Net wor k Wor ki ng Group R Finki ng

Request for Comments: 4997 Si emens/ Roke Manor Research
Cat egory: Standards Track G Pelletier
Eri csson

July 2007

Formal Notation for RObust Header Conpression (ROHC- FN)
Status of This Meno

Thi s docunent specifies an Internet standards track protocol for the
Internet conmunity, and requests discussion and suggestions for

i nprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardi zation state
and status of this protocol. Distribution of this neno is unlimted.

Copyright Notice
Copyright (C The I ETF Trust (2007).
Abstr act

Thi s docunent defines Robust Header Conpression - Fornal Notation
(ROHC-FN), a formal notation to specify field encodi ngs for
conpressed formats when defining new profiles within the ROHC
framework. ROHC-FN offers a library of encoding nethods that are
often used in ROHC profiles and can thereby help to sinplify future
profil e devel opnent work.

Tabl e of Contents

1. Introduction .

2. Term nol ogy .

3. O/erV|ewofRO—|CFN .o

3.1. Scope of the Fornmal Notation . .

2 Fundanental s of the Formal Notation
3.2.1. Fields and Encodings . . .
3.2.2. Formats and Encodi ng Met hods .
3 Exanple Using IPv4o

4. Normative Definition of ROHC FN
1.
2
3
4
4
4

w

Structure of a SpeC|f| cation .
Identifiers .

Constant Definitions .

Fields . .

Attri but e Ref erences . .
Representation of Field VaI ues .

ol ol
RPRRRRRRR
NNOURAWWRON~NO O DM

N

Finking & Pelletier St andards Track [Page 1]

RFC 4997 ROHC- FN

©No O

8.

8.

el

e

Grouping of Fields .
"TH S" A

Expressions

.1. Integer Literals .

2 I nt eger Operators

.3. Boolean Literals .

4 Bool ean Operators

.5. Conparison Operators .

Comments . . .

" ENFORCE" Staterrents. .

10 Formal Specification of F| eI d Lengt hs
11. Library of Encodi ng Methods .o

CorrrAb~NOO
NNNNN

4.11.1. unconpressed _val ue .

4.11.2. conpressed_val ue .

4.11.3. irregular

4.11.4. static .

4.11.5. Isb

4.11.6. crc . . .
12. Definition of Encod| ng l\/bt hods .

4.12.1. Structure
4.12.2. Argunents . . .
4.12.3. Miultiple Forrrats.

.13. Profile-Specific Encodi hg Met hods

Security Considerations
Contributors .

Acknow edgenents .

Ref erences . .
1. Nor mati ve Ref erences .

2. Informative References .

Appendi x A, Formal Syntax of ROHC FN
Append| x B. Bit-level Wrked Exanple

WWwWwwwmmm®mw
BoxNoOrWNE

Exanpl e Packet Format

Initial Encodi ng .

Basi ¢ Conpression .

I nt er - Packet Con’presa on .
Specifying Initial Values

Mul tipl e Packet Fornmats .
Variabl e Length Discrimnators .
Def ault Encodi ng .

Control Fields .

Finking & Pelletier St andards Track

0. Use of "ENFORCE" St at ements as Cond|t| onal s.

July 2007

17
18
19
20
20
20
20
21
21
22
23
24
24
25
26
27
27
29
29
30
37
38
40
41
41
41
42
42
42
43
45
45
46
47
48
50
51
53
55
56
59

[Page 2]

RFC 4997 ROHC- FN July 2007

1

2.

I ntroduction

Robust Header Conpression - Formal Notation (ROHC-FN) is a forma
notati on designed to help with the definition of ROHC [RFC4995]
header conpression profiles. Previous header conpression profiles
have been so far specified using a conbination of English text
together with ASCII Box notation. Unfortunately, this was sonetines
uncl ear and amnbi guous, revealing the linitations of defining conplex
structures and encodi ngs for conpressed formats this way. The
primary objective of the Fornal Notation is to provide a nore
rigorous nmeans to define header formats -- conpressed and
unconpressed -- as well as the rel ationshi ps between them No other
formal notation exists that neets these requirenents, so ROHC FN ai ns
to meet them

In addition, ROHC-FN offers a library of encodi ng nethods that are
often used in ROHC profiles, so that the specification of new
profiles using the formal notation can be achieved wi thout having to
redefine this library fromscratch. Infornmally, an encodi ng nethod
defines a two-way mappi ng between unconpressed data and conpressed
dat a.

Ter m nol ogy
0 Conpressed fornat

A conpressed format consists of a list of fields that provides
bi ndi ngs between encodi ngs and the fields it conpresses. One or
nore conpressed formats can be conbined to represent an entire
conpressed header fornat.

o Cont ext

Context is information about the current (de)conpression state of
the flow. Specifically, a context for a specific field can be
either uninitialised, or it can include a set of one or nore
values for the field s attributes defined by the conpression

al gorithm where a value may come fromthe field s attributes
corresponding to a previous packet. See also a nore generalized
definition in Section 2.2 of [RFC4995].

o Control field

Control fields are transmitted froma ROHC conpressor to a ROHC
deconpressor, but are not part of the unconpressed header itself.

Finking & Pelletier St andards Track [Page 3]

RFC 4997 ROHC- FN July 2007

o Encodi ng nethod, encodings

Encodi ng net hods are two-way rel ations that can be applied to
conpress and deconpress fields of a protocol header.

o Field

The protocol header is divided into a set of contiguous bit
patterns known as fields. Each field is defined by a collection
of attributes that indicate its value and length in bits for both
the conpressed and unconpressed headers. The way the header is
divided into fields is specific to the definition of a profile,
and it is not necessary for the field divisions to be identical to
the ones given by the specification(s) for the protocol header
bei ng conpressed.

o Library of encodi ng nethods

The library of encodi ng nethods contains a nunber of comonly used
encodi ng net hods for conpressi ng header fields.

o Profile
A ROHC [RFC4995] profile is a description of howto conpress a
certain protocol stack. Each profile consists of a set of formats
(for example, unconpressed and conpressed formats) along with a
set of rules that control conpressor and deconpressor behavi our

0 ROHGC FN specification

The specification of the set of formats of a ROHC profil e using
ROHC- FN

o Unconpressed format
An unconpressed fornmat consists of a list of fields that provides
the order of the fields to be conpressed for a contiguous set of
bits whose bit |ayout corresponds to the protocol header being
conpr essed
3. Overview of ROHC FN
This section gives an overview of ROHC-FN. It al so expl ai ns how

ROHC- FN can be used to specify the conpression of header fields as
part of a ROHC profile.

Finking & Pelletier St andards Track [Page 4]

RFC 4997 ROHC- FN July 2007

3.1. Scope of the Fornal Notation

This section explains howthe fornmal notation relates to the ROHC
framework and to specifications of ROHC profiles.

The ROHC framework [RFC4995] provides the general principles for

perform ng robust header conpression. |t defines the concept of a
profile, which nakes ROHC a general platformfor different
conpression schemes. It sets link layer requirenments, and in
particul ar negotiation requirenments, for all ROHC profiles. It
defines a set of common functions such as Context ldentifiers (ClDs),
paddi ng, and segnentation. It also defines comon formats (IR, IR

DYN, Feedback, Add-CID, etc.), and finally it defines a generic,
profile independent, feedback mechani sm

A ROHC profile is a description of how to conpress a certain protocol
stack. For example, ROHC profiles are available for RTP/UDP/IP and
many ot her protocol stacks.

At a high level, each ROHC profile consists of a set of formats
(defining the bits to be transmtted) along with a set of rules that
control conmpressor and deconpressor behaviour. The purpose of the
formats is to define howto conpress and deconpress headers. The
formats define one or nore conpressed versions of each unconpressed
header, and sinmultaneously define the inverse: howto relate a
conpressed header back to the original unconpressed header

The set of formats will typically define conpression of headers
relative to a context of field values from previous headers in a
flow, inproving the overall conpression by taking into account
redundanci es between headers of successive packets. Therefore, in
addition to defining the formats, a profile has to:

o specify how to manage the context for both the conpressor and the
deconpr essor,

o define when and what to send in feedback nessages, if any, from
deconpressor to conpressor,

0 outline conpression principles to make the profile robust against
bit errors and dropped packets.

Al this is needed to ensure that the conpressor and deconpressor
contexts are kept consistent with each other, while stil
facilitating the best possible conpression performance.

The ROHC-FN is designed to help in the specification of conpressed
formats that, when put together based on the profile definition, nake

Finking & Pelletier St andards Track [Page 5]

RFC 4997 ROHC- FN July 2007

up the fornats used in a ROHC profile. It offers a library of
encodi ng net hods for conpressing fields, and a nmechani sm for
conbi ni ng these encodi ng nethods to create conpressed formats
tailored to a specific protocol stack.

The scope of ROHC-FN is limted to specifying the relationship

bet ween the conpressed and unconpressed formats. To forma conplete
profile specification, the control logic for the profile behavi our
needs to be defined by other neans.

3. 2. Fundanental s of the Fornml Notation
There are two fundanental elenents to the formal notation

1. Fields and their encodings, which define the napping between a
header’ s unconpressed and conpressed forns.

2. Encodi ng net hods, which define the way headers are broken down
into fields. Encoding nethods define |lists of unconpressed
fields and the lists of conpressed fields they map onto.

These two fundanental elenents are at the core of the notation and
are outlined bel ow

3.2.1. Fields and Encodi ngs

Headers are made up of fields. For exanple, version nunber, header
| ength, and sequence nunber are all fields used in real protocols.

Fi el ds have attributes. Attributes describe various things about the
field. For exanple:

field. ULENGTH

The above indicates the unconpressed length of the field. A fieldis
said to have a value attribute, i.e., a conpressed value or an
unconpressed value, if the corresponding length attribute is greater
than zero. See Section 4.4 for nore details on field attributes.

The rel ati onshi p between the conpressed and unconpressed attri butes
of a field are specified with encoding nmethods, using the follow ng

not ati on:

field == encodi ng_net hod;
In the field definition above, the synmbol "=:=" means "is encoded
by". This field definition does not represent an assignnment
operation fromthe right hand side to the left side. |Instead, it is

Finking & Pelletier St andards Track [Page 6]

RFC 4997 ROHC- FN July 2007

a two-way mappi ng between the conpressed and unconpressed attributes
of the field. It both represents the conpression and the
deconpression operation in a single field definition, through a
process of two-way matching.

Two-way matching is a binary operation that attenpts to nmake the
operands (i.e., the conpressed and unconpressed attributes) natch.
This is simlar to the unification process in logic. The operands
represent one unspecified data object and one specified object.

Val ues can be matched from either operand.

During conpression, the unconpressed attributes of the field are

al ready defined. The given encoding matches the conpressed
attributes against them During deconpression, the conpressed
attributes of the field are already defined, so the unconpressed
attributes are matched to the conpressed attributes using the given
encodi ng nethod. Thus, both conpression and deconpression are
defined by a single field definition.

Theref ore, an encodi ng nethod (including any paraneters specified)
creates a reversible binding between the attributes of a field. At
the conpressor, a format can be used if a set of bindings that is
successful for all the attributes in all its fields can be found. At
t he deconpressor, the operation is reversed using the sanme bindings
and the attributes in each field are filled according to the
speci fi ed bindings; decoding fails if the binding for an attribute
fails.

For exanple, the "static" encoding nmethod creates a bindi ng between
the attribute corresponding to the unconpressed value of the field
and the correspondi ng value of the field in the context.

o For the conpressor, the "static" binding is successful when both
the context value and the unconpressed value are the sane. |If the
two values differ then the binding fails.

o For the deconpressor, the "static" binding succeeds only if a
valid context entry containing the value of the unconpressed field
exi sts. Oherwise, the binding will fail.

Both the conpressed and unconpressed fornms of each field are
represented as a string of bits; the nost significant bit first, of
the length specified by the length attribute. The bit string is the
bi nary representation of the value attribute of the field, nodulo
"2" ength", where "length" is the length attribute of the field.
However, this is only the representation of the bits exchanged

bet ween the conpressor and the deconpressor, designed to all ow

Finking & Pelletier St andards Track [Page 7]

RFC 4997 ROHC- FN July 2007

maxi mum conpressi on efficiency. The FN itself uses the full range of
integers. See Section 4.4.2 for further details.

3.2.2. Formats and Encodi ng Met hods

The ROHC-FN provides a library of commonly used encodi ng net hods.
Encodi ng net hods can be defined using plain English, or using a
formal definition consisting of, for exanple, a collection of
expressions (Section 4.7) and "ENFORCE" statenments (Section 4.9).

ROHC- FN al so provi des mechani sns for conbining fields and their
encodi ng net hods into higher |Ievel encoding nethods follow ng a well -
defined structure. This is simlar to the definition of functions
and procedures in an ordinary programm ng | anguage. It allows
conplexity to be handl ed by being broken down into nanageabl e parts.
New encodi ng net hods are defined at the top level of a profile.

