
Network Working Group R. Herriot
Request for Comments: 3391 December 2002
Category: Informational

 The MIME Application/Vnd.pwg-multiplexed Content-Type

Status of this Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2002). All Rights Reserved.

IESG Note

 The IESG believes use of this media type is only appropriate in
 situations where the producer is fully aware of the capabilities and
 limitations of the consumer. In particular, this mechanism is very
 dependent on the producer knowing when the consumer will need a
 particular component of a multipart object. But consumers
 potentially work in many different ways and different consumers may
 need different things at different times. This mechanism provides no
 means for a producer to determine the needs of a particular consumer
 and how they are to be accommodated.

 Alternative mechanisms, such as a protocol based on BEEP which is
 capable of bidirectional communication between the producer and
 consumer, should be considered when the capabilities of the consumer
 are not known by the producer.

Abstract

 The Application/Vnd.pwg-multiplexed content-type, like the
 Multipart/Related content-type, provides a mechanism for representing
 objects that consist of multiple components. An
 Application/Vnd.pwg-multiplexed entity contains a sequence of chunks.
 Each chunk contains a MIME message or a part of a MIME message. Each
 MIME message represents a component of the compound object, just as a
 body part of a Multipart/Related entity represents a component. With
 a Multipart/Related entity, a body part and its reference in some
 other body part may be separated by many octets. With an
 Application/Vnd.pwg-multiplexed entity, a message and its reference
 in some other message can be made quite close by chunking the message
 containing the reference. For example, if a long message contains

Herriot Informational [Page 1]

RFC 3391 Application/Multiplexed December 2002

 references to images and the producer does not know of the need for
 each image until it generates the reference, then
 Application/Vnd.pwg-multiplexed allows the consumer to process the
 reference to the image and the image before it consumes the entire
 long message. This ability is important in printing and scanning
 applications. This document defines the Application/Vnd.pwg-
 multiplexed content-type. It also provides examples of its use.

Table of Contents

 1. Introduction..2
 2. Terminology...7
 3. Details...9
 3.1 Syntax of Application/Vnd.pwg-multiplexed Contents...........10
 3.2 Parameters for Application/Vnd.pwg-multiplexed...............12
 3.2.1 The "type" Parameter.......................................12
 3.2.2 Syntax...12
 4. Handling Application/Vnd.pwg-multiplexed Entities..............12
 5. Examples...13
 5.1 Example With Multipart/Related...............................14
 5.2 Examples with Application/Vnd.pwg-multiplexed................15
 5.2.1 Example Where Each Chunk Has a Complete Message............15
 5.2.2 Example of Chunking the Root Message.......................17
 5.2.3 Example of Chunking the Several Messages...................18
 5.2.4 Example of Chunks with Empty Payloads......................20
 6. Security Considerations..22
 7. Registration Information for Application/Vnd.pwg-multiplexed...22
 8. Acknowledgments..23
 9. References...23
 10. Author’s Address..24
 11. Full Copyright Statement......................................25

1. Introduction

 The simple MIME content-types, such as "text/plain" provide a
 mechanism for representing a simple object, such as a text document.
 The Multipart/Related [RFC2387] content-type provides a mechanism for
 representing a compound object, such as a text document with two gif
 images.

 A compound object consists of multiple components. One such
 component is the root component, which contains references to other
 components of the compound object. These components may, in turn,
 contain references to other components of the compound object. For
 example, a compound object could consist of a root html text
 component and two gif image components -- each referenced by the root
 component.

Herriot Informational [Page 2]

RFC 3391 Application/Multiplexed December 2002

 A compound object and a component are both abstractions. For
 transmission over the wire or writing to storage, each needs a
 representation. A "Multipart/Related entity" is one possible
 representation of a compound object, and a "body part" is one
 possible representation of a component.

 However, the Multipart/Related content-type is not a good solution
 for applications that require each component to be close to its
 corresponding reference in the root component. This document defines
 a new MIME content-type Application/Vnd.pwg-multiplexed that provides
 a better solution for some applications. The Application/Vnd.pwg-
 multiplexed content-type, like the Multipart/Related content-type,
 provides a common mechanism for representing a compound object. A
 Multipart/Related entity consists of a sequence of body parts
 separated by boundary strings. Each body part represents a component
 of the compound object. An Application/Vnd.pwg-multiplexed entity
 consists of a sequence of chunks, each of whose length is specified
 in the chunk header. Each chunk contains a message or a part of a
 message. Each message represents a component of the compound object.
 Chunks from different messages can be interleaved. HTTP is the
 typical transport for an Application/Vnd.pwg-multiplexed entity over
 the wire. An Application/Vnd.pwg-multiplexed entity could be stored
 in a Microsoft HTML (message/rfc822) file whose suffix is .mht.

 The following paragraphs contain three examples of applications. For
 each application, there is a discussion of its solution with the
 Application/Vnd.pwg-multiplexed content-type, the Multipart/Related
 content-type and BEEP [RFC3080].

