
Network Working Group M. Nystroem
Request for Comments: 4793 RSA Security
Category: Informational February 2007

 The EAP Protected One-Time Password Protocol (EAP-POTP)

Status of This Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Abstract

 This document describes a general Extensible Authentication Protocol
 (EAP) method suitable for use with One-Time Password (OTP) tokens,
 and offers particular advantages for tokens with direct electronic
 interfaces to their associated clients. The method can be used to
 provide unilateral or mutual authentication, and key material, in
 protocols utilizing EAP, such as PPP, IEEE 802.1X, and Internet Key
 Exchange Protocol Version 2 (IKEv2).

Nystroem Informational [Page 1]

RFC 4793 EAP-POTP February 2007

Table of Contents

 1. Introduction ..4
 1.1. Scope ..4
 1.2. Background ...4
 1.3. Rationale behind the Design4
 1.4. Relationship with EAP Methods in RFC 37485
 2. Conventions Used in This Document5
 3. Authentication Model ..5
 4. Description of the EAP-POTP Method6
 4.1. Overview ...6
 4.2. Version Negotiation ..9
 4.3. Cryptographic Algorithm Negotiation10
 4.4. Session Resumption ..11
 4.5. Key Derivation and Session Identifiers13
 4.6. Error Handling and Result Indications13
 4.7. Use of the EAP Notification Method14
 4.8. Protection against Brute-Force Attacks14
 4.9. MAC Calculations in EAP-POTP16
 4.9.1. Introduction16
 4.9.2. MAC Calculation16
 4.9.3. Message Hash Algorithm16
 4.9.4. Design Rationale17
 4.9.5. Implementation Considerations17
 4.10. EAP-POTP Packet Format17
 4.11. EAP-POTP TLV Objects20
 4.11.1. Version TLV20
 4.11.2. Server-Info TLV21
 4.11.3. OTP TLV ...23
 4.11.4. NAK TLV ...33
 4.11.5. New PIN TLV35
 4.11.6. Confirm TLV38
 4.11.7. Vendor-Specific TLV41
 4.11.8. Resume TLV ..43
 4.11.9. User Identifier TLV46
 4.11.10. Token Key Identifier TLV47
 4.11.11. Time Stamp TLV48
 4.11.12. Counter TLV49
 4.11.13. Challenge TLV50
 4.11.14. Keep-Alive TLV51
 4.11.15. Protected TLV52
 4.11.16. Crypto Algorithm TLV54
 5. EAP Key Management Framework Considerations57
 6. Security Considerations ..57
 6.1. Security Claims ...57
 6.2. Passive and Active Attacks58
 6.3. Denial-of-Service Attacks59
 6.4. The Use of Pepper ...59

Nystroem Informational [Page 2]

RFC 4793 EAP-POTP February 2007

 6.5. The Race Attack ...60
 7. IANA Considerations ..60
 7.1. General ...60
 7.2. Cryptographic Algorithm Identifier Octets61
 8. Intellectual Property Considerations61
 9. Acknowledgments ..61
 10. References ..62
 10.1. Normative References62
 10.2. Informative References62
 Appendix A. Profile of EAP-POTP for RSA SecurID64
 Appendix B. Examples of EAP-POTP Exchanges65
 B.1. Basic Mode, Unilateral Authentication65
 B.2. Basic Mode, Session Resumption66
 B.3. Mutual Authentication without Session Resumption67
 B.4. Mutual Authentication with Transfer of Pepper69
 B.5. Failed Mutual Authentication70
 B.6. Session Resumption ..71
 B.7. Failed Session Resumption73
 B.8. Mutual Authentication, and New PIN Requested75
 B.9. Use of Next OTP Mode78
 Appendix C. Use of the MPPE-Send/Receive-Key RADIUS Attributes80
 C.1. Introduction ..80
 C.2. MPPE Key Attribute Population80
 Appendix D. Key Strength Considerations80
 D.1. Introduction ..80
 D.2. Example 1: 6-Digit One-Time Passwords81
 D.3. Example 2: 8-Digit One-Time Passwords81

Nystroem Informational [Page 3]

RFC 4793 EAP-POTP February 2007

1. Introduction

1.1. Scope

 This document describes an Extensible Authentication Protocol (EAP)
 [1] method suitable for use with One-Time Password (OTP) tokens, and
 offers particular advantages for tokens that are electronically
 connected to a user’s computer, e.g., through a USB interface. The
 method can be used to provide unilateral or mutual authentication,
 and key material, in protocols utilizing EAP, such as PPP [10], IEEE
 802.1X [11], and IKEv2 [12].

1.2. Background

 A One-Time Password (OTP) token may be a handheld hardware device, a
 hardware device connected to a personal computer through an
 electronic interface such as USB, or a software module resident on a
 personal computer, which generates one-time passwords that may be
 used to authenticate a user towards some service. This document
 describes an EAP method intended to meet the needs of organizations
 wishing to use OTP tokens in an interoperable manner to authenticate
 users over EAP. The method is designed to be independent of
 particular OTP algorithms and to meet the requirements on modern EAP
 methods (see [13]).

 The basic variant of this method provides client authentication only.
 This mode is only to be used within a secured tunnel. A more
 advanced variant provides mutual authentication, integrity protection
 of the exchange, protection against eavesdroppers, and establishment
 of authenticated keying material. Both variants allow for fast
 session resumption.

 While this document also includes a profile of the general method for
 the RSA SecurID(TM) mechanism, it is described in terms of general
 constructions. It is therefore intended that the document will also
 serve as a framework for use with other OTP algorithms.

 Note: The term "OTP" as used herein shall not be confused with the
 EAP OTP method defined in [1].

1.3. Rationale behind the Design

 EAP-POTP has been designed with the intent that its messages and data
 elements be easily parsed by EAP implementations. This makes it
 easier to programmatically use the EAP method in the peer and the
 authenticator, reducing the need for user interactions and allowing
 for local generation of user prompts, when needed. In contrast, the
 Generic Token Card (GTC) method from [1], which uses text strings

Nystroem Informational [Page 4]

RFC 4793 EAP-POTP February 2007

 generated by the EAP server, is intended to be interpreted and acted
 upon by humans. Furthermore, EAP-POTP allows for mutual
 authentication and establishment of keying material, which GTC does
 not. To retain the generic nature of GTC, the EAP-POTP method has
 been designed to support a wide range of OTP algorithms, with
 profiling expected for specific such algorithms. This document
 provides a profile of EAP-POTP for RSA SecurID tokens.

1.4. Relationship with EAP Methods in RFC 3748

 The EAP OTP method defined in [1], which builds on [14], is an
 example of a particular OTP algorithm and is not related to the EAP
 method defined in this document, other than that a profile of EAP-
 POTP may be created for the OTP algorithm from [14].

 The Generic Token Card EAP method defined in [1] is intended to work
 with a variety of OTP algorithms. The same is true for EAP-POTP, the
 EAP method defined herein. Advantages of profiling a particular OTP
 algorithm for use with EAP-POTP, compared to using EAP GTC, are
 described in Section 1.3.

2. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "SHALL", "SHALL NOT", "SHOULD",
 "SHOULD NOT", "RECOMMENDED", and "MAY", in this document are to be
 interpreted as described in RFC 2119 [2].

3. Authentication Model

 The EAP-POTP method provides user authentication as defined below.
 Additionally, it may provide mutual authentication (authenticating
 the EAP server to the EAP client) and establish keying material.

 There are basically three entities in the authentication method
 described here:

 o A client, or "peer", using EAP terminology, acting on behalf of a
 user possessing an OTP token;

 o A server, or "authenticator", using EAP terminology, to which the
 user needs to authenticate; and

 o A backend authentication server, providing an authentication
 service to the authenticator.

 The term "EAP server" is used here with the same meaning as in [1].
 Any protocol used between the authenticator and the backend
 authentication server is outside the scope of this document, although

Nystroem Informational [Page 5]

RFC 4793 EAP-POTP February 2007

 RADIUS [15] is a typical choice. It is assumed that the EAP client
 and the peer are located on the same host, and hence only the term
 "peer" is used in the following for these entities.

 The EAP-POTP method assumes the use of a shared secret key, or
 "seed", which is known both by the user and the backend
 authentication server. The secret seed is stored on an OTP token
 that the user possesses, as well as on the authentication server.

 In its most basic variant, the EAP-POTP method provides only one
 Service (namely, user authentication) where the user provides
 information to the authentication server so that the server can
 authenticate the user. A more advanced variant provides mutual
 authentication, protection against eavesdropping, and establishment
 of authenticated keying material.

4. Description of the EAP-POTP Method

4.1. Overview

 Note: Since the EAP-POTP method is general in nature, the term
 "POTP-X" is used below as a placeholder for an EAP method type
 identifier, identifying the use of a particular OTP algorithm with
 EAP-POTP. As an example, in the case of using RSA SecurID tokens
 within EAP-POTP, the EAP method type shall be 32 (see Appendix A).

 A typical EAP-POTP authentication is performed as follows (Appendix B
 provides more detailed examples):

 a. The optional EAP Identity Request/Response is exchanged, as per
 RFC 3748 [1]. An identity provided here may alleviate the need
 for a "User Identifier" or a "Token Key Identifier" triplet
 (TLV), defined below, later in the exchange.

 b. The EAP server sends an EAP-Request of type POTP-X with a Version
 TLV. The Version TLV indicates the highest and lowest version of
 this method supported by the server. The EAP server typically
 also includes an OTP TLV in the EAP-Request. The OTP TLV
 instructs the peer to respond with the current OTP (possibly in
 protected form), and may contain a challenge and some other
 information, like server policies. The EAP server should also
 include a Server-Info TLV in the request, and must do so if it
 supports session resumption. The Server-Info TLV identifies the
 authentication server, contains an identifier for this (new)
 session, and may be used by the peer to find an already existing
 session with the EAP server.

Nystroem Informational [Page 6]

RFC 4793 EAP-POTP February 2007

 c. The peer responds with an EAP-Response of type Nak (3) if it does
 not support POTP-X or if it does not support a version of this
 method that is also supported by the server, as indicated in the
 server’s Version TLV.

 If the peer supports a version of this method that is also
 supported by the EAP server, the peer generates an EAP-Response
 of type POTP-X as follows:

 * First, it generates a Version TLV, which indicates the peer’s
 highest supported version within the range of versions offered
 by the server. This Version TLV will be part of the EAP-
 Response to the EAP server.

 * Next, if the peer’s highest supported version equals that of
 the EAP server, and the EAP server sent a Server-Info TLV, the
 peer checks if it has a saved session with the EAP server. If
 an existing session with the server is found, and session
 resumption is possible (the Server-Info TLV may explicitly
 disallow it), the peer calculates new session keys (if the
 session is a protected-mode session) and responds with a
 Resume TLV and the Version TLV.

 * Otherwise, if the peer’s highest supported version equals that
 of the EAP server, and the received EAP-Request message
 contains an OTP TLV, the peer requests (possibly through user
 interaction) the OTP token to calculate a one-time password
 based on the information in the received EAP-Request message
 (which could, for example, carry a challenge), the current
 token state (e.g., token time), a shared secret (the "seed"),
 and a user-provided PIN (note that, depending on the OTP token
 type, some of the information in the EAP-Request may not be
 used in the OTP calculation, and the PIN may be optional too).
 If the received OTP TLV has the P bit set (see below), the
 peer then combines the token-provided OTP with other
 information, and provides the combined data to a key
 derivation function. The key derivation function generates
 several keys, of which one is used to calculate a Message
 Authentication Code (MAC) on the received message, together
 with some other information. The resulting MAC, together with
 some additional information, is then placed in an OTP TLV
 (with the P bit set) that is sent in a response to the EAP
 server, together with the Version TLV. If the P bit is not
 set in the received OTP TLV, the peer instead inserts the
 calculated OTP value directly in an OTP TLV, which then is
 sent to the EAP server together with the Version TLV.

Nystroem Informational [Page 7]

RFC 4793 EAP-POTP February 2007

 * Finally, if the peer’s highest supported version differs from
 the server’s, or if the server did not provide any TLVs
 besides the Version TLV in its initial request, the peer just
 sends back the generated Version TLV as an EAP-Response to the
 EAP server.

 d. If the EAP server receives an EAP-Response of type Nak (3), the
 session negotiation failed and the EAP server may try with
 another EAP method. Otherwise, the EAP server checks the peer’s
 supported version. If the peer did not support the highest
 version supported by the server, the server will send a new EAP-
 Request with TLVs adjusted for that version. Otherwise, assuming
 the EAP server did send additional TLVs in its initial EAP-
 Request, the EAP server will attempt to authenticate the peer
 based on the response provided in c). Depending on the result of
 this authentication, the EAP server may do one of the following:

 * send a new EAP-Request of type POTP-X to the peer indicating
 that session resumption was not possible, and ask for a new
 OTP (this would be the case when the peer responded with a
 Resume TLV, and the session indicated in the Resume TLV was
 not valid),

 * send a new EAP-Request of type POTP-X to the peer (e.g., to
 ask for the next OTP),

 * accept the authentication (and send an EAP-Request message
 containing a Confirm TLV to the peer if the received response
 has the P bit set or was a successful attempt at a protected-
 mode session resumption; otherwise, send an EAP-Success
 message to the peer), or

 * fail the authentication (and send an EAP-Failure message --
 possibly preceded by an EAP-Request message of type
 Notification (2) -- to the peer).

 e. If the peer receives an EAP-Success or an EAP-Failure message the
 protocol run is finished. If the peer receives an EAP-Request of
 type Notification, it responds as specified by RFC 3748 [1]. If
 the peer receives an EAP-Request of type POTP-X with a Confirm
 TLV, it attempts to authenticate the EAP server using the
 provided data. If the authentication is successful, the peer
 responds with an EAP-Response of type POTP-X with a Confirm TLV.
 If it is unsuccessful, the peer responds with an empty EAP-
 Response of type POTP-X. If the peer receives an EAP-Request of
 type POTP-X containing some other TLVs, it continues as specified
 in c) above (though no version negotiation will take place in
 this case) or as described for those TLVs.

Nystroem Informational [Page 8]

RFC 4793 EAP-POTP February 2007

 f. When an EAP server, which has sent an EAP-Request of type POTP-X
 with a Confirm TLV, receives an EAP-Response of type POTP-X with
 a Confirm TLV present, it can proceed in one of two ways: If it
 has detected that there is a need to send additional EAP-Requests
 of type POTP-X, it shall enter a "protected state", where, from
 then on, all POTP-X TLVs must be encrypted and integrity-
 protected before being sent (at this point, the parties shall
 have calculated a master session key as described in Section
 4.5). One reason to continue the POTP-X conversation after
 exchange of the Confirm TLV could be that the user needs to
 update her OTP PIN; hence, the EAP server needs to send a New PIN
 TLV. At that point, the handshake is back at step c) above
 (except for the version negotiation and the protection of all
 TLVs). If there is no need to send additional EAP-Request
 packets, the EAP server shall instead send an EAP-Success method
 to the peer to indicate successful protocol completion. The EAP
 server may not continue the conversation unless it indicates its
 intent to do so in the Confirm TLV.

 An EAP server, which has sent an EAP-Request of type POTP-X with
 a Confirm TLV and receives an EAP-Response of type POTP-X, which
 is empty (i.e., does not contain any TLVs), shall respond with an
 EAP-Failure and terminate the handshake.

 As implied by the description, steps c) through f) may be carried out
 a number of times before completion of the exchange. One example of
 this is when the authentication server initially requests an OTP,
 accepts the response from the peer, performs an (intermediary)
 Confirm TLV exchange, requests the peer to select a new PIN, and
 finally asks the peer to authenticate with an OTP based on the new
 PIN (which again will be followed with a final Confirm TLV exchange).

