
Network Working Group A. Morton
Request for Comments: 4737 L. Ciavattone
Category: Standards Track G. Ramachandran
 AT&T Labs
 S. Shalunov
 Internet2
 J. Perser
 Veriwave
 November 2006

 Packet Reordering Metrics

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The IETF Trust (2006).

Abstract

 This memo defines metrics to evaluate whether a network has
 maintained packet order on a packet-by-packet basis. It provides
 motivations for the new metrics and discusses the measurement issues,
 including the context information required for all metrics. The memo
 first defines a reordered singleton, and then uses it as the basis
 for sample metrics to quantify the extent of reordering in several
 useful dimensions for network characterization or receiver design.
 Additional metrics quantify the frequency of reordering and the
 distance between separate occurrences. We then define a metric
 oriented toward assessment of reordering effects on TCP. Several
 examples of evaluation using the various sample metrics are included.
 An appendix gives extended definitions for evaluating order with
 packet fragmentation.

Morton, et al. Standards Track [Page 1]

RFC 4737 Packet Reordering Metrics November 2006

Table of Contents

 1. Introduction ..4
 1.1. Motivation ...4
 1.2. Goals and Objectives5
 1.3. Required Context for All Reordering Metrics6
 2. Conventions Used in this Document7
 3. A Reordered Packet Singleton Metric7
 3.1. Metric Name ..8
 3.2. Metric Parameters ..8
 3.3. Definition ...8
 3.4. Sequence Discontinuity Definition9
 3.5. Evaluation of Reordering in Dimensions of Time or Bytes ...10
 3.6. Discussion ..10
 4. Sample Metrics ...11
 4.1. Reordered Packet Ratio11
 4.1.1. Metric Name ..11
 4.1.2. Metric Parameters11
 4.1.3. Definition ...12
 4.1.4. Discussion ...12
 4.2. Reordering Extent ...12
 4.2.1. Metric Name ..12
 4.2.2. Notation and Metric Parameters12
 4.2.3. Definition ...13
 4.2.4. Discussion ...13
 4.3. Reordering Late Time Offset14
 4.3.1. Metric Name ..14
 4.3.2. Metric Parameters14
 4.3.3. Definition ...15
 4.3.4. Discussion ...15
 4.4. Reordering Byte Offset16
 4.4.1. Metric Name ..16
 4.4.2. Metric Parameters16
 4.4.3. Definition ...16
 4.4.4. Discussion ...17
 4.5. Gaps between Multiple Reordering Discontinuities17
 4.5.1. Metric Names17
 4.5.2. Parameters ...17
 4.5.3. Definition of Reordering Discontinuity17
 4.5.4. Definition of Reordering Gap18
 4.5.5. Discussion ...18
 4.6. Reordering-Free Runs19
 4.6.1. Metric Names19
 4.6.2. Parameters ...19
 4.6.3. Definition ...19
 4.6.4. Discussion and Illustration20

Morton, et al. Standards Track [Page 2]

RFC 4737 Packet Reordering Metrics November 2006

 5. Metrics Focused on Receiver Assessment: A TCP-Relevant Metric ..21
 5.1. Metric Name ...21
 5.2. Parameter Notation ..21
 5.3. Definitions ...22
 5.4. Discussion ..22
 6. Measurement and Implementation Issues23
 6.1. Passive Measurement Considerations26
 7. Examples of Arrival Order Evaluation26
 7.1. Example with a Single Packet Reordered26
 7.2. Example with Two Packets Reordered28
 7.3. Example with Three Packets Reordered30
 7.4. Example with Multiple Packet Reordering Discontinuities ...31
 8. Security Considerations ..32
 8.1. Denial-of-Service Attacks32
 8.2. User Data Confidentiality32
 8.3. Interference with the Metric32
 9. IANA Considerations ..33
 10. Normative References ..35
 11. Informative References ..36
 12. Acknowledgements ..37
 Appendix A. Example Implementations in C (Informative)38
 Appendix B. Fragment Order Evaluation (Informative)41
 B.1. Metric Name ...41
 B.2. Additional Metric Parameters41
 B.3. Definition ..42
 B.4. Discussion: Notes on Sample Metrics When Evaluating
 Fragments ...43
 Appendix C. Disclaimer and License43

Morton, et al. Standards Track [Page 3]

RFC 4737 Packet Reordering Metrics November 2006

1. Introduction

 Ordered arrival is a property found in packets that transit their
 path, where the packet sequence number increases with each new
 arrival and there are no backward steps. The Internet Protocol
 [RFC791] [RFC2460] has no mechanisms to ensure either packet delivery
 or sequencing, and higher-layer protocols (above IP) should be
 prepared to deal with both loss and reordering. This memo defines
 reordering metrics.

 A unique sequence identifier carried in each packet, such as an
 incrementing consecutive integer message number, establishes the
 source sequence.

 The detection of reordering at the destination is based on packet
 arrival order in comparison with a non-reversing reference value
 [Cia03].

 This metric is consistent with [RFC2330] and classifies arriving
 packets with sequence numbers smaller than their predecessors as
 out-of-order or reordered. For example, if sequentially numbered
 packets arrive 1,2,4,5,3, then packet 3 is reordered. This is
 equivalent to Paxon’s reordering definition in [Pax98], where "late"
 packets were declared reordered. The alternative is to emphasize
 "premature" packets instead (4 and 5 in the example), but only the
 arrival of packet 3 distinguishes this circumstance from packet loss.
 Focusing attention on late packets allows us to maintain
 orthogonality with the packet loss metric. The metric’s construction
 is very similar to the sequence space validation for received
 segments in [RFC793]. Earlier work to define ordered delivery
 includes [Cia00], [Ben99], [Lou01], [Bel02], [Jai02], and [Cia03].

1.1. Motivation

 A reordering metric is relevant for most applications, especially
 when assessing network support for Real-Time media streams. The
 extent of reordering may be sufficient to cause a received packet to
 be discarded by functions above the IP layer.

 Packet order may change during transfer, and several specific path
 characteristics can make reordering more likely.

 Examples are:

 * When two (or more) paths with slightly differing transfer times
 support a single packet stream or flow, packets traversing the
 longer path(s) may arrive out-of-order. Multiple paths may be used
 to achieve load balancing or may arise from route instability.

Morton, et al. Standards Track [Page 4]

RFC 4737 Packet Reordering Metrics November 2006

 * To increase capacity, a network device designed with multiple
 processors serving a single port (or parallel links) may reorder as
 a byproduct.

 * A layer-2 retransmission protocol that compensates for an error-
 prone link may cause packet reordering.

 * If for any reason the packets in a buffer are not serviced in the
 order of their arrival, their order will change.

 * If packets in a flow are assigned to multiple buffers (following
 evaluation of traffic characteristics, for example), and the
 buffers have different occupation levels and/or service rates, then
 order will likely change.

 When one or more of the above path characteristics are present
 continuously, reordering may be present on a steady-state basis. The
 steady-state reordering condition typically causes an appreciable
 fraction of packets to be reordered. This form of reordering is most
 easily detected by minimizing the spacing between test packets.
 Transient reordering may occur in response to network instability;
 temporary routing loops can cause periods of extreme reordering.
 This condition is characterized by long, in-order streams with
 occasional instances of reordering, sometimes with extreme
 correlation. However, we do not expect packet delivery in a
 completely random order, where, for example, the last packet or the
 first packet in a sample is equally likely to arrive first at the
 destination. Thus, we expect at least a minimal degree of order in
 the packet arrivals, as exhibited in real networks.

 The ability to restore order at the destination will likely have
 finite limits. Practical hosts have receiver buffers with finite
 size in terms of packets, bytes, or time (such as de-jitter buffers).
 Once the initial determination of reordering is made, it is useful to
 quantify the extent of reordering, or lateness, in all meaningful
 dimensions.

1.2. Goals and Objectives

 The definitions below intend to satisfy the goals of:

 1. Determining whether or not packet reordering has occurred.

 2. Quantifying the degree of reordering. (We define a number of
 metrics to meet this goal, because receiving procedures differ
 by protocol or application. Since the effects of packet
 reordering vary with these procedures, a metric that quantifies
 a key aspect of one receiver’s behavior could be irrelevant to

Morton, et al. Standards Track [Page 5]

RFC 4737 Packet Reordering Metrics November 2006

 a different receiver. If all the metrics defined below are
 reported, they give a wide-ranging view of reordering
 conditions.)

 Reordering Metrics MUST:

 + have one or more applications, such as receiver design or network
 characterization, and a compelling relevance in the view of the
 interested community.

 + be computable "on the fly".

 + work even if the stream has duplicate or lost packets.

 It is desirable for Reordering Metrics to have one or more of the
 following attributes:

 + ability to concatenate results for segments measured separately to
 estimate the reordering of an entire path

 + simplicity for easy consumption and understanding

 + relevance to TCP design

 + relevance to real-time application performance

 The current set of metrics meets all the requirements above and
 provides all but the concatenation attribute (except in the case
 where measurements of path segments exhibit no reordering, and one
 may estimate that the complete path composed of these segments would
 also exhibit no reordering). However, satisfying these goals
 restricts the set of metrics to those that provide some clear insight
 into network characterization or receiver design. They are not
 likely to be exhaustive in their coverage of reordering effects on
 applications, and additional measurements may be possible.

1.3. Required Context for All Reordering Metrics

 A critical aspect of all reordering metrics is their inseparable bond
 with the measurement conditions. Packet reordering is not well
 defined unless the full measurement context is reported. Therefore,
 all reordering metric definitions include the following parameters:

 1. The "Packet of Type-P" [RFC2330] identifiers for the packet
 stream, including the transport addresses for source and
 destination, and any other information that may result in
 different packet treatments.