 Example 1: a printing application. A Producer creates a print stream
 that consists of a very long series of page descriptions, each of
 which references one or more images. The root component is the long
 series of page descriptions. An image may be referenced from
 multiple pages descriptions, and there is a mechanism to indicate
 when there are no additional references to an image (i.e., the image
 is out of scope). The Producer does not know what images to include
 with a page until it generates that page. The Consumer is presumed
 to have enough storage to hold all in-scope images and enough of the
 root component to process at least one page. The Producer doesn’t
 need any knowledge of the Consumer’s storage capabilities in order to
 create an entity that the Consumer can successfully process.
 However, the Producer needs to be prudent about the number of images
 that are in-scope at any time. Of course, a malicious Producer may
 try to exceed the storage capabilities of the Consumer, and the
 Consumer must guard against such entities (see section 6). Here are
 ways to represent this compound object.

Herriot Informational [Page 3]

RFC 3391 Application/Multiplexed December 2002

 With the Application/Vnd.pwg-multiplexed content-type, each image
 is a message and the root component is a message. The Producer
 breaks the root component message into chunks with each image
 message occurring shortly before its first reference. When the
 Consumer encounters a reference, it can assume that it has already
 received the referenced image in an earlier chunk.

 With the Multipart/Related content-type, each image must either
 precede or follow the root component.

 If images follow the root component, the Consumer must read all
 remaining pages of the root component before it can print the
 first page that references such images. The Consumer must wait
 to print such a page until it has received the entire root
 component, and the Consumer may not have the space to hold the
 remaining pages.

 If images precede the root component, the Producer must
 determine and send all such images before it sends the root
 component. The Consumer must, in the best case, wait some
 additional time before it receives the first page of the root
 component. In the worse case, the Consumer may not have enough
 storage for all the images.

 The Multipart/Related solution is not a good solution because
 of the wait time and because, in some cases, the Consumer may
 not have sufficient storage for all of the images.

 With BEEP, the images and root component can be sent in separate
 channels. The Producer can push each image when it encounters the
 first reference or the Consumer can request it when it encounters
 the first reference. The over-the-wire stream of octets is
 similar to an Application/Vnd.pwg-multiplexed entity. However,
 there is a substantial difference in behavior for a printing
 application. With the Application/Vnd.pwg-multiplexed content-
 type, the Producer puts each image message before its first
 reference so that when the Consumer encounters a reference, the
 image is guaranteed to be present on the printer. With BEEP, if
 the Consumer pulls the image, the Consumer has to wait while the
 image comes over the network. If the Producer pushes the image,
 BEEP may put the image message after its first reference and the
 Consumer may still have to wait for the image. A high-speed
 printer should not have to risk waiting for images; otherwise it
 cannot run at full speed.

 Example 2: a scanning (fax-like) application. The Producer is a
 scanner, which scans pages and sends them along with a vnd.pwg-
 xhtml-print+xml root component that contains references to each page

Herriot Informational [Page 4]

RFC 3391 Application/Multiplexed December 2002

 image. Each page is referenced exactly once in the root-component.
 The Consumer is a printer that consumes vnd.pwg-xhtml-print+xml
 entities and their attachments. That is, the Consumer is not limited
 to print jobs that come from scanners. A Producer and Consumer are
 each presumed to have enough storage to hold a few page images and
 most if not all of the root component. The Producer doesn’t need any
 additional knowledge of the Consumer’s storage capabilities in order
 to create an entity that the Consumer can successfully process. Of
 course, a malicious Producer may try to exceed the storage
 capabilities of the Consumer and the Consumer must guard against such
 entities (see section 6). Here are ways to represent this compound
 object.

 With the Application/Vnd.pwg-multiplexed content-type, each page
 image is a message and the root component is a message. The
 Producer breaks the root component message into chunks with each
 image message just before or just after its reference.

 With the Multipart/Related content-type, the images cannot precede
 the root component because the Consumer might not have enough
 space to store them until the root component arrived. In this
 case, the printer could fail to print the job correctly and the
 Producer might not know. Therefore the images must follow the
 root component, and the Producer must scan all pages before it can
 send the first page. At the very least, this solution delays the
 printing of the pages until all have been scanned. In the worst
 case, the Producer does not have sufficient memory to buffer the
 images, and the job fails.

 With BEEP, the issues are the same as in the previous example,
 except that speed is not as important in this case. So BEEP is a
 viable alternative for this example.

 Example 3: a printing application. A Producer creates a print stream
 that consists of a series of pages, each of which references zero or
 more images. Each image is referenced exactly once. The Producer
 does not know what images to include with a page until it generates
 that page, and the Producer doesn’t know the layout details; the
 Consumer handles layout. The Producer has enough storage to send the
 root component and all images. However, it may not have enough
 storage to hold the entire root component or all octets of any of the
 images. The Consumer is presumed to have enough storage to render
 the root component and to render each image. It may not have enough
 storage to hold the entire root component or all octets of any of the
 images. The Producer doesn’t determine the Consumer’s storage
 capabilities. Rather it arranges the components so that the Consumer
 is mostly likely to succeed. Of course, a malicious Producer may try

Herriot Informational [Page 5]

RFC 3391 Application/Multiplexed December 2002

 to exceed the storage capabilities of the Consumer, and the Consumer
 must guard against such entities (see section 6). Here are ways to
 represent this compound object.