4.2. Version Negotiation

 The EAP-POTP method provides a version negotiation mechanism that
 enables implementations to be backward compatible with previous
 versions of the protocol. This specification documents the EAP-POTP
 protocol version 1. Version negotiation proceeds as follows:

 a. In the first EAP-Request of type POTP-X, the EAP server MUST send
 a Version TLV in which it sets the "Highest" field to its highest
 supported version number, and the "Lowest" field to its lowest
 supported version number. The EAP server MAY include other TLV
 triplets, as described below, that are compatible with the
 "Highest" supported version number to optimize the number of
 round-trips in the case of a peer supporting the server’s
 "Highest" version number.

Nystroem Informational [Page 9]

RFC 4793 EAP-POTP February 2007

 b. If the peer supports a version of the protocol that falls within
 the range of versions indicated by the EAP server, it MUST
 respond with an EAP-Response of type POTP-X that contains a
 Version TLV with the "Highest" field set to the highest version
 supported by the peer. The peer MUST also respond to any TLV
 triplets included in the EAP-Request, if it supported the
 "Highest" supported version indicated in the server’s Version
 TLV.

 The EAP peer MUST respond with an EAP-Response of type Nak (3) if
 it does not support a version that falls within the range of
 versions indicated by the EAP server. This will allow the EAP
 server to use another EAP method for peer authentication.

 c. When the EAP server receives an EAP-Response containing a Version
 TLV from the peer, but the "Highest" supported version field in
 the TLV differs from the "Highest" supported version field sent
 by the EAP server, or when the version is the same as the one
 originally proposed by the EAP server, but the EAP server did not
 include any TLV triplets in the initial request, the EAP server
 sends a new EAP-Request of type POTP-X with the negotiated
 version and TLV triplets as desired and described herein.

 The version negotiation procedure guarantees that the EAP peer and
 server will agree to the highest version supported by both parties.
 If version negotiation fails, use of EAP-POTP will not be possible,
 and another mutually acceptable EAP method will need to be negotiated
 if authentication is to proceed.

 The EAP-POTP version field may be modified in transit by an attacker.
 It is therefore important that EAP entities only accept EAP-POTP
 versions according to an explicit policy.

4.3. Cryptographic Algorithm Negotiation

 Cryptographic algorithms are negotiated through the use of the Crypto
 Algorithm TLV. EAP-POTP provides a default digest algorithm
 (SHA-256) [3], a default encryption algorithm (AES-CBC) [4] , and a
 default MAC algorithm (HMAC) [5], and these algorithms MUST be
 supported by all EAP-POTP implementations. An EAP server that does
 not want to make use of any other algorithms than the default ones
 need not send a Crypto Algorithm TLV. An EAP server that does want
 to negotiate use of some other algorithms MUST send the Crypto
 Algorithm TLV in the initial EAP-Request of type POTP-X that also
 contains an OTP TLV with the P bit set. The TLV MUST NOT be present
 in any other EAP-Request in the session. (The two exceptions to this
 are 1) if the client attempted a session resumption that failed and
 therefore did not evaluate a sent Crypto Algorithm TLV, or 2) if the

Nystroem Informational [Page 10]

RFC 4793 EAP-POTP February 2007

 Crypto Algorithm TLV was part of the initial message from the EAP
 server, and the client negotiated another EAP-POTP version than the
 highest one supported by the EAP server. When either of these cases
 apply, the server MUST include the Crypto Algorithm TLV in the first
 EAP-Request that also contains an OTP TLV with the P bit set
 subsequent to the failed session resumption / protocol version
 negotiation.) In the Crypto Algorithm TLV, the EAP server suggests
 some combination of digest, encryption, and MAC algorithms. (If the
 server only wants to negotiate a particular class of algorithms, then
 suggestions for the other classes need not be present, since the
 default applies.)

 The peer MUST include a Crypto Algorithm TLV in an EAP-Response if
 and only if an EAP-Request of type POTP-X has been received
 containing a Crypto Algorithm TLV, it was legal for that EAP-Request
 to contain a Crypto Algorithm TLV, the peer does not try to resume an
 existing session, and the peer and the EAP server agree on at least
 one algorithm not being the default one. If the peer does not supply
 a value for a particular class of algorithms in a responding Crypto
 Algorithm TLV, then the default algorithm applies for that class.
 When resuming an existing session (see the next section), there is no
 need for the peer to negotiate since the session already is
 associated with a set of algorithms. Servers MUST fail a session
 (i.e., send an EAP-Failure) if they receive an EAP-Response TLV
 containing both a Resume TLV and a Crypto Algorithm TLV.

 Clearly, EAP servers and peers MUST NOT suggest any other algorithms
 than the ones their policy allows them to use. Policies may also
 restrict what combinations of cryptographic algorithms are
 acceptable.

4.4. Session Resumption

 This method makes use of session identifiers and server identifiers
 to allow for improved efficiency in the case where a peer repeatedly
 attempts to authenticate to an EAP server within a short period of
 time. This capability is particularly useful for support of wireless
 roaming.

 In order to help the peer find a session associated with the EAP
 server, an EAP server that supports session resumption MUST send a
 Server-Info TLV containing a server identifier in its initial EAP-
 Request of type POTP-X that also contains an OTP TLV. The identifier
 may then be used by the peer for lookup purposes.

 It is left to the peer whether or not to attempt to continue a
 previous session, thus shortening the negotiation. Typically, the
 peer’s decision will be made based on the time elapsed since the

Nystroem Informational [Page 11]

RFC 4793 EAP-POTP February 2007

 previous authentication attempt to that EAP server. If the peer
 decides to attempt to resume a session with the EAP server, it sends
 a Resume TLV identifying the chosen session and other contents, as
 described below, to the EAP server.

 Based on the session identifier chosen by the peer, and the time
 elapsed since the previous authentication, the EAP server will decide
 whether to allow the session resumption, or continue with a new
 session.

 o If the EAP server is willing to resume a previously established
 session, it MUST authenticate the peer based on the contents of
 the Resume TLV. If the authentication succeeds, the handshake
 will continue in one of two ways:

 * If the session is a protected-mode session, then the server
 MUST respond with a request containing a Confirm TLV. If the
 Confirm TLV authenticates the EAP server, then the peer
 responds with an empty Confirm TLV, to which the EAP server
 responds with an EAP-Success message. If the Confirm TLV does
 not authenticate the EAP server, the peer responds with an
 empty EAP-Response of type POTP-X.

 * If the session is not a protected-mode session, i.e., it is a
 session created from a basic-mode peer authentication, then the
 server MUST respond with an EAP-Success message.

 If the authentication of the peer fails, the EAP server SHOULD
 send another EAP-Request containing an OTP TLV and a Server-Info
 TLV with the N bit set to indicate that no session resumption is
 possible. The EAP server MAY also send an EAP-Failure message,
 possibly preceded by an EAP-Request of type Notification (2), in
 which case, the EAP run will terminate.

 o If the EAP server is not willing or able to resume a previously
 established session, it will respond with another EAP-Request
 containing an OTP TLV and a Server-Info TLV with the N bit set
 (indicating no session resumption).

 Sessions SHOULD NOT be maintained longer than the security of the
 exchange which created the session permits. For example, if it is
 estimated that an attacker could be successful in brute-force
 searching for the OTP in 24 hours, then EAP-POTP session lifetimes
 should be clearly less than this value.

Nystroem Informational [Page 12]

RFC 4793 EAP-POTP February 2007

4.5. Key Derivation and Session Identifiers

 The EAP-POTP method described herein makes use of a key derivation
 function denoted "PBKDF2". PBKDF2 is described in [6], Section 5.2.
 The PBKDF2 PRF SHALL be set to the negotiated MAC algorithm. The
 default MAC algorithm, which MUST be supported, is HMAC-SHA256. HMAC
 is defined in [5], and SHA-256 is defined in [3]. HMAC-SHA256 is the
 HMAC construct from [5] with SHA-256 as the hash function H. The
 output length of HMAC-SHA256, when used as a PRF for PBKDF2, shall be
 32 octets (i.e., the full output length).

 The output from PBKDF2 as described here will consist of five keys
 (see Section 4.11.3 for details on how to calculate these keys):

 o K_MAC, a MAC key used for mutual authentication and integrity
 protection,

 o K_ENC, an encryption key used to protect certain data during the
 authentication,

 o SRK, a session resumption key only used for session resumption
 purposes,

 o MSK, a Master Session Key, as defined in [1], and

 o EMSK, an Extended Master Session Key, also as defined in [1].

 For the default algorithms, K_MAC, K_ENC, and SRK SHALL be 16
 octets. For other cases, the key lengths will be as determined by
 the negotiated algorithms. The MSK and the EMSK SHALL each be 64
 octets, in conformance with [1]. Therefore, in the case of
 default algorithms, the "dkLen" parameter from Section 5.2 of [6]
 SHALL be set to 176 (the combined length of K_MAC, K_ENC, SRK,
 MSK, and EMSK).

 [1] and [16] define usage of the MSK and the EMSK . For a particular
 use case, see also Appendix C.

4.6. Error Handling and Result Indications

 EAP does not allow for the sending of an EAP-Response of type Nak (3)
 within a method after the initial EAP-Request and EAP-Response pair
 of that particular method has been exchanged (see [1], Section 2.1).
 Instead, when a peer is unable to continue an EAP-POTP session, the
 peer MAY respond to an outstanding EAP-Request by sending an empty
 EAP-Response of type POTP-X rather than immediately terminating the
 conversation. This allows the EAP server to log the cause of the
 error.

Nystroem Informational [Page 13]

RFC 4793 EAP-POTP February 2007

 To ensure that the EAP server receives the empty EAP-Response, the
 peer SHOULD wait for the EAP server to reply before terminating the
 conversation. The EAP server MUST reply with an EAP-Failure.

 When EAP-POTP is run in protected mode, the exchange of the Confirm
 TLV (Section 4.11.6) serves as a success result indication; when the
 peer receives a Confirm TLV, it knows that the EAP server has
 successfully authenticated it. Similarly, when the EAP server
 receives the Confirm TLV response from the peer, it knows that the
 peer has authenticated it. In protected mode, the peer will not
 accept an EAP-Success packet unless it has received and validated a
 Confirm TLV. The Confirm TLV sent from the EAP server to the peer is
 a "protected result indication" as defined in [1], as it is integrity
 protected and cannot be replayed. The Confirm TLV sent from the peer
 to the EAP server is, however, not a protected result indication. An
 empty EAP-POTP response sent from the peer to the EAP server serves
 as a failure result indication.

4.7. Use of the EAP Notification Method

 Except where explicitly allowed in the following, the EAP
 Notification method MUST NOT be used within an EAP-POTP session. The
 EAP Notification method MAY be used within an EAP-POTP session in the
 following situations:

 o The EAP server MAY send an EAP-Request of type Notification (2)
 when it has received an EAP-Response containing an OTP TLV and is
 unable to authenticate the user. In this case, once the EAP-
 Response of type Notification is received, the EAP server MAY
 retry the authentication and send a new EAP-Request containing an
 OTP TLV, or it MAY fail the session and send an EAP-Failure
 message.

 o The EAP server MAY send an EAP-Request of type Notification (2)
 when it has received an unacceptable New PIN TLV. In this case,
 once the EAP-Response of type Notification is received, the EAP
 server MAY retry the PIN update and send a new EAP-Request with a
 New PIN TLV, or it MAY fail the session and send an EAP-Failure
 message.

4.8. Protection against Brute-Force Attacks

 Since OTPs may be relatively short, it is important to slow down an
 attacker sufficiently so that it is economically unattractive to
 brute-force search for an OTP, given an observed EAP-POTP handshake
 in protected mode. One way to do this is to do a high number of
 iterated hashes in the PBKDF2 function. Another is for the client to
 include a value ("pepper") unknown to the attacker in the hash

Nystroem Informational [Page 14]

RFC 4793 EAP-POTP February 2007

 computation. Whereas a traditional "salt" value normally is sent in
 the clear, this "pepper" value will not be sent in the clear, but may
 instead be transferred to the EAP server in encrypted form. In
 practice, the procedure is as follows:

 a. The EAP server indicates in its OTP TLV whether it supports
 pepper searching. Additionally, it may indicate to the peer that
 a new pepper shall be chosen.

 b. If the peer supports the use of pepper, the peer checks whether
 it already has established a shared pepper with this server:

 If it does have a pepper stored for this server, and the server
 did not indicate that a new pepper shall be generated, then it
 uses the existing pepper value, as specified in Section 4.11.3
 below, to calculate an OTP TLV response. In this case, the
 iteration count shall be kept to a minimum, as the security of
 the scheme is provided through the pepper, and efficiency
 otherwise is lost.

 If the peer does not have a pepper stored for this server, but
 the server indicated support for pepper searching, or the server
 indicated that a new pepper shall be generated, then the peer
 generates a random and uniformly distributed pepper of sufficient
 length (the maximum length supported by the server is provided in
 the server’s OTP TLV), and includes the new pepper in the PBKDF2
 computation.

 If the peer does not have a pepper stored for this server, and
 the server did not indicate support for pepper searching, then a
 pepper will not be used in the response computation.

 Clearly, if the peer itself does not support the use of pepper,
 then a pepper will not be used in the response computation.

 c. The EAP server may, in its subsequent Confirm TLV, provide a
 pepper to the peer for later use. In this case, the pepper will
 be substantially longer than a peer-chosen pepper, and encrypted
 with a key derived from the PBKDF2 computation.

 The above procedure allows for pepper updates to be initiated by
 either side, e.g., based on policy. Since the pepper can be seen as
 a MAC key, its lifetime should be limited.

 An EAP server that is not capable of storing pepper values for each
 user it is authenticating may still support the use of pepper; the
 cost for this will be the extra computation time to do pepper
 searches. This cost is still substantially lower than the cost for

Nystroem Informational [Page 15]

RFC 4793 EAP-POTP February 2007

 an attacker, however, since the server already knows the underlying
 OTP.

4.9. MAC Calculations in EAP-POTP

4.9.1. Introduction

 In protected mode, EAP-POTP uses MACs for authentication purposes, as
 well as to ensure the integrity of protocol sessions. This section
 defines how the MACs are calculated and the rationale for the design.

4.9.2. MAC Calculation

 In protected mode, and when resuming a previous session, rather than
 sending authenticating credentials (such as one-time passwords or
 shared keys) directly, evidence of knowledge of the credentials is
 sent. This evidence is a MAC on the hash of (certain parts of) EAP-
 POTP messages exchanged so far in a session using a key K_MAC:

 mac = MAC(K_MAC, msg_hash(msg_1, msg_2, ..., msg_n))

 where

 "MAC" is the negotiated MAC algorithm, "K_MAC" is a key derived as
 specified in Section 4.5, and "msg_hash(msg_1, msg_2, ..., msg_n)" is
 the message hash defined below of messages msg_1, msg_2, ..., msg_n.

4.9.3. Message Hash Algorithm

 To compute a message hash for the MAC, given a sequence of EAP
 messages msg_1, msg_2, ..., msg_n, the following operations shall be
 carried out:

 a. Re-transmitted messages are removed from the sequence of
 messages.

 Note: The resulting sequence of messages must be an alternating
 sequence of EAP Request and EAP Response messages.

 b. The contents (i.e., starting with the EAP "Type" field and
 excluding the EAP "Code", "Identifier", and "Length" fields) of
 each message, msg_1, msg_2, ..., msg_n, is concatenated together.

 c. User identifier TLVs MUST NOT be included in the hash (this is to
 allow for a backend service that does not know about individual
 user names), i.e., any such TLV is removed from the message in
 which it appeared.

Nystroem Informational [Page 16]

RFC 4793 EAP-POTP February 2007

 d. The resulting string is hashed using the negotiated hash
 algorithm.

4.9.4. Design Rationale

 The reason for excluding the "Identifier" field is that the actual,
 transmitted "Identifier" field is not always known to the EAP method
 layer. The reason for excluding the "Length" field is to allow the
 possibility for an intermediary to remove or replace a Username TLV
 (e.g., for anonymity or service reasons) before passing a received
 response on to an authentication server. While this on the surface
 may appear as bad security practice, it may in practice only result
 in denial of service, something which always may be achieved by an
 attacker able to modify messages in transit. By excluding the "Code"
 field, the hash is simply calculated on applicable sent and received
 message contents. Excluding the "Code" field is regarded as harmless
 since the hash is to be made on the sequence of POTP-X messages, all
 having alternating (known) Code values, namely 1 (Request) and 2
 (Response).