Morton, et al. Standards Track [Page 6]

RFC 4737 Packet Reordering Metrics November 2006

 2. The stream parameter set for the sending discipline, such as the
 parameters unique to periodic streams (as in [RFC3432]), TCP-like
 streams (as in [RFC3148]), or Poisson streams (as in [RFC2330]).
 The stream parameters include the packet size, specified either as
 a fixed value or as a pattern of sizes (as applicable).

 Whenever a metric is reported, it MUST include a description of these
 parameters to provide a context for the results.

2. Conventions Used in this Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119]. Although
 RFC 2119 was written with protocols in mind, the key words are used
 in this document for similar reasons. They are used to ensure the
 results of measurements from two different implementations are
 comparable, and to note instances when an implementation could
 perturb the network.

 In this memo, the characters "<=" should be read as "less than or
 equal to" and ">=" as "greater than or equal to".

3. A Reordered Packet Singleton Metric

 The IPPM framework [RFC2330] describes the notions of singletons,
 samples, and statistics. For easy reference:

 By a ’singleton’ metric, we refer to metrics that are, in a
 sense, atomic. For example, a single instance of "bulk
 throughput capacity" from one host to another might be defined
 as a singleton metric, even though the instance involves
 measuring the timing of a number of Internet packets.

 The evaluation of packet order requires several supporting concepts.
 The first is an algorithm (function) that produces a series of
 strictly monotonically increasing identifiers applied to packets at
 the source to uniquely establish the order of packet transmission
 (where a function, g(x), is strictly monotonically increasing if for
 any x>y, g(x)>g(y)). The unique sequence identifier may simply be
 an incrementing consecutive integer message number, or a sequence
 number as used below. The prospect of sequence number rollover is
 discussed in Section 6.

 The second supporting concept is a stored value that is the "next
 expected" packet number. Under normal conditions, the value of Next
 Expected (NextExp) is the sequence number of the previous packet plus
 1 for message numbering. (In general, the receiver reproduces the

Morton, et al. Standards Track [Page 7]

RFC 4737 Packet Reordering Metrics November 2006

 sender’s algorithm and the sequence of identifiers so that the "next
 expected" can be determined.)

 Each packet within a packet stream can be evaluated with this order
 singleton metric.

3.1. Metric Name

 Type-P-Reordered

3.2. Metric Parameters

 + Src, the IP address of a host.

 + Dst, the IP address of a host.

 + SrcTime, the time of packet emission from the source (or wire
 time).

 + s, the unique packet sequence number applied at the source, in
 units of messages.

 + NextExp, the next expected sequence number at the destination, in
 units of messages. The stored value in NextExp is determined from
 a previously arriving packet.

 And optionally:

 + PayloadSize, the number of bytes contained in the information
 field and referred to when the SrcByte sequence is based on bytes
 transferred.

 + SrcByte, the packet sequence number applied at the source, in
 units of payload bytes.

3.3. Definition

 If a packet s (sent at time, SrcTime) is found to be reordered by
 comparison with the NextExp value, its Type-P-Reordered = TRUE;
 otherwise, Type-P-Reordered = FALSE, as defined below:

 The value of Type-P-Reordered is defined as TRUE if s < NextExp (the
 packet is reordered). In this case, the NextExp value does not
 change.

 The value of Type-P-Reordered is defined as FALSE if s >= NextExp
 (the packet is in-order). In this case, NextExp is set to s+1 for
 comparison with the next packet to arrive.

Morton, et al. Standards Track [Page 8]

RFC 4737 Packet Reordering Metrics November 2006

 Since the NextExp value cannot decrease, it provides a non-reversing
 order criterion to identify reordered packets.

 This definition can also be specified in pseudo-code.

 On successful arrival of a packet with sequence number s:

 if s >= NextExp then /* s is in-order */
 NextExp = s + 1;
 Type-P-Reordered = False;
 else /* when s < NextExp */
 Type-P-Reordered = True

3.4. Sequence Discontinuity Definition

 Packets with s > NextExp are a special case of in-order delivery.
 This condition indicates a sequence discontinuity, because of either
 packet loss or reordering. Reordered packets must arrive for the
 sequence discontinuity to be defined as a reordering discontinuity
 (see Section 4).

 We define two different states for in-order packets.

 When s = NextExp, the original sequence has been maintained, and
 there is no discontinuity present.

 When s > NextExp, some packets in the original sequence have not yet
 arrived, and there is a sequence discontinuity associated with packet
 s. The size of the discontinuity is s - NextExp, equal to the number
 of packets presently missing, either reordered or lost.

 In pseudo-code:

 On successful arrival of a packet with sequence number s:

 if s >= NextExp, then /* s is in-order */
 if s > NextExp then
 SequenceDiscontinuty = True;
 SeqDiscontinutySize = s - NextExp;
 else
 SequenceDiscontinuty = False;
 NextExp = s + 1;
 Type-P-Reordered = False;

 else /* when s < NextExp */
 Type-P-Reordered = True;
 SequenceDiscontinuty = False;

Morton, et al. Standards Track [Page 9]

RFC 4737 Packet Reordering Metrics November 2006

 Whether any sequence discontinuities occur (and their size) is
 determined by the conditions causing loss and/or reordering along the
 measurement path. Note that a packet could be reordered at one point
 and subsequently lost elsewhere on the path, but this cannot be known
 from observations at the destination.

3.5. Evaluation of Reordering in Dimensions of Time or Bytes

 It is possible to use alternate dimensions of time or payload bytes
 to test for reordering in the definition of Section 3.3, as long as
 the SrcTimes and SrcBytes are unique and reliable. Sequence
 Discontinuities are easily defined and detected with message
 numbering; however, this is not so simple in the dimensions of time
 or bytes. This is a detractor for the alternate dimensions because
 the sequence discontinuity definition plays a key role in the sample
 metrics that follow.

 It is possible to detect sequence discontinuities with payload byte
 numbering, but only when the test device knows exactly what value to
 assign as NextExp in response to any packet arrival. This is
 possible when the complete pattern of payload sizes is stored at the
 destination, or if the size pattern can be generated using a pseudo-
 random number generator and a shared seed. If payload size is
 constant, byte numbering adds needless complexity over message
 numbering.

 It may be possible to detect sequence discontinuities with periodic
 streams and source time numbering, but there are practical pitfalls
 with sending exactly on-schedule and with clock reliability.

 The dimensions of time and bytes remain an important basis for
 characterizing the extent of reordering, as described in Sections 4.3
 and 4.4.

3.6. Discussion

 Any arriving packet bearing a sequence number from the sequence that
 establishes the NextExp value can be evaluated to determine whether
 it is in-order or reordered, based on a previous packet’s arrival.
 In the case where NextExp is Undefined (because the arriving packet
 is the first successful transfer), the packet is designated in-order
 (Type-P-Reordered=FALSE).

 This metric assumes reassembly of packet fragments before evaluation.
 In principle, it is possible to use the Type-P-Reordered metric to
 evaluate reordering among packet fragments, but each fragment must
 contain source sequence information. See Appendix B, "Fragment Order
 Evaluation", for more detail.

Morton, et al. Standards Track [Page 10]

RFC 4737 Packet Reordering Metrics November 2006

 If duplicate packets (multiple non-corrupt copies) arrive at the
 destination, they MUST be noted, and only the first to arrive is
 considered for further analysis (copies would be declared reordered
 according to the definition above). This requirement has the same
 storage implications as earlier IPPM metrics and follows the
 precedent of [RFC2679]. We provide a suggestion to minimize storage
 size needed in Section 6 on Measurement and Implementation Issues.

4. Sample Metrics

 In this section, we define metrics applicable to a sample of packets
 from a single source sequence number system. When reordering occurs,
 it is highly desirable to assert the degree to which a packet is
 out-of-order or reordered with respect other packets. This section
 defines several metrics that quantify the extent of reordering in
 various units of measure. Each metric highlights a relevant use.

 The metrics in the sub-sections below have a network characterization
 orientation, but also have relevance to receiver design where
 reordering compensation is of interest. We begin with a simple ratio
 metric indicating the reordered portion of the sample.

4.1. Reordered Packet Ratio

4.1.1. Metric Name

 Type-P-Reordered-Ratio-Stream

4.1.2. Metric Parameters

 The parameter set includes Type-P-Reordered singleton parameters; the
 parameters unique to Poisson streams (as in [RFC2330]), periodic
 streams (as in [RFC3432]), or TCP-like streams (as in [RFC3148]);
 packet size or size patterns; and the following:

 + T0, a start time

 + Tf, an end time

 + dT, a waiting time for each packet to arrive, in seconds

 + K, the total number of packets in the stream sent from source to
 destination

 + L, the total number of packets received (arriving between T0 and
 Tf+dT) out of the K packets sent. Recall that identical copies
 (duplicates) have been removed, so L <= K.

Morton, et al. Standards Track [Page 11]

RFC 4737 Packet Reordering Metrics November 2006

 + R, the ratio of reordered packets to received packets, defined
 below

 Note that parameter dT is effectively the threshold for declaring a
 packet as lost. The IPPM Packet Loss Metric [RFC2680] declines to
 recommend a value for this threshold, saying instead that "good
 engineering, including an understanding of packet lifetimes, will be
 needed in practice."

4.1.3. Definition

 Given a stream of packets sent from a source to a destination, the
 ratio of reordered packets in the sample is

 R = (Count of packets with Type-P-Reordered=TRUE) / (L)

 This fraction may be expressed as a percentage (multiply by 100).
 Note that in the case of duplicate packets, only the first copy is
 used.

4.1.4. Discussion

 When the Type-P-Reordered-Ratio-Stream is zero, no further reordering
 metrics need be examined for that sample. Therefore, the value of
 this metric is its simple ability to summarize the results for a
 reordering-free sample.

