DATA or an
 ACK_DATA parameter; if both parameters are missing, then packet MUST
 be dropped as invalid.

 A HIP_DATA packet containing a SEQ_DATA parameter MUST contain one or
 more PAYLOAD_MIC parameters; otherwise, the packet MUST be dropped.
 The presence of a SEQ_DATA parameter indicates that the receiver MUST
 ACK the HIP_DATA packet. A HIP_DATA packet that does not contain a
 SEQ_DATA parameter is simply an ACK of a previous HIP_DATA packet,
 and it MUST NOT be ACKed.

 A HIP_DATA packet containing an ACK_DATA parameter echoes the
 SEQ_DATA sequence numbers of the HIP_DATA packets being acknowledged.
 The ACK_DATA parameter MUST acknowledge at least one SEQ_DATA
 sequence number and MAY acknowledge multiple SEQ_DATA sequence
 numbers by adding all of them to the ACK_DATA parameter.

Camarillo & Melen Experimental [Page 10]

RFC 6078 HICCUPS January 2011

 A HIP_DATA packet MAY contain both a SEQ_DATA and an ACK_DATA
 parameter. In this case, the ACK is being piggybacked on an outgoing
 HIP_DATA packet. In general, HIP_DATA packets carrying SEQ_DATA
 SHOULD be ACKed upon completion of the processing of the HIP_DATA
 packet. A host MAY choose to hold the HIP DATA packet carrying an
 ACK for a short period of time to allow for the possibility of
 piggybacking the ACK_DATA parameter, in a manner similar to TCP
 delayed acknowledgments.

5.2. Generation of a HIP_DATA Packet

 When a host has upper-layer protocol data to send, it either runs the
 HIP base exchange and sends the data over a SA, or sends the data
 directly using a HIP_DATA packet. Section 6 discusses when it is
 appropriate to use each method. This section discusses the case when
 the host chooses to use a HIP_DATA packet to send the upper-layer
 protocol data.

 1. The host creates a HIP_DATA packet that contains a SEQ_DATA
 parameter. The host is free to choose any value for the SEQ_DATA
 sequence number in the first HIP_DATA packet it sends to a
 destination. After that first packet, the host MUST choose the
 value of the SEQ_DATA sequence number in subsequent HIP_DATA
 packets to the same destination so that no SEQ_DATA sequence
 number is reused before the receiver has closed the processing
 window for the previous packet using the same SEQ_DATA sequence
 number. Practically, giving the values of the retransmission
 timers used with HIP_DATA packets, this means that hosts must
 wait the maximum likely lifetime of the packet before reusing a
 given SEQ_DATA sequence number towards a given destination.
 However, it is not required for the node to know the maximum
 packet lifetime. Rather, it is assumed that the requirement can
 be met by maintaining the value as a simple, 32-bit, "wrap-
 around" counter, incremented each time a packet is sent. It is
 an implementation choice whether to maintain a single counter for
 the node or multiple counters (one for each <source, destination>
 HIT pair).

 2. The host creates the PAYLOAD_MIC parameter. The MIC is a hash
 calculated over the whole PAYLOAD that the Next Header field of
 the PAYLOAD_MIC parameter indicates. If there are multiple Next
 Header types that the host wants to protect, it SHOULD create
 separate PAYLOAD_MIC parameters for each of these. The receiver
 MUST validate all these MICs as described in Section 5.3.1. For
 calculating the MIC, the host MUST use the same hash algorithm as
 the one that has been used for generating the host’s HIT as
 defined in Section 3.2. of [RFC5201].

Camarillo & Melen Experimental [Page 11]

RFC 6078 HICCUPS January 2011

 3. The host creates the HIP_SIGNATURE parameter. The signature is
 calculated over the whole HIP envelope, excluding any parameters
 after the HIP_SIGNATURE, as defined in Section 5.2.11. of
 [RFC5201]. The receiver MUST validate this signature. It MAY
 use either the HI in the packet or the HI acquired by some other
 means.