 With the Application/Vnd.pwg-multiplexed content-type, each image
 is a message and the root component is a message. The Producer
 breaks the root component message into chunks with each image
 message just after its reference. The references appear first so
 that the Consumer knows the location of each image before it
 processes the image. This strategy minimizes storage needs for
 Producer and Consumer and provides a good strategy in case of
 failure. Here are the cases to consider.

 a) When the document consists of vertically aligned blocks where
 each block contains either lines of text or a single image, the
 sequence of chunks is the same as the sequence of printable
 blocks, thus minimizing Consumer buffering needs.

 b) When a block can contain N side-by-side images, the Consumer
 must buffer N-1 images unless the Producer interleaves the
 images. If the Producer doesn’t interleave the images, and the
 Consumer runs out of storage before it has received N-1,
 images, it can print what it has and print the remaining images
 below; not what the Producer intended, but better than nothing.
 If the Producer interleaves images, and the Consumer runs out
 of storage before it has received the bands of N images, the
 Consumer would print portions of images interleaved with
 portions of other images. So, a Producer should not interleave
 images.

 c) When a block contains text and image side-by-side (i.e., run-
 around text), there are additional buffering requirements.
 When the Consumer processes the text that follows the
 reference, it will place some of it next to the image (run-
 around text) and will place the remaining text after the image.
 The Producer doesn’t know where the run-around ends, and thus
 doesn’t know where to end the text chunk and start the image
 chunk. If the Producer ends the text too soon, then the
 Consumer either has to process the entire image (if it has
 enough storage) in order to get the remaining run-around text,
 or it ends the run-around text prematurely. If the Producer
 ends the text too late, then the Consumer may have to store too
 much text and possibly put the image later than the Producer
 requested. Because text data requires significantly less
 storage than image data, a good strategy for Producer is to err
 on the side of sending too much rather than too little text
 before the image data.

Herriot Informational [Page 6]

RFC 3391 Application/Multiplexed December 2002

 d) When a block contains text and multiple side-by-side images,
 the problem becomes a combination of items b) and c) above.

 The Application/Vnd.pwg-multiplexed content-type can be made to
 work in this example, but a Consumer must have failure strategies
 and the result may not be quite what the producer intended. With
 the Multipart/Related content-type, the images cannot precede the
 root component because the Consumer might not have enough space to
 store them until the root component arrived. Also, the images
 cannot follow the root component because the Consumer might not
 have enough storage for the root component before the first image
 arrives. So the Multipart/Related content-type is not an
 acceptable solution for this example.

 With BEEP, the Producer can send the root component on channel 1
 and the Consumer can request images on even numbered channels when
 it encounters a reference. This solution allows more flexibility
 than the Application/Vnd.pwg-multiplexed content-type. If there
 are side-by-side images and/or run-around text, the Consumer can
 request bands of each image or run-around text over separate
 channels.

 In all of these examples, the Application/Vnd.pwg-multiplexed
 content-type provides a much better solution than Multipart/Related.
 However, it is evenly matched with BEEP. For applications where
 speed is important and ordering of the chunks is important in order
 to avoid printing delays, the Application/Vnd.pwg-multiplexed
 content-type is best. For applications, where the Consumer needs
 more control over the ordering of received octets, BEEP is best.

2. Terminology

 This document uses some of the MIME terms that are defined in
 [RFC2045]. The following are the terms used in this document:

 Entity: the headers and the content. In this document, the term
 "entity" describes all the octets that represent a compound
 object.

 Message: an entity as in [RFC2045]. In this document, the term
 "message" describes all octets that represent one component of a
 compound object. That is, it has MIME headers and content.

 Body Part: an entity inside a multipart. That is, a body part is
 the headers and content (i.e., octets) between the multipart
 boundary strings not including the CRLF at the beginning and end.
 This document never uses "entity" to mean "body part".

Herriot Informational [Page 7]

RFC 3391 Application/Multiplexed December 2002

 Headers: the initial lines of an entity, message or body part. An
 empty line (i.e., two adjacent CRLFs) terminates the headers.
 Sometimes the term "MIME header" is used instead of just "header".

 Content: the part of an entity, message or body part that follows
 the headers (i.e., follows the two adjacent CRLFs). The content
 of a body part ends at the octet preceding the CRLF before the
 multipart boundary string. The content of a message ends at the
 octets specified by the length field in the Chunk Header.

 This document uses the following additional terms.

 Chunk: a chunk of data, consisting of a chunk header, a chunk
 payload and a CRLF.

 Chunk Header: the first line of a chunk. The line consists of the
 "CHK" keyword, the message number, the length and the continuation
 indicator, each separated by a single space character (ASCII 32).
 A CRLF terminates the line. Each message in an
 Application/Vnd.pwg-multiplexed entity has a message number that
 normally differs from the message numbers of all other messages in
 the Application/Vnd.pwg-multiplexed entity. The message number 0
 is reserved for final Chunk Header in the Application/Vnd.pwg-
 multiplexed entity.

 Chunk Payload: the octets between the Chunk Header and the Chunk
 Header of the next chunk. The length field in the header’s length
 field specifies the number of octets in the Chunk Payload. The
 Chunk Payload is either a complete message or a part of a message.
 The continuation field in the header specifies whether the chunk
 is the last chunk of the message.