4.9.5. Implementation Considerations

 To save on storage space, each EAP entity may partially hash messages
 as they are sent and received (e.g., HashInit(); HashUpdate(message
 1); ...; HashUpdate(message n-1); HashFinal(message n)). This
 reduces the amount of state needed for this purpose to the internal
 state required for the negotiated hash algorithm.

4.10. EAP-POTP Packet Format

 A summary of the EAP-POTP packet format is shown below. The fields
 are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Code | Identifier | Length |
 +-+
 | Type | Reserved | TLV-based EAP-POTP message ...
 +-+

 Code

 1 - Request

 2 - Response

Nystroem Informational [Page 17]

RFC 4793 EAP-POTP February 2007

 Identifier

 The Identifier field is 1 octet and aids in matching responses
 with requests. For a more detailed description of this field and
 how to use it, see [1].

 Length

 The Length field is 2 octets and indicates the length of the EAP
 packet including the Code, Identifier, Length, Type, Version,
 Flags, and TLV-based EAP-POTP message fields.

 Type

 Identifies use of a particular OTP algorithm with EAP-POTP.

 Reserved

 This octet is reserved for future use. It SHALL be set to zero
 for this version. Recipients SHALL ignore this octet for this
 version of EAP-POTP.

 TLV-based EAP-POTP message

 This field will contain 0, 1, or more Type-Length-Value triplets
 defined as follows (this is similar to the EAP-TLV TLVs defined in
 PEAPv2 [17], and the explanation of the generic fields is borrowed
 from that document).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Value ...
 +-+

 M

 0 - Non-mandatory TLV

 1 - Mandatory TLV

 The TLVs within EAP POTP-X are used to carry parameters between
 the EAP peer and the EAP server. An EAP peer may not necessarily
 implement all the TLVs supported by an EAP server, and to allow
 for interoperability, a special TLV allows an EAP server to
 discover if a TLV is supported by the EAP peer.

Nystroem Informational [Page 18]

RFC 4793 EAP-POTP February 2007

 The mandatory bit in a TLV indicates that if the peer or server
 does not support the TLV, it MUST send a NAK TLV in response; all
 other TLVs in the message MUST be ignored. If an EAP peer or
 server finds an unsupported TLV that is marked as non-mandatory
 (i.e., optional), it MUST NOT send a NAK TLV on this ground only.

 The mandatory bit does not imply that the peer or server is
 required to understand the contents of the TLV. The appropriate
 response to a supported TLV with content that is not understood is
 defined by the specification of the particular TLV.

 R

 Reserved for future use. This bit SHALL be set to zero (0) for
 this version. Recipients SHALL ignore this bit for this version
 of the EAP-POTP.

 TLV Type

 The following TLV types are defined for use with EAP-POTP:

 0 - Reserved for future use
 1 - Version
 2 - Server-Info
 3 - OTP
 4 - NAK
 5 - New PIN
 6 - Confirm
 7 - Vendor-Specific
 8 - Resume
 9 - User Identifier
 10 - Token Key Identifier
 11 - Time Stamp
 12 - Counter
 13 - Keep-Alive
 14 - Protected
 15 - Crypto Algorithm
 16 - Challenge

 These TLVs are defined in the following. With the exception of
 the NAK TLV, a particular TLV type MUST NOT appear more than once
 in a message of type POTP-X.

 Length

 The length of the Value field in octets.

Nystroem Informational [Page 19]

RFC 4793 EAP-POTP February 2007

 Value

 The value of the TLV.

4.11. EAP-POTP TLV Objects

4.11.1. Version TLV

 The Version TLV carries information about the supported EAP-POTP
 method version.

 This TLV MUST be present in the initial EAP-Request of type POTP-X
 from the EAP server and in the initial response of type POTP-X from
 the peer. It MUST NOT be present in any subsequent EAP-Request or
 EAP-Response in the session. The Version TLV MUST be supported by
 all peers, and all EAP servers conforming to this specification and
 MUST NOT be responded to with a NAK TLV. The version negotiation
 procedure is described in detail in Section 4.2.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Reserved | Highest | Lowest |
 +-+

 M

 1 - Mandatory TLV

 R

 Reserved for future use. This bit SHALL be set to zero (0) for
 this version. Recipients SHALL ignore this bit for this version
 of EAP-POTP.

 TLV Type

 1

 Length

 3 in EAP-Requests, 2 in EAP-Responses

Nystroem Informational [Page 20]

RFC 4793 EAP-POTP February 2007

 Reserved

 Reserved for future use. This octet MUST be set to zero for this
 version. Recipients SHALL ignore this octet for this version of
 EAP-POTP.

 Highest

 This field contains an unsigned integer representing the highest
 protocol version supported by the sender. If a value provided by
 a peer to an EAP server falls between the server’s "Highest" and
 "Lowest" supported version (inclusive), then that value will be
 the negotiated version for the authentication session.

 Lowest

 This field contains an unsigned integer representing the lowest
 version acceptable by the EAP server. The field MUST be present
 in an EAP-Request. The field MUST NOT be present in an EAP-
 Response. A peer SHALL respond to an EAP-Request of type POTP-X
 with an EAP-Response of type Nak (3) if the peer’s highest
 supported version is lower than the value of this field.

 This document defines version 1 of the protocol. Therefore, EAP
 server implementations conforming to this document SHALL set the
 "Highest" field to 1. Peer implementations conforming to this
 document SHALL set the "Highest" field to 1.

4.11.2. Server-Info TLV

 The Server-Info TLV carries information about the EAP server and the
 session (when applicable). It provides one piece in the framework
 for fast session resumption.

 This TLV SHOULD always be present in an EAP-Request of type POTP-X
 that also carries an OTP TLV, as long as the peer has not been
 authenticated, and MUST be present in such a request if the server
 supports session resumption. It MUST NOT be present in any other
 EAP-Request of type POTP-X or in any EAP-Response packets. This TLV
 type MUST be supported by all peers conforming to this specification
 and MUST NOT be responded to with a NAK TLV (this is not to say that
 all peers need to support session resumption, only that they cannot
 respond to this TLV with a NAK TLV).

Nystroem Informational [Page 21]

RFC 4793 EAP-POTP February 2007

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Reserved |N| Session Identifier |
 +-+
 | Session Identifier (continued) |
 +-+
 |Sess.Id (cont.)| Nonce ... (16 octets)
 +-+
 | Server Identifier ...
 +-+

 M

 1 - Mandatory TLV

 R

 Reserved for future use. This bit SHALL be set to zero (0) for
 this version. Recipients SHALL ignore this bit for this version
 of EAP-POTP.

 TLV Type

 2

 Length

 25 + length of Server Identifier field

 Reserved

 Reserved for future use. All 7 bits MUST be set to zero for this
 version. Recipients SHALL ignore this bit for this version of
 EAP-POTP.

 N

 The N bit signals that the peer MUST NOT attempt to resume any
 session it has stored associated with this server.

Nystroem Informational [Page 22]

RFC 4793 EAP-POTP February 2007

 Session Identifier

 An 8-octet identifier for the session about to be negotiated.
 Note that, in the case of session resumption, this session
 identifier will not be used (the session identifier for the
 resumed session will continue to be used).

 Nonce

 A 16-octet nonce chosen by the server. During session resumption,
 this nonce is used when calculating new K_ENC, K_MAC, SRK, MSK,
 and EMSK keys as specified below.

 Server Identifier

 An identifier for the authentication server. The peer MAY use
 this identifier to search for a stored session associated with
 this server, or to associate the session to be negotiated with the
 server. The value of the identifier SHOULD be chosen so as to
 reduce the risk of collisions with other EAP server identifiers as
 much as possible. One possibility is to use the DNS name of the
 EAP server. The identifier MAY also be used by the peer to select
 a suitable key on the OTP token (when there are multiple keys
 available).

 The identifier MUST NOT be longer than 128 octets. The identifier
 SHALL be a UTF-8 [7] encoded string of printable characters
 (without any terminating NULL character).

4.11.3. OTP TLV

 In an EAP-Request, the OTP TLV is used to request an OTP (or a value
 derived from an OTP) from the peer. In an EAP-Response, the OTP TLV
 carries an OTP or a value derived from an OTP.

 This TLV type MUST be supported by all peers and all EAP servers
 conforming to this specification and MUST NOT be responded to with a
 NAK TLV. The OTP TLV MUST NOT be present in an EAP-Request of type
 POTP-X that contains a New PIN TLV. Further, the OTP TLV MUST NOT be
 present in an EAP-Response of type POTP-X unless the preceding EAP-
 Request of type POTP-X contained an OTP TLV and it was valid for it
 to do so. Finally, an OTP TLV MUST NOT be present in an EAP-
 Response of type POTP-X that also contains a Resume TLV. The OTP TLV
 is defined as follows:

Nystroem Informational [Page 23]

RFC 4793 EAP-POTP February 2007

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Reserved |A|P|C|N|T|E|S| Pepper Length |Iteration Count|
 +-+
 | Iteration Count (cont.) | Auth. Data |
 +-+
 | Authentication Data (cont.) ...
 +-+

 M

 1 - Mandatory TLV

 R

 Reserved for future use. This bit SHALL be set to zero (0) for
 this version. Recipients SHALL ignore this bit for this version
 of EAP-POTP.

 TLV Type

 3

 Length

 7 + length of Authentication Data field

 Reserved

 Reserved for future use. All 9 bits SHALL be set to zero (0) for
 this version. Recipients SHALL ignore these bits for this version
 of EAP-POTP.

 A

 The A bit MUST be set in an EAP-Request if and only if the request
 immediately follows an EAP-Response of type POTP-X containing a
 New PIN TLV (see Section 4.11.5), and the new PIN in the response
 was accepted by the EAP server. In this case, the A bit signals
 that the EAP-server has accepted the PIN, and that the peer SHALL
 use the newly established PIN when calculating the response (when
 applicable). The A bit MUST NOT be set if the S bit is set. If a
 request has both the S bit and the A bit set, the peer SHALL
 regard the request as invalid, and return an empty POTP-X EAP-
 Response message.

Nystroem Informational [Page 24]

RFC 4793 EAP-POTP February 2007

 In an EAP-Response, the A bit, when set, indicates that the OTP
 was calculated with the use of the newly selected user PIN. The A
 bit MUST be set in a response if and only if the EAP-Request which
 triggered the response contained an OTP TLV with the A bit set.

 P

 In an EAP-Request, the P bit indicates that the OTP in the
 response MUST be protected. Use of this bit also indicates that
 mutual authentication will take place, as well as generation of
 keying material. It is RECOMMENDED to always set the P bit. If a
 peer receives an EAP-Request with an OTP TLV that does not have
 the P bit set, and the peer’s policy dictates protected mode, the
 peer MUST respond with an empty POTP-X EAP-Response message. All
 peers MUST support protected mode.

 In an EAP-Response, this bit indicates that the provided OTP has
 been protected (see below). The P bit MUST be set in a response
 (and hence the OTP MUST be protected) if and only if the EAP-
 Request that triggered the response contained an OTP TLV with the
 P bit set.

 In an 802.1x EAP over LAN (EAPOL) environment (this includes
 wireless LAN environments), the P bit MUST be set, or,
 alternatively, the EAP-POTP method MUST be carried out inside an
 authenticated tunnel that provides a cryptographic binding with
 inner EAP methods such as the one provided by PEAPv2 [17].

 C

 The C bit carries meaning only when the OTP algorithm in question
 makes use of server challenges. For other OTP algorithms, the C
 bit SHALL always be set to zero.

 In an EAP-Request, the C bit ("Combine") indicates that the OTP
 SHALL be calculated using both the provided challenge and internal
 state (e.g., current token time). The OTP SHALL be calculated
 based only on the provided challenge (and the shared secret) if
 the C bit is not set, and a challenge is present. The returned
 OTP SHALL always be calculated based on the peer’s current state
 (and the shared secret) if no challenge is present. If the C bit
 is set but no challenge is provided, the peer SHALL regard the
 request as invalid, and return an empty POTP-X EAP-Response
 message.

Nystroem Informational [Page 25]

RFC 4793 EAP-POTP February 2007

 In an EAP response, this bit indicates that the provided OTP has
 been calculated using a provided challenge and the token state.
 The C bit MUST be set in a response if and only if the EAP-Request
 that triggered the response contained an OTP TLV with the C bit
 set and a challenge.

 N

 In an EAP-Request, the N bit, when set, indicates that the OTP to
 calculate SHALL be based on the next token "state", and not the
 current one. As an example, for a time-based token, this means
 the next time slot. For an event-based token, this could mean the
 next counter value, if counter values are used. This bit will
 normally not be set in initial EAP-Request messages, but may be
 set in subsequent ones. Further, the N bit carries no meaning in
 an EAP-Request if a challenge is present and the C bit is not set,
 and SHALL be set to 0, in this case. If a request that has the N
 bit set also contains a challenge, but does not have the C bit
 set, the peer SHALL regard the request as invalid, and return an
 empty POTP-X EAP-Response message. Note that setting the N bit in
 an EAP-Request will normally advance the internal state of the
 token.

 In an EAP-Response, the N bit, when set, indicates that the OTP
 was calculated based on the next token "state" (as explained
 above), and not the current one. The N bit MUST be set in a
 response if and only if the EAP-Request that triggered the
 response contained an OTP TLV with the N bit set.

 T

 The T bit only carries meaning for OTP methods normally
 incorporating a user PIN in the OTP computation.

 In an EAP-Request, the T bit, when set, indicates that the OTP to
 calculate MUST NOT include a user PIN.

 In an EAP-Response, the T bit, when set, indicates that the OTP
 was calculated without the use of a user PIN. The T bit MUST be
 set in a response if and only if the EAP-Request that triggered
 the response contained an OTP TLV with the T bit set. Note that
 client policy may prohibit PIN-less calculations; in these cases,
 the client MAY respond with an empty POTP-X EAP response message.

Nystroem Informational [Page 26]

RFC 4793 EAP-POTP February 2007

 E

 In an EAP-Request, the E bit, when set, indicates that the peer
 MUST NOT use any stored pepper value associated with this server
 in the PBKDF2 computation. Rather, it MUST generate a new pepper
 (if supported by the peer) and/or use the iteration count
 parameter to protect the OTP (if the server’s Max Pepper Length is
 0, then the peer MUST rely on the iteration count only to protect
 the OTP). This bit will usually not be set in initial EAP-Request
 messages, but may be set in subsequent ones, e.g., if the server,
 upon receipt of an OTP TLV with a pepper identifier, detects that
 it does not have a pepper with that identifier in storage. This
 bit carries no meaning, and MUST be set to zero, when the P bit is
 not set. If a request has the E bit set but not the P bit, a peer
 SHALL regard the request as invalid, and return an empty POTP-X
 EAP-Response message.

 In an EAP-Response, the E bit indicates that the response has been
 calculated without use of any stored pepper value.

 S

 In an EAP-Request, the S bit ("Same"), when set, indicates that
 the peer SHOULD calculate its response based on the same OTP value
 as was used for the preceding response. This bit MAY be set when
 the EAP server has received an OTP TLV from the peer protected
 with a pepper, of which the server is no longer in possession.
 Since the server has not attempted validation of the provided
 data, there is no need for the EAP peer to retrieve a new OTP
 value. This bit carries no meaning, and MUST be set to zero, when
 the E bit is not set. A peer SHALL regard a request where the S
 bit is set, but not the E bit, as invalid, and return an empty
 POTP-X EAP-Response message. Further, the S bit MUST NOT be set
 when the A bit also is set; see above.

 In an EAP-Response, the S bit is never set.