These can then be used in the definition of other higher |eve
encodi ng net hods, and so on

new_encodi ng_nmnet hod /1 This block is an encoding nethod

UNCOVPRESSED ({ /1 This block is an unconpressed fornmat
field_ 1 [16]
field_2 [32]
field_3 [48]

}

CONTRCL { /1 This block defines control fields
ctrl _field_1;
ctrl _field 2;

}

DEFAULT { /1 This block defines default encodi ngs

/1l for specified fields

ctrl _field 2 encodi ng_net hod_2;

field 1 encodi ng_net hod_1;
}
COVPRESSED format _0 { /1 This block is a conpressed fornat
field 1;
field 2 =: = encodi ng_net hod_2;
field 3 =: = encodi ng_net hod_3;

ctrl _field 1
ctrl _field_2;

encodi ng_net hod_4;

Finking & Pelletier St andards Track [Page 8]

RFC 4997 ROHC- FN July 2007

COWPRESSED format _1 { /1 This block is a conpressed fornat
field 1;
field 2 encodi ng_net hod_3;

field_3
ctrl _field 2
ctrl _field 3

}
}

In the exanpl e above, the encodi ng net hod being defined is called
"new_encodi ng_net hod". The section headed "UNCOWMPRESSED' i ndi cates
the order of fields in the unconpressed header, i.e., the
unconpressed header fornmat. The nunber of bits in each of the fields
is indicated in square brackets. After this is another section
"CONTROL", which defines two control fields. Following this is the
"DEFAULT" section which defines default encodi ng nmet hods for two of
the fields (see below). Finally, two alternative conpressed formats
follow, each defined in sections headed "COWRESSED'. The fields
that occur in the conpressed fornats are either

encodi ng_net hod_4;
encodi ng_net hod_5;
encodi ng nethod 6; // This is a control field
/1 with no unconpressed val ue

o fields that occur in the unconpressed format; or

o control fields that have an unconpressed val ue and that occur in
t he CONTROL section; or

o control fields that do not have an unconpressed val ue and thus are
defined as part of the conpressed format.

Central to each of these formats is a "field list", which defines the
fields contained in the format and al so the order that those fields
appear in that format. For the "DEFAULT" and " CONTROL" sections, the
field order is not significant.

In addition to specifying field order, the field list may al so

specify bindings for any or all of the fields it contains. Fields
that have no bi ndi ngs defined for them are bound using the default
bi ndi ngs specified in the "DEFAULT" section (see Section 4.12.1.5).

Fields fromthe conpressed format have the same nane as they do in
the unconpressed format. |If there are any fields that are present
exclusively in the conpressed fornmat, but that do have an
unconpressed val ue, they nust be declared in the "CONTROL" section of
the definition of the encoding nmethod (see Section 4.12.1.3 for nore
details on defining control fields).

Fi el ds that have no unconpressed val ue do not appear in an
"UNCOWPRESSED' field list and do not have to appear in the "CONTROL"

Finking & Pelletier St andards Track [Page 9]

RFC 4997 ROHC- FN July 2007

field Iist either. Instead, they are only declared in the conpressed
field Iists where they are used.

In the exanpl e above, all the fields that appear in the conpressed
format are also found in the unconpressed format, or the contro
field list, except for ctrl _field 3; this is possible because

ctrl _field 3 has no "unconpressed" value at all. Fields such as a
checksum on the conpressed information fall into this category.

3.3. Exanple Using |IPv4

This section gives an overview of how the notation is used by neans
of an exanple. The exanple will develop the fornal notation for an
encodi ng net hod capabl e of conpressing a single, well-known header
the |1 Pv4 header [RFC791].

The first step is to specify the overall structure of the |Pv4
header. To do this, we use an encoding nmethod that we will call

"i pv4_header". More details on definitions of encodi ng nethods can
be found in Section 4.12. This is notated as foll ows:

i pv4_header
{

The fragnent of notation above decl ares the encodi ng net hod
"i pv4d_header", the definition follows the opening brace (see
Section 4.12).

Definitions within the pair of braces are local to "ipv4_header”
This scopi ng mechanismhelps to clarify which fields belong to which
formats; it is also useful when conpressing conpl ex protocol stacks
with several headers, often with the same field names occurring in
nmul ti pl e headers (see Section 4.2).

The next step is to specify the fields contained in the unconpressed
| Pv4 header to represent the unconpressed format for which the
encodi ng nethod will define one or nore conpressed formats. This is
acconpl i shed usi ng ROHC-FN as fol | ows:

Finking & Pelletier St andards Track [Page 10]

RFC 4997 ROHC- FN July 2007

UNCOWPRESSED {
version
header _| ength
dscp
ecn
| ength
id
reserved
dont _frag
nmore_fragments
of f set
ttl
pr ot ocol
checksum
src_addr
dest _addr

=

[
NOOOOWRRFRFROONO MBS

,_”_,,_,,_,,_‘,_‘,_‘,_,,_,,_,,_‘,_‘,_‘,_,,_|
e e e e e e e e e e e e e e

wwE
N

}

The width of each field is indicated in square brackets. This part
of the notation is used in the exanple for illustration to help the
reader’s understanding. However, indicating the field Iengths in
this way is optional since the width of each field can also normally
be derived fromthe encoding that is used to conpress/deconpress it
for a specific format. This part of the notation is formally defined
in Section 4.10.

The next step is to specify the conpressed format. This includes the
encodi ngs for each field that nmap between the conpressed and

unconpressed fornms of the field. 1In the exanple, these encoding
met hods are mainly taken fromthe ROHC-FN |ibrary (see Section 4.11).
Since the intention here is to illustrate the use of the notation

rather than to describe the optinum nethod of conpressing | Pv4d
headers, this exanple uses only three encodi ng nethods.

The "unconpressed_val ue" encodi ng nethod (defined in Section 4.11.1)
can conpress any field whose unconpressed | ength and val ue are fixed,
or can be calcul ated using an expression. No conpressed bits need to
be sent because the unconpressed field can be reconstructed using its
known size and value. The "unconpressed_val ue" encoding nethod is
used to conpress five fields in the |1 Pv4 header, as described bel ow

COWPRESSED ({
header | ength =:= unconpressed_val ue(4, 5);
version =: = unconpressed_val ue(4, 4);
reserved =: = unconpressed_val ue(1, 0);
of f set =: = unconpr essed_val ue(13, 0);

nmore_fragnments unconpr essed_val ue(1, 0);

Finking & Pelletier St andards Track [Page 11]

RFC 4997 ROHC- FN July 2007

The first paraneter indicates the length of the unconpressed field in
bits, and the second paraneter gives its integer val ue.

Note that the order of the fields in the conpressed format is
i ndependent of the order of the fields in the unconpressed format.

The "irregul ar" encodi ng nethod (defined in Section 4.11.3) can be
used to encode any field for which both unconpressed attributes
(ULENGTH and UVALUE) are defined, and whose ULENGTH attribute is
either fixed or can be calculated using an expression. It is a fail-
saf e encodi ng nethod that can be used for such fields in the case
where no other encoding nethod applies. Al of the bits in the
unconpressed formof the field are present in the conpressed form as
wel | ; hence this encodi ng does not achi eve any conpression

src_addr rregul ar (32);

==
dest _addr == irregul ar(32);
| ength = = irregul ar(16);
id == irregul ar(16);
ttl == irregular(8);
pr ot ocol == irregul ar(8);
dscp == irregul ar(6);
ecn == irregular(2);
dont _frag == irregular(l);

Finally, the third encoding nethod is specific only to the
unconpressed format defined above for the |IPv4 header
"inferred_i p_v4_header_checksuni:

checksum == inferred_i p_v4 header _checksum|[0];

}
}

The "inferred_i p_v4_header_checksum encoding nmethod is different
fromthe other two encoding nethods in that it is not defined in the
ROHC-FN library of encoding nmethods. |Its definition could be given
either by using the formal notation as part of the profile definition
itself (see Section 4.12) or by using plain English text (see

Section 4.13).

In our exanple, the "inferred_ip_v4 header_checksunt is a specific
encodi ng nethod that cal culates the I P checksumfromthe rest of the
header val ues. Like the "unconpressed val ue" encodi ng net hod, no
conpressed bits need to be sent, since the field value can be
reconstructed at the deconpressor. This is notated explicitly by
specifying, in square brackets, a length of 0 for the checksumfield
in the conpressed format. Again, this notation is optional since the
encodi ng nethod itself would be defined as sending zero conpressed

Finking & Pelletier St andards Track [Page 12]

RFC 4997 ROHC- FN July 2007

bits, however it is useful to the reader to include such notation
(see Section 4.10 for details on this part of the notation).

Finally the definition of the format is termnated with a cl osing
brace. At this point, the above exanpl e has defined a conpressed
format that can be used to represent the entire conpressed |Pv4
header, and provi des enough information to allow an inplenentation to
construct the conpressed fornmat from an unconpressed fornmat
(conpression) and vice versa (deconpression).

4. Normati ve Definition of ROHC FN

This section gives the normative definition of ROHC-FN. ROHC-FNis a
decl arative language that is referentially transparent, with no side
effects. This neans that whenever an expression is evaluated, there
are no other effects from obtaining the value of the expression; the
same expression is thus guaranteed to have the same val ue wherever it
appears in the notation, and it can always be interchanged with its
value in any of the formats it appears in (subject to the scope rules
of identifiers of Section 4.2).

The formal notation describes the structure of the formats and the
rel ati onshi ps between their unconpressed and conpressed forns, rather
than descri bi ng how conpressi on and deconpression is perforned.

In various places within this section, text inside angle brackets has
been used as a descriptive placeholder. The use of angle brackets in
this way is solely for the benefit of the reader of this docunent.
Nei t her the angle brackets, nor their contents forma part of the

not ati on.

4.1. Structure of a Specification

The specification of the conpressed formats of a ROHC profile using
ROHC-FN is called a ROHC FN specification. ROHC FN specifications
are case sensitive and are witten in the 7-bit ASCI| character set
(as defined in [RFC2822]) and consist of a sequence of zero or nore
constant definitions (Section 4.3), an optional global control field
list (Section 4.12.1.3) and one or nore encodi ng nmet hod definitions
(Section 4.12).

Encodi ng net hods can be defined using the formal notation or can be
predefi ned encodi ng net hods.

Encodi ng net hods are defined using the formal notation by giving one
or nmore unconpressed formats to represent the unconpressed header and
one or nore conpressed formats. These formats are related to each
other by "fields", each of which describes a certain part of an

Finking & Pelletier St andards Track [Page 13]

RFC 4997 ROHC- FN July 2007

unconpressed and/ or a conpressed header. 1In addition to the formats,
each encodi ng nethod nmay contain control fields, initial values, and
default field encodings sections. The attributes of a field are
bound by using an encoding nethod for it and/or by using "ENFORCE"
statements (Section 4.9) within the formats. Each of these are
term nated by a sem -colon
Pr edefi ned encodi ng methods are not defined in the formal notation.
Instead they are defined by giving a short textual reference
expl ai ni ng where the encoding nethod is defined. It is not necessary
to define the library of encoding nethods contained in this docunent
inthis way, their definitionis inplicit to the usage of the forma
not ati on.

4.2. ldentifiers
In ROHC-FN, identifiers are used for any of the follow ng:
0o encodi ng net hods
o formats
o fields
0 paraneters
0 constants
Al'l identifiers may be of any length and may contain any conbination
of al phanuneric characters and underscores, within the restrictions
defined in this section.
Al'l identifiers nust start with an al phabetic character.

It isillegal to have two or nore identifiers that differ from each
other only in capitalisation, in the sane scope.

All letters in identifiers for constants nust be upper case.

It isillegal to use any of the following as identifiers (including
alternative capitalisations):

o "false", "true"
o "ENFORCE', "TH S', "VARI ABLE"

o "ULENGTH', "UVALUE"

Finking & Pelletier St andards Track [Page 14]

RFC 4997 ROHC- FN July 2007

0 "CLENGTH', "CVALUE"
0 "UNCOWRESSED', "COWPRESSED', "CONTROL", "IN TIAL", or "DEFAULT"
For mat names cannot be referred to in the notation, although they are

considered to be identifiers. (See Section 4.12.3.1 for nore details
on format nanes.)

Al'l identifiers used in ROHC-FN have a "scope". The scope of an
identifier defines the parts of the specification where that
identifier applies and fromwhich it can be referred to. If an

identifier has a "global" scope, then it applies throughout the
specification that contains it and can be referred to from anywhere

withinit. |If an identifier has a "local" scope, then it only
applies to the encoding method in which it is defined, it cannot be
referenced fromoutside the |ocal scope of that encoding nethod. |If

an identifier has a | ocal scope, that identifier can therefore be
used in multiple different local scopes to refer to different itens.

Al'l instances of an identifier within its scope refer to the sane
item It is not possible to have different itens referred to by a
single identifier within any given scope. For this reason, if there
is an identifier that has gl obal scope it cannot be used separately
in a local scope, since a globally-scoped identifier is already
applicable in all |ocal scopes.

The identifiers for each encodi ng nethod and each constant all have a
gl obal scope. Each format and field also has an identifier. The
scope of format and field identifiers is local, with the exception of
gl obal control fields, which have a gl obal scope. Therefore it is
illegal for a format or field to have the sanme identifier as another
format or field within the sane scope, or as an encodi ng nmethod or a
constant (since they have gl obal scope).

Note that although format names (see Section 4.12.3.1) are considered
to be identifiers, they are not referred to in the notation, but are
primarily for the benefit of the reader.

4.3. Constant Definitions

Const ant val ues can be defined using the operator. ldentifiers
for constants nust be all upper case. For exanple:

SOVE_CONSTANT = 3;
Constants are defined by an expression (see Section 4.7) on the

right-hand side of the "=" operator. The expression nust yield a
constant value. That is, the expression nust be one whose terns are

Finking & Pelletier St andards Track [Page 15]

RFC 4997 ROHC- FN July 2007

all either constants or literals and nmust not vary depending on the
header bei ng conpressed.