 4. The host sends the created HIP_DATA packet and starts a DATA
 timer. The default value for the timer is 3 seconds. If
 multiple HIP DATA packets are outstanding, multiple timers are in
 effect.

 5. If the DATA timer expires, the HIP_DATA packet is resent. The
 HIP DATA packet can be resent DATA_RETRY_MAX times. The DATA
 timer MUST be exponentially backed off for subsequent
 retransmissions. If no acknowledgment is received from the peer
 after DATA_RETRY_MAX times, the delivery of the HIP_DATA packet
 is considered unsuccessful and the application is notified about
 the error. The DATA timer is canceled upon receiving an ACK from
 the peer that acknowledges receipt of the HIP_DATA packet. The
 default value for DATA_RETRY_MAX SHOULD be 5 retries, but it MAY
 be changed through local policy.

5.3. Reception of a HIP_DATA Packet

 A host receiving a HIP_DATA packet makes a decision whether or not to
 process the packet. If the host, following its local policy,
 suspects that this packet could be part of a DoS attack. The host
 MAY respond with an R1 packet to the HIP_DATA packet, if the packet
 contained SEQ_DATA and PAYLOAD_MIC parameters, in order to indicate
 that HIP base exchange MUST be completed before accepting payload
 packets from the originator of the HIP_DATA packet.

 From RFC 5201 (Section 4.1):

 The HIP base exchange serves to manage the establishment of
 state between an Initiator and a Responder. The first packet,
 I1, initiates the exchange, and the last three packets, R1, I2,
 and R2, constitute an authenticated Diffie-Hellman [DIF76] key
 exchange for session key generation.

 If the host chooses to respond to the HIP DATA with an R1 packet, it
 creates a new R1 or selects a precomputed R1 according to the format
 described in [RFC5201], Section 5.3.2. The host SHOULD drop the
 received data packet if it responded with an R1 packet to the
 HIP_DATA packet. The sender of HIP_DATA packet is responsible for
 retransmission of the upper-layer protocol data after successful
 completion of the HIP base exchange.

Camarillo & Melen Experimental [Page 12]

RFC 6078 HICCUPS January 2011

 If the host, following its local policy, decides to process the
 incoming HIP_DATA packet, it processes the packet according to the
 following rules:

 1. If the HIP_DATA packet contains a SEQ_DATA parameter and no
 ACK_DATA parameter, the HIP_DATA packet is processed and replied
 to as described in Section 5.3.1.

 2. If the HIP_DATA packet contains an ACK_DATA parameter and no
 SEQ_DATA parameter, the HIP_DATA packet is processed as described
 in Section 5.3.2.

 3. If the HIP_DATA packet contains both a SEQ_DATA parameter and an
 ACK_DATA parameter, the HIP_DATA packet is processed first as
 described in Section 5.3.2, and then the rest of the HIP_DATA
 packet is processed and replied to as described in Section 5.3.1.

5.3.1. Handling of SEQ_DATA in a Received HIP_DATA Packet

 The following steps define the conceptual processing rules for
 handling a SEQ_DATA parameter in a received HIP_DATA packet.

 The system MUST verify the SIGNATURE in the HIP_DATA packet. If the
 verification fails, the packet SHOULD be dropped and an error message
 logged.

 If the value in the received SEQ_DATA and the MIC value in the
 received PAYLOAD_MIC correspond to a HIP_DATA packet that has
 recently been processed, the packet is treated as a retransmission.
 It is recommended that a host cache HIP_DATA packets with ACKs to
 avoid the cost of generating a new ACK packet to respond to a
 retransmitted HIP_DATA packet. The host MUST acknowledge, again,
 such (apparent) HIP_DATA packet retransmissions but SHOULD also
 consider rate-limiting such retransmission responses to guard against
 replay attacks.

