
Network Working Group M. Crispin
Request for Comments: 5051 University of Washington
Category: Standards Track October 2007

 i;unicode-casemap - Simple Unicode Collation Algorithm

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Abstract

 This document describes "i;unicode-casemap", a simple case-
 insensitive collation for Unicode strings. It provides equality,
 substring, and ordering operations.

1. Introduction

 The "i;ascii-casemap" collation described in [COMPARATOR] is quite
 simple to implement and provides case-independent comparisons for the
 26 Latin alphabetics. It is specified as the default and/or baseline
 comparator in some application protocols, e.g., [IMAP-SORT].

 However, the "i;ascii-casemap" collation does not produce
 satisfactory results with non-ASCII characters. It is possible, with
 a modest extension, to provide a more sophisticated collation with
 greater multilingual applicability than "i;ascii-casemap". This
 extension provides case-independent comparisons for a much greater
 number of characters. It also collates characters with diacriticals
 with the non-diacritical character forms.

 This collation, "i;unicode-casemap", is intended to be an alternative
 to, and preferred over, "i;ascii-casemap". It does not replace the
 "i;basic" collation described in [BASIC].

2. Unicode Casemap Collation Description

 The "i;unicode-casemap" collation is a simple collation which is
 case-insensitive in its treatment of characters. It provides
 equality, substring, and ordering operations. The validity test
 operation returns "valid" for any input.

Crispin Standards Track [Page 1]

RFC 5051 i;unicode-casemap October 2007

 This collation allows strings in arbitrary (and mixed) character
 sets, as long as the character set for each string is identified and
 it is possible to convert the string to Unicode. Strings which have
 an unidentified character set and/or cannot be converted to Unicode
 are not rejected, but are treated as binary.

 Each input string is prepared by converting it to a "titlecased
 canonicalized UTF-8" string according to the following steps, using
 UnicodeData.txt ([UNICODE-DATA]):

 (1) A Unicode codepoint is obtained from the input string.

 (a) If the input string is in a known charset that can be
 converted to Unicode, a sequence in the string’s charset
 is read and checked for validity according to the rules of
 that charset. If the sequence is valid, it is converted
 to a Unicode codepoint. Note that for input strings in
 UTF-8, the UTF-8 sequence must be valid according to the
 rules of [UTF-8]; e.g., overlong UTF-8 sequences are
 invalid.

 (b) If the input string is in an unknown charset, or an
 invalid sequence occurs in step (1)(a), conversion ceases.
 No further preparation is performed, and any partial
 preparation results are discarded. The original string is
 used unchanged with the i;octet comparator.

 (2) The following steps, using UnicodeData.txt ([UNICODE-DATA]),
 are performed on the resulting codepoint from step (1)(a).

 (a) If the codepoint has a titlecase property in
 UnicodeData.txt (this is normally the same as the
 uppercase property), the codepoint is converted to the
 codepoints in the titlecase property.

 (b) If the resulting codepoint from (2)(a) has a decomposition
 property of any type in UnicodeData.txt, the codepoint is
 converted to the codepoints in the decomposition property.
 This step is recursively applied to each of the resulting
 codepoints until no more decomposition is possible
 (effectively Normalization Form KD).

 Example: codepoint U+01C4 (LATIN CAPITAL LETTER DZ WITH CARON)
 has a titlecase property of U+01C5 (LATIN CAPITAL LETTER D
 WITH SMALL LETTER Z WITH CARON). Codepoint U+01C5 has a
 decomposition property of U+0044 (LATIN CAPITAL LETTER D)
 U+017E (LATIN SMALL LETTER Z WITH CARON). U+017E has a
 decomposition property of U+007A (LATIN SMALL LETTER Z) U+030c

Crispin Standards Track [Page 2]

RFC 5051 i;unicode-casemap October 2007

 (COMBINING CARON). Neither U+0044, U+007A, nor U+030C have
 any decomposition properties. Therefore, U+01C4 is converted
 to U+0044 U+007A U+030C by this step.

 (3) The resulting codepoint(s) from step (2) is/are appended, in
 UTF-8 format, to the "titlecased canonicalized UTF-8" string.

 (4) Repeat from step (1) until there is no more data in the input
 string.

 Following the above preparation process on each string, the equality,
 ordering, and substring operations are as for i;octet.

 It is permitted to use an alternative implementation of the above
 preparation process if it produces the same results. For example, it
 may be more convenient for an implementation to convert all input
 strings to a sequence of UTF-16 or UTF-32 values prior to performing
 any of the step (2) actions. Similarly, if all input strings are (or
 are convertible to) Unicode, it may be possible to use UTF-32 as an
 alternative to UTF-8 in step (3).

 Note: UTF-16 is unsuitable as an alternative to UTF-8 in step (3),
 because UTF-16 surrogates will cause i;octet to collate codepoints
 U+E0000 through U+FFFF after non-BMP codepoints.

 This collation is not locale sensitive. Consequently, care should be
 taken when using OS-supplied functions to implement this collation.
 Functions such as strcasecmp and toupper are sometimes locale
 sensitive and may inconsistently casemap letters.