Constants have a gl obal scope. Constants nust be defined at the top
| evel , outside any encoding nethod definition. Constants are
entirely equivalent to the value they refer to, and are conpletely

i nterchangeable with that value. Unlike field attributes, which may
change from packet to packet, constants have the sane val ue for al
packets.

4. 4, Fi el ds

Fi el ds are the basic building blocks of a ROHC-FN specification
Fields are the units into which headers are divided. Each field may
have two forns: a conpressed form and an unconpressed form Both
forns are represented as bits exchanged between the conpressor and

t he deconpressor in the same way, as an unsigned string of bits; the
nost significant bit first.

The properties of the conpressed formof a field are defined by an
encodi ng nmet hod and/or "ENFORCE" statenents. This entirely
characterises the relationship between the unconpressed and
compressed forns of that field. This is achieved by specifying the
rel ati onshi ps between the field s attributes.

The notation defines four field attributes, two for the unconpressed
formand a corresponding two for the conmpressed form The attributes
avail able for each field are:

unconpressed attributes of a field:

o "UWVALUE" and "ULENGTH'

conpressed attributes of a field:

0 "CVALUE" and " CLENGTH'

The two value attributes contain the respective nunerical val ues of
the field, i.e., "UVALUE"' gives the numerical value of the
unconpressed formof the field, and the attribute "CVALUE" gives the
nunerical value of the conpressed formof the field. The nunerica
val ues are derived by interpreting the bit-string representations of
the field as bit strings; the nost significant bit first.

The two length attributes indicate the length in bits of the

associated bit string; "ULENGIH' for the unconpressed form and
"CLENGTH' for the conpressed form

Finking & Pelletier St andards Track [Page 16]

RFC 4997 ROHC- FN July 2007

Attributes are undefined unless they are bound to a value, in which
case they becone defined. |If two conflicting bindings are given for
a field attribute then the bindings fail along with the (conbination
of) formats in which those bindi ngs were defi ned.

Unconpressed attributes do not always reflect an aspect of the
unconpressed header. Sone fields do not originate fromthe
unconpressed header, but are control fields.

4.4.1. Attribute References

Attributes of a particular field are fornally referred to by using
the field' s nane followed by a "." and the attribute’'s identifier

For exanpl e:
rtp_seq_nunber. UVALUE

The above gives the unconpressed value of the rtp_seq_nunber field.
The primary reason for referencing attributes is for use in
expressions, which are explained in Section 4.7.

4.4.2. Representation of Field Val ues

Fields are represented as bit strings. The bit string is calcul ated
using the value attribute ("val") and the length attribute ("len").
The bit string is the binary representation of "val % (2 " len)".

For exanple, if a field s "CLENGTH' attribute was 8, and its " CVALUE"
attribute was -1, the conpressed representation of the field would be
"-1 % (2 ~ 8)", which equals "-1 % 256", which equals 255, 11111111

i n binary.

ROHC- FN supports the full range of integers for use in expressions
(see Section 4.7), but the representation of the formats (i.e., the
bits exchanged between the conpressor and the deconpressor) is in the
above form

4.5. Gouping of Fields

Since the order of fields in a "COMWRESSED' field |ist

(Section 4.12.1.2) do not have to be the sane as the order of fields
in an "UNCOWRESSED' field list (Section 4.12.1.1), it is possible to
group together any nunber of fields that are contiguous in a
"COVPRESSED' format, to allow themall to be encoded using a single
encodi ng nethod. The group of fields is specified i mediately to the
left of "=:=" in place of a single field nane.

Finking & Pelletier St andards Track [Page 17]

RFC 4997 ROHC- FN July 2007

The group is notated by giving a colon-separated list of the fields
to be grouped together. For exanple there may be two non-conti guous
fields in an unconpressed header that are two hal ves of what is
effectively a single sequence nunber:

groupi ng_exanpl e

{
UNCOWPRESSED {
m nor_seq_num // 12 bits
other field, /[l 8 bits
maj or_seq_num // 4 bits
COWPRESSED {
other_field == irregular(8);
maj or _seq_num
m nor _seq_num =: = | sb(3, 0);
}
}

The group of fields is presented to the encoding nethod as a
contiguous group of bits, assenbled by the concatenation of the
fields in the order they are given in the group. The nost
significant bit of the conbined field is the nost significant bit of
the first field in the list, and the |east significant bit of the
conbined field is the least significant bit of the last field in the
list.

Finally, the length attributes of the conmbined field are equal to the
sum of the corresponding length attributes for all the fields in the
gr oup.

4.6. "TH S"

Wthin the definition of an encoding nethod, it is possible to refer
to the field (i.e., the group of contiguous bits) the nethod is
encodi ng, using the keyword "TH S".

This is useful for gaining access to the attributes of the field
bei ng encoded. For exanple it is often useful to know the tota
unconpressed | ength of the unconpressed format that is being encoded:

THI S. ULENGTH

Finking & Pelletier St andards Track [Page 18]

RFC 4997 ROHC- FN July 2007

4.7. Expressions

ROHC- FN i ncl udes the usual infix style of expressions, with
parent heses "(" and ")" used for grouping. Expressions can be nade
up of any of the conponents described in the foll ow ng subsecti ons.

The senantics of expressions are generally sinilar to the expressions
in the ANSI-C progranmi ng | anguage [C90]. The definitive list of
expressions in ROHC-FN follows in the next subsections; the |ist

bel ow provi des sone exanpl es of the difference between expressions in
ANSI - C and expressions in ROHC FN

o There is no limt on the range of integers.

o "x N y" evaluates to x raised to the power of y. This has a
precedence higher than *, / and % but |ower than unary - and is
right to left associative.

o0 There is no conma operator

0 There are no "nodify" operators (no assignment operators and no
i ncrenent or decrenent).

0 There are no bitw se operators.

Expressions may refer to any of the attributes of a field (as
described in Section 4.4), to any defined constant (see Section 4.3)
and al so to encoding nethod paraneters, if any are in scope (see
Section 4.12).

If any of the attributes, constants, or paraneters used in the
expression are undefined, the value of the expression is undefined.
Undefi ned expressions cause the environnent (for exanple, the
conpressed format) in which they are used to fail if a defined val ue
is required. Defined values are required for all conpressed
attributes of fields that appear in the conpressed format. Defined
val ues are not required for all unconpressed attributes of fields

whi ch appear in the unconpressed format. It is up to the profile
creator to define what happens to the unbound field attributes in
this case. It should be noted that in such a case, transparency of
the conpression process will be lost; i.e., it will not be possible

for the deconpressor to reproduce the original header

Expressi ons cannot be used as encodi ng nethods directly because they
do not conpletely characterise a field. Expressions only specify a
single value whereas a field is made up of several values: its
attributes. For exanple, the following is illegal

Finking & Pelletier St andards Track [Page 19]

RFC 4997 ROHC- FN July 2007

tcp_ list length =:= (data_offset + 20) / 4;
There is only enough information here to define a single attribute of
"tep_list_length". Although this makes no sense formally, this could
intuitively be read as defining the "UVALUE" attribute. However,
that would still |eave the Iength of the unconpressed field undefined

at the deconpressor. Such usage is therefore prohibited.
4.7.1. Integer Literals

I ntegers can be expressed as deci mal val ues, binary values (prefixed
by "0b"), or hexadeci mal values (prefixed by "0x"). Negative
integers are prefixed by a "-" sign. For exanple "10", "0b1010", and
"-0x0a" are all valid integer literals, having the values 10, 10, and
-10 respectively.

4.7.2. Integer QOperators

The following "integer" operators are avail able, which take integer
arguments and return an integer result:

o 7, for exponentiation. "x ~ y" returns the value of "x" to the

power of "

y .

o *, [/ for nultiplication and division. "x * y" returns the product
of "x" and "y". "x [/ y" returns the quotient, rounded down to the
next integer (the next one towards negative infinity).

o +, - for addition and subtraction. "x + y" returns the sum of
and "y". "x - y" returns the difference.

X

0 %for nodulo. "x %y" returns "x" nmodulo "y"; x -y * (x [/ y).
4.7.3. Boolean Literals

The boolean literals are "false", and "true"
4.7.4. Bool ean Operators

The follow ng "bool ean" operators are avail abl e, which take bool ean
argunents and return a bool ean result:

0 && for logical "and". Returns true if both argunents are true.
Returns fal se ot herw se

0 for logical "or". Returns true if at |east one argunent is

[,
true. Returns fal se otherw se

Finking & Pelletier St andards Track [Page 20]

RFC 4997 ROHC- FN July 2007

o !, for logical "not". Returns true if its argunent is false
Returns fal se ot herw se

4.7.5. Conparison Operators

The follow ng "conparison" operators are avail able, which take
i nteger argunents and return a bool ean result:

o ==, != for equality and its negative. "x == y" returns true if x
is equal toy. Returns false otherwise. "x !=y" returns true if
X is not equal toy. Returns false otherw se

0 <, > for less than and greater than. "x < y" returns true if x is
less than y. Returns false otherwise. "x > y" returns true if x
is greater than y. Returns fal se otherw se

o >=, <=, for greater than or equal and |l ess than or equal, the
i nverse functions of <, > "x >= y" returns false if x is |less
than y. Returns true otherwise. "x <= y" returns false if x is
greater than y. Returns true otherw se

4. 8. Conmment s

Free English text can be inserted into a ROHC-FN specification to
expl ai n why sonethi ng has been done a particular way, to clarify the
i ntended nmeani ng of the notation, or to el aborate on sone point.

The FN uses an end of line coment style, which nakes use of the "//"
comrent marker. Any text between the "//" marker and the end of the
line has no fornmal neaning. For exanple:

/1 The following fields are included in all of the | R REPLI CATE
/'l header formats:

11

UNCOWVPRESSED {
di scrim nator; /1l 8 bits
t cp_seq_nunber; /1 32 bits
tcp_flags_ecn; /1 2 bits

Comrents do not affect the fornmal neaning of what is notated, but can
be used to inprove readability. Their use is optional

Commrents may help to provide clarifications to the reader, and serve
di fferent purposes to inplenenters. Comments should thus not be

Finking & Pelletier St andards Track [Page 21]

RFC 4997 ROHC- FN July 2007

consi dered of |esser inportance when inserting theminto a ROHC-FN
specification; they should be consistent with the normative part of
t he specification.

4.9. "ENFORCE" Statenents

The "ENFORCE" statenent provides a way to add predicates to a format,
all of which nmust be fulfilled for the format to succeed. An
"ENFORCE" statenment shares sonme sinmilarities with an encodi ng net hod.
Specifically, whereas an encodi ng nmet hod bi nds several field
attributes at once, an "ENFORCE" statenent typically binds just one
of them In fact, all the bindings that encodi ng nethods create can
be expressed in terns of a collection of "ENFORCE" statenents. Here
is an exanple "ENFORCE" statenent which binds the "UVALUE" attribute
of afield to 5.

ENFORCE(f i el d. UVALUE == 5);

An "ENFORCE" statement nust only be used inside a field list (see
Section 4.12). It attenpts to force the expression given to be true
for the format that it belongs to.

An abbreviated formof an "ENFORCE" statenent is avail able for
binding length attributes using "[" and "]", see Section 4.10.

Li ke an encodi ng net hod, an "ENFORCE" statenment can only be
successfully used in a format if the binding it describes is
achievable. A format containing the exanple "ENFORCE" statenent
above woul d not be usable if the field had al so been bound within
that sane format with "unconpressed _val ue" encodi ng, which gave it a
"UVALUE" ot her than 5.

An "ENFORCE" statenment takes a bool ean expression as a paraneter. |t
can be used to assert that the expression is true, in order to choose
a particular format froma list of possible formats specified in an
encodi ng nethod (see Section 4.12), or just to bind an expression as
in the exanpl e above. The general formof an "ENFORCE" statenent is
t herefore

ENFORCE(<bool ean expressi on>);
There are three possible conditions that the expression nay be in:
1. The bool ean expression evaluates to false, in which case the

| ocal scope of the format that contains the "ENFORCE' statenent
cannot be used.

Finking & Pelletier St andards Track [Page 22]

RFC 4997 ROHC- FN July 2007

2. The bool ean expression evaluates to true, in which case the
bi nding is created and successful.

3. The value of the bool ean expression is undefined. |In this case,
the binding is al so created and successful

In all three cases, any undefined term becones bound by the
expression. Cenerally speaking, an "ENFORCE' statenent is either
bei ng used as an assignnent (condition 3 above) or being used to test
if a particular format is usable, as is the case with conditions 1
and 2.

4.10. Formal Specification of Field Lengths

In many of the exanples each field has been followed by a conment
indicating the length of the field. Indicating the Iength of a field
like this is optional, but can be very hel pful for the reader

However, whilst useful to the reader, coments have no fornal

meani ng.

One of the nost common uses for "ENFORCE' statenents (see

Section 4.9) is to explicitly define the Iength of a field within a
header. Using "ENFORCE" statenents for this purpose has fornal
meani ng but is not so easy to read. Therefore, an abbreviated form
is provided for this use of "ENFORCE"', which is both easy to read and
has formal neaning.