 CRLF: the sequence of octets corresponding to the two US-ASCII
 characters CR (decimal value 13) and LF (decimal value 10) which,
 taken together, in this order, denote a line break. A CRLF
 terminates each chunk in order to provide visual separation from
 the next chunk header.

 Consumer: the software that receives and processes a MIME entity,
 e.g., software in a printer or software that reads a file.

 Producer: the software that creates and sends a MIME entity, e.g.,
 software in a scanner or software that writes a file.

Herriot Informational [Page 8]

RFC 3391 Application/Multiplexed December 2002

3. Details

 The Application/Vnd.pwg-multiplexed content-type, like
 Multipart/Related, is intended to represent a compound object
 consisting of several inter-related components. This document does
 not specify the representation of these relationships, but [RFC2557]
 contains examples of Multipart/Related entities that use the
 Content-ID and Content-Location headers to identify body parts and
 URLs (including the "cid" URL) to reference body parts. It is
 expected that Application/Vnd.pwg-multiplexed entities would use the
 patterns described in [RFC2557].

 For an Application/Vnd.pwg-multiplexed entity, there is one parameter
 for the Content-Type header. It is a "type" parameter, and it is
 like the "type" parameter for the Multipart/Related content-type.
 The value of the "type" parameter must be the content-type of the
 root message and it effectively specifies the type of the compound
 object.

 An Application/Vnd.pwg-multiplexed entity contains a sequence of
 chunks. Each chunk consists of a chunk header, a chunk payload and a
 CRLF.

 - The chunk header consists of a "CHK" keyword followed by the
 message number, the chunk payload length, whether the chunk is
 the last chunk of a message and, finally, a CRLF. The length
 field removes the need for boundary strings that Multipart uses.
 (See section 3.1 for the syntax of a chunk header).

 - The chunk payload is a sequence of octets that is either a
 complete message or a part of a message.

 - The CRLF provides visual separation from the following chunk.

 Each message represents a component of the compound object, and a
 message is intended to have exactly the same representation, octet
 for octet, as a body part of a Multipart/Related entity that
 represents the same component. When a message is split across
 multiple chunks, the chunks need not be contiguous.

 The contents of an Application/Vnd.pwg-multiplexed entity have the
 following properties:

 1) The first chunk contains a complete or partial message that (in
 either case) represents the root component of the compound
 object.

Herriot Informational [Page 9]

RFC 3391 Application/Multiplexed December 2002

 2) Additional chunks contain messages or partial messages that
 represent some component of the compound object.

 3) The final chunk’s header contains a message number of 0, a
 length of 0 and a last-chunk-of-message mark (i.e., the chunk
 header line is "CHK 0 0 LAST"). The final chunk contains no
 chunk payload.

 4) A message can be broken into multiple parts and each break can
 occur anywhere within the message. Each part of the message is
 zero or more bytes in length and each part of the message is
 the contents of its own chunk. The order of the chunks within
 the Application/Vnd.pwg-multiplexed entity must be the same as
 the order of the parts within the message.

 5) A message represents a component of a compound object, and it
 is intended that it have exactly the same representation, octet
 for octet, as a body part of a Multipart/Related entity that
 represents the same component. In particular, the message may
 contain a Content-Type header to specify the content-type of
 the message content. Also, the message may contain a Content-
 ID header and/or Content-Location header to identify a message
 that is referenced from within another message. If a message
 contains no Content-Type header, then the message has an
 implicit content-type of "text/plain; charset=us-ascii", cf.
 [RFC2045].

 See section 4 for a discussion displaying an Application/Vnd.pwg-
 multiplexed entity.

3.1 Syntax of Application/Vnd.pwg-multiplexed Contents

 The ABNF [RFC2234] for the contents of an Application/Vnd.pwg-
 multiplexed entity is:

 contents = *chunk finalChunk
 chunk = header payload CRLF
 header = "CHK" SP messageNumber SP length SP isMore CRLF
 messageNumber = 1..2147483647
 length = 0..2147483647
 isMore = "MORE" / "LAST"
 payload = *OCTET
 finalChunk = finalHeader CRLF
 finalHeader = "CHK" SP "0" SP "0" SP "LAST" CRLF

Herriot Informational [Page 10]

RFC 3391 Application/Multiplexed December 2002

 The messageNumber field specifies the message that the chunk is
 associated with. See the end of this section for more details.

 The length field specifies the number of octets in the chunk payload
 (represented in ABNF as "payload"). The first octet of the chunk
 payload is the one immediately following the LF (i.e., final octet)
 of the chunk header. The last octet of the chunk payload is the one
 immediately preceding the two octets CRLF that end the chunk.

 The isMore field has a value of "LAST" for the last chunk of a
 message and "MORE" for all other chunks of a message.

 Normally each message in an Application/Vnd.pwg-multiplexed entity
 has a unique message number, and a message consists of the
 concatenation of all the octets from the one or more chunks with the
 same message number. The isMore field of the chunk header of the
 last chunk of each message must have a value of "LAST" and the isMore
 field of the chunk header of all other chunks must have a value of
 "MORE".