 Pepper Length

 This octet SHALL be present if and only if the P bit is set. When
 present, it contains an unsigned integer, having a value between 0
 and 255 (inclusive). In an EAP-Request, the integer represents
 the maximum length (in bits) of a client-generated pepper the
 server is prepared to search for. Peers MUST NOT generate peppers
 longer than this value. If the value is set to zero, it means the
 peer MUST NOT generate a pepper for the PBKDF2 calculation. In an
 EAP-Response, it indicates the length of the used pepper.

Nystroem Informational [Page 27]

RFC 4793 EAP-POTP February 2007

 Iteration Count

 These 4 octets SHALL be present if and only if the P bit is set.
 When present, they contain an unsigned, 4-octet integer in network
 byte order. In an EAP-Request, the integer represents the maximum
 iteration count the peer may use in the PBKDF2 computation. Peers
 MUST NOT use iteration counts higher than this value. In an EAP-
 Response, it indicates the actual iteration count used.

 Note regarding the Pepper Length and Iteration Count parameters: A
 peer MUST compare these policy parameters provided by the EAP server
 with local policy and MUST NOT continue the handshake if use of the
 EAP server’s suggested parameters would result in a lower security
 than the client’s acceptable policy. If the security given by the
 EAP server’s provided policy parameters surpasses the security level
 given by the peer’s local policy, the client SHOULD use the server’s
 parameters (subject to reason - active attackers could otherwise
 mount simple denial-of-service attacks against peers or servers,
 e.g., by providing unreasonably high values for the iteration count).
 Note that the server-provided parameters only apply to the case where
 the peer cannot use or does not have a previously provided server-
 provided pepper. If a peer cannot continue the handshake due to the
 server’s policy being unacceptable, it MUST return an empty POTP-X
 EAP-Response message.

 Authentication Data

 EAP-Request: In an EAP-Request, the Authentication Data field, when
 present, contains an optional "challenge". The challenge is an
 octet string that SHOULD be uniquely generated for each request in
 which it is present (i.e., it is a "nonce"), and SHOULD be 8
 octets or longer. To avoid fragmentation (i.e., EAP messages
 longer than the minimum EAP MTU size; see [1]), the challenge MUST
 NOT be longer than 64 octets. When the challenge is not present,
 the OTP will be calculated on the current token state only. The
 peer MAY ignore a provided challenge if and only if the OTP token
 the peer is interacting with is not capable of including a
 challenge in the OTP calculation. In this case, EAP server
 policies will determine whether or not to accept a provided OTP
 value.

 EAP-Response: The following applies to the Authentication Data field
 in an EAP-Response:

 * When the P bit is not set, the peer SHALL directly place the
 OTP value calculated by the token in the Authentication Data
 field. In this case, the EAP server MUST NOT send a Confirm

Nystroem Informational [Page 28]

RFC 4793 EAP-POTP February 2007

 TLV upon successful authentication of the peer (instead, it
 sends an EAP-Success message).

 * When the P bit is set, the peer SHALL populate this field as
 follows. After the token has calculated the OTP value, the
 peer SHALL compute:

 K_MAC | K_ENC | MSK | EMSK | SRK = PBKDF2(otp, salt | pepper
 | auth_id, iteration_count, key_length)

 where

 "|" denotes concatenation,

 "otp" is the already computed OTP value,

 "salt" is a 16-octet nonce,

 "pepper" is an optional nonce (at most, 255 bits long, and,
 if necessary, padded to be a multiple of 8 bits long; see
 below) included to complicate the task of finding a matching
 "otp" value for an attacker,

 "auth_id" is an identifier (at most, 255 octets in length)
 for the authenticator (i.e., the network access server) as
 reported by lower layers and as specified below,

 "iteration_count" is an iteration count chosen such that the
 computation time on the peer is acceptable (based on the
 server’s indicated policy and the peer’s local policy),
 while an attacker, having observed the response and
 initiating a search for a matching OTP, will be sufficiently
 slowed down. The "iteration_count" value MUST be chosen to
 provide a suitable level of protection (e.g., at least
 100,000) unless a server-provided pepper is being used, in
 which case, it SHOULD be 1.

 "key_length" is the combined length of the desired key
 material, in octets. When the default algorithms are used,
 key_length is 176.

 The "pepper" values are only included in PBKDF2 calculations
 and are never sent to EAP servers (though the peers do send
 their length, in bits). The purpose of the pepper values
 are, as mentioned above, to slow down an attacker’s search
 for a matching OTP, while not slowing down the peer (which
 iterated hashes do). If the pepper has been generated by
 the peer, and the chosen pepper length in bits is not a

Nystroem Informational [Page 29]

RFC 4793 EAP-POTP February 2007

 multiple of 8, then the pepper value SHALL be padded to the
 left, with ’0’ bits to the nearest multiple of 8 before
 being used in the PBKDF2 calculation. This is to ensure the
 input to the calculation consists only of whole octets. As
 an example, if the chosen pepper length is 4, the pepper
 value will be padded to the left, with 4 ’0’ bits to form an
 octet before being used in the PBKDF2 calculation.

 When pepper is used, it is RECOMMENDED that the length of
 the pepper and the iteration count are chosen in such a way
 that it is computationally infeasible/unattractive for an
 attacker to brute-force search for the given OTP within the
 lifetime of that OTP.

 As mentioned previously, a peer MUST NOT include a newly
 generated pepper value in the PBKDF2 computation if the
 server did not indicate its support for pepper searching in
 this session. If the server did not indicate support for
 pepper searching, then the PBKDF2 computation MUST be
 carried out with a sufficiently higher number of iterations
 so as to compensate for the lack of pepper (see further
 Appendix D).

 A server may, in an earlier session, have transferred a
 pepper value to the peer in a Confirm TLV (see below). When
 this is the case, and the peer still has that pepper value
 stored for this server, the peer MUST NOT generate a new
 pepper but MUST, instead, use this transferred pepper value
 in the PBKDF2 calculations. The only exception to this is
 when a local policy (e.g., timer) dictates that the peer
 must switch to a new pepper (and the server indicated
 support for pepper searching).

 The following applies to the auth_id component:

 - For dial-up, "auth_id" SHALL be either the empty string
 or the phone number called by the peer. The phone number
 SHALL be specified in the form of a URL conformant with
 RFC 3966 [8], e.g., "tel:+16175550101". Processing of
 received phone numbers SHALL be conformant with RFC 3966
 (this assumes that "tel" URIs will be shorter than 256
 octets, which would normally be the case).

 - For use with IEEE 802.1X, "auth_id" SHALL be either the
 empty string or the MAC address of the authenticator in
 canonical binary format (6 octets).

Nystroem Informational [Page 30]

RFC 4793 EAP-POTP February 2007

 - For IP-based EAP, "auth_id" SHALL be either the empty
 string or the IPv4 or IPv6 address of the authenticator
 as seen by the peer and in binary format (4 or 16 octets,
 respectively). As an example, the IPv4 address
 "192.0.2.5" would be represented as (in hex) C0 00 02 05,
 whereas the IPv6 address "2001:DB8::101" would be
 represented as (in hex) 20 01 0D B8 00 00 00 00 00 00 00
 00 00 00 01 01.

 Note: Use of the authenticator’s identifying information
 within the computation aids in protection against man-in-
 the-middle attacks, where a rogue authenticator seeks to
 intercept and forward the Authentication Data in order to
 impersonate the peer at a legitimate authenticator (but see
 also the discussion around spoofed authenticator addresses
 in Section 6). For these reasons, a peer SHOULD NOT set the
 auth_id component to the empty string unless it is unable to
 learn the identifying information of the authenticator. In
 these cases, the EAP server’s policy will determine whether
 or not the session may continue.

 As an example, when otp = "12345678", salt =
 0x54434534543445435465768789099880, pepper is not used,
 auth_id = "192.0.2.5", iteration_count = 2000 (decimal), and
 key_length = 176 (decimal), the input to the PBKDF2
 calculation will be (first two parameters in hex, line wrap
 for readability):

 (3132333435363738, 54434534543445435465768789099880 |
 c0000205, 2000, 176)

 As described, when the default algorithms are used, K_MAC is
 the first 16 octets of the output from PBKDF2, K_ENC the
 next 16 octets, MSK the following 64 octets, EMSK the next
 64 octets, and SRK the final 16 octets. Using K_MAC, the
 peer calculates:

 mac = MAC(K_MAC, msg_hash(msg_1, msg_2, ..., msg_n))

 as specified in Section 4.9 and where msg_1, msg_2, ...,
 msg_n is a sequence of all EAP messages of type POTP-X
 exchanged so far in this session, as sent and received by
 the peer (for the peer’s initial MAC, it will typically be
 just one message: the EAP server’s initial EAP-Request of
 type POTP-X).

Nystroem Informational [Page 31]

RFC 4793 EAP-POTP February 2007

 The peer then places the first 16 octets of "mac" in the
 Authentication Data field, followed by the "salt" value,
 followed by one octet representing the length of the
 "auth_id" value in octets, followed by the actual "auth_id"
 value in binary form, and optionally followed by a pepper
 identifier (only when the peer made use of a pepper value
 previously provided by the EAP server). Pepper identifiers,
 when present, are always 4 octets. All variables SHALL be
 present in the form they were input to the PBKDF2 algorithm.
 This will result in the Authentication Data field being 33 +
 (length of auth_id in octets) + (4, for pepper identifier,
 when present) octets in length.

 Continuing the previous example, the Authentication Data
 field will be populated with (in hex, line wrap for
 readability):

 < 16 octets of mac > | 54434534543445435465768789099880 |
 04 | c0000205

 Note: Since in this case (i.e., when the P bit is set)
 successful authentication of the peer by the EAP server will
 be followed by the transmission of an EAP-Request of type
 POTP-X containing a Confirm TLV for mutual authentication,
 the peer MUST save either all the input parameters to the
 PBKDF2 computation or the keys K_MAC, K_ENC, SRK, MSK, and
 EMSK (recommended, since they will be used later). This is
 because the peer cannot be guaranteed to be able to generate
 the same OTP value again. For the same reason (the Confirm-
 TLV from the EAP server), the peer MUST also store either
 the hash of the contents of the sent EAP-Response or the
 EAP-Response itself (but see the note above about not
 including any User Identifier TLVs in the hash computation).

 Given a set of possible OTP values, the authentication
 server verifies an authentication request from the peer by
 computing

 K_MAC’ | K_ENC’ | MSK’ | EMSK’ | SRK’ = PBKDF2 (otp’,
 salt | pepper’ | auth_id, iteration_count, key_length)

 for each possible OTP value otp’ and each possible pepper
 value pepper’ , and the provided values for salt,
 authenticator identity, and iteration count, as well as the
 applicable key length (default: 176). Note: Doing the
 computation for each possible pepper value implements the
 pepper search mentioned elsewhere in this document. Note
 also that the EAP server may accept more than one OTP value

Nystroem Informational [Page 32]

RFC 4793 EAP-POTP February 2007

 at a given time, e.g., due to clock drift in the token. If
 the given pepper length is not a multiple of 8, each tested
 pepper value will be padded to the left to the nearest
 multiple of 8, in the same manner as was done by the peer.
 If the server already shares a secret pepper value with this
 peer, then obviously there will only be one possible pepper
 value, and the server will find it based on the
 pepper_identifier provided by the peer. The server SHALL
 send a new EAP-Request of type POTP-X with an OTP TLV with
 the E bit set if the peer provided a pepper identifier
 unknown to the server.

 For each K_MAC’, the EAP server computes

 mac’ = MAC(K_MAC’, msg_hash(msg_1’, msg_2’, ..., msg_n’))

 where MAC is the negotiated MAC algorithm, msg_hash is the
 message hash algorithm defined in Section 4.9, and msg_1’,
 msg_2’, ... msg_n’ are the same messages on which the peer
 calculated its message hash, but this time, as sent and
 received by the EAP server. If the first 16 octets of mac’
 matches the first 16 octets in the Authentication Data field
 of the EAP-Response in question, and the provided
 authenticator identity is acceptable (e.g., matches the EAP
 server’s view of the authenticator’s identity), then the
 peer is authenticated.

 If the authentication is successful, the authentication
 server then attempts to authenticate itself to the peer by
 use of the Confirm TLV (see below). If the authentication
 fails, the EAP server MAY send another EAP-Request of type
 POTP-X containing an OTP TLV to the peer, or it MAY send an
 EAP-Failure message (in both cases, possibly preceded by an
 EAP-Request of type Notification).

4.11.4. NAK TLV

 Presence of this TLV indicates that the peer did not support a
 received TLV with the M bit set. This TLV may occur 0, 1, or more
 times in an EAP-Response of type POTP-X. Each occurrence flags the
 non-support of a particular received TLV.

 The NAK TLV MUST be supported by all peers and all EAP servers
 conforming to this specification and MUST NOT be responded to with a
 NAK TLV. Receipt of a NAK TLV by an EAP server MAY cause an
 authentication to fail, and the EAP server to send an EAP-Failure
 message to the peer.

Nystroem Informational [Page 33]

RFC 4793 EAP-POTP February 2007

 Note: The definition of the NAK TLV herein matches the definition
 made in [17], and has the same type number. Field descriptions are
 copied from that document, with some minor modifications.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Vendor-Id |
 +-+
 | NAK-Type | TLVs ...
 +-+

 M

 1 - Mandatory TLV

 R

 Reserved for future use. This bit SHALL be set to zero (0) for
 this version. Recipients SHALL ignore this bit for this version
 of EAP-POTP.

 TLV Type

 4

 Length

 6 + cumulative total length of embedded TLVs

 Vendor-Id

 The Vendor-Id field is 4 octets, and contains the Vendor-Id of the
 TLV that was not supported. The high-order octet is 0 and the
 low-order 3 octets are the Structure of Management Information
 (SMI) Network Management Private Enterprise Code of the Vendor in
 network byte order. The Vendor-Id field MUST be zero for TLVs
 that are not Vendor-Specific TLVs. For Vendor-Specific TLVs, the
 Vendor-ID MUST be set to the SMI code.

 NAK-Type

 The type of the unsupported TLV. The TLV MUST have been included in
 the most recently received EAP message.

Nystroem Informational [Page 34]

RFC 4793 EAP-POTP February 2007

 TLVs

 This field contains a list of TLVs, each of which MUST NOT have the
 mandatory bit set. These optional TLVs can be used in the future to
 communicate why the offending TLV was determined to be unsupported.

4.11.5. New PIN TLV

 In an EAP-Request, the New PIN TLV is used to request a new user PIN
 from the peer. The EAP server MAY provide a new PIN, as described
 below. In an EAP-Response, the New PIN TLV carries a chosen new user
 PIN. This TLV may be used by an EAP server when policy dictates that
 the peer (user) needs to change a PIN associated with the OTP Token.

 This TLV type SHOULD be supported by peers and EAP servers conforming
 to this specification. The New PIN TLV MUST NOT be sent by an EAP
 server unless the peer has been authenticated. If the peer was
 authenticated in protected mode, then the New PIN TLV MUST NOT be
 present in an EAP-Request until after the exchange of the Confirm TLV
 (i.e., until after mutual authentication has occurred and keys are in
 place to protect the TLV). The New PIN TLV MUST be sent by a peer if
 and only if the EAP-Request that triggered the response contained a
 New PIN TLV, it was valid for the EAP server to send such a TLV in
 that request, and the TLV is supported by the peer.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Reserved |Q|A| PIN Length | PIN ...
 +-+
 |Min. PIN Length|Max. PIN Length|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 M

 1 - Mandatory TLV

 R

 Reserved for future use. This bit SHALL be set to zero (0) for
 this version. Recipients SHALL ignore this bit for this version
 of EAP-POTP.

 TLV Type

 5

Nystroem Informational [Page 35]

RFC 4793 EAP-POTP February 2007

 Length

 2 + length of the PIN field (as specified in the PIN Length field)
 + (0, 1, or 2)

 Note: The final term above is
 - 0 if none of the optional Min. / Max. PIN Length fields is
 present in the TLV,
 - 1 if only the Min. PIN Length field is present in the TLV,
 - 2 if both of these optional fields are present in the TLV.