An expression defining the length of a field can be specified in
square brackets after the appearance of that field in a format. If
the field can take several alternative |lengths, then the expressions
defining those I engths can be enunerated as a comma separated |i st
within the square brackets. For exanple:

field 1 [4];
field 2 [a+b, 2];
field 3 == Isb(16, 16) [26];

The actual length attribute, which is bound by this notation, depends
on whether it appears in a "COVWRESSED', "UNCOWRESSED', or "CONTROL"
field list (see Section 4.12.1 and its subsections). 1In a
"COWRESSED' field list, the field s "CLENGIH' attribute is bound.

I n "UNCOWPRESSED' and "CONTROL" field lists, the field s "ULENGTH'
attribute is bound. Abbreviated "ENFORCE' statements are not all owed
in "DEFAULT" sections (see Section 4.12.1.5). Therefore, the above
notati on would not be allowed to appear in a "DEFAULT" section
However, if the above appeared in an "UNCOVWPRESSED' or " CONTROL"
section, it would be equival ent to:

Finking & Pelletier St andards Track [Page 23]

RFC 4997 ROHC- FN July 2007

4,

field_ 1; ENFORCE(fi el d_1. ULENGTH == 4);
field 2; ENFORCE((fi el d_2. ULENGTH == 2)

[| (field_ 2. ULENGTH == a+h));
field 3 == 1sb(16, 16); ENFORCE(field_3.ULENGTH == 26);

A special case exists for fields that have a variable length that the
not at or does not wish, or is not able to, define using an expression
The keyword "VARI ABLE' can be used in the follow ng case:

variable length field [VAR ABLE];

Formally, this provides no restrictions on the field |l ength, but naps
onto any positive integer or to a value of zero. It will therefore
be necessary to define the length of the field el sewhere (see the
final paragraphs of Section 4.12.1.1 and Section 4.12.1.2). This may
either be in the notation or in the English text of the profile
within which the FN is contained. Wthin the square brackets, the
keyword "VARI ABLE" nay be used as a termin an expression, just like
any other termthat nornmally appears in an expression. For exanple:

field [8 * (5 + VAR ABLE) |:

This defines a field whose Iength is a whol e nunber of octets and at
| east 40 bits (5 octets).

11. Library of Encodi ng Methods

A nunber of conmon techni ques for conpressing header fields are
defined as part of the ROHC-FN library so that they can be reused
when creating new ROHC- FN specifications. Their notation is
descri bed bel ow

As an alternative, or a conplement, to this library of encoding

nmet hods, a ROHC-FN specification can define its own set of encoding
met hods, using the formal notation (see Section 4.12) or using a
textual definition (see Section 4.13).

4.11.1. unconpressed_val ue

The "unconpressed_val ue" encoding nethod is used to encode header
fields for which the unconpressed val ue can be defined using a

mat hemati cal expression (including constant values). This encoding
nethod is defined as follows:

Finking & Pelletier St andards Track [Page 24]

RFC 4997 ROHC- FN July 2007

unconpressed_val ue(len, val) {
UNCOWPRESSED {
field;
ENFORCE(fi el d. ULENGTH == | en);
ENFORCE(fi el d. UVALUE == val);

}
COMPRESSED {
field;
ENFORCE(f i el d. CLENGTH == 0);
}
}

To exenplify the usage of "unconpressed val ue" encodi ng, the |IPv6
header version nunber is a 4-bit field that always has the val ue 6:

versi on == unconpr essed_val ue(4, 6);

Here i s anot her exanple of val ue encodi ng, using an expression to
cal cul ate the | ength:

paddi ng =: = unconpressed_val ue(nbits - 8, 0);

The expression above uses an encodi ng nmet hod paraneter, "nbits", that
in this exanple specifies how many significant bits there are in the
data to cal culate how nany pad bits to use. See Section 4.12.2 for
nmore i nformati on on encodi ng net hod paraneters.

4.11.2. conpressed_val ue

The "conpressed val ue" encoding nethod is used to define fields in
conpressed formats for which there is no counterpart in the
unconpressed format (i.e., control fields). It can be used to
specify conpressed fields whose val ue can be defined using a

mat hemat i cal expression (including constant values). This encoding
met hod i s defined as foll ows:

conpressed_val ue(len, val) {
UNCOWPRESSED {
field;
ENFORCE(f i el d. ULENGTH == 0);

}
COVPRESSED {
field;
ENFORCE(fi el d. CLENGTH == | en);
ENFORCE(fi el d. CVALUE == val);
}
}

Finking & Pelletier St andards Track [Page 25]

RFC 4997 ROHC- FN July 2007

One possible use of this encoding nethod is to define padding in a
conpressed format:

pad_to_octet boundary == conpressed_val ue(3, 0);

A nore comon use is to define a discrinmnator field to nake it
possible to differentiate between different conpressed formats within
an encodi ng method (see Section 4.12). For conveni ence, the notation
provi des syntax for specifying "conpressed_val ue" encoding in the
formof a binary string. The binary string to be encoded is sinply
given in single quotes; the "CLENGIH' attribute of the field binds
with the nunber of bits in the string, while its "CVALUE" attribute
binds with the value given by the string. For exanple:

di scri m nat or = = 01101’
This has exactly the sane neani ng as:
di scri m nat or == conpressed_val ue(5, 13);
4.11.3. irregular
The "irregul ar" encoding nmethod is used to encode a field in the
conpressed format with a bit pattern identical to the unconpressed

field. This encoding nethod is defined as foll ows:

irregular(len) {
UNCOWPRESSED {

field,;

ENFORCE(fi el d. ULENGTH == | en);
}
COWPRESSED {

field;

ENFORCE(fi el d. CLENGTH == | en);

ENFORCE(fi el d. CVALUE == fi el d. UVALUE)

}
}

For exanple, the checksumfield of the TCP header is a 16-bit field
that does not follow any predictable pattern from one header to
anot her (and so it cannot be conpressed):

tcp_checksum =:= i rregular(16);
Note that the length does not have to be constant, for exanple, an

expression can be used to derive the length of the field fromthe
val ue of another field.

Finking & Pelletier St andards Track [Page 26]

RFC 4997 ROHC- FN July 2007

4,11.4. static

The "static" encodi ng nethod conpresses a field whose | ength and
val ue are the sane as for a previous header in the flow, i.e., where
the field conpletely matches an existing entry in the context:

field == static;

The field s "UVALUE" and "ULENGTH' attributes bind with their
respective values in the context and the "CLENGITH' attribute is bound
to zero.

Since the field value is the sane as a previous field value, the
entire field can be reconstructed fromthe context, so it is
conpressed to zero bits and does not appear in the conpressed fornmat.

For exanple, the source port of the TCP header is a field whose val ue
does not change from one packet to the next for a given flow

src_port == static;
4.11.5. Isb
The | east significant bits encoding nmethod, "Isb", conpresses a field

whose val ue differs by a small anpbunt fromthe value stored in the
context. The least significant bits of the field value are
transmtted instead of the original field val ue.

field == | sb(<num_| sbs_par anp, <offset_paranp);

Here, "numlsbs param' is the nunber of |east significant bits to
use, and "offset paranmt is the interpretation interval offset as
defined bel ow

The paraneter "num.|sbs_parant binds with the "CLENGIH' attri bute,
the "UVALUE" attribute binds to the value within the interval whose
| east significant bits natch the "CVALUE" attribute. The val ue of
the "ULENGTH' can be derived fromthe infornmation stored in the
cont ext .

For exanple, the TCP sequence nunber
t cp_sequence_nunber == | sb(14, 8192);
This takes up 14 bits, and can conmuni cate any val ue that is between

8192 |l ower than the value of the field stored in context and 8191
above it.

Finking & Pelletier St andards Track [Page 27]

RFC 4997 ROHC- FN July 2007
The interpretation interval can be described as a function of a val ue
stored in the context, ref_value, and of num.| sbs_param

f(context _value, numlsbs param) = [ref_value - offset_param
ref _value + (2*"num_|sbs_param - 1) - offset_parani

where offset _paramis an integer.

<-- interpretation interval (size is 2*"numlsbs_param -->

| <o o |
| ower ref val ue upper
bound bound

wher e:

| ower bound
upper bound

ref value - offset_param
ref _value + (2*"num_| sbs_param 1) - offset_param

The "I sb" encodi ng nethod can therefore conpress a field whose val ue
lies between the | ower and the upper bounds, inclusively, of the

interpretation interval. |In particular, if offset_param= 0, then
the field value can only stay the sanme or increase relative to the
reference value ref_value. |If offset_param= -1, then it can only

i ncrease, whereas if offset_param = 2"num|lsbs param then it can
only decrease.

The conpressed field takes up the specified nunber of bits in the
conpressed format (i.e., numlsbhs_paran).

The conpressor nay not be able to determ ne the exact reference val ue
stored in the deconpressor context and that will be used by the
deconpressor, since sone packets that woul d have updated the context
may have been | ost or damaged. However, from feedback received or by
maki ng assunptions, the conpressor can linit the candi date set of

val ues. The conpressor can then select a format that uses "l sb"
encodi ng, defined with suitable values for its paraneters

num | sbs_param and of fset _param such that no matter whi ch context

val ue in the candidate set the deconpressor uses, the resulting
deconpression is correct. If that is not possible, the "Isb"
encodi ng nethod fails (which typically results in a |l ess efficient
conpressed format being chosen by the conpressor). How the
conpressor determ nes what reference values it stores and naintains
inits set of candidate references is outside the scope of the

not ati on.

Finking & Pelletier St andards Track [Page 28]

RFC 4997 ROHC- FN July 2007

4.11.6. crc
The "crc" encodi ng nmet hod provides a CRC cal cul ated over a bl ock of
data. The algorithmused to calculate the CRC is the one specified
in [RFC4995]. The "crc" nethod takes a number of paraneters:
o the nunber of bits for the CRC (crc_bits),
o0 the bit-pattern for the polynomial (bit_pattern),

o the initial value for the CRC register (initial_value),

o the value of the block of data, represented using either the
"UVALUE" or "CVALUE" attribute of a field (bl ock data value); and

o the size in octets of the block of data (block_data_length).
That is:

field == crc(<numbits> <bit_pattern> <initial_value>,
<bl ock_dat a_val ue>, <bl ock_data_l ength>);

When specifying the bit pattern for the polynom al, each bit
represents the coefficient for the corresponding termin the

pol ynomial. Note that the highest order termis always present (by
definition) and therefore does not need specifying in the bit
pattern. Therefore, a CRC polynomal with nterms init is
represented by a bit pattern with n-1 bits set.

The CRC is calculated in least significant bit (LSB) order
For exanpl e:

/1 3 bit CRC, C(x) = x"0 + x1 + x"3
crc_field =:= crc(3, 0x6, OxF, TH S. CVALUE, TH S. CLENGTH);

Usage of the "TH S" keyword (see Section 4.6) as shown above, is
typi cal when using "crc" encoding. For exanple, when used in the
encodi ng nmethod for an entire header, it causes the CRC to be
calcul ated over all fields in the header.

4.12. Definition of Encodi ng Methods

New encodi ng net hods can be defined in a formal specification. These
conpose groups of individual fields into a contiguous bl ock.

Encodi ng net hods have nanmes and may have paraneters; they can also be
used in the sane way as any other encoding nmethod fromthe library of

Finking & Pelletier St andards Track [Page 29]

RFC 4997 ROHC- FN July 2007

encodi ng nethods. Since they can contain references to other
encodi ng net hods, conplicated fornats can be broken down into
manageabl e pieces in a hierarchical fashion

Thi s section describes the various features used to define new
encodi ng net hods.

4,.12.1. Structure

This sinplest formof defining an encoding nethod is to specify a
singl e encodi ng. For exanpl e:

conmpound_encodi ng_net hod

{
UNCOWPRESSED {
field 1; // 4 bits
field_2; // 12 bits
}
COVWPRESSED {
field_2 =:= unconpressed_value(12, 9); // 0 bits
field 1 == irregular(4); I/l 4 bits
}
}
The above begins with the new nethod s identifier
"conmpound_encodi ng_nethod". The definition of the nethod then
follows inside curly brackets, "{" and "}". The first itemin the

definition is the "UNCOWRESSED' field list, which gives the order of
the fields in the unconpressed format. This is followed by the
compressed format field list ("COWRESSED'). This list gives the
order of fields in the conpressed format and al so gi ves the encodi ng
nmet hod for each field.

In the exanple, both the formats list each field exactly once.
However, sonetines it is necessary to specify nore than one binding
for a given field, which neans it appears nore than once in the field
list. In this case, it is the first occurrence of the field in the
list that indicates its position in the field order. The subsequent
occurrences of the field only specify binding information, not field
order information

The di fferent conponents of this exanple are described in nore detai

bel ow. O her conponents that can be used in the definition of
encodi ng net hods are al so defined thereafter

Finking & Pelletier St andards Track [Page 30]

RFC 4997 ROHC- FN July 2007

4,.12.1.1. Unconpressed Fornmat - "UNCOVPRESSED"

The unconpressed field list is defined by "UNCOWRESSED', which
specifies the fields of the unconpressed format in the order that

t hey appear in the unconpressed header. The sum of the |engths of
each individual unconpressed field in the list nust be equal to the
Il ength of the field being encoded. Finally, the representation of
t he unconpressed format described using the list of fields in the
"UNCOWPRESSED" section, for which conpressed formats are being
defined, always consists of one single contiguous block of bits.

