
Network Working Group J. Lennox
Request for Comments: 2824 H. Schulzrinne
Category: Informational Columbia University
 May 2000

 Call Processing Language Framework and Requirements

Status of this Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2000). All Rights Reserved.

Abstract

 A large number of the services we wish to make possible for Internet
 telephony require fairly elaborate combinations of signalling
 operations, often in network devices, to complete. We want a simple
 and standardized way to create such services to make them easier to
 implement and deploy. This document describes an architectural
 framework for such a mechanism, which we call a call processing
 language. It also outlines requirements for such a language.

Table of Contents

 1 Introduction .. 2
 2 Terminology ... 3
 3 Example services 4
 4 Usage scenarios 6
 5 CPL creation .. 6
 6 Network model 7
 6.1 Model components 7
 6.1.1 End systems ... 7
 6.1.2 Signalling servers 8
 6.2 Component interactions 8
 7 Interaction of CPL with network model 10
 7.1 What a script does 10
 7.2 Which script is executed 11
 7.3 Where a script runs 12
 8 Creation and transport of a call processing
 language script 12
 9 Feature interaction behavior 13
 9.1 Feature-to-feature interactions 13

Lennox & Schulzrinne Informational [Page 1]

RFC 2824 CPL-F May 2000

 9.2 Script-to-script interactions 14
 9.3 Server-to-server interactions 15
 9.4 Signalling ambiguity 15
 10 Relationship with existing languages 15
 11 Related work .. 17
 11.1 IN service creation environments 17
 11.2 SIP CGI ... 17
 12 Necessary language features 17
 12.1 Language characteristics 17
 12.2 Base features -- call signalling 19
 12.3 Base features -- non-signalling 21
 12.4 Language features 22
 12.5 Control ... 23
 13 Security Considerations 23
 14 Acknowledgments 23
 15 Authors’ Addresses 23
 16 Bibliography .. 24
 17 Full Copyright Statement 25

1 Introduction

 Recently, several protocols have been created to allow telephone
 calls to be made over IP networks, notably SIP [1] and H.323 [2].
 These emerging standards have opened up the possibility of a broad
 and dramatic decentralization of the provisioning of telephone
 services so they can be under the user’s control.

 Many Internet telephony services can, and should, be implemented
 entirely on end devices. Multi-party calls, for instance, or call
 waiting alert tones, or camp-on services, depend heavily on end-
 system state and on the specific content of media streams,
 information which often is only available to the end system. A
 variety of services, however -- those involving user location, call
 distribution, behavior when end systems are busy, and the like -- are
 independent of a particular end device, or need to be operational
 even when an end device is unavailable. These services are still best
 located in a network device, rather than in an end system.

 Traditionally, network-based services have been created only by
 service providers. Service creation typically involved using
 proprietary or restricted tools, and there was little range for
 customization or enhancement by end users. In the Internet
 environment, however, this changes. Global connectivity and open
 protocols allow end users or third parties to design and implement
 new or customized services, and to deploy and modify their services
 dynamically without requiring a service provider to act as an
 intermediary.

Lennox & Schulzrinne Informational [Page 2]

RFC 2824 CPL-F May 2000

 A number of Internet applications have such customization
 environments -- the web has CGI [3], for instance, and e-mail has
 Sieve [4] or procmail. To create such an open customization
 environment for Internet telephony, we need a standardized, safe way
 for these new service creators to describe the desired behavior of
 network servers.

 This document describes an architecture in which network devices
 respond to call signalling events by triggering user-created programs
 written in a simple, static, non-expressively-complete language. We
 call this language a call processing language.

 The development of this document has been substantially informed by
 the development of a particular call processing language, as
 described in [5]. In general, when this document refers to "a call
 processing language," it is referring to a generic language that
 fills this role; "the call processing language" or "the CPL" refers
 to this particular language.

2 Terminology

 In this section we define some of the terminology used in this
 document.