 Reserved

 Reserved for future use. All six bits SHALL be set to zero for
 this version. Recipients SHALL ignore these bits for this version
 of EAP-POTP.

 Q

 The Q bit, when set in an EAP-Request, indicates that an
 accompanying PIN is required, i.e., the peer (user) is not free to
 choose another PIN. When the Q bit is set, there MUST be an
 accompanying PIN and the provided PIN MUST be used in subsequent
 OTP generations. A peer SHALL respond with an empty POTP-X EAP-
 Response message if the Q bit is set but there is not any
 accompanying PIN. When the Q bit is not set, any provided PIN is
 suggested only, and the peer is free to choose another PIN,
 subject to local policy.

 The Q bit carries no meaning, and SHALL be set to zero, in an EAP-
 Response.

 A

 This bit allows methods that distinguish between two different PIN
 types (e.g., decimal vs. alphanumeric) to designate whether the
 augmented set is to be used (when set) or not (when not set). The
 A bit carries no meaning, and SHALL be set to zero, in an EAP-
 Response.

 PIN Length

 This field contains an unsigned integer representing the length of
 the provided PIN (this implies that the maximum length of a PIN
 will be 255 octets).

Nystroem Informational [Page 36]

RFC 4793 EAP-POTP February 2007

 PIN

 In an EAP-Request, subject to the setting of the Q bit, the PIN
 field MAY be empty. If empty, the peer (user) will need to choose
 a PIN subject to local and (any) provided policy. When the PIN
 field is not empty, it MUST consist of UTF-8 encoded printable
 characters without a terminating NULL character.

 In an EAP-Response, the PIN value SHALL consist of a UTF-8 encoded
 string of printable characters without a terminating NULL
 character.

 The peer accepts a PIN suggested by the EAP server by replying
 with the same PIN, but MAY replace it with another one, depending
 on the server’s setting of the Q bit. The length of the PIN is
 application-dependent, as are any other requirements for the PIN,
 e.g., allowed characters. The peer MUST be prepared to receive a
 repeated request for a new PIN, as described above, if the EAP
 server, for some reason does not accept the received PIN. Such a
 request MAY be preceded by an EAP-Request of type Notification (2)
 providing information to the user about the reason for the
 rejection. Mechanisms for transferring knowledge about PIN
 requirements from the EAP server to the peer (beyond those
 specified for this TLV, such as maximal and minimal PIN length)
 are outside the scope of this document. However, some information
 MAY be provided in notification messages transferred from the EAP
 server to the peer, as per above.

 Min. PIN Length

 This field MAY be present in an EAP-Request. This field MUST NOT
 be present in an EAP-Response. It SHALL be interpreted as an
 unsigned integer in network byte order representing the minimum
 length allowed for a new PIN.

 Max. PIN Length

 This field MUST NOT be present in an EAP-Request unless the Min.
 PIN Length field is present, in which case it MAY be present. The
 field MUST NOT be present in an EAP-Response. It SHALL be
 interpreted as an unsigned integer in network byte order
 representing the maximum length allowed for a new PIN. The value
 of this field, when present, MUST be equal to, or larger than, the
 value of the Min. PIN Length field.

Nystroem Informational [Page 37]

RFC 4793 EAP-POTP February 2007

4.11.6. Confirm TLV

 Presence of this TLV in a request indicates that the EAP server has
 successfully authenticated the peer and now attempts to authenticate
 itself to the peer. Presence of this TLV in a response indicates
 that the peer successfully authenticated the EAP server, and that
 calculated keys (K_MAC, K_ENC, MSK, EMSK, and SRK) now become
 available for use.

 The Confirm TLV MUST NOT appear together with any other TLV in an
 EAP-Request message of type POTP-X and MUST NOT be sent unless the
 peer has been authenticated through an OTP TLV with the P bit set or
 through a Resume TLV for which the underlying session was established
 in protected mode. The Confirm TLV MUST be present in an EAP-
 Response if and only if the request that triggered the response
 contained a Confirm TLV, it was legal for it to do so, and the
 Confirm TLV authenticated the EAP server to the peer. If the peer
 was not able to authenticate the server, then it MUST send an empty
 (i.e., no TLVs present) EAP-Response of type POTP-X.

 An EAP server MUST send an EAP-Success message after receiving an
 EAP-Response of type POTP-X containing a valid Confirm TLV, sent in
 response to an EAP-Request containing a Confirm TLV where the C bit
 was not set. A peer MUST NOT accept an EAP-Success message when it
 has sent an OTP TLV with the P bit set unless it has received an
 acceptable Confirm TLV from the EAP server.

 This TLV type MUST be supported by all peers and EAP servers
 conforming to this specification and MUST NOT be responded to with a
 NAK TLV.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Reserved |C| Authentication Data ... (16 octets)
 +-+
 | Pepper Identifier |
 +-+
 | IV ...
 +-+
 | Encrypted Pepper ... (16 octets)
 +-+

 M

 1 - Mandatory TLV

Nystroem Informational [Page 38]

RFC 4793 EAP-POTP February 2007

 R

 Reserved for future use. This bit SHALL be set to zero (0) for
 this version. Recipients SHALL ignore this bit for this version
 of EAP-POTP.

 TLV Type

 6

 Length

 17 or 37 + length of IV in requests, 1 in responses.

 Reserved

 Reserved for future use. These 7 bits SHALL be set to zero (0)
 for this version. Recipients SHALL ignore these bits for this
 version of EAP-POTP.

 C

 The C bit, when set in an EAP-Request, indicates that the EAP
 server intends to send more EAP-Requests of type POTP-X in this
 session, after receipt of a Confirm TLV from the peer.

 The C bit carries no meaning in EAP-Responses, and MUST NOT be set
 within them.

 Note: An EAP-Response containing a Confirm TLV, sent in response
 to an EAP-Request containing a Confirm TLV that did not have the C
 bit set, MUST be followed by an EAP-Success message from the EAP
 server concluding the handshake. However, when the C bit was set
 in an EAP-Request, the EAP server MAY send another EAP-Request
 (containing, for example, a New PIN TLV wrapped in a Protected
 TLV) rather than an EAP-Success message. Therefore, peers MUST
 NOT assume that the only EAP message following an EAP-Response of
 type POTP-X containing a Confirm TLV is EAP-Success. The C bit
 gives EAP servers a way to indicate their intent to follow the
 Confirm TLV with more requests, and allows the peer’s state
 machine to adapt to this.

 Authentication Data

 EAP-Request:

 In a request, this field consists of the first 16 octets of
 (see also Section 4.11.3):

Nystroem Informational [Page 39]

RFC 4793 EAP-POTP February 2007

 mac_a = MAC(K_MAC’, msg_hash(trig_msg))

 where

 MAC is the negotiated MAC algorithm,

 "K_MAC’" has been calculated as described in Section 4.11.3 or
 (in the case of session resumption) Section 4.11.8, and

 "msg_hash" is the message hash algorithm defined in Section
 4.9, and "trig_msg" the latest EAP-Response of type POTP-X
 received from the peer (the one which triggered this request).

 Given a saved or recomputed value for K_MAC, the peer
 authenticates the EAP server by computing

 mac’’ = MAC(K_MAC, msg_hash(trig_msg’))

 where "msg_hash(trig_msg’)" is the peer’s hash of the EAP-
 Response message that it sent to the server (and that the
 server calculated its message hash on). If the first 16 octets
 of mac’’ matches the first 16 octets in the Authentication Data
 field of the EAP-Request in question, then the EAP server is
 authenticated.

 EAP-Response:

 Not used in this version, and SHALL NOT be present in EAP-
 Responses.

 Pepper Identifier

 In an EAP-Request, the truncated MAC MAY optionally be followed by
 an encrypted pepper and its identifier. This initial, 4-octet
 field identifies a pepper generated by the server.

 For this version of EAP-POTP, this field SHALL NOT be present in
 EAP-Responses.

 IV (Initialization Vector)

 An initialization vector for the encryption. The length of the
 vector is dependent on the negotiated encryption algorithm. For
 example, for AES-CBC, it SHALL be 16 octets. The IV is only
 present if a pepper is present, and the negotiated encryption
 algorithm makes use of an IV. This field SHALL NOT be present in
 EAP-Response messages for this version of EAP-POTP.

Nystroem Informational [Page 40]

RFC 4793 EAP-POTP February 2007

 Encrypted Pepper

 When present in an EAP-Request, this will be a uniformly
 distributed and randomly chosen 16-octet pepper generated by the
 EAP server and encrypted with the negotiated encryption algorithm,
 using K_ENC as the encryption key and possibly (depending on the
 encryption algorithm) using an IV (stored in the IV field). This
 field MUST be present if and only if the Pepper Identifier field
 is present.

 EAP servers are RECOMMENDED to include a freshly generated
 encrypted pepper (and a corresponding Pepper Identifier) in every
 Confirm TLV.

 This field SHALL NOT be present in EAP-Response messages for this
 version of EAP-POTP.

 When a new pepper is generated by the server and transferred in
 encrypted form to the peer, then this new pepper value will be stored
 in the EAP server upon receipt of the Confirm TLV from the peer, and
 SHOULD be stored with its identifier and associated with the EAP
 server and the current user in the peer upon receipt of the EAP-
 Success message. If the peer already had a pepper stored for the EAP
 server, it SHALL replace it with the newly received one.

4.11.7. Vendor-Specific TLV

 The Vendor-Specific TLV is available to allow vendors to support
 their own extended attributes not suitable for general usage. A
 Vendor-Specific TLV can contain one or more inner TLVs, referred to
 as Vendor TLVs. The TLV-type of a Vendor TLV will be defined by the
 vendor. All the Vendor TLVs inside a single Vendor-Specific TLV
 SHALL belong to the same vendor.

 This TLV type MAY be sent by EAP servers, as well as by peers, and
 MUST be supported by all entities conforming to this specification.
 Conforming implementations may not support specific Vendor TLVs
 inside a Vendor-Specific TLV, however. They MAY, in this case,
 respond to the Vendor TLVs with a NAK TLV containing the appropriate
 Vendor-ID and Vendor TLV type.

 The presence of a Vendor-Specific TLV in an EAP-Request or EAP-
 Response of type POTP-X MUST NOT violate any existing rules for
 coexistence of TLVs in such requests or responses. If it does, then
 it will result in an EAP-Failure (when the peer made the violation)
 or an empty EAP-POTP response (when the EAP-server made the
 violation). It is left to the definition of specific Vendor-Specific
 TLVs to further constrain when they are allowed to appear. In

Nystroem Informational [Page 41]

RFC 4793 EAP-POTP February 2007

 particular, EAP-POTP implementations may have policies that
 completely disallow use of the Vendor-Specific TLV before protected
 mode mutual authentication has occurred (since the Protected TLV,
 Section 4.11.15, then can be used to protect all TLVs).

 Note: This TLV type has the same definition and TLV type number as
 the Vendor-Specific TLV in [17], and the description of it is largely
 borrowed from that document.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Vendor-Id |
 +-+
 | Vendor TLVs ...
 +-+

 M

 1 - Mandatory TLV

 R

 Reserved for future use. This bit SHALL be set to zero (0) for
 this version. Recipients SHALL ignore this bit for this version
 of EAP-POTP.

 TLV Type

 7

 Length

 4 + cumulative total length of inner Vendor TLVs

 Vendor-ID

 The Vendor-Id field is 4 octets. The high-order octet SHALL be
 set to 0, and the low-order 3 octets SHALL be set to the SMI
 Network Management Private Enterprise Code (see [18]) of the
 Vendor in network byte order.

Nystroem Informational [Page 42]

RFC 4793 EAP-POTP February 2007

 Vendor TLVs

 This field shall contain vendor-specific TLVs, in a format defined
 by the vendor. To avoid fragmentation (i.e., EAP messages longer
 than the minimum EAP MTU size), the field SHOULD NOT be longer
 than 256 octets.

 To ensure interoperability when an EAP entity (peer or server) from
 vendor A sends a vendor-specific TLV that is not understood by the
 recipient EAP entity from vendor B, the vendor A entity SHALL, upon
 receipt of the NAK TLV from the recipient, refrain from usage of the
 vendor-specific TLV in question for the rest of the handshake, and
 MUST NOT fail the session due to the receipt of the NAK TLV for the
 Vendor TLV (i.e., it SHALL continue as if the vendor-specific TLV had
 not been sent). Additionally, all implementations conformant with
 this document SHOULD allow use of vendor-specific extensions to be
 turned off via configuration.

4.11.8. Resume TLV

 The Resume TLV MAY be sent by a peer to an authentication server to
 attempt session resumption.

 This TLV type MUST only be sent in response to an EAP-Request of type
 POTP-X containing a Server-Info TLV allowing session resumption. The
 Resume TLV MUST be supported by all EAP servers that send a Server-
 Info TLV allowing session resumption.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Reserved | Session Identifier |
 +-+
 | Session Identifier (continued) |
 +-+
 |Sess.Id (cont.)| Authentication Data |
 +-+
 | Authentication Data (cont.) ...
 +-+

 M

 0 - Non-mandatory TLV

Nystroem Informational [Page 43]

RFC 4793 EAP-POTP February 2007

 R

 Reserved for future use. This bit SHALL be set to zero (0) for
 this version. Recipients SHALL ignore this bit for this version
 of EAP-POTP.

 TLV Type

 8

 Length

 45

 Reserved

 Reserved for future use. This octet SHALL be set to zero (0) for
 this version. Recipients SHALL ignore this octet for this version
 of EAP-POTP.

 Session Identifier

 An 8-octet identifier for the session the peer is trying to
 resume.

 Authentication Data

 Upon receipt of the Server-Info TLV, and if the N bit is not set,
 the peer searches for any stored sessions associated with the
 server identified by the Server Name field. If a stored session
 is found, the peer generates a random, 16-octet nonce, "c_nonce",
 and calculates:

 K_MAC | K_ENC | MSK | EMSK | SRK = PBKDF2(base_key, c_nonce |
 s_nonce, iteration_count, key_length)

 where

 "|" denotes concatenation,

 "base_key" is either the current SRK for the session (if the
 session was created in protected mode) or the OTP used when the
 session was created (if the session was created in basic mode),

 "c_nonce" is the generated 16-octet nonce,

 "s_nonce" is the server nonce from the Server-Info TLV,

Nystroem Informational [Page 44]

RFC 4793 EAP-POTP February 2007

 "iteration_count" is the iteration count as determined by local
 policy, and

 "key_length" is the combined length of the desired key material,
 in octets. When the default algorithms are used, key_length is
 176.

 The iteration count need only be 1 (one) when resuming a session
 established in protected mode, but MUST be chosen to provide a
 suitable level of protection when resuming a session established
 in basic mode (see also Section 4.11.3).

 Note: Session resumption for basic mode MUST only be carried out
 in a server-authenticated and protected tunnel that also provides
 a cryptographic binding for inner EAP methods.

 The peer then calculates:

 mac = MAC(K_MAC, msg_hash(resume_req))

 where

 "MAC" is the negotiated MAC algorithm, and

 "msg_hash(resume_req) is the message hash algorithm defined in
 Section 4.9 applied on resume_req, the EAP server’s EAP-Request of
 type POTP-X containing the Server-Info TLV that allowed session
 resumption.

 The peer then places the first 16 octets of the MAC value,
 followed by the c_nonce value, followed by the iteration count
 value (as a 4-byte unsigned integer in network byte order), in the
 Authentication Data field. As an example, when c_nonce =
 0x2b3b1b12babdebebfb43bd7bdfbeb8df and iteration_count = 1, the
 Authentication Data field will be populated with (in hex):

 < 16 octets of mac > | 2b3b1b12babdebebfb43bd7bdfbeb8df | 00000001

 The server authenticates the peer by performing the corresponding
 calculations. If the authentication is successful, the server
 MUST send an EAP-Request of type POTP-X containing a Confirm TLV
 to the peer. If the authentication fails, the server MUST either
 send an EAP-Request of type POTP-X containing an OTP TLV and a
 Server-Info TLV, where the Server-Info TLV indicates that session
 resumption is not possible, or send an EAP-Failure.