In the exanpl e above in Section 4.12.1, the unconpressed field Iist
is "field 1", followed by "field 2". This neans that a field being
encoded by this method is divided into two subfields, "field_1" and
"field_2". The total unconpressed |length of these two fields
therefore equals the length of the field being encoded:

field_1. ULENGTH + field_2. ULENGTH == TH S. ULENGTH

In the exanple, there are only two fields, but any nunber of fields
may be used. This relationship applies to however many fields are
actually used. Any arrangenent of fields that efficiently describes
the content of the unconpressed header may be chosen -- this need not
be the sane as the one described in the specifications for the

prot ocol header bei ng conpressed.

For exanple, there may be a protocol whose header contains a 16-bit
sequence number, but whose sessions tend to be short-lived. This
woul d mean that the high bits of the sequence nunber are al nost

al ways constant. The "UNCOVWPRESSED' format could reflect this by
splitting the original unconpressed field into tw fields, one field
to represent the al npst-al ways-zero part of the sequence nunber, and
a second field to represent the salient part.

An "UNCOWPRESSED" field list may specify encoding nethods in the same
way as the "COWPRESSED' field list in the exanple. Encodi ng nethods
specified therein are used whenever a packet with that unconpressed
format is being encoded. The encoding of a packet with a given
unconpressed format can only succeed if all of its encodi ng nethods
and "ENFORCE" statenents succeed (see Section 4.9).

The total length of each unconpressed format nust always be defi ned.
The I ength of each of the fields in an unconpressed format nust al so
be defined. This neans that the bindings in the "UNCOVWRESSED"
"COVWPRESSED' (see Section 4.12.1.2 below), "CONTROL" (see

Section 4.12.1.3 below), "INITIAL" (see Section 4.12.1.4 below), and
"DEFAULT" (see Section 4.12.1.5 below) field lists nust, between
them define the "ULENGIH' attribute of every field in an

Finking & Pelletier St andards Track [Page 31]

RFC 4997 ROHC- FN July 2007

unconpressed fornmat so that there is an unanbi guous mapping fromthe
bits in the unconpressed format to the fields listed in the
"UNCOVWPRESSED" field list.

4.12.1.2. Conpressed Format - " COVPRESSED'

Simlar to the unconpressed field list, the fields in the conpressed
header will appear in the order specified by the conpressed field
list given for a conpressed format. Each individual field is encoded
in the manner given for that field. The total length of the
compressed data will be the sumof the conpressed lengths of all the
i ndividual fields. In the exanple from Section 4.12.1, the encoding
met hods used for these fields indicate that they are zero and 4 bits
long, making a total of 4 bits.

The order of the fields specified in a "COVWRESSED' field Iist does
not have to match the order they appear in the "UNCOWRESSED' field

list. It nmay be desirable to reorder the fields in the conpressed
format to align the conpressed header to the octet boundary, or for
other reasons. |In the above exanple, the order is in fact the

opposite of that in the unconpressed format.

The conpressed field list specifies that the encoding for "field 1"
is "irregular", and takes up 4 bits in both the conpressed format and
unconpressed format. The encoding for "field 2" is
"unconpressed_val ue", which nmeans that the field has a fixed val ue,
so it can be conpressed to zero bits. The value it takes is 9, and
it is 12 bits wide in the unconpressed fornmat.

Fields like "field 2", which conpress to zero bits in length, may

appear anywhere in the field list wthout changing the conpressed

format because their position in the list is not significant. In

fact, if the encoding nmethod for this field were defined el sewhere
(for exanmple, in the "UNCOWRESSED' section), this field could be

omtted fromthe "COVWRESSED' section altogether

conmpound_encodi ng_net hod

UNCOWPRESSED {

field_1; Il 4 bits

field_2 =:= unconpressed_value(12, 9); [/ 12 bits
}
COWPRESSED {

field_1 == irregular(4); Il 4 bits
}

}

Finking & Pelletier St andards Track [Page 32]

RFC 4997 ROHC- FN July 2007

The total length of each conpressed format nust always be defi ned.
The length of each of the fields in a conpressed format nust al so be
defined. This neans that the bindings in the "UNCOVPRESSED'

" COVPRESSED', "CONTROL" (see Section 4.12.1.3 below), "INTIAL" (see
Section 4.12.1.4 bel ow), and "DEFAULT" (see Section 4.12.1.5 bel ow)
field Iists nust between them define the "CLENGTH' attribute of every
field in a conpressed format so that there is an unanbi guous nappi ng
fromthe bits in the conpressed format to the fields listed in the
"COWRESSED" field list.

4,12.1.3. Control Fields - "CONTROL"

Control fields are defined using the "CONTROL" field list. The
control field list specifies all fields that do not appear in the
unconpressed format, but that have an unconpressed val ue
(specifically those with an "ULENGTH' greater than zero). Such
fields may be used to help conpress fields fromthe unconpressed
format nore efficiently. A control field could be used to inprove
efficiency by representing sone commonal ity between a nunber of the
unconpressed fields, or by representing sonme information about the
flow that is not explicitly contained in the protocol headers.

For exanple in IPv4, the behaviour of the IP-IDfield in a flow
vari es dependi ng on how the endpoints handle IP-1Ds. Sonetines the
behavi our is effectively random and sonetines the IP-1D follows a
predi ctabl e sequence. The type of |P-1D behaviour is information
that is never communicated explicitly in the unconpressed header

However, a profile can still be designed to identify the behavi our
and adj ust the conpression strategy according to the identified
behavi our, thereby inproving the conpression performnce. To do so,
t he ROHC- FN specification can introduce an explicit field to

communi cate the | P-1D behaviour in conpressed format -- this is done
by introducing a control field:

i pvd
UNCOWPRESSED {
versi on; /Il 4 bits
hdr _| engt h; /'l 4 bits
pr ot ocol ; /1 8 bits
dscp; /1l 6 bits
ip_ecn flags; [// 2 bits
ttl _hopl; /1l 8 bits
df ; Il 1 bit
nf ; /1 1 bit
rf; /1 1 bit
frag of fset; /1 13 bits

Finking & Pelletier St andards Track [Page 33]

RFC 4997 ROHC- FN July 2007

ip_id; /1 16 bits
src_addr; Il 32 bits
dst _addr; /1 32 bits
checksum /1 16 bits
| engt h; /1 16 bits
}
CONTROL {

i p_id_behavior; // 1 bit

The "CONTRCOL" field list is equivalent to the "UNCOWRESSED' field
list for fields that do not appear in the unconpressed format. It
defines a field that has the same properties (the sanme defined
attributes, etc.) as fields appearing in the unconpressed format.

Control fields are initialised by using the appropriate encodi ng
met hods and/ or by using "ENFORCE" statenents. This nay be done
i nside the "CONTROL" field list.

For exanpl e:
exanpl e_encodi ng_net hod_definition

UNCOMPRESSED {
field_1 == sone_encodi ng;

}

CONTROL {
scal ed _field;
ENFORCE(scal ed_fiel d. UVALUE == field_1. UVALUE / 8);
ENFORCE(scal ed_fi el d. ULENGTH == field_1. ULENGTH - 3);
}

COVWPRESSED {
scaled field == Isb(4, 0);
}
}

This control field is used to scale down a field in the unconpressed
format by a factor of 8 before encoding it with the "lIsb" encodi ng
met hod. Scaling it down nmakes the "l sb" encoding nore efficient.

Control fields may also be used with a global scope. 1In this case,
their declaration nmust be outside of any encodi ng nethod definition
They are then visible within any encodi ng net hod, thus allow ng

i nformati on to be shared between encodi ng nethods directly.

Finking & Pelletier St andards Track [Page 34]

RFC 4997 ROHC- FN July 2007

4.12.1. 4. Initial Values - "IN TIAL"

In order to allow fields in the very first usage of a specific fornmat
to be conpressed with "static", "lsb", or other encoding methods that
depend on the context, it is possible to specify initial bindings for
such fields. This is done using "INITIAL", for exanple:

I NI TIAL {
field =:= unconpressed_val ue(4, 6);
}

This initialises the "UVALUE" of "field" to 6 and initialises its
"ULENGTH' to 4. Unlike all other bindings specified in the fornal
notation, these bindings are applied to the context of the field, if
the field s context is undefined. This is particularly useful when
usi ng encodi ng nethods that rely on context being present, such as
"static" or "lIsb", with the first packet in a flow

Because the "IN TIAL" field list is used to bind the context alone,
it makes no sense to specify initial bindings that thenselves rely on
the context, for exanple, "Isb". Such usage is not all owed.

4.12.1.5. Default Field Bindings - "DEFAULT"

Defaul t bindings nmay be specified for each field or attribute. The
default encodi ng nethods specify the encoding nethod to use for a
field if no binding is given el sewhere for the value of that field.
This is helpful to keep the definition of the formats conci se, as the
same encodi ng net hod need not be repeated for every format, when
defining nultiple formats (see Section 4.12.3).

Defaul t bi ndings are optional and nay be given for any conbi nation of
fields and attributes which are in scope.

The syntax for specifying default bindings is simlar to that used to
specify a conpressed or unconpressed format. However, the order of
the fields in the field list does not affect the order of the fields
in either the conpressed or unconpressed format. This is because the
field order is specified individually for each "COVWRESSED' for mat
and " UNCOWPRESSED' f or nat .

Here is an exanpl e:

DEFAULT {
field_1 =:= unconpressed_val ue(4, 1);
field_2 =:= unconpressed_val ue(4, 2);
field_3 == 1sb(3, -1);

ENFORCE(fi el d_4. ULENGTH == 4);

Finking & Pelletier St andards Track [Page 35]

RFC 4997 ROHC- FN July 2007

}

Here default bindings are specified for fields 1 to 3. A default
bi nding for the "ULENGIH' attribute of field_4 is also specified.

Fields for which there is a default encodi ng nethod do not need their
bi ndings to be specified in the field list of any format that uses
the default encoding nethod for that field. Any format that does not
use the default encoding nmethod nust explicitly specify a binding for
the value of that field s attributes.

If elsewhere a binding is not specified for the attributes of a
field, the default encoding nethod is used. |If the default encoding
met hod al ways conpresses the field dowmn to zero bits, the field can
be onmitted fromthe conpressed format’s field list. Like any other
zero-bit field, its position in the field list is not significant.

The "DEFAULT" field list may contain default bindings for individua
attributes by using "ENFORCE" statenents. A default binding for an
i ndividual attribute will only be used if el sewhere there is no

bi nding given for that attribute or the field to which it bel ongs.
If elsewhere there is an "ENFORCE' statenment binding that attribute,
or an encodi ng nethod binding the field to which it bel ongs, the
default binding for the attribute will not be used. This applies
even if the specified encoding net hod does not bind the particul ar
attribute given in the "DEFAULT" section. However, an "ENFORCE"
statement el sewhere that only binds the length of the field stil

all ows the default bindings to be used, except for default "ENFORCE"
statements whi ch bind nothing but the field s |ength.

To clarify, assum ng the default bindings given in the exanpl e above,
the first three of the follow ng four conpressed formats woul d not
use the default binding for "field_4. ULENGTH":

COVPRESSED format 1 {
ENFORCE(fi el d_4. ULENGTH == 3); // set ULENGTH to 3
ENFORCE(fiel d_4. UVALUE == 7); // set UALUE to 7

}
COWPRESSED f or mat 2 {
field 4 == irregular(3); /1 set ULENGIH to 3
}
COMPRESSED f ormat 3 {
field_4 == "'1010"; /'l set ULENGIH to zero
}

Finking & Pelletier St andards Track [Page 36]

RFC 4997 ROHC- FN July 2007

COVPRESSED f ormat 4 {
ENFORCE(fi el d_4. UVALUE == 12); // use default ULENGTH
}

The fourth format is the only one that uses the default binding for
"field_4. ULENGTH'.

In summary, the default bindings of an encodi ng nethod are only used
for formats that do not already specify a binding for the val ue of

all of their fields. For the formats that do use default bindings,
only those fields and attributes whose bindings are not specified are
| ooked up in the "DEFAULT" field list.

4.12.2. Argunents
Encodi ng nmet hods nmay take argunments that control the mapping between
conpressed and unconpressed fields. These are specified i mediately
after the nethod’ s nane, in parentheses, as a conmm-separated |ist.
For exanpl e:
poor _mans_| sb(vari abl e_| engt h)
UNCOWPRESSED {

constant _bits;
vari abl e _bits;

}

COVPRESSED {
variable bits =:= irregul ar(variabl e_| ength);
constant _bits =:= static;

}

}

As with any encoding nethod, all argunents take individual val ues,
such as an integer literal or a field attribute, rather than entire
fields. Although entire fields cannot be passed as argunments, it is
possi ble to pass each of their attributes instead, which is
equi val ent .

Recall that all bindings are two-way, so that rather than the

argunents acting as "inputs" to the encoding nethod, the result of an
encodi ng nethod nmay be to bind the paraneters passed to it.

Finking & Pelletier St andards Track [Page 37]

RFC 4997 ROHC- FN July 2007

For exanpl e:

set _to_doubl e(argl, arg2)

CONTRCL {
ENFORCE(argl == 2 * arg2);
}
}

This encoding nethod will attenpt to bind the first argunent to tw ce
the value of the second. |In fact this "encoding"” nethod is
pathological. Since it defines no fields, it does not do any actua
encoding at all. "CONTROL" sections are nore appropriate to use for

thi s purpose than "UNCOVWRESSED'
4.12.3. Miltiple Formats

Encodi ng net hods can al so define nmultiple formats for a gi ven header.
This allows different conpression nethods to be used dependi ng on
what is the nost efficient way of conpressing a particul ar header

For exanple, a field may have a fixed value nost of the time, but the
val ue may occasionally change. Using a single format for the
encoding, this field would have to be encoded using "irregular" (see
Section 4.11.3), even though the value only changes rarely. However,
by defining nultiple formats, we can provide two alternative

encodi ngs: one for when the value remains fixed and anot her for when
t he val ue changes.