 The system MUST verify the PAYLOAD_MIC by calculating the MIC over
 the PAYLOAD that the Next Header field indicates. For calculating
 the MIC, the host will use the same hash algorithm that has been used
 to generate the sender’s HIT as defined in Section 3.2. of [RFC5201].
 If the packet carried multiple PAYLOAD_MIC parameters, each of them
 are verified as described above. If one or more of the verifications
 fail, the packet SHOULD be dropped and an error message logged.

 If a new SEQ parameter is being processed, the parameters in the HIP
 DATA packet are then processed.

Camarillo & Melen Experimental [Page 13]

RFC 6078 HICCUPS January 2011

 A HIP_DATA packet with an ACK_DATA parameter is prepared and sent to
 the peer. This ACK_DATA parameter may be included in a separate HIP
 DATA packet or piggybacked in a HIP_DATA packet with a SEQ_DATA
 parameter. The ACK_DATA parameter MAY acknowledge more than one of
 the peer’s HIP_DATA packets.

5.3.2. Handling of ACK_DATA in a Received HIP_DATA Packet

 The following steps define the conceptual processing rules for
 handling an ACK_DATA parameter in a received HIP_DATA packet.

 The system MUST verify the SIGNATURE in the HIP_DATA packet. If the
 verification fails, the packet SHOULD be dropped and an error message
 logged.

 The sequence numbers reported in the ACK_DATA must match with a
 previously sent HIP_DATA packet containing SEQ_DATA that has not
 already been acknowledged. If no match is found or if the ACK_DATA
 does not acknowledge a new HIP_DATA packet, the packet either MUST be
 dropped if no SEQ_DATA parameter is present or the processing steps
 in Section 5.3.1 are followed.

 The corresponding DATA timer is stopped so that the now acknowledged
 HIP_DATA packet is no longer retransmitted. If multiple HIP_DATA
 packets are newly acknowledged, multiple timers are stopped.

6. Use of the HIP_DATA Packet

 HIP currently requires that the four-message base exchange is
 executed at the first encounter of hosts that have not communicated
 before. This may add additional RTTs (Round-Trip Times) to protocols
 based on a single message exchange. However, the four-message
 exchange is essential to preserve the DoS protection nature of the
 base exchange. The use of the HIP_DATA packet defined in this
 document reduces the initial overhead in the communications between
 two hosts. However, the HIP_DATA packet itself does not provide any
 protection against DoS attacks. Therefore, the HIP_DATA packet MUST
 only be used in environments whose policies provide protection
 against DoS attacks. For example, a HIP-based overlay may have
 policies in place to control which nodes can join the overlay.
 However, authorization of who is allowed to join the overlay is
 beyond the scope of this specification. Any particular node in the
 overlay may want to accept HIP_DATA packets from other nodes in the
 overlay, given that those other nodes were authorized to join the
 overlay. However, the same node will not accept HIP_DATA packets
 from random nodes that are not part of the overlay. Additionally,
 the HIP_DATA packet itself does not provide confidentiality for its
 payload. Therefore, the HIP_DATA packet MUST NOT be used in

Camarillo & Melen Experimental [Page 14]

RFC 6078 HICCUPS January 2011

 environments that do not provide an appropriate level of
 confidentiality (e.g., a HIP-based overlay MUST NOT send HIP_DATA
 packets unless the connections between overlay nodes are encrypted).

 The type of data to be sent is also relevant to whether the use of a
 HIP_DATA packet is appropriate. HIP itself does not support
 fragmentation but relies on underlying IP-layer fragmentation. This
 may lead to reliability problems in the case where a message cannot
 be easily split over multiple HIP messages. Therefore, applications
 in environments where fragmentation could be an issue SHOULD NOT
 generate large HIP_DATA packets that may lead to fragmentation. The
 implementation SHOULD check the MTU of the link before sending the
 packet, and if the packet size is larger than MTU, it SHOULD signal
 to the upper-layer protocol if the packet results in an ICMP error
 message. Note that there are environments where fragmentation is not
 an issue. For example, in some HIP-based overlays, nodes can
 exchange HIP_DATA packets on top of TCP connections that provide
 transport-level fragmentation and, thus, avoid IP-level
 fragmentation.