4.2. Reordering Extent

 This section defines the extent to which packets are reordered and
 associates a specific sequence discontinuity with each reordered
 packet. This section inherits the Parameters defined above.

4.2.1. Metric Name

 Type-P-Packet-Reordering-Extent-Stream

4.2.2. Notation and Metric Parameters

 Recall that K is the number of packets in the stream at the source,
 and L is the number of packets received at the destination.

 Each packet has been assigned a sequence number, s, a consecutive
 integer from 1 to K in the order of packet transmission (at the
 source).

 Let s[1], s[2], ..., s[L] represent the original sequence numbers
 associated with the packets in order of arrival.

Morton, et al. Standards Track [Page 12]

RFC 4737 Packet Reordering Metrics November 2006

 s[i] can be thought of as a vector, where the index i is the arrival
 position of the packet with sequence number s. In theory, any source
 sequence number could appear in any arrival position, but this is
 unlikely in reality.

 Consider a reordered packet (Type-P-Reordered=TRUE) with arrival
 index i and source sequence number s[i]. There exists a set of
 indexes j (1 <= j < i) such that s[j] > s[i].

 The new parameters are:

 + i, the index for arrival position, where i-1 represents an arrival
 earlier than i.

 + j, a set of one or more arrival indexes, where 1 <= j < i.

 + s[i], the original sequence numbers, s, in order of arrival.

 + e, the Reordering Extent, in units of packets, defined below.

4.2.3. Definition

 The reordering extent, e, of packet s[i] is defined to be i-j for the
 smallest value of j where s[j] > s[i].

 Informally, the reordering extent is the maximum distance, in
 packets, from a reordered packet to the earliest packet received that
 has a larger sequence number. If a packet is in-order, its
 reordering extent is undefined. The first packet to arrive is
 in-order by definition and has undefined reordering extent.

 Comment on the definition of extent: For some arrival orders, the
 assignment of a simple position/distance as the reordering extent
 tends to overestimate the receiver storage needed to restore order.
 A more accurate and complex procedure to calculate packet storage
 would be to subtract any earlier reordered packets that the receiver
 could pass on to the upper layers (see the Byte Offset metric). With
 the bias understood, this definition is deemed sufficient, especially
 for those who demand "on the fly" calculations.

4.2.4. Discussion

 The packet with index j (s[j], identified in the Definition above) is
 the reordering discontinuity associated with packet s at index i
 (s[i]). This definition is formalized below.

Morton, et al. Standards Track [Page 13]

RFC 4737 Packet Reordering Metrics November 2006

 Note that the K packets in the stream could be some subset of a
 larger stream, but L is still the total number of packets received
 out of the K packets sent in that subset.

 If a receiver intends to restore order, then its buffer capacity
 determines its ability to handle packets that are reordered. For
 cases with single reordered packets, the extent e gives the number of
 packets that must be held in the receiver’s buffer while waiting for
 the reordered packet to complete the sequence. For more complex
 scenarios, the extent may be an overestimate of required storage (see
 Section 4.4 on Reordering Byte Offset and the examples in Section 7).
 Also, if the receiver purges its buffer for any reason, the extent
 metric would not reflect this behavior, assuming instead that the
 receiver would exhaustively attempt to restore order.

 Although reordering extent primarily quantifies the offset in terms
 of arrival position, it may also be useful for determining the
 portion of reordered packets that can or cannot be restored to order
 in a typical receiver buffer based on their arrival order alone (and
 without the aid of retransmission).

 A sample’s reordering extents may be expressed as a histogram to
 easily summarize the frequency of various extents.

4.3. Reordering Late Time Offset

 Reordered packets can be assigned offset values indicating their
 lateness in terms of buffer time that a receiver must possess to
 accommodate them. Offset metrics are calculated only on reordered
 packets, as identified by the reordered packet singleton metric in
 Section 3.

4.3.1. Metric Name

 Type-P-Packet-Late-Time-Stream

4.3.2. Metric Parameters

 In addition to the parameters defined for Type-P-Reordered-Ratio-
 Stream, we specify:

 + DstTime, the time that each packet in the stream arrives at the
 destination, and may be associated with index i, or packet s[i]

 + LateTime(s[i]), the offset of packet s[i] in units of seconds,
 defined below

Morton, et al. Standards Track [Page 14]

RFC 4737 Packet Reordering Metrics November 2006

4.3.3. Definition

 Lateness in time is calculated using destination times. When
 received packet s[i] is reordered and has a reordering extent e,
 then:

 LateTime(s[i]) = DstTime(i)-DstTime(i-e)

 Alternatively, using similar notation to that of Section 4.2, an
 equivalent definition is:

 LateTime(s[i]) = DstTime(i)-DstTime(j), for min{j|1<=j<i} that
 satisfies s[j]>s[i].

4.3.4. Discussion

 The offset metrics can help predict whether reordered packets will be
 useful in a general receiver buffer system with finite limits. The
 limit may be the time of storage prior to a cyclic play-out instant
 (as with de-jitter buffers).

 Note that the one-way IP Packet Delay Variation (IPDV) [RFC3393]
 gives the delay variation for a packet with respect to the preceding
 packet in the source sequence. Lateness and IPDV give an indication
 of whether a buffer at the destination has sufficient storage to
 accommodate the network’s behavior and restore order. When an
 earlier packet in the source sequence is lost, IPDV will necessarily
 be undefined for adjacent packets, and LateTime may provide the only
 way to evaluate the usefulness of a packet.

 In the case of de-jitter buffers, there are circumstances where the
 receiver employs loss concealment at the intended play-out time of a
 late packet. However, if this packet arrives out of order, the Late
 Time determines whether the packet is still useful. IPDV no longer
 applies, because the receiver establishes a new play-out schedule
 with additional buffer delay to accommodate similar events in the
 future (this requires very minimal processing).

 The combination of loss and reordering influences the LateTime
 metric. If presented with the arrival sequence 1, 10, 5 (where
 packets 2, 3, 4, and 6 through 9 are lost), LateTime would not
 indicate exactly how "late" packet 5 is from its intended arrival
 position. IPDV [RFC3393] would not capture this either, because of
 the lack of adjacent packet pairs. Assuming a periodic stream
 [RFC3432], an expected arrival time could be defined for all packets,
 but this is essentially a single-point delay variation metric (as
 defined in ITU-T Recommendations [I.356] and [Y.1540]), and not a
 reordering metric.

Morton, et al. Standards Track [Page 15]

RFC 4737 Packet Reordering Metrics November 2006

 A sample’s LateTime results may be expressed as a histogram to
 summarize the frequency of buffer times needed to accommodate
 reordered packets and permit buffer tuning on that basis. A
 cumulative distribution function (CDF) with buffer time vs. percent
 of reordered packets accommodated may be informative.

4.4. Reordering Byte Offset

 Reordered packets can be assigned offset values indicating the
 storage in bytes that a receiver must possess to accommodate them.
 Offset metrics are calculated only on reordered packets, as
 identified by the reordered packet singleton metric in Section 3.

4.4.1. Metric Name

 Type-P-Packet-Byte-Offset-Stream

4.4.2. Metric Parameters

 We use the same parameters defined earlier, including the optional
 parameters of SrcByte and PayloadSize, and define:

 + ByteOffset(s[i]), the offset of packet s[i] in bytes

4.4.3. Definition

 The Byte stream offset for reordered packet s[i] is the sum of the
 payload sizes of packets qualified by the following criteria:

 * The arrival is prior to the reordered packet, s[i], and

 * The send sequence number, s, is greater than s[i].

 Packets that meet both these criteria are normally buffered until the
 sequence beneath them is complete. Note that these criteria apply to
 both in-order and reordered packets.

 For reordered packet s[i] with a reordering extent e:

 ByteOffset(s[i]) = Sum[qualified packets]
 = Sum[PayloadSize(packet at i-1 if qualified),
 PayloadSize(packet at i-2 if qualified), ...
 PayloadSize(packet at i-e always qualified)]

 Using our earlier notation:

 ByteOffset(s[i]) =
 Sum[payloads of s[j] where s[j]>s[i] and i > j >= i-e]

Morton, et al. Standards Track [Page 16]

RFC 4737 Packet Reordering Metrics November 2006

4.4.4. Discussion

 We note that estimates of buffer size due to reordering depend
 greatly on the test stream, in terms of the spacing between test
 packets and their size, especially when packet size is variable. In
 these and other circumstances, it may be most useful to characterize
 offset in terms of the payload size(s) of stored packets, using the
 Type-P-packet-Byte-Offset-Stream metric.

 The byte offset metric can help predict whether reordered packets
 will be useful in a general receiver buffer system with finite
 limits. The limit is expressed as the number of bytes the buffer can
 store.

 A sample’s ByteOffset results may be expressed as a histogram to
 summarize the frequency of buffer lengths needed to accommodate
 reordered packets and permit buffer tuning on that basis. A CDF with
 buffer size vs. percent of reordered packets accommodated may be
 informative.

4.5. Gaps between Multiple Reordering Discontinuities

4.5.1. Metric Names

 Type-P-Packet-Reordering-Gap-Stream
 Type-P-Packet-Reordering-GapTime-Stream

4.5.2. Parameters

 We use the same parameters defined earlier, but add the convention
 that index i’ is greater than i, likewise j’ > j, and define:

 + Gap(s[j’]), the Reordering Gap of packet s[j’] in units of integer
 messages

 and the OPTIONAL parameter:

 + GapTime(s[j’]), the Reordering Gap of packet s[j’] in units of
 seconds

4.5.3. Definition of Reordering Discontinuity

 All reordered packets are associated with a packet at a reordering
 discontinuity, defined as the in-order packet s[j] that arrived at
 the minimum value of j (1<=j<i) for which s[j]> s[i].