 Two or more messages may have the same message number, though such
 reuse of message numbers is not recommended. The chunks with the
 same message number represent a sequence of one or more messages
 where the isMore field of the chunk header of the last chunk of each
 message has a value of "LAST". All chunks whose isMore field of the
 chunk header has the value of "MORE" belong to the same message as
 the next chunk (in sequence) whose isMore field of the chunk header
 has the value of "LAST". In other words, if two messages have the
 same message number, the last chunk of the first message must occur
 before the first chunk of the second message.

 The behavior of the Consumer is undefined if the final Chunk (i.e.,
 the Chunk whose chunk header is "CHK 0 0 LAST") occurs before the
 last chunk of every message occurs.

 Two adjacent chunks usually have different message numbers. However,
 they may have the same message number. If two adjacent chunks have
 the same message number, the two chunks could be combined into a
 single chunk, but they need not be combined.

 The number of octets in a chunk payload may be zero, and an
 Application/Vnd.pwg-multiplexed entity may contain any number of
 chunks with zero octets of chunk payload. For example, the last
 chunk of each message may contain zero octets for programming
 convenience. As another example, suppose that a particular compound
 object format requires that referenced messages occur before the root
 message. This document requires that the first chunk of an
 Application/Vnd.pwg-multiplexed entity contain the root message or a

Herriot Informational [Page 11]

RFC 3391 Application/Multiplexed December 2002

 part of it. So, the first chunk contains a chunk payload of zero
 octets with the first octet of the root message in the second chunk.
 That is, all of the message headers of the root message are in the
 second chunk. As an extreme but unlikely example, it would be
 possible to have a message broken into ten chunks with zero octet
 chunk payloads in all chunks except for chunks 4 and 7.

3.2 Parameters for Application/Vnd.pwg-multiplexed

 This section defines additional parameters for Application/Vnd.pwg-
 multiplexed.

3.2.1 The "type" Parameter

 The type parameter must be specified. Its value is the content-type
 of the "root" message. It permits a Consumer to determine the
 content-type without reference to the enclosed message. If the value
 of the type parameter differs from the content-type of the root
 message, the Consumer’s behavior is undefined.

3.2.2 Syntax

 The syntax for "parameter" is:

 parameter := "type" "=" type "/" subtype ; cf. [RFC2045]

4. Handling Application/Vnd.pwg-multiplexed Entities

 The application that handles the Application/Vnd.pwg-multiplexed
 entity has the responsibility for displaying the entity. However,
 Application/Vnd.pwg-multiplexed messages may contain Content-
 Disposition headers that provide suggestions for the display and
 storage of a message, and in some cases the application may pay
 attention to such headers.

 As a reminder, Content-Disposition headers [RFC1806] allow the sender
 to suggest presentation styles for MIME messages. There are two
 presentation styles, ’inline’ and ’attachment’. Content-Disposition
 headers have a parameter for specifying a suggested file name for
 storage.

 There are three cases to consider for handling Application/Vnd.pwg-
 multiplexed entities:

 a) The Consumer recognizes Application/Vnd.pwg-multiplexed and the
 content-type of the root. The Consumer determines the
 presentation style for the compound object; it handles the
 display of the components of the compound object in the context

Herriot Informational [Page 12]

RFC 3391 Application/Multiplexed December 2002

 of the compound object. In this case, the Content-Disposition
 header information is redundant or even misleading, and the
 Consumer shall ignore them for purposes of display. The
 Consumer may use the suggested file name if the entity is
 stored.

 b) The Consumer recognizes Application/Vnd.pwg-multiplexed, but
 not the content-type of the root. The Consumer will give the
 user the choice of suppressing the entire Application/Vnd.pwg-
 multiplexed entity or treating the Application/Vnd.pwg-
 multiplexed entity as a Multipart/Mixed entity where each
 message is a body part of the Multipart/Mixed entity. In this
 case (where the entity is not suppressed), the Consumer may
 find the Content-Disposition information useful for displaying
 each body part of the resulting Multipart/Mixed entity. If a
 body part has no Content-Disposition header, the Consumer
 should display the body part as an attachment.

 c) The Consumer does not recognize Application/Vnd.pwg-
 multiplexed. The Consumer treats the Application/Vnd.pwg-
 multiplexed entity as opaque and can do nothing with it.

5. Examples

 This section contains five examples. Each example is a different
 representation of the same compound object. The compound object has
 four components: an XHTML text component and three image components.
 The images are encoded in binary. The string "<<binary data>>" and
 "<<part of binary data>>" in each example represents all or part of
 the binary data of each image. Two of the images are potentially
 side by side and the third image is displayed later in the document.
 All of the images are identified by Content-Id and two of the images
 are also identified by a Content-Location. One of the images
 references the Content-Location.

 The first example shows a Multipart/Related representation of the
 compound object in order to provide a representation that the reader
 is familiar with. The remaining examples show Application/Vnd.pwg-
 multiplexed representations of the same compound object. In the
 second example, each chunk contains a whole message. In the third
 example, the XHTML message is split across 3 chunks, and these chunks
 are interleaved among the three image messages. In the fourth
 example, the XHTML message is split across 4 chunks, and the two
 side-by-side images are each split across two chunks. The XHTML
 chunks are interleaved among the image chunks. In the fifth example,
 there are chunks with empty payloads and adjacent chunks with the
 same message number.