 SIP [1] terminology used includes:

 invitation: The initial INVITE request of a SIP transaction, by
 which one party initiates a call with another.

 redirect server: A SIP device which responds to invitations and
 other requests by informing the request originator of an
 alternate address to which the request should be sent.

 proxy server: A SIP device which receives invitations and other
 requests, and forwards them to other SIP devices. It then
 receives the responses to the requests it forwarded, and
 forwards them back to the sender of the initial request.

 user agent: A SIP device which creates and receives requests, so
 as to set up or otherwise affect the state of a call. This
 may be, for example, a telephone or a voicemail system.

 user agent client: The portion of a user agent which initiates
 requests.

 user agent server: The portion of a user agent which responds to
 requests.

Lennox & Schulzrinne Informational [Page 3]

RFC 2824 CPL-F May 2000

 H.323 [2] terminology used includes:

 terminal: An H.323 device which originates and receives calls, and
 their associated media.

 gatekeeper: An H.323 entity on the network that provides address
 translation and controls access to the network for H.323
 terminals and other endpoints. The gatekeeper may also
 provide other services to the endpoints such as bandwidth
 management and locating gateways.

 gateway: A device which translates calls between an H.323 network
 and another network, typically the public-switched telephone
 network.

 RAS: The Registration, Admission and Status messages communicated
 between two H.323 entities, for example between an endpoint
 and a gatekeeper.

 General terminology used in this document includes:

 user location: The process by which an Internet telephony device
 determines where a user named by a particular address can be
 found.

 CPL: A Call Processing Language, a simple language to describe how
 Internet telephony call invitations should be processed.

 script: A particular instance of a CPL, describing a particular
 set of services desired.

 end system: A device from which and to which calls are
 established. It creates and receives the call’s media
 (audio, video, or the like). This may be a SIP user agent or
 an H.323 terminal.

 signalling server: A device which handles the routing of call
 invitations. It does not process or interact with the media
 of a call. It may be a SIP proxy or redirect server, or an
 H.323 gatekeeper.

3 Example services

 To motivate the subsequent discussion, this section gives some
 specific examples of services which we want users to be able to
 create programmatically. Note that some of these examples are
 deliberately somewhat complicated, so as to demonstrate the level of
 decision logic that should be possible.

Lennox & Schulzrinne Informational [Page 4]

RFC 2824 CPL-F May 2000

 o Call forward on busy/no answer

 When a new call comes in, the call should ring at the user’s
 desk telephone. If it is busy, the call should always be
 redirected to the user’s voicemail box. If, instead, there’s no
 answer after four rings, it should also be redirected to his or
 her voicemail, unless it’s from a supervisor, in which case it
 should be proxied to the user’s cell phone if it is currently
 registered.

 o Information address

 A company advertises a general "information" address for
 prospective customers. When a call comes in to this address, if
 it’s currently working hours, the caller should be given a list
 of the people currently willing to accept general information
 calls. If it’s outside of working hours, the caller should get
 a webpage indicating what times they can call.

 o Intelligent user location

 When a call comes in, the list of locations where the user has
 registered should be consulted. Depending on the type of call
 (work, personal, etc.), the call should ring at an appropriate
 subset of the registered locations, depending on information in
 the registrations. If the user picks up from more than one
 station, the pick-ups should be reported back separately to the
 calling party.

 o Intelligent user location with media knowledge

 When a call comes in, the call should be proxied to the station
 the user has registered from whose media capabilities best
 match those specified in the call request. If the user does not
 pick up from that station within four rings, the call should be
 proxied to the other stations from which he or she has
 registered, sequentially, in order of decreasing closeness of
 match.

 o Client billing allocation -- lawyer’s office

 When a call comes in, the calling address is correlated with
 the corresponding client, and client’s name, address, and the
 time of the call is logged. If no corresponding client is
 found, the call is forwarded to the lawyer’s secretary.