Morton, et al. Standards Track [Page 17]

RFC 4737 Packet Reordering Metrics November 2006

 Note that s[j] will have been found to cause a sequence
 discontinuity, where s > NextExp when evaluated with the reordered
 singleton metric as described in Section 3.4.

 Recall that i - e = min(j). Subsequent reordered packets may be
 associated with the same s[j], or with a different discontinuity.
 This fact is used in the definition of the Reordering Gap, below.

4.5.4. Definition of Reordering Gap

 A reordering gap is the distance between successive reordering
 discontinuities. The Type-P-Packet-Reordering-Gap-Stream metric
 assigns a value for Gap(s[j’]) to (all) packets in a stream (and a
 value for GapTime(s[j’]), when reported).

 If:

 the packet s[j’] is found to be a reordering discontinuity, based
 on the arrival of reordered packet s[i’] with extent e’, and

 an earlier reordering discontinuity s[j], based on the arrival of
 reordered packet s[i] with extent e was already detected, and

 i’ > i, and

 there are no reordering discontinuities between j and j’,

 then the Reordering Gap for packet s[j’] is the difference between
 the arrival positions the reordering discontinuities, as shown below:

 Gap(s[j’]) = (j’) - (j)

 Gaps MAY also be expressed in time:

 GapTime(s[j’]) = DstTime(j’) - DstTime(j)

 Otherwise:

 Gap(s[j’]) (and GapTime(s[j’])) for packet s[j’] is 0.

4.5.5. Discussion

 When separate reordering discontinuities can be distinguished, a
 count may also be reported (along with the discontinuity description,
 such as the number of reordered packets associated with that
 discontinuity and their extents and offsets). The Gaps between a

Morton, et al. Standards Track [Page 18]

RFC 4737 Packet Reordering Metrics November 2006

 sample’s reordering discontinuities may be expressed as a histogram
 to easily summarize the frequency of various gaps. Reporting the
 mode, average, range, etc., may also summarize the distributions.

 The Gap metric may help to correlate the frequency of reordering
 discontinuities with their cause. Gap lengths are also informative
 to receiver designers, revealing the period of reordering
 discontinuities. The combination of reordering gaps and extent
 reveals whether receivers will be required to handle cases of
 overlapping reordered packets.

4.6. Reordering-Free Runs

 This section defines a metric based on a count of consecutive
 in-order packets between reordered packets.

4.6.1. Metric Names

 Type-P-Packet-Reordering-Free-Run-x-numruns-Stream
 Type-P-Packet-Reordering-Free-Run-q-squruns-Stream
 Type-P-Packet-Reordering-Free-Run-p-numpkts-Stream
 Type-P-Packet-Reordering-Free-Run-a-accpkts-Stream

4.6.2. Parameters

 We use the same parameters defined earlier and define the following:

 + r, the run counter

 + x, the number of runs, also the number of reordered packets

 + a, the accumulator of in-order packets

 + p, the number of packets (when the stream is complete, p=(x+a)=L)

 + q, the sum of the squares of the runs counted

4.6.3. Definition

 As packets in a sample arrive at the destination, the count of in-
 order packets between reordered packets is a Reordering-Free run.
 Note that the minimum run-length is zero according to this
 definition. A pseudo-code example follows:

 r = 0; /* r is the run counter */
 x = 0; /* x is the number of runs */
 a = 0; /* a is the accumulator of in-order packets */
 p = 0; /* p is the number of packets */

Morton, et al. Standards Track [Page 19]

RFC 4737 Packet Reordering Metrics November 2006

 q = 0; /* q is the sum of the squares of the runs counted */

 while(packets arrive with sequence number s)
 {
 p++;
 if (s >= NextExp) /* s is in-order */
 then r++;
 a++;
 else /* s is reordered */
 q+= r*r;
 r = 0;
 x++;
 }

 Each in-order arrival increments the run counter and the accumulator
 of in-order packets; each reordered packet resets the run counter
 after adding it to the sum of the squared lengths.

 Each arrival of a reordered packet yields a new run count. Long runs
 accompany periods where order was maintained, while short runs
 indicate frequent or multi-packet reordering.

 The percent of packets in-order is 100*a/p

 The average Reordering-Free run length is a/x

 The q counter gives an indication of variation of the Reordering-Free
 runs from the average by comparing q/a to a/x ((q/a)/(a/x)).

4.6.4. Discussion and Illustration

 Type-P-packet-Reordering-Free-Run-Stream parameters give a brief
 summary of the stream’s reordering characteristics including the
 average reordering-free run length, and the variation of run lengths;
 therefore, a key application of this metric is network evaluation.

 For 36 packets with 3 runs of 11 in-order packets, we have:

 p = 36
 x = 3
 a = 33
 q = 3 * (11*11) = 363
 ave. reordering-free run = 11
 q/a = 11
 (q/a)/(a/x) = 1.0

 For 36 packets with 3 runs, 2 runs of length 1, and one of length 31,
 we have:

Morton, et al. Standards Track [Page 20]

RFC 4737 Packet Reordering Metrics November 2006

 p = 36
 x = 3
 a = 33
 q = 1 + 1 + 961 = 963
 ave. reordering-free run = 11
 q/a = 29.18
 (q/a)/(a/x) = 2.65

 The variability in run length is prominent in the difference between
 the q values (sum of the squared run lengths) and in comparing
 average run length to the (q/a)/(a/x) ratios (equals 1 when all runs
 are the same length).

5. Metrics Focused on Receiver Assessment: A TCP-Relevant Metric

 This section describes a metric that conveys information associated
 with the effect of reordering on TCP. However, in order to infer
 anything about TCP performance, the test stream MUST bear a close
 resemblance to the TCP sender of interest. [RFC3148] lists the
 specific aspects of congestion control algorithms that must be
 specified. Further, RFC 3148 recommends that Bulk Transfer Capacity
 metrics SHOULD have instruments to distinguish three cases of packet
 reordering (in Section 3.3). The sample metrics defined above
 satisfy the requirements to classify packets that are slightly or
 grossly out-of-order. The metric in this section adds the capability
 to estimate whether reordering might cause the DUP-ACK threshold to
 be exceeded causing the Fast Retransmit algorithm to be invoked.
 Additional TCP Kernel Instruments are summarized in [Mat03].

5.1. Metric Name

 Type-P-Packet-n-Reordering-Stream

5.2. Parameter Notation

 Let n be a positive integer (a parameter). Let k be a positive
 integer equal to the number of packets sent (sample size). Let l be
 a non-negative integer representing the number of packets that were
 received out of the k packets sent. (Note that there is no
 relationship between k and l: on one hand, losses can make l less
 than k; on the other hand, duplicates can make l greater than k.)
 Assign each sent packet a sequence number, 1 to k, in order of packet
 emission.

 Let s[1], s[2], ..., s[l] be the original sequence numbers of the
 received packets, in the order of arrival.

Morton, et al. Standards Track [Page 21]

RFC 4737 Packet Reordering Metrics November 2006

5.3. Definitions

 Definition 1: Received packet number i (n < i <= l), with source
 sequence number s[i], is n-reordered if and only if for all j such
 that i-n <= j < i, s[j] > s[i].

 Claim: If, by this definition, a packet is n-reordered and 0 < n’ <
 n, then the packet is also n’-reordered.

 Note: This definition is illustrated by C code in Appendix A. The
 code determines and reports the n-reordering for n from 1 to a
 specified parameter (MAXN in the code, set to 100). The value of n
 conjectured to be relevant for TCP is the TCP duplicate ACK threshold
 (set to the value of 3 by paragraph 2 of Section 3.2 of [RFC 2581]).

 This definition does not assign an n to all reordered packets as
 defined by the singleton metric, in particular when blocks of
 successive packets are reordered. (In the arrival sequence
 s={1,2,3,7,8,9,4,5,6}, packets 4, 5, and 6 are reordered, but only
 packet 4 is n-reordered, with n=3.)

 Definition 2: The degree of n-reordering of a sample is m/l, where m
 is the number of n-reordered packets in the sample.

 Definition 3: The degree of monotonic reordering of a sample is its
 degree of 1-reordering.

 Definition 4: A sample is said to have no reordering if its degree of
 monotonic reordering is 0.

 Note: As follows from the claim above, if monotonic reordering of a
 sample is 0, then the n-reordering of the sample is 0 for all n.

5.4. Discussion

 The degree of n-reordering may be expressed as a percentage, in which
 case the number from Definition 2 is multiplied by 100.

 The n-reordering metric is helpful for matching the duplicate ACK
 threshold setting to a given path. For example, if a path exhibits
 no more than 5-reordering, a DUP-ACK threshold of 6 may avoid
 unnecessary retransmissions.

 Important special cases are n=1 and n=3:

 - For n=1, absence of 1-reordering means the sequence numbers that
 the receiver sees are monotonically increasing with respect to the
 previous arriving packet.

Morton, et al. Standards Track [Page 22]

RFC 4737 Packet Reordering Metrics November 2006

 - For n=3, a NewReno TCP sender would retransmit 1 packet in response
 to an instance of 3-reordering and therefore consider this packet
 lost for the purposes of congestion control (the sender will halve
 its congestion window, see [RFC2581]). Three is the default
 threshold for Stream Control Transport Protocol (SCTP) [RFC2960],
 and the Datagram Congestion Control Protocol (DCCP) [RFC4340] when
 used with Congestion Control ID 2: TCP-like Congestion Control
 [RFC4341].

 A sample’s n-reordering may be expressed as a histogram to summarize
 the frequency for each value of n.

 We note that the definition of n-reordering cannot predict the exact
 number of packets unnecessarily retransmitted by a TCP sender under
 some circumstances, such as cases with closely-spaced reordered
 singletons. Both time and position influence the sender’s behavior.

 A packet’s n-reordering designation is sometimes equal to its
 reordering extent, e. n-reordering is different in the following
 ways:

 1. n is a count of early packets with consecutive arrival positions
 at the receiver.