This is the topic of the follow ng sub-sections.
4.12.3.1. Nanming Convention

When conpressed formats are defined, they nust be defined using the
reserved word "COWPRESSED'. Sinilarly, unconpressed formats nust be
defined using the reserved word "UNCOWRESSED'. After each of these
keywords, a name may be given for the format. |If no nanme is given to
the format, the name of the format is enpty.

For mat nanes, except for the case where the nane is enpty, followthe
syntactic rules of identifiers as described in Section 4. 2.

For mat nanes nust be unique within the scope of the encodi ng net hod

to which they bel ong, except for the enpty nane, which may be used
for one "COWRESSED' and one "UNCOWRESSED' format.

Finking & Pelletier St andards Track [Page 38]

RFC 4997 ROHC- FN July 2007

4,12.3.2. Format Discrimnation

Each of the conpressed formats has its own field list. A conpressor
may pick any of these alternative formats to conpress a header, as
long as the field bindings it enploys can be used with the
unconpressed format. For exanple, the conpressor could not choose to
use a conpressed format that had a "static" encoding for a field
whose "UVALUE" attribute differs fromits corresponding value in the
cont ext .

More formally, the conpressor can choose any conbi nati on of an
unconpressed format and a conpressed format for which no binding for
any of the field s attributes "fail", i.e., the encoding nethods and
"ENFORCE" statenments (see Section 4.9) that bind their conpressed
attributes succeed. |If there are multiple successful conbinations,
the conpressor can choose any one. Oherwise if there are no
successful conbinations, the encoding nethod "fails". A format wll
never fail due to it not defining the "UVALUE' attribute of a field.
A format only fails if it fails to define one of the conpressed
attributes of one of the fields in the conpressed format, or |eaves
the I ength of the unconpressed format undefi ned.

Because the conpressor has a choice, it nmust be possible for the
deconpressor to discrimnate between the different conpressed fornats
that the conpressor could have chosen. A sinple approach to this
problemis for each conpressed fornmat to include a "discrimnator"
that uniquely identifies that particular "COWRESSED' format. A
discrimnator is a control field; it is not derived fromany of the
unconpressed field values (see Section 4.11.2).

4.12.3.3. Exanple of Multiple Formats

Putting this all together, here is a conplete exanple of the
definition of an encoding nmethod with nultiple conpressed formats:

exanple multiple formats

UNCOMPRESSED {
field_1, // 4 bits
field_2; // 4 bits
field_3; // 24 bits

}

DEFAULT {
field_1 == static;
field_2 =:= unconpressed_val ue(4, 2);
field_3 == 1sb(4, 0);

}

Finking & Pelletier St andards Track [Page 39]

RFC 4997 ROHC- FN July 2007

}
Not

(o]

4.13.

COVMPRESSED format0 {
discrimnator === "'0"; // 1 bit
field_3; Il 4 bits
}

COWPRESSED format1 {

discrimnator =:="1"; /11 bit
field 1 = =irregular(4); /I 4 bits
field_ 3 == irregular(24); // 24 bits

}

e the foll ow ng:

"field_1" and "field_3" both have default encodi ng nethods
specified for them which are used in "formatO", but are
overridden in "format1"; the default encoding nethod of "field_ 2"
however, is not overridden

"field_1" and "field_2" have default encodi ng nethods that
conpress to zero bits. \When these are used in "formatQ0", the
field nanes do not appear in the field list.

"field 3" has an encoding nethod that does not conpress to zero
bits, so whilst "field 3" has no encoding specified for it in the
field list of "format0", it still needs to appear in the field
list to specify where it goes in the conpressed fornat.

In the exanple, all the fields in the unconpressed format have
default encodi ng nethods specified for them but this is not a
requirenent. Default encodings can be specified for only sone or
even none of the fields of the unconpressed fornat.

In the exanple, all the default encoding nethods are on fields
fromthe unconpressed format, but this is not a requirenent.
Defaul t encodi ng net hods can be specified for control fields.

Profil e-Specific Encoding Methods

The library of encodi ng nethods defined by ROHC-FN in Section 4.11
provi des a basic and generic set of field encoding nmethods. Wen

usi

ng a ROHC-FN specification in a ROHC profile, sonme additiona

encodi ngs specific to the particular protocol header being conpressed
may, however, be needed, such as nethods that infer the value of a
field fromother val ues

These nethods are specific to the properties of the protocol being
conpressed and will thus have to be defined within the profile

Finking & Pelletier St andards Track [Page 40]

RFC 4997 ROHC- FN July 2007

specification itself. Such profile-specific encodi ng nethods,
defined either in ROHC-FN syntax or rigorously in plain text, can be
referred to in the ROHC FN specification of the profile s formats in
the sane way as any nethod in the ROHC-FN i brary.

Encodi ng net hods that are not defined in the formal notation are
specified by giving their nanme, followed by a short description of
where they are defined, in double quotes, and a seni-col on

For exanpl e:
inferred i p _v4 header checksum "defined in RFCxxxx Section 6.4.1"
5. Security Considerations

Thi s docunent describes a formal notation simlar to ABNF [RFC4234],
and hence is not believed to raise any security issues (note that
ABNF has a conpletely separate purpose to the ROHC formal notation).

6. Contributors

Ri chard Price did nuch of the foundational work on the formal
notation. He authored the initial docunent describing a fornal
notati on on which this docunent is based.

Kristofer Sandlund contributed to this work by applying new ideas to
the ROHC-TCP profile, by providing feedback, and by hel pi ng resol ve
different issues during the entire devel opment of the notation

Carsten Bormann provided the translation of the fornal notation
syntax using ABNF in Appendix A, and also contributed with feedback
and reviews to validate the conpl eteness and correctness of the

not ati on.

7. Acknow edgenent s

A nunber of inportant concepts and i deas have been borrowed from ROHC
[RFC3095] .

Thanks to Mark West, Eilert Brinknmann, Al an Ford, and Lars-Erik
Jonsson for their contributions, reviews, and feedback that led to
significant inprovenents to the readability, conpleteness, and
overall quality of the notation

Thanks to Stewart Sadler, Caroline Daniels, A an Finney, and David

Findlay for their reviews and commrents. Thanks to Rob Hancock and
Stephen McCann for their early work on the formal notation. The

Finking & Pelletier St andards Track [Page 41]

RFC 4997 ROHC- FN July 2007

8.

8.

authors would also like to thank Christian Schnidt, Q an Zhang,
Hongbi n Liao, and Max Riegel for their coments and val uabl e input.

Addi tional thanks: this docunment was reviewed during working group

| ast-call by conmtted reviewers Mark West, Carsten Bormann, and Joe
Touch, as well as by Sally Floyd who provided a review at the request
of the Transport Area Directors. Thanks also to Magnus Westerl und
for his feedback in preparation for the | ESG review

Ref er ences
1. Nornmtive References

[C90] I SO IEC, "I1SOIEC 9899:1990 Information technol ogy --
Programm ng Language C', |SO 9899: 1990, April 1990.

[RFC2822] Resnick, P., Ed., "STANDARD FOR THE FORVAT OF ARPA
| NTERNET TEXT MESSAGES', RFC 2822, April 2001.

[RFC4234] Crocker, D., Ed. and P. Overell, "Augnmented BNF for Syntax
Speci fications: ABNF', RFC 4234, Cctober 2005.

[RFC4995] Jonsson, L-E., Pelletier, G, and K Sandlund, "The RCbust
Header Conpression (ROHC) Framework", RFC 4995, July 2007.

8.2. Informative References

[RFC3095] Bormann, C., Burneister, C, Degermark, M, Fukushim, H,
Hannu, H., Jonsson, L-E., Hakenberg, R, Koren, T., Le,
K., Liu, Z, Martensson, A, Myazaki, A, Svanbro, K,
W ebke, T., Yoshimura, T., and H Zheng, "RCbust Header
Conpression (ROHC): Framework and four profiles: RTP, UDP,
ESP, and unconpressed", RFC 3095, July 2001.

[RFC791] Uni versity of Southern California, "DARPA | NTERNET PROGRAM
PROTOCOL SPECI FI CATI ON', RFC 791, Septenber 1981.

Finking & Pelletier St andards Track [Page 42]

RFC 4997 ROHC- FN July 2007

Appendi x A. Formal Syntax of ROHC-FN

This section gives a definition of the syntax of ROHC FN in ABNF
[RFC4234], using "fnspec" as the start rule.

; overall structure

f nspec = S *(constdef S) [globctl S] 1*(nethdef S)
const def = constnane S "=" S expn S ";"
gl obct| = CONTROL S fornbody
nmet hdef =id S[parmist § "{" S 1*(formatdef S) "}"
/ id S[parmist S STRQ *STRCHAR STRQ S ";"
parmn i st ="("sids*","sids) ")"
formatdef = fornmhead S fornbody
f or mhead = UNCOWRESSED [1*W5 id]
/| COVMPRESSED [1*W5 id]
/ CONTROL / INITIAL / DEFAULT
f or nbody ="{" S *((fielddef/enforcer) S) "}"
fiel ddef = fieldgroup S["=:=" S encspec §] [l enspec S] ";"
fieldgroup = fieldnane *(S ":" S fieldnane)
fieldname =id
encspec = "rrox(mor/) M
/[id[S"(" Sexpn S*("," Sexpn S) ")"]
| enspec ="[" Sexpn S *("," Sexpn S "]"
enforcer = ENFORCE S "(" S expn S")" s ";"

; expressions

expn = *(expnb S "||" S) expnb

expnb = *(expna S "&&" S) expna

expna = *(expn7 S ("=="/"1=") S) expn7

expn7 = *(expn6 S ("<"/"<="[">"]">=") S) expn6
expné = *(expn4 S ("+"/"-") S) expn4

expnd = *(expn3 S ("*"/"/"/"%W) S) expn3

expn3 = expn2 [S "~" S expn3]

expn2 = ["!" §] expnl

expnl = expn0 / attref / constnane / litval / id
expn0 = "(" S expn S ")" / VAR ABLE

attref fieldnameref "." attnane

fi el dnamer ef fieldname / TH' S

at t nane (U/ C) (LENGTH / VALUE)
litval "1 "Ob"™ 1*("0"/"1")

] "ox" 1*(DIA T/ "a"/"b"/"c"/"d"/"e"/"f")
"1 I*DIAT
alse / true

ST

[
[
[
f

Finking & Pelletier St andards Track [Page 43]

RFC 4997 ROHC- FN
; lexical categories
constnane = UPCASE *(UPCASE / DT/ " ")
id = ALPHA *(ALPHA / DIGT / "_")
ALPHA = O%41-5A / 9%&61-7A
UPCASE = 9%41-5A
DAT = %30- 39
COMMENT = "//" *(SP / HTAB / VCHAR) CRLF
SP = %20
HTAB = %09
VCHAR = 9%21-7E
CRLF = 9%O0A / 9%%O0D. OA
NL = COWENT / CRLF
W5 = SP/ HTAB/ N
S = *W5
STRCHAR = SP / HTAB / %21 /| %23-7E
STRQ = %22
; case-sensitive literals
C = %67
COWPRESSED = 9%67.79. 77. 80. 82. 69. 83. 83. 69. 68
CONTROL = %@67.79.78.84.82.79.76
DEFAULT = 9%d68. 69. 70. 65. 85. 76. 84
ENFORCE = 9@69. 78. 70. 79. 82. 67. 69
I NI TI AL = 9¢73.78.73.84.73.65.76
LENGTH = %@76.69.78.71.84.72
THI S = %@84.72.73. 83
u = %85
UNCOWPRESSED = %85. 78. 67. 79. 77. 80. 82. 69. 83. 83. 69. 68
VALUE = 9%@86. 65. 76. 85. 69
VARI ABLE = 9%d86. 65. 82. 73. 65. 66. 76. 69
fal se = 96102. 97. 108. 115. 101
true = %@116.114.117.101

Finking & Pelletier St andards Track

July 2007

[Page 44]

RFC 4997 ROHC- FN July 2007

Appendi x B. Bit-level Wrked Exanpl e
This section gives a worked exanple at the bit |evel, showi ng how a
si mpl e ROHC- FN speci fication describes the conpression of real data
froman i magi nary protocol header. The exanple used has been kept
fairly sinple, whilst still aimng to illustrate sonme of the
intricacies that arise in use of the notation. |In particular, fields
have been kept short to nmake it possible to read the binary
representation of the headers without too nuch difficulty.

B.1. Exanple Packet Format

Qur inmaginary header is just 16 bits long, and consists of the
followi ng fields:

1. wversion nunmber -- 2 bits

2. type -- 2 bits

3. flowid -- 4 bits

4. sequence nunber -- 4 bits

5. flag bits -- 4 bits

So for exanple 0101000100010000 i ndicates a header with a version
nunber of one, a type of one, a flowid of one, a sequence nunber of
one, and all flag bits set to zero.