Herriot Informational [Page 13]

RFC 3391 Application/Multiplexed December 2002

 The last example may seem to address useless cases, but sometimes it
 is easier to write software if these cases are allowed. For example,
 when a buffer fills, it may be easiest to write a chunk and not worry
 if the previous chunk had the same message number. Likewise, it may
 be easiest to end a message with an empty chunk. Finally, the
 Application/Vnd.pwg-multiplexed content-type requires that the first
 chunk be part of the root message. Sometimes, it is more convenient
 for the Producer if the root message starts after the occurrence of
 some attachments. Since a chunk can be empty, the first chunk of the
 root message can be empty, i.e., it doesn’t even contain any headers.
 Then the first chunk contains a part of the root message, but the
 Producer doesn’t generate any octets for that chunk.

 Each body part of the Multipart/Related entity and each message of
 the Application/Vnd.pwg-multiplexed entity contain a content-
 disposition, which the Consumer uses according to the rules in
 section 4. Note the location of the content-disposition headers in
 the examples.

5.1 Example With Multipart/Related

 In this example, the compound object is represented as a
 Multipart/Related entity so that the reader can compare it with the
 Application/Vnd.pwg-multiplexed entities.

 Content-Type: multipart/related; boundary="boundary-example";
 type="text/xhtml+xml"

 --boundary-example
 Content-ID: <49568.44343xxx@foo.com>
 Content-Type: application/vnd.pwg-xhtml-print+xml
 Content-Disposition: inline

 <?xml version="1.0"?>
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 <html xmlns="http://www.w3.org/TR/xhtml1">
 <body>
 <p>some text

 some more text after the images
 </p>
 <p>some more text without images
 </p>
 <p>some more text

 </p>

Herriot Informational [Page 14]

RFC 3391 Application/Multiplexed December 2002

 <p>some final text
 </p>
 </body>
 </html>
 --boundary-example
 Content-ID: <49568.45876xxx@foo.com>
 Content-Location: http://foo.com/images/image1.gif
 Content-Type: image/gif
 Content-Disposition: attachment

 <<binary data>>
 --boundary-example
 Content-ID: <49568.46000xxx@foo.com>
 Content-Location: http://foo.com/images/image2.gif
 Content-Type: image/gif
 Content-Disposition: attachment

 <<binary data>>
 --boundary-example
 Content-ID: <49568.47333xxx@foo.com>
 Content-Type: image/gif
 Content-Disposition: attachment

 <<binary data>>
 --boundary-example--

5.2 Examples with Application/Vnd.pwg-multiplexed

 The four examples in this section show Application/Vnd.pwg-
 multiplexed representations of the same compound object. Note that
 each CRLF is represented by a visual line break.

5.2.1 Example Where Each Chunk Has a Complete Message

 In this example, the compound object is represented as an
 Application/Vnd.pwg-multiplexed entity. Each chunk contains an
 entire message, i.e., none of the messages are split across multiple
 chunks. Each message in this example is identical to the
 corresponding body part in the preceding Multipart/Relate example.

 Content-Type: application/vnd.pwg-multiplexed;
 type="application/vnd.pwg-xhtml-print+xml"

 CHK 1 550 LAST
 Content-ID: <49568.44343xxx@foo.com>
 Content-Type: application/vnd.pwg-xhtml-print+xml
 Content-Disposition: inline

Herriot Informational [Page 15]

RFC 3391 Application/Multiplexed December 2002

 <?xml version="1.0"?>
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 <html xmlns="http://www.w3.org/TR/xhtml1">
 <body>
 <p>some text

 some more text after the images
 </p>
 <p>some more text without images
 </p>
 <p>some more text

 </p>
 <p>some final text
 </p>
 </body>
 </html>

 CHK 2 6346 LAST
 Content-ID: <49568.45876xxx@foo.com>
 Content-Location: http://foo.com/images/image1.gif
 Content-Type: image/gif
 Content-Disposition: attachment

 <<binary data>>
 CHK 3 6401 LAST
 Content-ID: <49568.46000xxx@foo.com>
 Content-Location: http://foo.com/images/image2.gif
 Content-Type: image/gif
 Content-Disposition: attachment

 <<binary data>>
 CHK 4 7603 LAST
 Content-ID: <49568.47333xxx@foo.com>
 Content-Type: image/gif
 Content-Disposition: attachment

 <<binary data>>
 CHK 0 0 LAST

Herriot Informational [Page 16]

RFC 3391 Application/Multiplexed December 2002

5.2.2 Example of Chunking the Root Message

 In this example, the compound object is represented as an
 Application/Vnd.pwg-multiplexed entity. The message containing the
 XHTML component is split into 3 pieces so that the reference to an
 image is as close as possible to the beginning of the chunk. The
 chunk containing the referenced image message occurs just before the
 chunk with the reference. This minimizes the distance between
 reference and referenced message.

 Note that there are other possible arrangements (see the third
 example in section 5.2.3). For example, a sender could split the
 XHTML message so that the reference to an image is as close as
 possible to the end of the chunk. Then the chunk containing the
 referenced image message should occur just after the chunk with the
 reference. The sender could mix this strategy with the one used in
 this example.