 2. Reordered packets (Type-P-Reordered=TRUE) may not be n-reordered,
 but will have an extent, e (see the examples).

6. Measurement and Implementation Issues

 The results of tests will be dependent on the time interval between
 measurement packets (both at the source, and during transport where
 spacing may change). Clearly, packets launched infrequently (e.g., 1
 per 10 seconds) are unlikely to be reordered.

 In order to gauge the reordering for an application according to the
 metrics defined in this memo, it is RECOMMENDED to use the same
 sending pattern as the application of interest. In any case, the
 exact method of packet generation MUST be reported with the
 measurement results, including all stream parameters.

 + To make inferences about applications that use TCP, it is REQUIRED
 to use TCP-like Streams as in [RFC3148]

 + For real-time applications, it is RECOMMENDED to use periodic
 streams as in [RFC3432]

Morton, et al. Standards Track [Page 23]

RFC 4737 Packet Reordering Metrics November 2006

 It is acceptable to report the metrics of Sections 3 and 4 with other
 IPPM metrics using Poisson streams [RFC2330]. Poisson streams
 represent an "unbiased sample" of network performance for packet loss
 and delay metrics. However, it would be incorrect to make inferences
 about the application categories above using reordering metrics
 measured with Poisson streams.

 Test stream designers may prefer to use a periodic sending interval
 in order to maintain a known temporal bias and allow simplified
 results analysis (as described in [RFC3432]). In this case, it is
 RECOMMENDED that the periodic sending interval be chosen to reproduce
 the closest source packet spacing expected. Testers must recognize
 that streams sent at the link speed serialization limit MUST have
 limited duration and MUST consider packet loss an indication that the
 stream has caused congestion, and suspend further testing.

 When intending to compare independent measurements of reordering, it
 is RECOMMENDED to use the same test stream parameters in each
 measurement system.

 Packet lengths might also be varied to attempt to detect instances of
 parallel processing (they may cause steady state reordering). For
 example, a line-speed burst of the longest (MTU-length) packets
 followed by a burst of the shortest possible packets may be an
 effective detecting pattern. Other size patterns are possible.

 The non-reversing order criterion and all metrics described above
 remain valid and useful when a stream of packets experiences packet
 loss, or both loss and reordering. In other words, losses alone do
 not cause subsequent packets to be declared reordered.

 Since this metric definition may use sequence numbers with finite
 range, it is possible that the sequence numbers could reach end-of-
 range and roll over to zero during a measurement. By definition, the
 NextExp value cannot decrease, and all packets received after a
 rollover would be declared reordered. Sequence number rollover can
 be avoided by using combinations of counter size and test duration
 where rollover is impossible (and sequence is reset to zero at the
 start). Also, message-based numbering results in slower sequence
 consumption. There may still be cases where methodological
 mitigation of this problem is desirable (e.g., long-term testing).
 The elements of mitigation are:

 1. There must be a test to detect if a rollover has occurred. It
 would be nearly impossible for the sequence numbers of successive
 packets to jump by more than half the total range, so these large
 discontinuities are designated as rollover.

Morton, et al. Standards Track [Page 24]

RFC 4737 Packet Reordering Metrics November 2006

 2. All sequence numbers used in computations are represented in a
 sufficiently large precision. The numbers have a correction
 applied (equivalent to adding a significant digit) whenever
 rollover is detected.

 3. Reordered packets coincident with sequence numbers reaching end-
 of-range must also be detected for proper application of
 correction factor.

 Ideally, the test instrument would have the ability to use all
 earlier packets at any point in the test stream. In practice, there
 will be limited ability to determine the extent of reordering, due to
 the storage requirements for previous packets. Saving only packets
 that indicate discontinuities (and their arrival positions) will
 reduce storage volume.

 Another solution is to use a sliding history window of packets, where
 the window size would be determined by an upper bound on the useful
 reordering extent. This bound could be several packets or several
 seconds worth of packets, depending on the intended analysis. When
 discarding all stream information beyond the window, the reordering
 extent or degree of n-reordering may need to be expressed as greater
 than the window length if the reordering discontinuity information
 has been discarded, and Gap calculations would not be possible.

 The requirement to ignore duplicate packets also mandates storage.
 Here, tracking the sequence numbers of missing packets may minimize
 storage size. Missing packets may eventually be declared lost or be
 reordered if they arrive. The missing packet list and the largest
 sequence number received thus far (NextExp - 1) are sufficient
 information to determine if a packet is a duplicate (assuming a
 manageable storage size for packets that are missing due to loss).

 It is important to note that practical IP networks also have limited
 ability to "store" packets, even when routing loops appear
 temporarily. Therefore, the maximum storage for reordering metrics
 (and their complexity) would only approach the number packets in the
 sample, K, when the sending time for K packets is small with respect
 to the network’s largest possible transfer time. Another possible
 limitation on storage is the maximum length of the sequence number
 field, assuming that most test streams do not exhaust this length in
 practice.

 Last, we note that determining reordering extents and gaps is tricky
 when there are overlapped or nested events. Test instrument
 complexity and reordering complexity are directly correlated.

Morton, et al. Standards Track [Page 25]

RFC 4737 Packet Reordering Metrics November 2006

6.1. Passive Measurement Considerations

 As with other IPPM metrics, the definitions have been constructed
 primarily for Active measurements.

 Assuming that the necessary sequence information (message number) is
 included in the packet payload (possibly in application headers such
 as RTP), reordering metrics may be evaluated in a passive measurement
 arrangement. Also, it is possible to evaluate order at any point
 along a source-destination path, recognizing that intermediate
 measurements may differ from those made at the destination (where the
 reordering effect on applications can be inferred).

 It is possible to apply these metrics to evaluate reordering in a TCP
 sender’s stream. In this case, the source sequence numbers would be
 based on byte stream or segment numbering. Since the stream may
 include retransmissions due to loss or reordering, care must be taken
 to avoid declaring retransmitted packets reordered. The additional
 sequence reference of s or SrcTime helps avoid this ambiguity in
 active measurement, or the optional TCP timestamp field [RFC1323] in
 passive measurement.

7. Examples of Arrival Order Evaluation

 This section provides some examples to illustrate how the non-
 reversing order criterion works, how n-reordering works in
 comparison, and the value of quantifying reordering in all the
 dimensions of time, bytes, and position.

 Throughout this section, we will refer to packets by their source
 sequence number, except where noted. So "Packet 4" refers to the
 packet with source sequence number 4, and the reader should refer to
 the tables in each example to determine packet 4’s arrival index
 number, if needed.

7.1. Example with a Single Packet Reordered

 Table 1 gives a simple case of reordering, where one packet is
 reordered, Packet 4. Packets are listed according to their arrival,
 and message numbering is used. All packets contain PayloadSize=100
 bytes, with SrcByte=(s x 100)-99 for s=1,2,3,4,...

Morton, et al. Standards Track [Page 26]

RFC 4737 Packet Reordering Metrics November 2006

 Table 1: Example with Packet 4 Reordered,
 Sending order(s @Src): 1,2,3,4,5,6,7,8,9,10

 s Src Dst Dst Byte Late
 @Dst NextExp Time Time Delay IPDV Order Offset Time

 1 1 0 68 68 1
 2 2 20 88 68 0 2
 3 3 40 108 68 0 3
 5 4 80 148 68 -82 4
 6 6 100 168 68 0 5
 7 7 120 188 68 0 6
 8 8 140 208 68 0 7
 4 9 60 210 150 82 8 400 62
 9 9 160 228 68 0 9
 10 10 180 248 68 0 10

 Each column gives the following information:

 s Packet sequence number at the source.
 NextExp The value of NextExp when the packet arrived (before
 update).
 SrcTime Packet time stamp at the source, ms.
 DstTime Packet time stamp at the destination, ms.
 Delay 1-way delay of the packet, ms.
 IPDV IP Packet Delay Variation, ms
 IPDV = Delay(SrcNum)-Delay(SrcNum-1)
 DstOrder Order in which the packet arrived at the destination.
 Byte Offset The byte offset of a reordered packet, in bytes.
 LateTime The lateness of a reordered packet, in ms.

 We can see that when Packet 4 arrives, NextExp=9, and it is declared
 reordered. We compute the extent of reordering as follows:

 Using the notation <s[1], ..., s[i], ..., s[L]>, the received packets
 are represented as:

 \/
 s = 1, 2, 3, 5, 6, 7, 8, 4, 9, 10
 i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
 /\

 Applying the definition of Type-P-Packet-Reordering-Extent-Stream:

 when j=7, 8 > 4, so the reordering extent is 1 or more.
 when j=6, 7 > 4, so the reordering extent is 2 or more.
 when j=5, 6 > 4, so the reordering extent is 3 or more.
 when j=4, 5 > 4, so the reordering extent is 4 or more.

Morton, et al. Standards Track [Page 27]

RFC 4737 Packet Reordering Metrics November 2006

 when j=3, but 3 < 4, and 4 is the maximum extent, e=4 (assuming
 there are no earlier sequence discontinuities, as in this example).

 Further, we can compute the Late Time (210-148=62ms using DstTime)
 compared to Packet 5’s arrival. If the receiver has a de-jitter
 buffer that holds more than 4 packets, or at least 62 ms storage,
 Packet 4 may be useful. Note that 1-way delay and IPDV indicate
 unusual behavior for Packet 4. Also, if Packet 4 had arrived at
 least 62ms earlier, it would have been in-order in this example.

 If all packets contained 100 byte payloads, then Byte Offset is equal
 to 400 bytes.

 Following the definitions of Section 5.1, Packet 4 is designated
 4-reordered.