Here is an ASCI|I box notation diagram of the imagi nary header

0 1 2 3 4 5 6 7
om e e e e — -+

| version| type | flow.id
B T S S T e o
| sequence_no | flag bits

U Spps

Finking & Pelletier St andards Track [Page 45]

RFC 4997 ROHC- FN July 2007

B. 2.

Initial Encoding

An initial definition based solely on the above information is as
fol | ows:

eg_header

UNCOWPRESSED {
ver si on_no [
type [
flow.id [
sequence_no |
flag bits [

ArRABANODN

}

COWPRESSED initia
ver si on_no

_definition {
irregular(2);

type == irregular(2);
flow.id == irreqgul ar(4);
sequence_no =:= irregular(4);
flag_bits == irregular(4);
}
}
This defines the format nicely, but doesn't actually offer any
conpression. |If we use it to encode the above header, we get:

Unconpr essed header: 0101000100010000
Conpr essed header: 0101000100010000

This is because we have stated that all fields are "irregular" --
i.e., we haven't specified anything about their behaviour

Note that since we have only one conpressed format and one
unconpressed format, it makes no difference whether the encoding

nmet hods for each field are specified in the conpressed or
unconpressed format. It would nake no difference at all if we wote
the follow ng instead:

eg_header

UNCOWPRESSED {

versi on_no irregular(2);

type == irregular(2);
flow.id == irregular(4);
sequence_no =:= irregul ar(4);
flag_bits == irregul ar(4);

Finking & Pelletier St andards Track [Page 46]

RFC 4997 ROHC- FN July 2007

B. 3.

COVMPRESSED initial _definition {

I
ver si on_no [217;
type [2];
flow.id [47;
sequence_no [4];
flag bits [417;

Basi ¢ Conpression

In order to achi eve any conpression we need to notate nore know edge
about the header and its behaviour in a flow For exanple, we nay
know t he follow ng facts about the header

1

versi on nunber -- indicates which version of the protocol this
is: always one for this version of the protocol

type -- may take any val ue.

flowid -- may take any val ue.

sequence nunber -- make take any val ue.

flag bits -- contains three flags, a, b, and c, each of which may

be set or clear, and a reserved flag bit, which is always clear
(i.e., zero).

We could notate this knowl edge as foll ows:

eg_header

UNCOWPRESSED {
versi on_no [
type [
flow.id [
sequence_no [
abc flag bits [
reserved flag [

PWhBADNDN

}

COWPRESSED basic {
versi on_no
type
flow.id
sequence_no
abc_flag bits
reserved flag

: = unconpressed_val ue(2, 1)
i rregul ar(2)
i rregul ar (4)
i rregul ar(4)
i rregul ar(3)
unconpr essed_val ue(1, 0)

QWhANO

Finking & Pelletier St andards Track [Page 47]

RFC 4997 ROHC- FN July 2007

}
}

Using this sinple scheme, we have successfully encoded the fact that
one of the fields has a permanently fixed value of one, and therefore
contains no useful information. W have al so encoded the fact that
the final flag bit is always zero, which again contains no usefu
informati on. Both of these facts have been notated using the
"unconpressed_val ue" encodi ng nethod (see Section 4.11.1).

Usi ng this new encodi ng on the above header, we get:

Unconpr essed header: 0101000100010000
Conpr essed header: 0100010001000

This reduces the amount of data we need to transmt by roughly 20%
However, this encoding fails to take advantage of rel ationships
bet ween values of a field in one packet and its value in subsequent
packets. For exanple, every header in the followi ng sequence is
conpressed by the sane anmount despite the simlarities between them

Unconpr essed header: 0101000100010000
Conpr essed header: 0100010001000

Unconpr essed header: 0101000101000000
Conpr essed header: 0100010100000

Unconpr essed header: 0110000101110000
Conpr essed header: 1000010111000
B.4. Inter-Packet Conpression
The profile we have defined so far has not conpressed the sequence
nunber or flow ID fields at all, since they can take any val ue.
However the value of each of these fields in one header has a very
sinple relationship to their values in previous headers:

o the sequence number is unusual -- it increases by three each tine,

o the flow.id stays the sane -- it always has the sane value that it
did in the previous header in the flow,

o the abc_flag bits stay the sane npst of the tinme -- they usually
have the sanme value that they did in the previous header in the
flow

Finking & Pelletier St andards Track [Page 48]

RFC 4997 ROHC- FN July 2007

An obvious way of notating this is as follows:

/'l This obvious encoding will not work (correct encoding bel ow)
eg_header

UNCOWPRESSED {
versi on_no [
type [
flow.id [
sequence_no [
abc_flag bits [
reserved flag |

PWhBANODN

}

COVPRESSED obvi ous

versi on_no : = unconpressed_val ue(2, 1);

type irregular(2);
flow.id static;
sequence_no I sb(0, -3);

abc_flag bits
reserved_fl ag

irregular(3);
unconpr essed_val ue(1, 0);

}
}

The dependency on previous packets is notated using the "static" and
"1 sb" encodi ng net hods (see Section 4.11.4 and Section 4.11.5
respectively). However there are a few problenms with the above

not ati on.

Firstly, and nost inportantly, the "flow.id" field is notated as
"static", which nmeans that it doesn’t change from packet to packet.
However, the notation does not indicate how to communi cate the val ue
of the field initially. There is no point saying "it’s the same
value as last tinme" if there has not been a first tine where we
define what that value is, so that it can be referred back to. The
above notation provides no way of communicating that. Sinmlarly with
t he sequence nunber -- there needs to be a way of comunicating its
initial value. 1In fact, except for the explicit notation indicating
their lengths, even the lengths of these two fields would be |eft
undefined. This problemw Il be solved below, in Appendix B.5.

Secondl y, the sequence nunber field is communicated very efficiently
in zero bits, but it is not at all robust agai nst packet loss. [If a
packet is lost then there is no way to handl e the mi ssing sequence
nunber. When conmmuni cati ng sequence nunbers, or any other field
encoded with "l sb" encoding, a very inportant consideration for the
notator i s how robust agai nst packet |oss the conpressed protoco
should be. This will vary a lot from protocol stack to protoco

Finking & Pelletier St andards Track [Page 49]

RFC 4997 ROHC- FN July 2007

stack. For the exanple protocol we'll assune short, |ow overhead
flows and say we need to be robust to the |oss of just one packet,
whi ch we can achieve with two bits of "lsb" encoding (one bit isn’t
enough since the sequence nunber increases by three each tine -- see
Section 4.11.5). This will be addressed below in Appendix B.5

Finally, although the flag bits are usually the sane as in the

previ ous header in the flow, the profile doesn’t nake any use of this
fact; since they are sonetines not the sane as those in the previous
header, it is not safe to say that they are always the sane, so
"static" encoding can’'t be used exclusively. This problemw |l be
solved later through the use of nmultiple formats in Appendi x B. 6.

B.5. Specifying Initial Values

To comunicate initial values for fields conpressed with a context
dependent encodi ng such as "static" or "lsb" we use an "IN TIAL"
field list. This can help with fields whose start value is fixed and
known. For exanple, if we knew that at the start of the flow that
"flow.id" would always be 1 and "sequence_no" woul d al ways be 0, we
could notate that like this

/1 This encoding will not work either (correct encodi ng bel ow)
eg_header

UNCOVPRESSED {

ver si on_no [217;
type [2];
flow.id [417;
sequence_no [417;
abc flag bits [3 1];
reserved_flag [1 1;
}
I NITIAL {
/1 set initial values of fields before flow starts
flow.id =: = unconpressed_val ue(4, 1);
sequence_no =:= unconpressed val ue(4, 0);
}

COMPRESSED obvi ous {

versi on_no unconpressed_val ue(2, 1);

type irregular(2);
flow.id static;
sequence_no Isb(2, -3);

abc_flag bits
reserved_fl ag

irregular(3);
unconpr essed_val ue(1, 0);

Finking & Pelletier St andards Track [Page 50]

RFC 4997 ROHC- FN July 2007

}
However, this use of "IN TIAL" is no good since the initial values of
both "flow_id" and "sequence_no" vary fromflowto flow "IN TIAL"

is only applicable where the initial value of a field is fixed, as is
often the case with control fields

B.6. Miltiple Packet Formats

To comunicate initial values for the sequence nunber and flow ID
fields correctly, and to take advantage of the fact that the flag
bits are usually the sane as in the previous header, we need to
depart fromthe single format encoding we are currently using and
instead use nultiple formats. Here, we have expressed the encodi ngs
for two of the fields in the unconpressed format, since they wll

al ways be true for unconpressed headers of that format. The

remai ning fields, whose encodi ng nethod may depend on exactly how the
header is being conpressed, have their encodings specified in the
conpressed fornmats.

eg_header

UNCOMPRESSED {
versi on_no [
type [
flow.id [

sequence_no [

[
[

unconpr essed_val ue(2, 1)

abc_flag bits
reserved_fl ag

PWhBANDN

unconpr essed_val ue(1, 0)

COVPRESSED irregul ar_format {
di scri m nat or ='0
ver si on_no
type
flow.id
sequence_no
abc_flag bits
reserved_fl ag

irregular(2)
i rregul ar(4)
i rregul ar (4)
i rregul ar(3)

o

noa o n
——————————
cCwhbhNOR

}

COMPRESSED conpr essed_format {
discrimnator =1="1 [117;
ver si on_no [O01;
type == irregular(2) [2]
flow.id == static [01;
sequence_no == Isb(2, -3) [217;

Finking & Pelletier St andards Track [Page 51]

RFC 4997 ROHC- FN July 2007

abc_flag bits =:= static [
reserved flag [
}
}

Note that we have added a discrimnator field, so that the
deconpressor can tell which format has been used by the conpressor
The format with a "static" flow ID and "I sb" encoded sequence nunber
is nowb5 bits long. Note that despite having to add the
discrimnator field, this format is still the sanme size as the
original incorrect "obvious" format because it takes advantage of the
fact that the abc flag bits rarely change.

However, the original "basic" format has also grown by one bit due to
the addition of the discrimnator ("irregular_format"). An inportant
consi derati on when creating multiple formats i s whet her each format
occurs frequently enough that the average conpressed header length is
shorter as a result of its usage. For exanple, if in fact the flag
bits al ways changed between packets, the "conpressed format" encodi ng
coul d never be used; all we would have achieved is |engthening the
"basic" format by one bit.

Usi ng the above notation, we now get:

Unconpr essed header: 0101000100010000
Conpressed header: 00100010001000

Unconpr essed header: 0101000101000000
Conpr essed header: 10100 ; 00100010100000

Unconpr essed header: 0110000101110000
Conpressed header: 11011 ; 01000010111000

The first header in the streamis conpressed the sane way as before,
except that it now has the extra 1-bit discrimnator at the start
(0). Wien a second header arrives with the sane flow ID as the first
and its sequence nunber three higher, it can be conpressed in two
possi bl e ways: either by using "conpressed format" or, in the sane
way as previously, by using "irregular_format".

Note that we show all theoretically possible encodings of a header as
defined by the ROHC-FN specification, separated by sen -col ons.

Ei ther of the above encodings for each header could be produced by a
valid inplenentation, although a good inplenmentation would al ways ai m
to pick the encoding that |eads to the best conpression. A good

i npl enentati on woul d al so take robustness into account and therefore

Finking & Pelletier St andards Track [Page 52]

RFC 4997 ROHC- FN July 2007

probably woul dn’t assume on the second packet that the deconpressor
had avail abl e the context necessary to deconpress the shorter
"conpressed_format" form

Finally, note that the fields whose encodi ng nethods are specified in
t he unconpressed format have zero | ength when conpressed. This neans

their position in the conpressed format is not significant. 1In this
case, there is no need to notate them when defining the conpressed
formats. I n the next part of the exanple we will see that they have

been renoved fromthe conpressed formats altogether.
B.7. Variable Length Discrimnators

Suppose we do sone anal ysis on flows of our exanple protocol and

di scover that whilst it is usual for successive packets to have the
same flags, on the occasions when they don't, the packet is al nost
al ways a "flags set" packet in which all three of the abc flags are
set. To encode the flow nore efficiently a format needs to be
witten to reflect this.

This now gives a total of three formats, which nmeans we need three
discrimnators to differenti ate between them The obvi ous sol ution
here is to increase the nunber of bits in the discrimnator from one
to two and use discrimnators 00, 01, and 10 for exanple. However we
can do slightly better than this.

Any uniquely identifiable discrimnator will suffice, so we can use
00, 01, and 1. |If the discrimnator starts with 1, that’s the whole
thing. If it starts with 0, the deconpressor knows it has to check
one nore bit to determine the kind of format.