 Content-Type: application/vnd.pwg-multiplexed;
 type=" application/vnd.pwg-xhtml-print+xml"

 CHK 1 267 MORE
 Content-ID: <49568.44343xxx@foo.com>
 Content-Type: application/vnd.pwg-xhtml-print+xml
 Content-Disposition: inline

 <?xml version="1.0"?>
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 <html xmlns="http://www.w3.org/TR/xhtml1">
 <body>
 <p>some text

 CHK 2 6346 LAST
 Content-ID: <49568.45876xxx@foo.com>
 Content-Location: http://foo.com/images/image1.gif
 Content-Type: image/gif
 Content-Disposition: attachment

 <<binary data>>
 CHK 3 6401 LAST
 Content-ID: <49568.46000xxx@foo.com>
 Content-Location: http://foo.com/images/image2.gif
 Content-Type: image/gif
 Content-Disposition: attachment

Herriot Informational [Page 17]

RFC 3391 Application/Multiplexed December 2002

 <<binary data>>
 CHK 1 166 MORE

 some more text after the images
 </p>
 <p>some more text without images
 </p>
 <p>some more text

 CHK 4 7603 LAST
 Content-ID: <49568.47333xxx@foo.com>
 Content-Type: image/gif
 Content-Disposition: attachment

 <<binary data>>
 CHK 1 80 LAST

 </p>
 <p>some final text
 </p>
 </body>
 </html>

 CHK 0 0 LAST

5.2.3 Example of Chunking the Several Messages

 In this example, the compound object is represented as an
 Application/Vnd.pwg-multiplexed entity. The message containing the
 XHTML component is split into 4 pieces so that the reference to an
 image is as close as possible to either the beginning or the end of
 the chunk. The references to the first and second images closely
 follow the referenced images. The reference to the third image
 closely precedes the referenced image. This minimizes the distance
 between reference and referenced message. In addition, the first two
 image messages are split into two chunks each.

 Content-Type: application/vnd.pwg-multiplexed;
 type=" application/vnd.pwg-xhtml-print+xml"

 CHK 1 303 MORE
 Content-ID: <49568.44343xxx@foo.com>
 Content-Type: application/vnd.pwg-xhtml-print+xml
 Content-Disposition: inline

Herriot Informational [Page 18]

RFC 3391 Application/Multiplexed December 2002

 <?xml version="1.0"?>
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 <html xmlns="http://www.w3.org/TR/xhtml1">
 <body>
 <p>some text

 CHK 2 184 MORE
 Content-ID: <49568.45876xxx@foo.com>
 Content-Location: http://foo.com/images/image1.gif
 Content-Type: image/gif
 Content-Disposition: attachment

 <<part of binary data>>
 CHK 3 200 MORE
 Content-ID: <49568.46000xxx@foo.com>
 Content-Location: http://foo.com/images/image2.gif
 Content-Type: image/gif
 Content-Disposition: attachment

 <<part of binary data>>
 CHK 1 78 MORE

 CHK 2 6162 LAST
 <<part of binary data>>
 CHK 3 6201 LAST
 <<part of binary data>>
 CHK 1 127 MORE
 some more text after the images
 </p>
 <p>some more text without images
 </p>
 <p>some more text

 CHK 4 7603 LAST
 Content-ID: <49568.47333xxx@foo.com>
 Content-Type: image/gif
 Content-Disposition: attachment

Herriot Informational [Page 19]

RFC 3391 Application/Multiplexed December 2002

 <<binary data>>
 CHK 1 41 LAST
 </p>
 <p>some final text
 </p>
 </body>
 </html>

 CHK 0 0 LAST

5.2.4 Example of Chunks with Empty Payloads

 This example is identical to the previous one, except that some
 chunks have a chunk payload of zero octets. The root message starts
 with a chunk whose payload is empty and every message ends with a
 chunk whose payload is empty. This example also shows two adjacent
 chunks that are from the same message. These two chunks could be
 coalesced into a single chunk, but they might be kept separate for
 programming convenience.

 Content-Type: application/vnd.pwg-multiplexed;
 type=" application/vnd.pwg-xhtml-print+xml"

 CHK 1 0 MORE

 CHK 2 184 MORE
 Content-ID: <49568.45876xxx@foo.com>
 Content-Location: http://foo.com/images/image1.gif
 Content-Type: image/gif
 Content-Disposition: attachment

 <<part of binary data>>
 CHK 3 200 MORE
 Content-ID: <49568.46000xxx@foo.com>
 Content-Location: http://foo.com/images/image2.gif
 Content-Type: image/gif
 Content-Disposition: attachment

 <<part of binary data>>
 CHK 1 303 MORE
 Content-ID: <49568.44343xxx@foo.com>
 Content-Type: application/vnd.pwg-xhtml-print+xml
 Content-Disposition: inline

Herriot Informational [Page 20]

RFC 3391 Application/Multiplexed December 2002

 <?xml version="1.0"?>
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 <html xmlns="http://www.w3.org/TR/xhtml1">
 <body>
 <p>some text