7.2. Example with Two Packets Reordered

 Table 2 Example with Packets 5 and 6 Reordered,
 Sending order(s @Src): 1,2,3,4,5,6,7,8,9,10

 s Src Dst Dst Byte Late
 @Dst NextExp Time Time Delay IPDV Order Offset Time

 1 1 0 68 68 1
 2 2 20 88 68 0 2
 3 3 40 108 68 0 3
 4 4 60 128 68 0 4
 7 5 120 188 68 -22 5
 5 8 80 189 109 41 6 100 1
 6 8 100 190 90 -19 7 100 2
 8 8 140 208 68 0 8
 9 9 160 228 68 0 9
 10 10 180 248 68 0 10

 Table 2 shows a case where Packets 5 and 6 arrive just behind Packet
 7, so both 5 and 6 are reordered. The Late times (189-188=1,
 190-188=2) are small.

 Using the notation <s[1], ..., s[i], ..., s[l]>, the received packets
 are represented as:

 \/ \/
 s = 1, 2, 3, 4, 7, 5, 6, 8, 9, 10
 i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
 /\ /\

Morton, et al. Standards Track [Page 28]

RFC 4737 Packet Reordering Metrics November 2006

 Considering Packet 5 first:

 when j=5, 7 > 5, so the reordering extent is 1 or more.
 when j=4, we have 4 < 5, so 1 is its maximum extent, and e=1.

 Considering Packet 6 next:

 when j=6, 5 < 6, the extent is not yet defined.
 when j=5, 7 > 6, so the reordering extent is i-j=2 or more.
 when j=4, 4 < 6, and we find 2 is its maximum extent, and e=2.

 We can also associate each of these reordered packets with a
 reordering discontinuity. We find the minimum j=5 (for both packets)
 according to Section 4.2.3. So Packet 6 is associated with the same
 reordering discontinuity as Packet 5, the Reordering Discontinuity at
 Packet 7.

 This is a case where reordering extent e would over-estimate the
 packet storage required to restore order. Only one packet storage is
 required (to hold Packet 7), but e=2 for Packet 6.

 Following the definitions of Section 5, Packet 5 is designated
 1-reordered, but Packet 6 is not designated n-reordered.

 A hypothetical sender/receiver pair may retransmit Packet 5
 unnecessarily, since it is 1-reordered (in agreement with the
 singleton metric). Though Packet 6 may not be unnecessarily
 retransmitted, the receiver cannot advance Packet 7 to the higher
 layers until after Packet 6 arrives. Therefore, the singleton metric
 correctly determined that Packet 6 is reordered.

Morton, et al. Standards Track [Page 29]

RFC 4737 Packet Reordering Metrics November 2006

7.3. Example with Three Packets Reordered

 Table 3 Example with Packets 4, 5, and 6 reordered
 Sending order(s @Src): 1,2,3,4,5,6,7,8,9,10,11

 s Src Dst Dst Byte Late
 @Dst NextExp Time Time Delay IPDV Order Offset Time

 1 1 0 68 68 1
 2 2 20 88 68 0 2
 3 3 40 108 68 0 3
 7 4 120 188 68 -88 4
 8 8 140 208 68 0 5
 9 9 160 228 68 0 6
 10 10 180 248 68 0 7
 4 11 60 250 190 122 8 400 62
 5 11 80 252 172 -18 9 400 64
 6 11 100 256 156 -16 10 400 68
 11 11 200 268 68 0 11

 The case in Table 3 is where three packets in sequence have long
 transit times (Packets with s = 4, 5, and 6). Delay, Late time, and
 Byte Offset capture this very well, and indicate variation in
 reordering extent, while IPDV indicates that the spacing between
 packets 4,5,and 6 has changed.

 The histogram of Reordering extents (e) would be:

 Bin 1 2 3 4 5 6 7
 Frequency 0 0 0 1 1 1 0

 Using the notation <s[1], ..., s[i], ..., s[l]>, the received packets
 are represented as:

 s = 1, 2, 3, 7, 8, 9,10, 4, 5, 6, 11
 i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11

 We first calculate the n-reordering. Considering Packet 4 first:

 when n=1, 7<=j<8, and 10> 4, so the packet is 1-reordered.
 when n=2, 6<=j<8, and 9 > 4, so the packet is 2-reordered.
 when n=3, 5<=j<8, and 8 > 4, so the packet is 3-reordered.
 when n=4, 4<=j<8, and 7 > 4, so the packet is 4-reordered.
 when n=5, 3<=j<8, but 3 < 4, and 4 is the maximum n-reordering.

Morton, et al. Standards Track [Page 30]

RFC 4737 Packet Reordering Metrics November 2006

 Considering packet 5[9] next:
 when n=1, 8<=j<9, but 4 < 5, so the packet at i=9 is not designated
 as n-reordered. We find the same result for Packet 6.

 We now consider whether reordered Packets 5 and 6 are associated with
 the same reordering discontinuity as Packet 4. Using the test of
 Section 4.2.3, we find that the minimum j=4 for all three packets.
 They are all associated with the reordering discontinuity at Packet
 7.

 This example shows again that the n-reordering definition identifies
 a single Packet (4) with a sufficient degree of n-reordering that
 might cause one unnecessary packet retransmission by the New Reno TCP
 sender (with DUP-ACK threshold=3 or 4). Also, the reordered arrival
 of Packets 5 and 6 will allow the receiver process to pass Packets 7
 through 10 up the protocol stack (the singleton Type-P-Reordered =
 TRUE for Packets 5 and 6, and they are all associated with a single
 reordering discontinuity).

7.4. Example with Multiple Packet Reordering Discontinuities

 Table 4 Example with Multiple Packet Reordering Discontinuities
 Sending order(s @Src): 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

 Discontinuity Discontinuity
 |---------Gap---------|
 s = 1, 2, 3, 6, 7, 4, 5, 8, 9, 10, 12, 13, 11, 14, 15, 16
 i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16

 r = 1, 2, 3, 4, 5, 0, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, ...
 number of runs,n = 1 2 3
 end r counts = 5 0 5
 (These values are computed after the packet arrives.)

 Packet 4 has extent e=2, Packet 5 has extent e=3, and Packet 11 has
 e=2. There are two different reordering discontinuities, one at
 Packet 6 (where j=4) and one at Packet 12 (where j’=11).

 According to the definition of Reordering Gap
 Gap(s[j’]) = (j’) - (j)
 Gap(Packet 12) = (11) - (4) = 7

 We also have three reordering-free runs of lengths 5, 0, and 5.

 The differences between these two multiple-event metrics are evident
 here. Gaps are the distance between sequence discontinuities that
 are subsequently defined as reordering discontinuities, while
 reordering-free runs capture the distance between reordered packets.

Morton, et al. Standards Track [Page 31]

RFC 4737 Packet Reordering Metrics November 2006

8. Security Considerations

8.1. Denial-of-Service Attacks

 This metric requires a stream of packets sent from one host (source)
 to another host (destination) through intervening networks. This
 method could be abused for denial-of-service attacks directed at
 destination and/or the intervening network(s).

 Administrators of the source, destination, and intervening network(s)
 should establish bilateral or multilateral agreements regarding the
 timing, size, and frequency of collection of sample metrics. Use of
 this method in excess of the terms agreed between the participants
 may be cause for immediate rejection or discard of packets or other
 escalation procedures defined between the affected parties.

8.2. User Data Confidentiality

 Active use of this method generates packets for a sample, rather than
 taking samples based on user data, and does not threaten user data
 confidentiality. Passive measurement must restrict attention to the
 headers of interest. Since user payloads may be temporarily stored
 for length analysis, suitable precautions MUST be taken to keep this
 information safe and confidential. In most cases, a hashing function
 will produce a value suitable for payload comparisons.

8.3. Interference with the Metric

 It may be possible to identify that a certain packet or stream of
 packets is part of a sample. With that knowledge at the destination
 and/or the intervening networks, it is possible to change the
 processing of the packets (e.g., increasing or decreasing delay) that
 may distort the measured performance. It may also be possible to
 generate additional packets that appear to be part of the sample
 metric. These additional packets are likely to perturb the results
 of the sample measurement. The likely consequences of packet
 injection are that the additional packets would be declared
 duplicates, or that the original packets would be seen as duplicates
 (if they arrive after the corresponding injected packets), causing
 invalid measurements on the injected packets.

 The requirements for data collection resistance to interference by
 malicious parties and mechanisms to achieve such resistance are
 available in other IPPM memos. A set of requirements for a data
 collection protocol can be found in [RFC3763], and a protocol
 specification for the One-Way Active Measurement Protocol (OWAMP) is

Morton, et al. Standards Track [Page 32]

RFC 4737 Packet Reordering Metrics November 2006

 in [RFC4656]. The security considerations sections of the two OWAMP
 documents are extensive and should be consulted for additional
 details.

9. IANA Considerations

 Metrics defined in this memo have been registered in the IANA IPPM
 METRICS REGISTRY as described in initial version of the registry
 [RFC4148].