Note that care nust be taken when using variable [ength
discrimnators. For exanple, it would be erroneous to use 0, 01, and
10 as discrimnators since after reading an initial 0, the
deconpressor woul d have no way of knowing if the next bit was a
second bit of discrimnator, or the first bit of the next field in
the format. However, 0, 10, and 11 would be correct, as the first
bit again indicates whether or not there are further discrim nator
bits to foll ow

Finking & Pelletier St andards Track [Page 53]

RFC 4997 ROHC- FN July 2007

This gives us the foll ow ng:
eg_header

UNCOMPRESSED {

versi on_no == unconpressed value(2, 1) [2];
type [2];
flow.id [41];
sequence_no [41;
abc_flag bits [31;
reserved_flag =:= unconpressed_value(1, 0) [11];

}

COVMPRESSED irregul ar_format {
di scrimnator =:="00 [217;
type ==irregular(2) [2]
flow.id == irreqgular(4) [41];
sequence_no == irregular(4) [4];
abc flag bits =:=irregular(3) [3 1];

}

COWPRESSED f | ags_set {
discrimnator =:="01 [21;
type == irregular(2) [217;
flow.id == static [01;
sequence_no =:= lsh(2, -3) [217;
abc_flag bits =:= unconpressed_value(3, 7) [01];

}
COWPRESSED flags_static {

discrimnator =:="1 [171;
type == irregular(2) [2];
flow.id == static [O01;
sequence_no == Isb(2, -3) [21;
abc_flag bits =:= static [01;

}
}

Here i s sone exanpl e output:

Unconpr essed header: 0101000100010000
Conpr essed header: 000100010001000

Unconpr essed header: 0101000101000000
Conpressed header: 10100 ; 000100010100000

Finking & Pelletier St andards Track [Page 54]

RFC 4997 ROHC- FN July 2007

Unconpr essed header: 0110000101110000
Conpr essed header: 11011 ; 001000010111000

Unconpr essed header: 0111000110101110
Conpr essed header: 011110 ; 001100011010111

Here we have a very sinilar sequence to last tine, except that there
is now an extra nmessage on the end that has the flag bits set. The
encoding for the first message in the streamis now one bit |arger,
the encoding for the next two nmessages is the sane as before, since
that format has not grown; thanks to the use of variable length
discrimnators. Finally, the packet that comes through with all the
flag bits set can be encoded in just six bits, only one bit nore than
the nmost common format. Wthout the extra format, this |ast packet
woul d have to be encoded using the | ongest format and woul d have
taken up 14 bits.

B.8. Default Encoding

Some of the common encodi ng nmet hods used so far have been "factored
out" into the definition of the unconpressed format, meaning that
they don’t need to be defined for every conpressed format. However,
there is still some redundancy in the notation. For a nunber of
fields, the sane encoding nmethod is used several tinmes in different
formats (though not necessarily in all of then), but the field
encoding is redefined explicitly each tine. |If the encoding for any
of these fields changed in the future, then every format that uses
that encoding woul d have to be nodified to reflect this change.

Thi s probl em can be avoi ded by specifying default encodi ng net hods
for these fields. Doing so can also |lead to a nore conci sely notated
profile:

eg_header

UNCOVPRESSED {
versi on_no [
type [
flow.id [

sequence_no [

[
[

: = unconpressed_val ue(2, 1)

abc_flag bits
reserved flag =:= unconpressed_val ue(1, 0)

PWhrBANODN

}

DEFAULT {

type
f1ow.id

irregular(2);
static;

Finking & Pelletier St andards Track [Page 55]

RFC 4997 ROHC- FN July 2007

sequence_no == Isb(2, -3);

}
COVPRESSED irregul ar_format {

di scrimnator =:="00 [21;
type [2]; /1 Uses default
flow.id == irregular(4) [4]; // Overrides default
sequence_no == irregular(4) [41; // Overrides default
abc_flag bits == irregular(3) [3 1];
}
COWPRESSED f | ags_set {
discrimnator =:="'01 [2];
type [21; /! Uses default
sequence_no [21; /1 Uses default
abc_flag bits =:= unconpressed_val ue(3, 7);
}
COWPRESSED fl ags_static {
discrimnator ==="'1 [11];
type [21; /1 Uses default
sequence_no [2]; /1 Uses default
abc_flag bits =:= static;
}

}

The above profile behaves in exactly the sane way as the one notated
previously, since it has the sane neaning. Note that the purpose
behind the different formats becones clearer with the default
encodi ng nethods factored out: all that renmins are the encodi ngs
that are specific to each format. Note also that default encodi ng
met hods that conpress down to zero bits have becone conpletely
implicit. For exanple the conpressed formats using the default
encoding for "flow.id" don't nmention it (the default is "static"
encodi ng that conpresses to zero bits).

B.9. Control Fields

One inefficiency in the conpression schenme we have produced thus far
is that it uses two bits to provide the "lIsb" encoded sequence nunber
wi th robustness for the I oss of just one packet. 1In theory, only one
bit should be needed. The root of the problemis the unusua

sequence nunber that the protocol uses -- it counts up in increnments
of three. In order to encode it at maxi numefficiency we need to
translate this into a field that increments by one each tine. W do
this using a control field.

Finking & Pelletier St andards Track [Page 56]

RFC 4997 ROHC- FN July 2007

A control field is extra data that is conmunicated in the conpressed
format, but which is not a direct encoding of part of the
unconpressed header. Control fields can be used to commruni cate extra
information in the conpressed format, that allows other fields to be
conpressed nore efficiently.

The control field that we introduce scal es the sequence nunber down
by a factor of three. |Instead of encoding the original sequence
nunber in the conpressed packet, we encode the scal ed sequence
nunber, allowi ng us to have robustness to the | oss of one packet by
using just one bit of "lsb" encoding:

eg_header

UNCOWPRESSED {

versi on_no =: = unconpressed_value(2, 1) [2];
type [2];
flow.id [47;
sequence_no [41;
abc_flag bits [31;
reserved_flag =:= unconpressed_value(1, 0) [1 1;
}
CONTROL {
/1 need nodulo maths to cal culate scaling correctly,
/1 due to 4 bit wap around
scal ed_seq_no [41;
ENFORCE(sequence_no. UVALUE
== (scal ed_seq_no. UWWALUE * 3) % 16);
}
DEFAULT {
type == irregular(2);
flow.id == static;
scal ed_seq_no =:= Isb(1, -1);
}

COVPRESSED irregul ar_format {

di scrimnator =:="00 [217;
type [2];
flow.id == irreqgular(4) [41];
scaled seq no =:=irregular(4) [4]; /! Overrides default
abc flag bits =:=irregular(3) [3];
}
COWPRESSED f | ags_set {
discrimnator =:="'01 [2];
type [2],

Finking & Pelletier St andards Track [Page 57]

RFC 4997

scal ed_seq_no

abc_flag bits =

}

COWPRESSED fl ags_static
di scrimnator =:=

type
scal ed_seq_no

abc_flag bits =

}
}

Nor nal | y,
length of the field.

readability.

isn't. | f

ROHC- FN July 2007

[1]; /1 Uses default
unconpressed_val ue(3, 7);

{
NN

[21];

[271; /1 Uses default
ti

static;

t he encodi ng nethod(s) used to encode a field specifies the
In the above notation

encodi ng net hod usi ng "sequence_no" directly,
defined explicitly using an "ENFORCE" statenent.
t he abbrevi ated synt ax,
Note that this is unusual

field Il ength indications are redundant (and thus optional),
it was renmoved fromthe above notation

since there is no

its length needs to be
This is done using
both for consistency and al so for ease of
whereas the majority of
this one
the I ength of the

"sequence_no" field would be undefi ned.

Here i s sone exanpl e output:

Unconpr essed header:

Conpressed header:

Unconpr essed header:

Conpr essed header:

Unconpr essed header:

Conpressed header:

Unconpr essed header:

Conpr essed header:

0101000100010000
000100011011000

0101000101000000
1010 ; 000100011100000

0110000101110000
1101 ; 001000011101000

0111000110101110
01110 ; 001100011110111

In this form we see that this gives us a saving of a further bit in

nost packets.
"flags_static"

Assum ng the bulk of a flowis made up of
headers,

the nmean size of the headers in a conpressed

flowis now just over a quarter of their size in an unconpressed

flow

Finking & Pelletier

St andards Track [Page 58]

RFC 4997 ROHC- FN July 2007

B.10. Use of "ENFORCE" Statenents as Conditionals

Earlier, we created a new format "flags_set"” to handl e packets with
all three of the flag bits set. As it happens, these three flags are
al ways all set for "type 3" packets, and are never all set for other
packet types (a "type 3" packet is one where the type field is set to
three).

This allows extra efficiency in encoding such packets. W know the
type is three, so we don’t need to encode the type field in the
conmpressed header. The type field was previously encoded as
"irregular(2)", which is two bits long. Renobving this reduces the
size of the "flags_set" format fromfive bits to three, naking it the
smal lest format in the encodi ng method definition

In order to notate that the "flags_set" format should only be used

for "type 3" headers, and the "flags_static" format only when the

type isn't three, it is necessary to state these conditions inside

each format. This can be done with an "ENFORCE" statenent:
eg_header

UNCOMPRESSED {

versi on_no == unconpressed value(2, 1) [2];
type [21];
flow.id [41;
sequence_no [41;
abc_flag bits [31;
reserved_flag =:= unconpressed_value(1, 0) [11];
}
CONTRCL {
/'l need nmodul o maths to cal cul ate scaling correctly,
/1 due to 4 bit wap around
scal ed_seq_no [41;
ENFORCE(sequence_no. UVALUE
== (scal ed_seq_no. UVALUE * 3) % 16);
}
DEFAULT {
type == irregular(2);
scal ed_seq no =:= Isb(1, -1);
flow.id == static;
}
COVPRESSED irregul ar_format {
di scrimnator =:="00 [21;
type [21;

Finking & Pelletier St andards Track [Page 59]

RFC 4997 ROHC- FN July 2007

flow.id
scal ed_seq_no
abc_flag bits

irregular(4) [4
irregular(4) [4
irregular(3) [3

l;
l;
l;

}

COWPRESSED f | ags_set {
ENFORCE(t ype. WALUE == 3); // redundant condit
discrimnator =:="'01

itio
[2
type unconpressed_value(2, 3) [O
[1
[O

scal ed_seq_no

n
]
i
abc_flag bits];

unconpr essed_val ue(3, 7)

}

COVMPRESSED flags_static {
ENFORCE(t ype. WALUE ! = 3);

discrimnator =:="1 [171;
type [2];
scal ed_seq_no [17;
abc flag bits =:= static [0];

}
}

The two "ENFORCE" statenents in the last two formats act as "guards”
Quards prevent formats from being used under the wong circunstances.
In fact, the "ENFORCE" statenent in "flags_set" is redundant. The
condition it guards for is already enforced by the new encodi ng

nmet hod used for the "type" field. The encoding et hod
"unconpressed_val ue(2,3)" binds the "UVALUE" attribute to three.

This is exactly what the "ENFORCE" statenent does, so it can be
renoved wit hout any change in neaning. The "unconpressed_val ue"
encodi ng nethod on the other hand is not redundant. |t specifies

ot her bindings on the type field in addition to the one that the
"ENFORCE" statenent specifies. Therefore it would not be possible to
renove the encodi ng nethod and | eave just the "ENFORCE"' statenent.

Note that a guard is solely preventative. A guard can never force a
format to be chosen by the conpressor. A fornmat can only be
guaranteed to be chosen in a given situation if there are no other
formats that can be used instead. This is denobnstrated in the
exanpl e out put below. The conpressor can still choose the
"irregular” format if it w shes:

Unconpr essed header: 0101000100010000
Conpr essed header: 000100011011000

Unconpr essed header: 0101000101000000
Conpr essed header: 1010 ; 000100011100000

Finking & Pelletier St andards Track [Page 60]

RFC 4997 ROHC- FN July 2007

Unconpr essed header: 0110000101110000
Conpr essed header: 1101 ; 001000011101000

Unconpr essed header: 0111000110101110
Conpr essed header: 010 ; 001100011110111

This saves just two extra bits (a 7% saving) in the exanple flow
Aut hors’ Addresses

Robert Fi nki ng

Si emens/ Roke Manor Research
ad Salisbury Lane

Ronsey, Hanpshire S061 0ZN
UK

Phone: +44 (0)1794 833189
EMai | : robert.finki ng@ oke. co. uk
URI : http://ww.roke. co. uk

CGhysl ain Pelletier
Eri csson

Box 920

Lulea SE-971 28
Sweden

Phone: +46 (0) 8 404 29 43
EMai | : ghysl ain. pelletier@ricsson.com

Finking & Pelletier St andards Track [Page 61]

RFC 4997 ROHC- FN July 2007

Ful I Copyright Statenent
Copyright (C The | ETF Trust (2007).

This docunment is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights

Thi s docunent and the information contained herein are provided on an
"AS | S" basis and THE CONTRI BUTOR, THE ORGAN ZATI ON HE/ SHE REPRESENTS
OR |'S SPONSCORED BY (I F ANY), THE | NTERNET SCCI ETY, THE | ETF TRUST AND
THE | NTERNET ENG NEERI NG TASK FORCE DI SCLAI M ALL WARRANTI ES, EXPRESS
OR | MPLI ED, | NCLUDI NG BUT NOT LIM TED TO ANY WARRANTY THAT THE USE OF
THE | NFORVATI ON HEREI'N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED
WARRANTI ES OF MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Intell ectual Property

The | ETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that nmight be clained to
pertain to the inplenentation or use of the technol ogy described in
this docunent or the extent to which any |icense under such rights

m ght or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. [Information
on the procedures with respect to rights in RFC docunents can be
found in BCP 78 and BCP 79.

Copi es of I PR disclosures nmade to the | ETF Secretariat and any
assurances of licenses to be nade available, or the result of an
attenpt nade to obtain a general |icense or permission for the use of
such proprietary rights by inplenenters or users of this
specification can be obtained fromthe | ETF on-line |IPR repository at
http://ww.ietf.org/ipr.

The 1ETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to inpl enent
this standard. Please address the information to the |ETF at
ietf-ipr@etf.org.

Acknowl edgenent

Funding for the RFC Editor function is currently provided by the
I nternet Society.

Finking & Pelletier St andards Track [Page 62]