 CHK 2 6162 MORE
 <<part of binary data>>
 CHK 3 6201 MORE
 <<part of binary data>>
 CHK 2 0 LAST

 CHK 3 0 LAST

 CHK 1 78 MORE

 CHK 4 7603 MORE
 Content-ID: <49568.47333xxx@foo.com>
 Content-Type: image/gif
 Content-Disposition: attachment

 <<binary data>>
 CHK 4 0 LAST

 CHK 1 127 MORE
 some more text after the images
 </p>
 <p>some more text without images
 </p>
 <p>some more text

 CHK 1 41 MORE
 </p>
 <p>some final text
 </p>
 </body>
 </html>

 CHK 1 0 LAST

 CHK 0 0 LAST

Herriot Informational [Page 21]

RFC 3391 Application/Multiplexed December 2002

6. Security Considerations

 There are security considerations that pertain to each message of an
 Application/Vnd.pwg-multiplexed entity. Those security
 considerations are described by the document that defines the
 content-type of the message. They are not addressed in this
 document.

 There are also security considerations that pertain to the
 Application/Vnd.pwg-multiplexed entity as a whole. A Producer that
 is buggy or malicious may send an Application/Vnd.pwg-multiplexed
 entity that could cause a Consumer to request more storage than it
 has, even if it has a large amount of storage. A Consumer must be
 able to deal gracefully with the following scenarios and combinations
 of them:

 - The chunks of one or more messages are separated by a very large
 number of octets. In the extreme case some or all of the
 messages don’t terminate, i.e., they don’t contain a closing
 chunk.
 - A very large number of messages are started and interleaved
 before their final chunk occurs.
 - A message contains one or more references to other messages that
 never occur or don’t occur for a large number of octets.
 - A very large number of referenced messages occur before the
 Consumer knows that it can discard them.

7. Registration Information for Application/Vnd.pwg-multiplexed

 The following form is copied from RFC 1590, Appendix A.

 To: iana@iana.org

 Subject: Registration of new Media Type
 application/Vnd.pwg-multiplexed
 Media Type name: Application
 Media subtype name: Vendor Tree - vnd.pwg-multiplexed
 Required parameters: Type, a media type/subtype.
 Optional parameters: No optional parameters
 Encoding considerations: Each message of an
 Application/Vnd.pwg-multiplexed entity can be
 encoded in any manner allowed by the Content-
 Type of the message. However, using the
 reasoning of Multipart, the
 Application/Vnd.pwg-multiplexed entity cannot
 be encoded. Otherwise, a message would be

Herriot Informational [Page 22]

RFC 3391 Application/Multiplexed December 2002

 encoded twice, once at the message level and
 once at the Application/Vnd.pwg-multiplexed
 level.
 Security considerations: See section 6 (Security
 Considerations) of RFC 3391.
 Published specification: RFC 3391.
 Person & email address to contact for further information:

 Robert Herriot
 706 Colorado Ave.
 Palo Alto, CA 94303
 USA
 Phone: 1-650-327-4466
 Fax: 1-650-327-4466
 EMail: bob@herriot.com

8. Acknowledgments

 The author gratefully acknowledges the contributions of: Ugo Corda,
 Dave Crocker, Melinda Sue Grant, Graham Klyne, Carl-Uno Manros, Larry
 Masinter, Ira McDonald, Chris Newman, Henrik Frystyk Nielsen and Dale
 R. Worley. In particular, Chris Newman provided invaluable help.

9. References

 [RFC1806] Troost, R. and S. Dorner, "Communicating Presentation
 Information in Internet Messages: The Content-Disposition
 Header", RFC 1806, June 1995.

 [RFC1873] Levinson, E. and J. Clark, "Message/External-Body Content-
 ID Access Type", RFC 1873, December 1995.
 Levinson, E., "Message/External-Body Content-ID Access
 Type", Work in Progress.

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, November 1996.

 [RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046,
 November 1996.

 [RFC2234] Crocker, D. and P. Overell, "Augmented BNF for
 SyntaxSpecifications: ABNF", RFC 2234, November 1997.

 [RFC2387] Levinson, E., "The MIME Multipart/Related Content-type",
 RFC 2387, August 1998.

Herriot Informational [Page 23]

RFC 3391 Application/Multiplexed December 2002

 [RFC2392] Levinson, E., "Content-ID and Message-ID Uniform Resource
 Locators", RFC 2392, August 1998.

 [RFC2557] Palme, J., "MIME Encapsulation of Aggregate Documents, such
 as HTML (MHTML", RFC 2557, March 1999.

 [RFC2822] Resnick, P., Editor, "Internet Message Format", RFC 2822,
 April 2001.

 [RFC3080] Rose, M., "The Blocks Extensible Exchange Protocol Core",
 RFC 3080, March 2001.

10. Author’s Address

 Robert Herriot
 706 Colorado Ave.
 Palo Alto, CA 94303
 USA

 Phone: 1-650-327-4466
 Fax: 1-650-327-4466
 EMail: bob@herriot.com

Herriot Informational [Page 24]

RFC 3391 Application/Multiplexed December 2002

11. Full Copyright Statement

 Copyright (C) The Internet Society (2002). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Herriot Informational [Page 25]