 IANA has registered the following metrics in the IANA-IPPM-METRICS-
 REGISTRY-MIB:

 ietfReorderedSingleton OBJECT-IDENTITY
 STATUS current
 DESCRIPTION
 "Type-P-Reordered"
 REFERENCE
 "Reference RFC 4737, Section 3"
 ::= { ianaIppmMetrics 34 }

 ietfReorderedPacketRatio OBJECT-IDENTITY
 STATUS current
 DESCRIPTION
 "Type-P-Reordered-Ratio-Stream"
 REFERENCE
 "Reference RFC 4737, Section 4.1"
 ::= { ianaIppmMetrics 35 }

 ietfReorderingExtent OBJECT-IDENTITY
 STATUS current
 DESCRIPTION
 "Type-P-Packet-Reordering-Extent-Stream"
 REFERENCE
 "Reference RFC 4737, Section 4.2"
 ::= { ianaIppmMetrics 36 }

 ietfReorderingLateTimeOffset OBJECT-IDENTITY
 STATUS current
 DESCRIPTION
 "Type-P-Packet-Late-Time-Stream"
 REFERENCE
 "Reference RFC 4737, Section 4.3"
 ::= { ianaIppmMetrics 37 }

 ietfReorderingByteOffset OBJECT-IDENTITY
 STATUS current
 DESCRIPTION

Morton, et al. Standards Track [Page 33]

RFC 4737 Packet Reordering Metrics November 2006

 "Type-P-Packet-Byte-Offset-Stream"
 REFERENCE
 "Reference RFC 4737, Section 4.4"
 ::= { ianaIppmMetrics 38 }

 ietfReorderingGap OBJECT-IDENTITY
 STATUS current
 DESCRIPTION
 "Type-P-Packet-Reordering-Gap-Stream"
 REFERENCE
 "Reference RFC 4737, Section 4.5"
 ::= { ianaIppmMetrics 39 }

 ietfReorderingGapTime OBJECT-IDENTITY
 STATUS current
 DESCRIPTION
 "Type-P-Packet-Reordering-GapTime-Stream"
 REFERENCE
 "Reference RFC 4737, Section 4.5"
 ::= { ianaIppmMetrics 40 }

 ietfReorderingFreeRunx OBJECT-IDENTITY
 STATUS current
 DESCRIPTION
 "Type-P-Packet-Reordering-Free-Run-x-numruns-Stream"
 REFERENCE
 "Reference RFC 4737, Section 4.6"
 ::= { ianaIppmMetrics 41 }

 ietfReorderingFreeRunq OBJECT-IDENTITY
 STATUS current
 DESCRIPTION
 "Type-P-Packet-Reordering-Free-Run-q-squruns-Stream"
 REFERENCE
 "Reference RFC 4737, Section 4.6"
 ::= { ianaIppmMetrics 42 }

 ietfReorderingFreeRunp OBJECT-IDENTITY
 STATUS current
 DESCRIPTION
 "Type-P-Packet-Reordering-Free-Run-p-numpkts-Stream"
 REFERENCE
 "Reference RFC 4737, Section 4.6"
 ::= { ianaIppmMetrics 43 }

 ietfReorderingFreeRuna OBJECT-IDENTITY
 STATUS current
 DESCRIPTION

Morton, et al. Standards Track [Page 34]

RFC 4737 Packet Reordering Metrics November 2006

 "Type-P-Packet-Reordering-Free-Run-a-accpkts-Stream"
 REFERENCE
 "Reference RFC 4737, Section 4.6"
 ::= { ianaIppmMetrics 44 }

 ietfnReordering OBJECT-IDENTITY
 STATUS current
 DESCRIPTION
 "Type-P-Packet-n-Reordering-Stream"
 REFERENCE
 "Reference RFC 4737, Section 5"
 ::= { ianaIppmMetrics 45 }

10. Normative References

 [RFC791] Postel, J., "Internet Protocol", STD 5, RFC 791, September
 1981.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2330] Paxson, V., Almes, G., Mahdavi, J., and M. Mathis,
 "Framework for IP Performance Metrics", RFC 2330, May
 1998.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

 [RFC3148] Mathis, M. and M. Allman, "A Framework for Defining
 Empirical Bulk Transfer Capacity Metrics", RFC 3148, July
 2001.

 [RFC3432] Raisanen, V., Grotefeld, G., and A. Morton, "Network
 performance measurement with periodic streams", RFC 3432,
 November 2002.

 [RFC3763] Shalunov, S. and B. Teitelbaum, "One-way Active
 Measurement Protocol (OWAMP) Requirements", RFC 3763,
 April 2004.

 [RFC4148] Stephan, E., "IP Performance Metrics (IPPM) Metrics
 Registry", BCP 108, RFC 4148, August 2005.

 [RFC4656] Shalunov, S., Teitelbaum, B., Karp, A., Boote, J., and M.
 Zeckauskas, "A One-way Active Measurement Protocol
 (OWAMP)", RFC 4656, September 2006.

Morton, et al. Standards Track [Page 35]

RFC 4737 Packet Reordering Metrics November 2006

11. Informative References

 [Bel02] J. Bellardo and S. Savage, "Measuring Packet Reordering,"
 Proceedings of the ACM SIGCOMM Internet Measurement
 Workshop 2002, November 6-8, Marseille, France.

 [Ben99] J.C.R. Bennett, C. Partridge, and N. Shectman, "Packet
 Reordering is Not Pathological Network Behavior," IEEE/ACM
 Transactions on Networking, vol. 7, no. 6, pp. 789-798,
 December 1999.

 [Cia00] L. Ciavattone and A. Morton, "Out-of-Sequence Packet
 Parameter Definition (for Y.1540)", Contribution number
 T1A1.3/2000-047, October 30, 2000,
 http://home.comcast.net/˜acmacm/IDcheck/0A130470.doc.

 [Cia03] L. Ciavattone, A. Morton, and G. Ramachandran,
 "Standardized Active Measurements on a Tier 1 IP
 Backbone," IEEE Communications Mag., pp. 90-97, June 2003.

 [I.356] ITU-T Recommendation I.356, "B-ISDN ATM layer cell
 transfer performance", March 2000.

 [Jai02] S. Jaiswal et al., "Measurement and Classification of Out-
 of-Sequence Packets in a Tier-1 IP Backbone," Proceedings
 of the ACM SIGCOMM Internet Measurement Workshop 2002,
 November 6-8, Marseille, France.

 [Lou01] D. Loguinov and H. Radha, "Measurement Study of Low-
 bitrate Internet Video Streaming", Proceedings of the ACM
 SIGCOMM Internet Measurement Workshop 2001 November 1-2,
 2001, San Francisco, USA.

 [Mat03] M. Mathis, J. Heffner, and R. Reddy, "Web100: Extended TCP
 Instrumentation for Research, Education and Diagnosis",
 ACM Computer Communications Review, Vol 33, Num 3, July
 2003, http://www.web100.org/docs/mathis03web100.pdf.

 [Pax98] V. Paxson, "Measurements and Analysis of End-to-End
 Internet Dynamics," Ph.D. dissertation, U.C. Berkeley,
 1997, ftp://ftp.ee.lbl.gov/papers/vp-thesis/dis.ps.gz.

 [RFC793] Postel, J., "Transmission Control Protocol", STD 7, RFC
 793, September 1981.

 [RFC1323] Jacobson, V., Braden, R., and D. Borman, "TCP Extensions
 for High Performance", RFC 1323, May 1992.

Morton, et al. Standards Track [Page 36]

RFC 4737 Packet Reordering Metrics November 2006

 [RFC2581] Allman, M., Paxson, V., and W. Stevens, "TCP Congestion
 Control ", RFC 2581, April 1999.

 [RFC2679] Almes, G., Kalidindi, S., and M. Zekauskas, "A One-way
 Delay Metric for IPPM", RFC 2679, September 1999.

 [RFC2680] Almes, G., Kalidindi, S., and M. Zekauskas, "A One-way
 Packet Loss Metric for IPPM", RFC 2680, September 1999.

 [RFC2960] Stewart, R., Xie, Q., Morneault, K., Sharp, C.,
 Schwarzbauer, H., Taylor, T., Rytina, I., Kalla, M.,
 Zhang, L., and V. Paxson, "Stream Control Transmission
 Protocol", RFC 2960, October 2000.

 [RFC3393] Demichelis, C. and P. Chimento, "IP Packet Delay Variation
 Metric for IP Performance Metrics (IPPM)", RFC 3393,
 November 2002.

 [RFC4340] Kohler, E., Handley, M., and S. Floyd, "Datagram
 Congestion Control Protocol (DCCP)", RFC 4340, March 2006.

 [RFC4341] Floyd, S. and E. Kohler, "Profile for Datagram Congestion
 Control Protocol (DCCP) Congestion Control ID 2: TCP-like
 Congestion Control", RFC 4341, March 2006.

 [TBABAJ02] T. Banka, A. Bare, A. P. Jayasumana, "Metrics for Degree
 of Reordering in Packet Sequences", Proc. 27th IEEE
 Conference on Local Computer Networks, Tampa, FL, Nov.
 2002.

 [Y.1540] ITU-T Recommendation Y.1540, "Internet protocol data
 communication service - IP packet transfer and
 availability performance parameters", December 2002.

12. Acknowledgements

 The authors would like to acknowledge many helpful discussions with
 Matt Zekauskas, Jon Bennett (who authored the sections on
 Reordering-Free Runs), and Matt Mathis. We thank David Newman, Henk
 Uijterwaal, Mark Allman, Vern Paxson, and Phil Chimento for their
 reviews and suggestions, and Michal Przybylski for sharing
 implementation experiences with us on the ippm-list. Anura
 Jayasumana and Nischal Piratla brought in recent work-in-progress
 [TBABAJ02]. We gratefully acknowledge the foundation laid by the
 authors of the IP performance framework [RFC2330].