Nystroem Informational [Page 45]

RFC 4793 EAP-POTP February 2007

 When resuming in basic mode, all calculated keys SHALL be
 discarded after the MAC has been calculated and verified. When
 resuming in protected mode, the new SRK will replace the stored
 SRK, and the new MSK and EMSK will be exported upon successful
 completion of the method.

4.11.9. User Identifier TLV

 The User Identifier TLV carries an identifier, typically the
 username, for the holder of the OTP token used to generate the OTP.

 At least one of the User Identifier TLV and the Token Key Identifier
 TLV SHOULD be present in the session’s first EAP-Response of type
 POTP-X that also carries an OTP TLV unless a suitable identity has
 been provided in a preceding EAP-Response of type Identity (1) or is
 determined by some other means (see [1], Section 2). Use of the User
 Identifier TLV and/or the Token Key Identifier TLV is RECOMMENDED
 even when an EAP-Response of type Identity (1) has been sent. If a
 peer sends both a User Identifier TLV and a Token Key Identifier TLV,
 then the EAP server SHALL interpret the Token Key Identifier TLV as
 specifying a particular token key for the given user. The EAP server
 MUST respond with an EAP-Failure if it cannot find a token key for
 the provided user.

 This TLV type is sent by peers and MUST be supported by all EAP
 servers conforming to this specification. The User Identifier TLV
 MUST NOT be present in a response that does not also carry an OTP
 TLV.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | User Identifier ...
 +-+

 M

 1 - Mandatory TLV

 R

 Reserved for future use. This bit SHALL be set to zero (0) for
 this version. Recipients SHALL ignore this bit for this version
 of EAP-POTP.

Nystroem Informational [Page 46]

RFC 4793 EAP-POTP February 2007

 TLV Type

 9

 Length

 Length of User Identifier, >= 1

 User Identifier

 The value SHALL be an UTF-8 encoded string representing the holder
 of the token (MUST NOT be NULL-terminated). The string MUST be
 less than 128 octets in length.

4.11.10. Token Key Identifier TLV

 The Token Key Identifier TLV carries an identifier for the token key
 used to generate the OTP.

 At least one of the User Identifier TLV and the Token Key Identifier
 TLV SHOULD be present in the session’s first EAP-Response of type
 POTP-X, which also carries the OTP TLV unless a suitable identity has
 been provided in a preceding EAP-Response of type Identity (1) or is
 determined by some other means (see [1], Section 2). Use of the User
 Identifier TLV and/or the Token Key Identifier TLV is RECOMMENDED
 even when an EAP-Response of type Identity (1) has been sent. If a
 peer sends both a User Identifier TLV and a Token Key Identifier TLV,
 then the EAP server SHALL interpret the Token Key Identifier TLV as
 specifying a particular token key for the given user. The EAP server
 MUST respond with an EAP-Failure if it cannot find a token key
 corresponding to the provided token key identifier.

 This TLV type is sent by peers and MUST be supported by all EAP
 servers conforming to this specification. The Token Key Identifier
 TLV MUST NOT be present in a response that does not also carry an OTP
 TLV.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Token Key Identifier ...
 +-+

 M

 1 - Mandatory TLV

Nystroem Informational [Page 47]

RFC 4793 EAP-POTP February 2007

 R

 Reserved for future use. This bit SHALL be set to zero (0) for
 this version. Recipients SHALL ignore this bit for this version
 of EAP-POTP.

 TLV Type

 10

 Length

 Length of Token Key Identifier, >= 1

 Token Key Identifier

 An identifier for the OTP token key used to generate the OTP. The
 field MUST be less than 128 octets in length.

4.11.11. Time Stamp TLV

 The Time Stamp TLV MAY be sent by peers to simplify authentications.
 When present, it carries the time as reported by the OTP Token.

 An EAP server conformant with this specification SHOULD support
 (i.e., recognize) this TLV, but need not be able to process or act on
 it. An EAP server that does not support this TLV, but receives an
 EAP-Response with the TLV present, MAY ignore the value. The Time
 Stamp TLV MUST NOT be present in any EAP-Responses of type POTP-X
 other than those that also carries an OTP TLV.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Time Stamp ...
 +-+

 M

 0 - Non-mandatory TLV

 R

 Reserved for future use. This bit SHALL be set to zero (0) for
 this version. Recipients SHALL ignore this bit for this version
 of EAP-POTP.

Nystroem Informational [Page 48]

RFC 4793 EAP-POTP February 2007

 TLV Type

 11

 Length

 Length of Time Stamp field, >= 20 (depending on precision)

 Time Stamp

 The time, as reported by the OTP token, at which the OTP used for
 the accompanying OTP TLV was calculated. The field SHALL contain
 a UTF-8 encoded value of the XML simple type "dateTime", with time
 zone information and precision down to at least seconds, e.g.,
 "2004-06-16T15:20:02Z".

4.11.12. Counter TLV

 The Counter TLV MAY be sent by peers to simplify authentications.
 When present, it carries the token counter value, as reported by the
 OTP Token.

 An EAP server conformant with this specification SHOULD support
 (i.e., recognize) this TLV, but need not be able to process or act on
 it. An EAP server that does not support this TLV, but receives an
 EAP-Response with the TLV present, MAY ignore the value. The Counter
 TLV MUST NOT be present in any EAP-Responses of type POTP-X other
 than those that also carries an OTP TLV.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Counter ...
 +-+

 M

 0 - Non-mandatory TLV

 R

 Reserved for future use. This bit SHALL be set to zero (0) for
 this version. Recipients SHALL ignore this bit for this version
 of EAP-POTP.

Nystroem Informational [Page 49]

RFC 4793 EAP-POTP February 2007

 TLV Type

 12

 Length

 Length of Counter field, >= 1 (depending on precision)

 Counter

 The counter value, as reported by the OTP token, at which the OTP
 used for the accompanying OTP TLV was calculated. The counter
 value SHALL be represented as an unsigned integer in network-byte
 order, e.g., a counter value of 1030 may be sent as the 2 octets
 (in hex) 04 06.

4.11.13. Challenge TLV

 The Challenge TLV carries the challenge used by the token to
 calculate the OTP, as reported by the token to the peer. The
 Challenge TLV MUST be sent by a peer if and only if the challenge
 otherwise would be unknown to the EAP server (e.g., the token or peer
 modified a received challenge or generated its own challenge).

 An EAP server conformant with this specification SHOULD support
 (i.e., recognize) this TLV, but need not be able to process or act on
 it. An EAP server that does not support this TLV, but receives an
 EAP-Response with the TLV present, MAY ignore the value. The
 Challenge TLV MUST NOT be present in any EAP-Responses of type POTP-X
 other than those that also carry an OTP TLV.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Challenge ...
 +-+

 M

 0 - Non-mandatory TLV

 R

 Reserved for future use. This bit SHALL be set to zero (0) for
 this version. Recipients SHALL ignore this bit for this version
 of EAP-POTP.

Nystroem Informational [Page 50]

RFC 4793 EAP-POTP February 2007

 TLV Type

 16

 Length

 Length of Challenge field, >= 1

 Challenge

 The challenge value that was used to calculate the OTP used for
 the accompanying OTP TLV.

4.11.14. Keep-Alive TLV

 The Keep-Alive is used to avoid EAP-POTP timeouts.

 The Keep-Alive TLV MAY be sent by a peer to avoid timeouts when the
 peer has received an EAP-Request containing an OTP TLV or a New PIN
 TLV and is waiting for a response from the user.

 An EAP-Request containing a Keep-Alive TLV MUST be sent by an EAP
 server when the server receives an EAP-Response containing a Keep-
 Alive TLV, and the server has an outstanding request that did not
 contain a Keep-Alive TLV. In this situation, the server does not
 need to re-transmit its latest outstanding request, but, due to the
 synchronous nature of EAP, it needs to send another request. Re-
 transmission of the latest outstanding request could be confusing for
 the peer since the request would get a new Identifier value. The
 Keep-Alive TLV MAY also be sent by an EAP server when the server
 detects that its processing time will exceed some locally configured
 threshold and may cause a network timeout. In this case, the peer
 MUST respond with an EAP-Response containing a Keep-Alive TLV.

 This TLV type MUST be supported by all peers and all EAP servers
 conforming to this specification and MUST NOT be responded to with a
 NAK TLV. The Keep-Alive TLV MUST NOT be sent in any other situations
 than the ones described above. The Keep-Alive TLV MUST NOT be sent
 together with any other TLVs defined herein. Implementations SHOULD
 also follow recommendations made in Section 4.3 of [1].

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+

Nystroem Informational [Page 51]

RFC 4793 EAP-POTP February 2007

 M

 1 - Mandatory TLV

 R

 Reserved for future use. This bit SHALL be set to zero (0) for this
 version. Recipients SHALL ignore this bit for this version of EAP-
 POTP.

 TLV Type

 13

 Length

 0

4.11.15. Protected TLV

 The Protected TLV SHALL be used to encrypt individual or multiple
 TLVs after successful exchange of the Confirm TLV (i.e., as soon as
 calculated keys have been confirmed). The Protected TLV therefore
 wraps "ordinary" TLVs.

 This TLV type may be sent by EAP servers as well as by peers and MUST
 be supported by all peers conforming to this specification. It
 SHOULD be supported by all EAP servers conforming to this
 specification (it need not be supported if a server never will have a
 need to continue a POTP-X conversation after exchange of the Confirm
 TLV).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Message Authentication Code ... (16 octets)
 +-+
 | IV ...
 +-+
 | Encrypted TLVs ...
 +-+

 M

 1 - Mandatory TLV

Nystroem Informational [Page 52]

RFC 4793 EAP-POTP February 2007

 R

 Reserved for future use. This bit SHALL be set to zero (0) for
 this version. Recipients SHALL ignore this bit for this version
 of EAP-POTP.

 TLV Type

 14

 Length

 >32

 Message Authentication Code (MAC)

 This field integrity-protects the TLV. The MAC SHALL be
 calculated over the IV and the Encrypted TLVs field in the
 following manner:

 mac = MAC(K_MAC, iv | encrypted_tlvs)

 where

 MAC is the negotiated MAC algorithm, "iv" is the IV field’s value,
 and "encrypted_tlvs" is the value of the Encrypted TLVs field.
 The first 16 octets of the MAC is placed in the Message
 Authentication Code field.

 Recipients MUST verify the MAC. If the verification fails, the
 conversation SHALL be terminated (i.e., peers send an empty POTP-X
 EAP-Response message, and EAP servers send an EAP-Failure message
 possibly preceded by an EAP-Request of type Notification).

 IV

 An initialization vector for the encryption; see below. The
 length of the vector is dependent on the negotiated encryption
 algorithm, e.g., for AES-CBC, it shall be 16 octets. For some
 encryption algorithms, there may not be any initialization vector.
 An IV, when present, shall be randomly chosen and non-predictable.

 Encrypted TLVs

 This field SHALL contain one or more encrypted POTP-X TLVs. The
 encryption algorithm SHALL be as negotiated; use K_ENC as the
 encryption key, and use the IV field as the initialization vector

Nystroem Informational [Page 53]

RFC 4793 EAP-POTP February 2007

 (when applicable), to encrypt the concatenation of all the TLVs to
 be protected.

4.11.16. Crypto Algorithm TLV

 The Crypto Algorithm TLV allows for negotiation of cryptographic
 algorithms. Cryptographic Algorithm negotiation is described in
 detail in Section 4.3.

 This TLV MUST be present in the initial EAP-Request of type POTP-X
 that also carries an OTP TLV indicating protected mode, assuming the
 EAP server wants to negotiate use of any other algorithms than the
 default ones. It MAY also be present in an EAP-Request of type
 POTP-X that carries an OTP TLV that is sent as a result of a failed
 session resumption (in this case, the peer has not yet responded to
 this TLV), or when the Crypto Algorithm TLV was part of the initial
 message from the EAP server, and the client negotiated another EAP-
 POTP version than the highest one supported by the EAP server. The
 Crypto Algorithm TLV MUST NOT be present in any other EAP-Requests.
 Further, the Crypto Algorithm TLV MUST NOT be present in an EAP-
 Response of type POTP-X unless the preceding EAP-Request also
 contained it, and it was legal for it to do so. This TLV MUST be
 supported by all peers and all EAP servers conforming to this
 specification and MUST NOT be responded to with a NAK TLV.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Reserved |Hash Alg.Length| Hash Algorithms ...
 +-+
 |Encr.Alg.Length| Encryption Algorithms ...
 +-+
 |MAC Alg. Length| MAC Algorithms ...
 +-+

 M

 1 - Mandatory TLV

 R

 Reserved for future use. This bit SHALL be set to zero (0) for
 this version. Recipients SHALL ignore this bit for this version
 of EAP-POTP.

Nystroem Informational [Page 54]

RFC 4793 EAP-POTP February 2007

 TLV Type

 15

 Length

 >=4 (at least one class of algorithms and one algorithm for that
 class needs to be present)

 Reserved

 Reserved for future use. This octet MUST be set to zero for this
 version. Recipients SHALL ignore this octet for this version of
 EAP-POTP.

 Hash Alg. Length

 The length of the Hash Algorithms field in octets.

 Hash Algorithms

 Each octet pair of this field represents a hash algorithm as
 follows. An EAP server MAY supply several suggestions for hash
 algorithms. Each algorithm MUST appear only once. The algorithms
 SHALL be supplied in order of priority. Peers MUST supply, at
 most, one algorithm (if none is present, the default applies).
 The defined values are:

 Value
 Octet 1 Octet 2 Hash algorithm
 ------- ------- ----------------------------------
 0x00 0x00 Reserved
 0x00 0x01 SHA-1
 0x00 0x02 SHA-224
 0x00 0x03 SHA-256 (default)
 0x00 0x04 SHA-384
 0x00 0x05 SHA-512
 0x80 - Vendor-specific (or experimental)

 As indicated, values 0x8000 and higher are for proprietary
 vendor-specific algorithms. Values in the range 0x0006 - 0x7fff
 are to be assigned through IANA; see Section 7.

 Encr Alg. Length

 The length of the Encryption Algorithms field in octets.

Nystroem Informational [Page 55]

RFC 4793 EAP-POTP February 2007

 Encryption Algorithms

 Each octet pair of this field represents an encryption algorithm
 as follows. An EAP server MAY supply several suggestions for
 encryption algorithms. Each algorithm MUST appear only once. The
 algorithms SHALL be supplied in order of priority. Peers MUST
 supply, at most, one algorithm (if none is present, the default
 applies). The defined values are:

 Value
 Octet 1 Octet 2 Encryption algorithm
 ------- ------- ------------------------
 0x00 0x00 Reserved
 0x00 0x01 AES-CBC (default) with 128-bit keys and 16-octet IVs
 0x00 0x02 3DES-CBC with 112-bit keys and 8-octet IVs
 0x80 - Vendor-specific

 As indicated, values 0x8000 and higher are for vendor-specific
 proprietary algorithms. Values in the range 0x0003 - 0x7fff are
 to be assigned through IANA; see Section 7.

 MAC Alg. Length

 The length of the MAC Algorithms field in octets.

 MAC Algorithms

 Each octet pair of this field represents a MAC algorithm as
 follows. An EAP server MAY supply several suggestions for MAC
 algorithms. Each algorithm MUST appear only once. The algorithms
 SHALL be supplied in order of priority. Peers MUST supply, at
 most, one algorithm (if none is present, the default applies).
 The defined values are:

 Value
 Octet 1 Octet 2 MAC algorithm
 ------- ------- -----------------
 0x00 0x00 Reserved
 0x00 0x01 HMAC (default)
 0x80 - Vendor-specific

 As indicated, values 0x8000 and higher are for vendor-specific
 proprietary algorithms. Values in the range 0x0002 - 0x7fff are
 to be assigned through IANA; see Section 7.