 HIP currently requires that all messages excluding I1s but including
 HIP_DATA packets are digitally signed. This adds to the packet size
 and the processing capacity needed to send packets. However, in
 applications where security is not paramount, it is possible to use
 very short keys, thereby reducing resource consumption.

7. Security Considerations

 HIP is designed to provide secure authentication of hosts. HIP also
 attempts to limit the exposure of the host to various denial-of-
 service and man-in-the-middle (MitM) attacks. However, HIP_DATA
 packet, which can be sent without running the HIP base exchange
 between hosts has a trade-off that it does not provide the denial-of-
 service protection or confidentiality protection that HIP generally
 provides. Thus, the host should consider always situations where it
 is appropriate to send or receive HIP_DATA packet. If the
 communication consists more than few round trips of data or the data
 is highly sensitive in nature the host SHOULD run the base exchange
 with the peer host.

 HIP_DATA packet is designed to protect hosts from second preimage
 attacks allowing receiving host to be able to detect, if the message
 was tampered during the transport. This property is also know as
 "weak collision-resistance". If a host tries to generate a second
 preimage, it would need to generate it such that the last 8 octets
 match with the original message.

Camarillo & Melen Experimental [Page 15]

RFC 6078 HICCUPS January 2011

 When handling the PAYLOAD_MIC parameter in the receiving host, using
 the last 8 octets to identify the upper-layer protocol doesn’t give
 any guarantee that the MIC would be correct; thus, an attacker could
 send packets where the next header and last 8 octets match the values
 carried by the PAYLOAD_MIC parameter. Therefore, it is always
 mandatory to verify the MIC value by calculating the hash over the
 payload.

8. IANA Considerations

 This document updates the IANA registry for HIP packet types by
 introducing a new packet type for the HIP_DATA (Section 4) packet.
 This document updates the IANA registry for HIP parameter types by
 introducing new parameter values for the SEQ_DATA (Section 4.1),
 ACK_DATA (Section 4.2), PAYLOAD_MIC (Section 4.3), and TRANSACTION_ID
 (Section 4.4) parameters.

9. Acknowledgments

 Pekka Nikander was one of the original authors of the document.
 Also, in the usual IETF fashion, a large number of people have
 contributed to the actual text or ideas. The list of these people
 include Miika Komu, Tobias Heer, Ari Keranen, Samu Varjonen, Thomas
 Henderson, and Jukka Ylitalo. Our apologies to anyone whose name is
 missing.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to
 Indicate Requirement Levels", BCP 14, RFC 2119,
 March 1997.

 [RFC5201] Moskowitz, R., Nikander, P., Jokela, P., and T.
 Henderson, "Host Identity Protocol", RFC 5201,
 April 2008.

 [PROTOCOL-NUMBERS] IANA, "Protocol Numbers", <http://www.iana.org>.

10.2. Informative references

 [RFC5202] Jokela, P., Moskowitz, R., and P. Nikander,
 "Using the Encapsulating Security Payload (ESP)
 Transport Format with the Host Identity Protocol
 (HIP)", RFC 5202, April 2008.

Camarillo & Melen Experimental [Page 16]

RFC 6078 HICCUPS January 2011

 [RFC5206] Nikander, P., Henderson, T., Vogt, C., and J.
 Arkko, "End-Host Mobility and Multihoming with
 the Host Identity Protocol", RFC 5206, April
 2008.

Authors’ Addresses

 Gonzalo Camarillo
 Ericsson
 Hirsalantie 11
 Jorvas 02420
 Finland

 EMail: Gonzalo.Camarillo@ericsson.com

 Jan Melen
 Ericsson
 Hirsalantie 11
 Jorvas 02420
 Finland

 EMail: Jan.Melen@ericsson.com

Camarillo & Melen Experimental [Page 17]