 The i;unicode-casemap collation is well suited to use with many
 Internet protocols and computer languages. Use with natural language
 is often inappropriate; even though the collation apparently supports
 languages such as Swahili and English, in real-world use it tends to
 mis-sort a number of types of string:

 o people and place names containing scripts that are not collated
 according to "alphabetical order".
 o words with characters that have diacriticals. However,
 i;unicode-casemap generally does a better job than i;ascii-casemap
 for most (but not all) languages. For example, German umlaut
 letters will sort correctly, but some Scandinavian letters will
 not.
 o names such as "Lloyd" (which in Welsh sorts after "Lyon", unlike
 in English),
 o strings containing other non-letter symbols; e.g., euro and pound
 sterling symbols, quotation marks other than ’"’, dashes/hyphens,
 etc.

Crispin Standards Track [Page 3]

RFC 5051 i;unicode-casemap October 2007

3. Unicode Casemap Collation Registration

 <?xml version=’1.0’?>
 <!DOCTYPE collation SYSTEM ’collationreg.dtd’>
 <collation rfc="5051" scope="global" intendedUse="common">
 <identifier>i;unicode-casemap</identifier>
 <title>Unicode Casemap</title>
 <operations>equality order substring</operations>
 <specification>RFC 5051</specification>
 <owner>IETF</owner>
 <submitter>mrc@cac.washington.edu</submitter>
 </collation>

4. Security Considerations

 The security considerations for [UTF-8], [STRINGPREP], and [UNICODE-
 SECURITY] apply and are normative to this specification.

 The results from this comparator will vary depending upon the
 implementation for several reasons. Implementations MUST consider
 whether these possibilities are a problem for their use case:

 1) New characters added in Unicode may have decomposition or
 titlecase properties that will not be known to an implementation
 based upon an older revision of Unicode. This impacts step (2).

 2) Step (2)(b) defines a subset of Normalization Form KD (NFKD) that
 does not require normalization of out-of-order diacriticals.
 However, an implementation MAY use an NFKD library routine that
 does such normalization. This impacts step (2)(b) and possibly
 also step (1)(a), and is an issue only with ill-formed UTF-8
 input.

 3) The set of charsets handled in step (1)(a) is open-ended. UTF-8
 (and, by extension, US-ASCII) are the only mandatory-to-implement
 charsets. This impacts step (1)(a).

 Implementations SHOULD, as far as feasible, support all the
 charsets they are likely to encounter in the input data, in order
 to avoid poor collation caused by the fall through to the (1)(b)
 rule.

 4) Other charsets may have revisions which add new characters that
 are not known to an implementation based upon an older revision.
 This impacts step (1)(a) and possibly also step (1)(b).

Crispin Standards Track [Page 4]

RFC 5051 i;unicode-casemap October 2007

 An attacker may create input that is ill-formed or in an unknown
 charset, with the intention of impacting the results of this
 comparator or exploiting other parts of the system which process this
 input in different ways. Note, however, that even well-formed data
 in a known charset can impact the result of this comparator in
 unexpected ways. For example, an attacker can substitute U+0041
 (LATIN CAPITAL LETTER A) with U+0391 (GREEK CAPITAL LETTER ALPHA) or
 U+0410 (CYRILLIC CAPITAL LETTER A) in the intention of causing a
 non-match of strings which visually appear the same and/or causing
 the string to appear elsewhere in a sort.

5. IANA Considerations

 The i;unicode-casemap collation defined in section 2 has been added
 to the registry of collations defined in [COMPARATOR].

6. Normative References

 [COMPARATOR] Newman, C., Duerst, M., and A. Gulbrandsen,
 "Internet Application Protocol Collation
 Registry", RFC 4790, February 2007.

 [STRINGPREP] Hoffman, P. and M. Blanchet, "Preparation of
 Internationalized Strings ("stringprep")", RFC
 3454, December 2002.

 [UTF-8] Yergeau, F., "UTF-8, a transformation format of
 ISO 10646", STD 63, RFC 3629, November 2003.

 [UNICODE-DATA] <http://www.unicode.org/Public/UNIDATA/
 UnicodeData.txt>

 Although the UnicodeData.txt file referenced
 here is part of the Unicode standard, it is
 subject to change as new characters are added
 to Unicode and errors are corrected in Unicode
 revisions. As a result, it may be less stable
 than might otherwise be implied by the
 standards status of this specification.

 [UNICODE-SECURITY] Davis, M. and M. Suignard, "Unicode Security
 Considerations", February 2006,
 <http://www.unicode.org/reports/tr36/>.

Crispin Standards Track [Page 5]

RFC 5051 i;unicode-casemap October 2007

7. Informative References

 [BASIC] Newman, C., Duerst, M., and A. Gulbrandsen,
 "i;basic - the Unicode Collation Algorithm",
 Work in Progress, March 2007.

 [IMAP-SORT] Crispin, M. and K. Murchison, "Internet Message
 Access Protocol - SORT and THREAD Extensions",
 Work in Progress, September 2007.

Author’s Address

 Mark R. Crispin
 Networks and Distributed Computing
 University of Washington
 4545 15th Avenue NE
 Seattle, WA 98105-4527

 Phone: +1 (206) 543-5762
 EMail: MRC@CAC.Washington.EDU

Crispin Standards Track [Page 6]

RFC 5051 i;unicode-casemap October 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Crispin Standards Track [Page 7]