 When HMAC is negotiated, the hash algorithm used for HMAC SHALL be
 the negotiated hash algorithm.

Nystroem Informational [Page 56]

RFC 4793 EAP-POTP February 2007

5. EAP Key Management Framework Considerations

 In line with recommendations made in [16], EAP-POTP defines the
 following identifiers to be associated with generated key material:

 Peer-ID: The combined contents of the User Identifier TLV and the
 Token Key Identifier TLV.

 Server-ID: The contents of the Server Identifier field of the
 Server-Info TLV.

 Method-ID: The identifier of the established session (i.e., the
 contents of the Session Identifier field of the Server-Info TLV
 that defined the session).

6. Security Considerations

6.1. Security Claims

 In conformance with RFC 3748 [1], the following security claims are
 made for the EAP-POTP method:

 Authentication mechanism: Generic OTP
 Ciphersuite negotiation: Yes (No in basic variant)
 Mutual authentication: Yes (No in basic variant)
 Integrity protection: Yes (No in basic variant)
 Replay protection: Yes (see below)
 Confidentiality: Only in the OTP protection variant, and
 then only OTP values and any information
 sent after exchange of the Confirm TLV
 Key derivation: Yes (No in basic variant)
 Key strength: Depends on size of OTP value, strength of
 underlying shared secret, strength and
 characteristics of OTP algorithm, pepper
 length, iteration count, and whether the
 method is used within a tunnel such as
 PEAPv2. For some illustrative examples,
 and a further discussion of this, see
 Appendix D.
 Dictionary attack prot.: N/A (Human-selected passwords not used)
 Fast reconnect: Yes
 Crypt. binding: N/A (EAP-POTP is not a tunnel method)
 Session independence: Yes
 Fragmentation: N/A (Packets shall not exceed MTU of 1020)
 Channel binding: Yes (No in basic variant)
 Acknowledged S/F: Yes
 State Synchronization: Yes (No in basic variant)

Nystroem Informational [Page 57]

RFC 4793 EAP-POTP February 2007

6.2. Passive and Active Attacks

 The basic variant (i.e., when the protection of OTPs and mutual
 authentication is not used) of this EAP method does not provide
 session privacy, session integrity, server authentication, or
 protection from active attacks. In particular, man-in-the-middle
 attacks, where an attacker acts as an authenticator in order to
 acquire a valid OTP, are possible.

 Similarly, the basic variant of this EAP method does not protect
 against session hijacking taking place after authentication. Nor
 does it, in itself, protect against replay attacks, where the
 attacker gains access by replaying a previous valid request, but see
 also the next subsection. When PIN codes are transmitted, they are
 sent without protection and are also subject to replay attacks.

 In order to protect against these attacks, the peer MUST only use the
 basic variant of this method over a server-authenticated and
 confidentiality-protected connection. This can be achieved via use
 of, PEAPv2 [17], for example.

 When the OTP protection variant is used, however, the EAP method
 provides privacy for OTPs and new PINs, negotiation of cryptographic
 algorithms, mutual authentication, and protection against replay
 attacks and protocol version downgrades. It also provides protection
 against man-in-the-middle attacks, not due to the infeasibility for a
 man-in-the-middle to solve for a valid OTP given an OTP TLV, but due
 to the computational expense of finding the OTP in the limited time
 period during which it is valid (this is mainly true for tokens,
 including the current time in their OTP calculations, or when a sent
 challenge has a certain lifetime). It should be noted, however, that
 a retrieved OTP, even if "old" and invalid, still may divulge some
 information about the user’s PIN. Clearly, this is also true for the
 basic variant. Implementations of this EAP method, where user PINs
 are sent with OTPs, are therefore RECOMMENDED to ensure regular user
 PIN changes, regardless of whether the protected variant or the basic
 variant is employed.

 It should also be noted that, while it is possible for a rogue access
 point, e.g., to clone MAC addresses, and hence mount a man-in-the-
 middle attack, such an access point will not be able to calculate the
 session keys MSK and EMSK. This demonstrates the importance of using
 the derived key material properly to protect a subsequent session.

 Protected mode protects against version downgrade attacks due to the
 HMAC both parties transmit in this mode. As described, each party
 calculates the HMAC on sent and received EAP-POTP handshake messages.
 If an attacker were to modify a Version TLV, this would be reflected

Nystroem Informational [Page 58]

RFC 4793 EAP-POTP February 2007

 in a difference between the calculated MACs (since the recipient of
 the Version TLV received a different value than the sender sent).
 Unless the attacker knows K_MAC, he cannot calculate the correct MAC,
 and hence the difference will be detected.

 The OTP protection variant also protects against session hijacking,
 if the derived key material is used (directly or indirectly) to
 protect a subsequent session. For these reasons, use of the OTP
 protection variant is RECOMMENDED.

 However, it should be noted that not even the OTP protection variant
 provides privacy for user names and/or token key identifiers. EAP-
 POTP MUST be used within a secure tunnel such as the one provided by
 PEAPv2 [17] if privacy for these parameters is required.

 When resuming sessions created in the basic variant (which MUST only
 take place within a protected tunnel), the peer is authenticated by
 demonstrating knowledge of not just a valid session identifier, but
 also the OTP used when the session was created. Server nonces
 prevent replay attacks, but there still remains some likelihood of an
 attacker guessing the correct combination of session identifier and
 OTP value. Assuming OTPs with entropy about 32 bits, this means that
 the likelihood of succeeding with such an attack is about 1/2^48 due
 to the birthday paradox. Servers allowing session resumption for the
 basic variant MUST protect against such attacks, e.g., by keeping
 track of the rate of failed resumption attempts.

6.3. Denial-of-Service Attacks

 An active attacker may replace the iteration count value in OTP TLVs
 sent by the peer to slow down an authentication server.
 Authentication servers SHOULD protect against this, e.g., by
 disregarding OTP TLVs with an iteration count value higher than some
 number that is preset or dynamically set (depending on load).

6.4. The Use of Pepper

 As described in Section 4.8, the use of pepper will slow down an
 attacker’s search for a matching OTP. The ability to transfer a
 pepper value in encrypted form from the EAP server to the peer means
 that, even though there may be an initial computational cost for the
 EAP server to authenticate the peer, subsequent authentications will
 be efficient, while at the same time more secure, since a pre-shared,
 128-bit-long pepper value will not be easily found by an attacker.
 An attacker, observing an EAP-Request containing an OTP TLV
 calculated using a pepper chosen by the peer, may, however, depending
 on available resources, be able to successfully attack that
 particular EAP-POTP session, since it most likely will be based on a

Nystroem Informational [Page 59]

RFC 4793 EAP-POTP February 2007

 relatively short pepper value or only an iteration count. Once the
 correct OTP has been found, eavesdropping on the EAP server’s Confirm
 TLV will potentially give the attacker access to the longer, server-
 provided pepper for the remaining lifetime of that pepper value. For
 this reason, initial exchanges with EAP servers SHOULD occur in a
 secure environment (e.g., in a PEAPv2 tunnel offering cryptographic
 binding with inner EAP methods). If initial exchanges do not occur
 in a secure environment, the iteration count MUST be significantly
 higher than for messages where a pre-shared pepper is used. The
 lifetime of the shared pepper must also be calculated with this in
 mind. Finally, the peer and the EAP server MUST store the pepper
 value securely and associated with the user.

6.5. The Race Attack

 In the case of fragmentation of EAP messages, it is possible (in the
 basic variant of this method) for an attacker to listen to most of an
 OTP, guess the remainder, and then race the legitimate user to
 complete the authentication. Conforming backend authentication
 server implementations MUST protect against this race condition. One
 defense against this attack is outlined below and borrowed from [14];
 implementations MAY use this approach or MAY select an alternative
 defense. Note that the described defense relies on the user
 providing the identity in response to an initial Identity EAP-
 Request.

 One possible defense is to prevent a user from starting multiple
 simultaneous authentication sessions. This means that once the
 legitimate user has initiated authentication, an attacker would be
 blocked until the first authentication process has completed. In
 this approach, a timeout is necessary to thwart a denial-of-service
 attack.

7. IANA Considerations

7.1. General

 This document is a description of a general EAP method for OTP
 tokens. It also defines EAP method 32 as a profile of the general
 method. Extending the set of EAP-POTP TLVs or the set of EAP-POTP
 cryptographic algorithms shall be seen as revisions of the protocol
 and hence shall require an RFC that updates or obsoletes this
 document.

Nystroem Informational [Page 60]

RFC 4793 EAP-POTP February 2007

7.2. Cryptographic Algorithm Identifier Octets

 A new registry for EAP-POTP cryptographic algorithm identifier octets
 has been created. The initial contents of this registry are as
 specified in Section 4.11.16.

 Assignment of new values for hash algorithms, encryption algorithms,
 and MAC algorithms in the Crypto Algorithm TLV MUST be done through
 IANA with "Specification Required" and "IESG Approval" (see [9] for
 the meaning of these terms).

8. Intellectual Property Considerations

 RSA, RSA Security, and SecurID are either registered trademarks or
 trademarks of RSA Security Inc. in the United States and/or other
 countries. The names of other products and services mentioned may be
 the trademarks of their respective owners.

9. Acknowledgments

 This document was improved by comments from, and discussion with, a
 number of RSA Security employees. Simon Josefsson drafted the
 initial versions of an RSA SecurID EAP method while working for RSA
 Laboratories. The inspiration for the TLV-type of information
 exchange comes from [17]. Special thanks to Oliver Tavakoli of Funk
 Software who provided numerous useful comments and suggestions, Randy
 Chou of Aruba Networks for good suggestions in the session resumption
 area, and Jim Burns of Meetinghouse who provided inspiration for the
 Protected TLV. Thanks also to the IESG reviewers, Pasi Eronen, David
 Black, and Uri Blumenthal, for insightful comments that helped to
 improve the document, and to Alfred Hoenes for a thorough editorial
 review.

Nystroem Informational [Page 61]

RFC 4793 EAP-POTP February 2007

10. References

10.1. Normative References

 [1] Blunk, L., Vollbrecht, J., Aboba, B., Carlson, J., and H.
 Levkowetz, Ed., "Extensible Authentication Protocol (EAP)", RFC
 3748, June 2004.

 [2] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [3] National Institute of Standards and Technology, "Secure Hash
 Standard", FIPS 180-2, February 2004.

 [4] National Institute of Standards and Technology, "Specification
 for the Advanced Encryption Standard (AES)", FIPS 197, November
 2001.

 [5] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-Hashing
 for Message Authentication", RFC 2104, February 1997.

 [6] Kaliski, B., "PKCS #5: Password-Based Cryptography Specification
 Version 2.0", RFC 2898, September 2000.

 [7] Yergeau, F., "UTF-8, a transformation format of ISO 10646", STD
 63, RFC 3629, November 2003.

 [8] Schulzrinne, H., "The tel URI for Telephone Numbers", RFC 3966,
 December 2004.

 [9] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA
 Considerations Section in RFCs", RFC 2434, October 1998.

10.2. Informative References

 [10] Simpson, W., Ed., "The Point-to-Point Protocol (PPP)", STD 51,
 RFC 1661, July 1994.

 [11] The Institute of Electrical and Electronics Engineers, Inc.,
 "IEEE Standard for Local and metropolitan area networks --
 Port-Based Network Access Control", IEEE 802.1X-2001, July
 2001.

 [12] Kaufman, C., Ed., "Internet Key Exchange (IKEv2) Protocol", RFC
 4306, December 2005.

Nystroem Informational [Page 62]

RFC 4793 EAP-POTP February 2007

 [13] Stanley, D., Walker, J., and B. Aboba, "Extensible
 Authentication Protocol (EAP) Method Requirements for Wireless
 LANs", RFC 4017, March 2005.

 [14] Haller, N., Metz, C., Nesser, P., and M. Straw, "A One-Time
 Password System", STD 61, RFC 2289, February 1998.

 [15] Rigney, C., Willens, S., Rubens, A., and W. Simpson, "Remote
 Authentication Dial In User Service (RADIUS)", RFC 2865, June
 2000.

 [16] Aboba, B., Simon, D., Eronen, P., and H. Levkowetz, Ed.,
 "Extensible Authentication Protocol (EAP) Key Management
 Framework", Work in Progress, October 2006.

 [17] Palekar, A., Simon, D., Zorn, G., Salowey, J., Zhou, H., and S.
 Josefsson, "Protected EAP Protocol (PEAP) Version 2", Work in
 Progress, October 2004.

 [18] Internet Assigned Numbers Authority, "Private Enterprise
 Numbers", December 2006.

 [19] Zorn, G., "Microsoft Vendor-specific RADIUS Attributes", RFC
 2548, March 1999.

Nystroem Informational [Page 63]

RFC 4793 EAP-POTP February 2007

Appendix A. Profile of EAP-POTP for RSA SecurID

 Note: The RSA SecurID product is a hardware token card (or software
 emulation thereof) produced by RSA Security Inc., which is used for
 end-user authentication.

 The EAP method type identifier for the RSA SecurID profile of EAP-
 POTP is 32.

 Peers and EAP servers implementing the SecurID profile of EAP-POTP
 SHALL conform to all EAP-POTP normative requirements in this
 Document. In addition, the New PIN TLV and the Protected TLV MUST be
 supported by peers.

Nystroem Informational [Page 64]

RFC 4793 EAP-POTP February 2007

Appendix B. Examples of EAP-POTP Exchanges

 This appendix is non-normative. In the examples, "V1", "V2", "V3",
 etc., stand for arbitrary values of the correct type.

B.1. Basic Mode, Unilateral Authentication

 This mode should only be used within a secured tunnel. The peer
 identifies itself with a User Identifier TLV.

 Peer EAP server

 <- EAP-Request
 Type=Identity

 EAP-Response ->
 Type=Identity

 <- EAP-Request
 Type=OTP-X

 Version TLV:
 Highest=0,Lowest=0

 OTP TLV:
 P=0,C=0,N=0,T=0,E=0,R=0

 EAP-Response ->
 Type=OTP-X

 Version TLV:
 Highest=0

 OTP TLV:
 P=0,C=0,N=0,T=0,E=0,R=0
 Authentication Data=V1

 User Identifier TLV:
 User Identifier=V2

 <- EAP-Success

Nystroem Informational [Page 65]

RFC 4793 EAP-POTP February 2007

B.2. Basic Mode, Session Resumption

 This example illustrates successful resumption of a basic mode
 session. It must be carried out only in a protected tunnel.

 Peer EAP server

 <- EAP-Request
 Type=Identity

 EAP-Response ->
 Type=Identity

 <- EAP-Request
 Type=OTP-X

 Version TLV:
 Highest=0,Lowest=0

 OTP TLV:
 P=0,C=0,N=0,T=0,E=0,R=0

 Server-Info TLV:
 N=0
 Session Identifier=V1
 Server Identifier=V2
 Nonce=V3
 EAP-Response ->
 Type=OTP-X

 Version TLV:
 Highest=0

 Resume TLV:
 Session Identifier=V4 (indicating earlier, basic mode, session)
 Authentication Data=V5

 <- EAP-Success

Nystroem Informational [Page 66]

RFC 4793 EAP-POTP February 2007

B.3. Mutual Authentication without Session Resumption

 In this case, the peer uses the token key identifier, in addition to
 the user identifier. The initial EAP-Identity exchange may also
 provide user information, or may be restricted to only general domain
 information. Pepper is not used, but will be used in a subsequent
 session since the server provides the peer with an encrypted pepper
 in its Confirm TLV. Absence of the Crypto Algorithm TLV indicates
 use of default cryptographic algorithms.