Morton, et al. Standards Track [Page 37]

RFC 4737 Packet Reordering Metrics November 2006

Appendix A. Example Implementations in C (Informative)

 Two example c-code implementations of reordering definitions follow:

 Example 1 n-reordering ==

 #include <stdio.h>

 #define MAXN 100

 #define min(a, b) ((a) < (b)? (a): (b))
 #define loop(x) ((x) >= 0? x: x + MAXN)

 /*
 * Read new sequence number and return it. Return a sentinel value
 * of EOF (at least once) when there are no more sequence numbers.
 * In this example, the sequence numbers come from stdin;
 * in an actual test, they would come from the network.
 *
 */

 int
 read_sequence_number()
 {
 int res, rc;
 rc = scanf("%d\n", &res);
 if (rc == 1) return res;
 else return EOF;
 }

 int
 main()
 {
 int m[MAXN]; /* We have m[j-1] == number of
 * j-reordered packets. */
 int ring[MAXN]; /* Last sequence numbers seen. */
 int r = 0; /* Ring pointer for next write. */
 int l = 0; /* Number of sequence numbers read. */
 int s; /* Last sequence number read. */
 int j;

 for (j = 0; j < MAXN; j++) m[j] = 0;
 for (;(s = read_sequence_number())!= EOF;l++,r=(r+1)%MAXN) {
 for (j=0; j<min(l, MAXN)&&s<ring[loop(r-j-1)];j++) m[j]++;
 ring[r] = s;
 }

Morton, et al. Standards Track [Page 38]

RFC 4737 Packet Reordering Metrics November 2006

 for (j = 0; j < MAXN && m[j]; j++)
 printf("%d-reordering = %f%%\n", j+1, 100.0*m[j]/(l-j-1));
 if (j == 0) printf("no reordering\n");
 else if (j < MAXN) printf("no %d-reordering\n", j+1);
 else printf("only up to %d-reordering is handled\n", MAXN);
 exit(0);
 }

 /* Example 2 singleton and n-reordering comparison =======
 Author: Jerry Perser 7-2002 (mod by acm 12-2004)
 Compile: $ gcc -o jpboth file.c
 Usage: $ jpboth 1 2 3 7 8 4 5 6 (pkt sequence given on cmdline)
 Note to cut/pasters: line 59 may need repair
 */

 #include <stdio.h>

 #define MAXN 100
 #define min(a, b) ((a) < (b)? (a): (b))
 #define loop(x) ((x) >= 0? x: x + MAXN)

 /* Global counters */
 int receive_packets=0; /* number of received */
 int reorder_packets_Al=0; /* num reordered pkts (singleton) */
 int reorder_packets_Stas=0; /* num reordered pkts(n-reordering)*/

 /* function to test if current packet has been reordered
 * returns 0 = not reordered
 * 1 = reordered
 */
 int testorder1(int seqnum) // Al
 {
 static int NextExp = 1;
 int iReturn = 0;

 if (seqnum >= NextExp) {
 NextExp = seqnum+1;
 } else {
 iReturn = 1;
 }
 return iReturn;
 }

 int testorder2(int seqnum) // Stanislav
 {
 static int ring[MAXN]; /* Last sequence numbers seen. */
 static int r = 0; /* Ring pointer for next write */

Morton, et al. Standards Track [Page 39]

RFC 4737 Packet Reordering Metrics November 2006

 int l = 0; /* Number of sequence numbers read. */
 int j;
 int iReturn = 0;

 l++;
 r = (r+1) % MAXN;
 for (j=0; j<min(l, MAXN) && seqnum<ring[loop(r-j-1)]; j++)
 iReturn = 1;
 ring[r] = seqnum;
 return iReturn;
 }
 int main(int argc, char *argv[])
 {
 int i, packet;
 for (i=1; i< argc; i++) {
 receive_packets++;
 packet = atoi(argv[i]);
 reorder_packets_Al += testorder1(packet); // singleton
 reorder_packets_Stas += testorder2(packet); //n-reord.
 }
 printf("Received packets = %d, Singleton Reordered = %d, n-
 reordered = %d\n", receive_packets, reorder_packets_Al,
 reorder_packets_Stas);
 exit(0);
 }

 Reference

 ISO/IEC 9899:1999 (E), as amended by ISO/IEC 9899:1999/Cor.1:2001
 (E). Also published as:

 The C Standard: Incorporating Technical Corrigendum 1, British
 Standards Institute, ISBN: 0-470-84573-2, Hardcover, 558 pages,
 September 2003.

Morton, et al. Standards Track [Page 40]

RFC 4737 Packet Reordering Metrics November 2006

Appendix B. Fragment Order Evaluation (Informative)

 Section 3 stated that fragment reassembly is assumed prior to order
 evaluation, but that similar procedures could be applied prior to
 reassembly. This appendix gives definitions and procedures to
 identify reordering in a packet stream that includes fragmentation.

B.1. Metric Name

 The Metric retains the same name, Type-P-Reordered, but additional
 parameters are required.

 This appendix assumes that the device that divides a packet into
 fragments sends them according to ascending fragment offset. Early
 Linux OS sent fragments in reverse order, so this possibility is
 worth checking.

B.2. Additional Metric Parameters

 + MoreFrag, the state of the More Fragments Flag in the IP header.

 + FragOffset, the offset from the beginning of a fragmented packet,
 in 8 octet units (also from the IP header).

 + FragSeq#, the sequence number from the IP header of a fragmented
 packet currently under evaluation for reordering. When set to
 zero, fragment evaluation is not in progress.

 + NextExpFrag, the next expected fragment offset at the destination,
 in 8 octet units. Set to zero when fragment evaluation is not in
 progress.

 The packet sequence number, s, is assumed to be the same as the IP
 header sequence number. Also, the value of NextExp does not change
 with the in-order arrival of fragments. NextExp is only updated when
 a last fragment or a complete packet arrives.

 Note that packets with missing fragments MUST be declared lost, and
 the Reordering status of any fragments that do arrive MUST be
 excluded from sample metrics.

Morton, et al. Standards Track [Page 41]

RFC 4737 Packet Reordering Metrics November 2006

B.3. Definition

 The value of Type-P-Reordered is typically false (the packet is
 in-order) when

 * the sequence number s >= NextExp, AND

 * the fragment offset FragOffset >= NextExpFrag

 However, it is more efficient to define reordered conditions exactly
 and designate Type-P-Reordered as False otherwise.

 The value of Type-P-Reordered is defined as True (the packet is
 reordered) under the conditions below. In these cases, the NextExp
 value does not change.

 Case 1: if s < NextExp

 Case 2: if s < FragSeq#

 Case 3: if s>= NextExp AND s = FragSeq# AND FragOffset < NextExpFrag

 This definition can also be illustrated in pseudo-code. A version of
 the code follows, and some simplification may be possible.
 Housekeeping for the new parameters will be challenging.

 NextExp=0;
 NextExpFrag=0;
 FragSeq#=0;

 while(packets arrive with s, MoreFrag, FragOffset)
 {
 if (s>=NextExp AND MoreFrag==0 AND s>=FragSeq#){
 /* a normal packet or last frag of an in-order packet arrived */
 NextExp = s+1;
 FragSeq# = 0;
 NextExpFrag = 0;
 Reordering = False;
 }
 if (s>=NextExp AND MoreFrag==1 AND s>FragSeq#>=0){
 /* a fragment of a new packet arrived, possibly with a
 higher sequence number than the current fragmented packet */
 FragSeq# = s;
 NextExpFrag = FragOffset+1;
 Reordering = False;
 }
 if (s>=NextExp AND MoreFrag==1 AND s==FragSeq#){
 /* a fragment of the "current packet s" arrived */

Morton, et al. Standards Track [Page 42]

RFC 4737 Packet Reordering Metrics November 2006

 if (FragOffset >= NextExpFrag){
 NextExpFrag = FragOffset+1;
 Reordering = False;
 }
 else{
 Reordering = True; /* fragment reordered */
 }
 }
 if (s>=NextExp AND MoreFrag==1 AND s < FragSeq#){
 /* case where a late fragment arrived,
 for illustration only, redundant with else below */
 Reordering = True;
 }
 else { /* when s < NextExp, or MoreFrag==0 AND s < FragSeq# */
 Reordering = True;
 }
 }

 A working version of the code would include a check to ensure that
 all fragments of a packet arrive before using the Reordered status
 further, such as in sample metrics.

B.4. Discussion: Notes on Sample Metrics When Evaluating Fragments

 All fragments with the same source sequence number are assigned the
 same source time.

 Evaluation with byte stream numbering may be simplified if the
 fragment offset is simply added to the SourceByte of the first packet
 (with fragment offset = 0), keeping the 8 octet units of the offset
 in mind.

Appendix C. Disclaimer and License

 Regarding this entire document or any portion of it (including the
 pseudo-code and C code), the authors make no guarantees and are not
 responsible for any damage resulting from its use. The authors grant
 irrevocable permission to anyone to use, modify, and distribute it in
 any way that does not diminish the rights of anyone else to use,
 modify, and distribute it, provided that redistributed derivative
 works do not contain misleading author or version information.
 Derivative works need not be licensed under similar terms.

Morton, et al. Standards Track [Page 43]

RFC 4737 Packet Reordering Metrics November 2006

Authors’ Addresses

 Al Morton
 AT&T Labs
 Room D3 - 3C06
 200 Laurel Ave. South
 Middletown, NJ 07748 USA
 Phone +1 732 420 1571
 EMail: acmorton@att.com

 Len Ciavattone
 AT&T Labs
 Room A2 - 4G06
 200 Laurel Ave. South
 Middletown, NJ 07748 USA
 Phone +1 732 420 1239
 EMail: lencia@att.com

 Gomathi Ramachandran
 AT&T Labs
 Room C4 - 3D22
 200 Laurel Ave. South
 Middletown, NJ 07748 USA
 Phone +1 732 420 2353
 EMail: gomathi@att.com

 Stanislav Shalunov
 Internet2
 1000 Oakbrook DR STE 300
 Ann Arbor, MI 48104
 Phone: +1 734 995 7060
 EMail: shalunov@internet2.edu

 Jerry Perser
 Veriwave
 8770 SW Nimbus Ave.
 Suite B
 Beaverton, OR 97008 USA
 Phone: +1 818 338 4112
 EMail: jperser@veriwave.com

Morton, et al. Standards Track [Page 44]

RFC 4737 Packet Reordering Metrics November 2006

Full Copyright Statement

 Copyright (C) The IETF Trust (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST,
 AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES,
 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
 THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY
 IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
 PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Morton, et al. Standards Track [Page 45]