 Peer EAP server

 <- EAP-Request
 Type=Identity

 EAP-Response ->
 Type=Identity

 <- EAP-Request
 Type=OTP-X

 Version TLV:
 Highest=0,Lowest=0

 Server-Info TLV:
 N=0
 Session Identifier=V1
 Server Identifier=V2
 Nonce=V3

 OTP TLV:
 P=1,C=0,N=0,T=0,E=0,R=0
 Pepper Length=0
 Iteration Count=V4

 EAP-Response ->
 Type=OTP-X

 Version TLV:
 Highest=0

 OTP TLV:
 P=1,C=0,N=0,T=0,E=0,R=0
 Pepper Length=0
 Iteration Count=V4
 Authentication Data=V5

Nystroem Informational [Page 67]

RFC 4793 EAP-POTP February 2007

 User Identifier TLV:
 User Identifier=V6

 Token Key Identifier TLV:
 Token Key Identifier=V7

 <- EAP-Request
 Type=OTP-X

 Confirm TLV:
 C=0
 Authentication Data=V8
 Pepper Identifier=V9
 Encrypted Pepper=V10

 EAP-Response ->
 Type=OTP-X

 Confirm TLV:
 (no data)

 <- EAP-Success

Nystroem Informational [Page 68]

RFC 4793 EAP-POTP February 2007

B.4. Mutual Authentication with Transfer of Pepper

 The difference between this example and the previous one is that the
 peer makes use of an existing pepper in the PBKDF2 computation. The
 EAP server provides a new pepper to the peer in the Confirm TLV.
 Note that the peer had not been able to use a pepper in the response
 calculation unless it had found the existing pepper, since the server
 specified a maximum (new) pepper length of zero.

 Peer EAP server

 <- EAP-Request
 Type=Identity

 EAP-Response ->
 Type=Identity

 <- EAP-Request
 Type=OTP-X

 Version TLV:
 Highest=0,Lowest=0

 Server-Info TLV:
 N=0
 Session Identifier=V1
 Server Identifier=V2
 Nonce=V3

 OTP TLV:
 P=1,C=0,N=0,T=0,E=0,R=0
 Pepper Length=0
 Iteration Count=V4

 EAP-Response ->
 Type=OTP-X

 Version TLV:
 Highest=0

 OTP TLV:
 P=1,C=0,N=0,T=0,E=0,R=0
 Pepper Length=V5
 Iteration Count=V6
 Authentication Data=V7
 (includes a pepper identifier)

Nystroem Informational [Page 69]

RFC 4793 EAP-POTP February 2007

 User Identifier TLV:
 User Identifier=V8

 Token Key Identifier TLV:
 Token Key Identifier=V9

 <- EAP-Request
 Type=OTP-X

 Confirm TLV:
 C=0
 Authentication Data=V10
 Pepper Identifier=V11
 Encrypted Pepper=V12

 EAP-Response ->
 Type=OTP-X

 Confirm TLV:
 (no data)

 <- EAP-Success
B.5. Failed Mutual Authentication

 This example differs from the previous one in that the peer is not
 able to authenticate the server. Therefore, it sends an empty EAP-
 Response of type POTP-X, which the EAP server acknowledges by
 responding with an EAP-Failure. Pepper is not used.

 Peer EAP server

 <- EAP-Request
 Type=Identity

 EAP-Response ->
 Type=Identity

 <- EAP-Request
 Type=OTP-X

 Version TLV:
 Highest=0,Lowest=0

 OTP TLV:
 P=1,C=0,N=0,T=0,E=0,R=0
 Pepper Length=V1
 Iteration Count=V2

Nystroem Informational [Page 70]

RFC 4793 EAP-POTP February 2007

 Server-Info TLV:
 N=0
 Session Identifier=V3
 Server Identifier=V4
 Nonce=V5

 EAP-Response ->
 Type=OTP-X

 Version TLV:
 Highest=0

 OTP TLV:
 P=1,C=0,N=0,T=0,E=0,R=0
 Pepper Length=V1
 Iteration Count=V2
 Authentication Data=V6

 User Identifier TLV:
 User Identifier=V7

 Token Key Identifier TLV:
 Token Key Identifier=V8

 <- EAP-Request
 Type=OTP-X

 Confirm TLV:
 C=0
 Authentication Data=V9

 EAP-Response ->
 Type=OTP-X

 (no data)

 <- EAP-Failure

B.6. Session Resumption

 This example illustrates successful session resumption.

 Peer EAP server

 <- EAP-Request
 Type=Identity

Nystroem Informational [Page 71]

RFC 4793 EAP-POTP February 2007

 EAP-Response ->
 Type=Identity

 <- EAP-Request
 Type=OTP-X

 Version TLV:
 Highest=0,Lowest=0

 OTP TLV:
 P=1,C=0,N=0,T=0,E=0,R=0
 Pepper Length=V1
 Iteration Count=V2

 Server-Info TLV:
 N=0
 Session Identifier=V3
 Server Identifier=V4
 Nonce=V5

 EAP-Response ->
 Type=OTP-X

 Version TLV:
 Highest=0

 Resume TLV:
 Session Identifier=V6 (indicating earlier, protected mode, session)
 Authentication Data=V7

 <- EAP-Request
 Type=OTP-X

 Confirm TLV:
 C=0
 Authentication Data=V8

 EAP-Response ->
 Type=OTP-X
 Confirm TLV:
 (no data)

 <- EAP-Success

Nystroem Informational [Page 72]

RFC 4793 EAP-POTP February 2007

B.7. Failed Session Resumption

 This example illustrates a failed session resumption, followed by a
 complete mutual authentication. The user is identified through the
 User Identifier TLV. The client is able to reuse an older pepper.
 The server sends a new pepper for subsequent use in its Confirm TLV.
 The server suggests some non-default cryptographic algorithms, but
 the client only supports the default ones.

 Peer EAP server

 <- EAP-Request
 Type=Identity

 EAP-Response ->
 Type=Identity

 <- EAP-Request
 Type=OTP-X

 Version TLV:
 Highest=0,Lowest=0

 OTP TLV:
 P=1,C=0,N=0,T=0,E=0,R=0
 Pepper Length=V1
 Iteration Count=V2

 Server-Info TLV:
 N=0
 Session Identifier=V3
 Server Identifier=V4
 Nonce=V5

 Crypto Algorithm TLV:
 Hash Alg. Length=V6
 Hash Algorithms=V7
 Encr. Alg. Length=V8
 Encr. Algorithms=V9
 MAC Alg. Length=V10
 MAC Algorithms=V11

 EAP-Response ->
 Type=OTP-X

 Version TLV:
 Highest=0

Nystroem Informational [Page 73]

RFC 4793 EAP-POTP February 2007

 Resume TLV:
 Session Identifier=V12 (indicating earlier session)
 Authentication Data=V13

 <- EAP-Request
 Type=OTP-X

 OTP TLV:
 P=1,C=0,N=0,T=0,E=0,R=0
 Pepper Length=V14
 Iteration Count=V15

 Server-Info TLV:
 N=1 (no resumption)
 Session Identifier=V3
 Server Identifier=V4
 Nonce=V16

 EAP-Response ->
 Type=OTP-X

 OTP TLV:
 P=1,C=0,N=1,T=1,E=0,R=0
 Pepper Length=V17
 Iteration Count=V18
 Authentication Data=V19 (with pepper identifier)

 User Identifier TLV:
 User Identifier=V20

 <- EAP-Request
 Type=OTP-X

 Confirm TLV:
 C=0
 Authentication Data=V21
 Pepper Identifier=V22
 Encrypted Pepper=V23
 EAP-Response ->
 Type=OTP-X

 Confirm TLV:
 (no data)

 <- EAP-Success

Nystroem Informational [Page 74]

RFC 4793 EAP-POTP February 2007

B.8. Mutual Authentication, and New PIN Requested.

 In this example, the user is also requested to select a new PIN. The
 new PIN is allowed to be alphanumeric, and must be at least 6
 characters long. The user selects another PIN than the one suggested
 by the server. The token key is identified through a combination of
 the user identifier and the token key identifier. While waiting for
 the user input, to avoid network timeouts, the peer sends an EAP-
 Response containing a Keep-Alive TLV to the EAP server. The EAP
 server responds by sending an EAP-Request containing a Keep-Alive TLV
 back to the peer. Note that all TLVs exchanged after the Confirm TLV
 exchange are wrapped in the Protected TLV. Absence of the Crypto
 Algorithm TLV indicates use of default cryptographic algorithms.

 Peer EAP server

 <- EAP-Request
 Type=Identity

 EAP-Response ->
 Type=Identity

 <- EAP-Request
 Type=OTP-X

 Version TLV:
 Highest=0,Lowest=0

 OTP TLV:
 P=1,C=0,N=0,T=0,E=0,R=0
 Pepper Length=V1
 Iteration Count=V2

 Server-Info TLV:
 N=0
 Session Identifier=V3
 Server Identifier=V4
 Nonce=V5

 EAP-Response ->
 Type=OTP-X

 Version TLV:
 Highest=0

 OTP TLV:
 P=1,C=0,N=0,T=0,E=0,R=0
 Pepper Length=V6

Nystroem Informational [Page 75]

RFC 4793 EAP-POTP February 2007

 Iteration Count=V7
 Authentication Data=V8 (with pepper identifier)

 User Identifier TLV:
 User Identifier=V9

 Token Key Identifier TLV:
 Token Key Identifier=V10

 <- EAP-Request
 Type=OTP-X

 Confirm TLV:
 C=1
 Authentication Data=V11

 EAP-Response ->
 Type=OTP-X

 Confirm TLV:
 (no data)

 <- EAP-Request
 Type=OTP-X

 Protected TLV:
 MAC=V12
 IV=V13
 Encrypted TLVs=V14
 (Contains:
 New PIN TLV:
 Q=0,A=1
 PIN=V15
 Min. PIN Length=6)

 EAP-Response ->
 Type=OTP-X

 Protected TLV:
 MAC=V16
 IV=V17
 Encrypted TLVs=V18
 (Contains:
 Keep-Alive TLV:
 (no data))

 <- EAP-Request
 Type=OTP-X

Nystroem Informational [Page 76]

RFC 4793 EAP-POTP February 2007

 Protected TLV:
 MAC=V19
 IV=V20
 Encrypted TLVs=V21
 (Contains:
 Keep-Alive TLV:
 (no data))

 EAP-Response ->
 Type=OTP-X

 Protected TLV:
 MAC=V22
 IV=V23
 Encrypted TLVs=V24
 (Contains:
 New PIN TLV:
 Q=0,A=0
 PIN=V25)

 <- EAP-Request
 Type=OTP-X

 Protected TLV:
 MAC=V26
 IV=V27
 Encrypted TLVs=V28
 (Contains:
 OTP TLV:
 P=1,C=0,N=0,T=0,E=0,R=0
 Pepper Length=V1
 Iteration Count=V2)

 EAP-Response ->
 Type=OTP-X

 Protected TLV
 MAC=V29
 IV=V30
 Encrypted TLVs=V31
 (Contains:
 OTP TLV:
 P=1,C=0,N=0,T=0,E=0,R=0
 Pepper Length=V6
 Iteration Count=V7
 Authentication Data=V31)

Nystroem Informational [Page 77]

RFC 4793 EAP-POTP February 2007

 <- EAP-Request
 Type=OTP-X

 Protected TLV
 MAC=V32
 IV=V33
 Encrypted TLVs=V34
 (Contains:
 Confirm TLV:
 C=0
 Authentication Data=V35)

 EAP-Response ->
 Type=OTP-X

 Protected TLV
 MAC=V36
 IV=V37
 Encrypted TLVs=V38
 (Contains:
 Confirm TLV:
 (no data))

 <- EAP-Success

B.9. Use of Next OTP Mode

 In this example, the peer is requested to provide a second OTP to the
 EAP server.

 Peer EAP server

 <- EAP-Request
 Type=Identity

 EAP-Response ->
 Type=Identity

 <- EAP-Request
 Type=OTP-X

 Version TLV:
 Highest=0,Lowest=0

 OTP TLV:
 P=1,C=0,N=0,T=0,E=0,R=0
 Pepper Length=V1
 Iteration Count=V2

Nystroem Informational [Page 78]

RFC 4793 EAP-POTP February 2007

 Server-Info TLV:
 N=0
 Session Identifier=V3
 Server Identifier=V4
 Nonce=V5

 EAP-Response ->
 Type=OTP-X

 Version TLV:
 Highest=0

 OTP TLV:
 P=1,C=0,N=0,T=0,E=0,R=0
 Pepper Length=V6
 Iteration Count=V7
 Authentication Data=V8

 User Identifier TLV:
 User Identifier=V9

 <- EAP-Request
 Type=OTP-X

 OTP TLV:
 P=1,C=0,N=1,T=1,E=0,R=0
 Pepper Length=V1
 Iteration Count=V2

 EAP-Response ->
 Type=OTP-X

 OTP TLV:
 P=1,C=0,N=1,T=1,E=0,R=0
 Pepper Length=V6
 Iteration Count=V7
 Authentication Data=V10

 <- EAP-Request
 Type=OTP-X

 Confirm TLV:
 C=0
 Authentication Data=V11

 EAP-Response ->
 Type=OTP-X

Nystroem Informational [Page 79]

RFC 4793 EAP-POTP February 2007

 Confirm TLV:
 (no data)

 <- EAP-Success

Appendix C. Use of the MPPE-Send/Receive-Key RADIUS Attributes

C.1. Introduction

 This section describes how to populate the MPPE-Send-Key and the
 MPPE-Receive-Key RADIUS attributes defined in [19], using an MSK
 established in EAP-POTP.

C.2. MPPE Key Attribute Population

 Once the EAP-POTP MSK has been generated, it is used as follows to
 populate the MPPE-Send-Key and the MPPE-Receive-Key attributes:

 Use the initial 32 octets of the MSK as the value for the "Key" sub-
 field in the plaintext "String" field of the MPPE-Send-Key attribute,
 and use the final 32 octets of the MSK as the "Key" sub-field in the
 plaintext "String" field of the MPPE-Receive-Key attribute (Note:
 "Send" and "Receive" here refer to the Authenticator; for the peer,
 they are reversed).

Appendix D. Key Strength Considerations

D.1. Introduction

 As described in Section 6, the strength of keys generated in EAP-POTP
 protected mode depends on a number of factors. This appendix
 provides examples of actual key strengths achieved under various
 assumptions.

 It should be noted that, while some of the examples indicate that the
 strength of generated keys is relatively weak, the strength applies
 only to those EAP-POTP sessions between a peer and an EAP server that
 do not share a pepper. Once a pepper, provided by an EAP server to a
 peer, has been established, future sessions using this pepper will
 provide full-strength keys.

Nystroem Informational [Page 80]

RFC 4793 EAP-POTP February 2007

D.2. Example 1: 6-Digit One-Time Passwords

 In this example we assume the following:

 OTPs are six decimal digits long;

 4-digit PINs are added to generated OTPs; and

 OTP hardening (iteration count and pepper searching combined)
 effectively adds 10 bits of entropy. One way of achieving this
 without use of pepper searching is to have the iteration count in
 PBKDF2 set to 1,000,000.

 The effective key strength then becomes roughly:

 log_2(10**6) + log_2(10**4) + log_2(2**10) = 43 bits

 The above assumes that the entropy of the underlying shared secret is
 >43 bits and that there are no other weaknesses in the OTP algorithm.

D.3. Example 2: 8-Digit One-Time Passwords

 In this example we assume the following:

 OTPs are eight decimal digits long;

 4-character alphanumeric PINs are added to generated OTPs; and

 OTP hardening (iteration count and pepper searching combined)
 effectively adds 10 bits of entropy.

 The effective key strength then becomes roughly:

 log_2(10**8) + log_2(26**4) + log_2(2**10) = 55 bits

 The above assumes that the entropy of the underlying shared secret is
 >55 bits and that there are no other weaknesses in the OTP algorithm.

Author’s Address

 Magnus Nystroem
 RSA Security

 EMail: magnus@rsa.com

Nystroem Informational [Page 81]

RFC 4793 EAP-POTP February 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Nystroem Informational [Page 82]