Lennox & Schulzrinne Informational [Page 5]

RFC 2824 CPL-F May 2000

4 Usage scenarios

 A CPL would be useful for implementing services in a number of
 different scenarios.

 o Script creation by end user

 In the most direct approach for creating a service with a CPL,
 an end user simply creates a script describing their service.
 He or she simply decides what service he or she wants,
 describes it using a CPL script, and then uploads it to a
 server.

 o Third party outsourcing

 Because a CPL is a standardized language, it can also be used
 to allow third parties to create or customize services for
 clients. These scripts can then be run on servers owned by the
 end user or the user’s service provider.

 o Administrator service definition

 A CPL can also be used by server administrators to create
 simple services or describe policy for servers they control.
 If a server is implementing CPL services in any case, extending
 the service architecture to allow administrators as well as
 users to create scripts is a simple extension.

 o Web middleware

 Finally, there have been a number of proposals for service
 creation or customization using web interfaces. A CPL could be
 used as the back-end to such environments: a web application
 could create a CPL script on behalf of a user, and the
 telephony server could then implement the services without
 either component having to be aware of the specifics of the
 other.

5 CPL creation

 There are also a number of means by which CPL scripts could be
 created. Like HTML, which can be created in a number of different
 manners, we envision multiple creation styles for a CPL script.

Lennox & Schulzrinne Informational [Page 6]

RFC 2824 CPL-F May 2000

 o Hand authoring

 Most directly, CPL scripts can be created by hand, by
 knowledgeable users. The CPL described in [5] has a text
 format with an uncomplicated syntax, so hand authoring will be
 straightforward.

 o Automated scripts

 CPL features can be created by automated means, such as in the
 example of the web middleware described in the previous
 section. With a simple, text-based syntax, standard text-
 processing languages will be able to create and edit CPL
 scripts easily.

 o GUI tools

 Finally, users will be able to use GUI tools to create and edit
 CPL scripts. We expect that most average-experience users will
 take this approach once the CPL gains popularity. The CPL will
 be designed with this application in mind, so that the full
 expressive power of scripts can be represented simply and
 straightforwardly in a graphical manner.

6 Network model

 The Call Processing Language operates on a generalized model of an
 Internet telephony network. While the details of various protocols
 differ, on an abstract level all major Internet telephony
 architectures are sufficiently similar that their major features can
 be described commonly. This document generally uses SIP terminology,
 as its authors’ experience has mainly been with that protocol.

6.1 Model components

 In the Call Processing Language’s network model, an Internet
 telephony network contains two types of components.

6.1.1 End systems

 End systems are devices which originate and/or receive signalling
 information and media. These include simple and complex telephone
 devices, PC telephony clients, and automated voice systems. The CPL
 abstracts away the details of the capabilities of these devices. An
 end system can originate a call; and it can accept, reject, or
 forward incoming calls. The details of this process (ringing, multi-
 line telephones, and so forth) are not important for the CPL.

Lennox & Schulzrinne Informational [Page 7]

RFC 2824 CPL-F May 2000

 For the purposes of the CPL, gateways -- for example, a device which
 connects calls between an IP telephony network and the PSTN -- are
 also considered to be end systems. Other devices, such as mixers or
 firewalls, are not directly dealt with by the CPL, and they will not
 be discussed here.

6.1.2 Signalling servers

 Signalling servers are devices which relay or control signalling
 information. In SIP, they are proxy servers, redirect servers, or
 registrars; in H.323, they are gatekeepers.

 Signalling servers can perform three types of actions on call setup
 information. They can:

 proxy it: forward it on to one or more other network or end
 systems, returning one of the responses received.

 redirect it: return a response informing the sending system of a
 different address to which it should send the request.

 reject it: inform the sending system that the setup request could
 not be completed.

 RFC 2543 [1] has illustrations of proxy and redirect functionality.
 End systems may also be able to perform some of these actions: almost
 certainly rejection, and possibly redirection.

 Signalling servers also normally maintain information about user
 location. Whether by means of registrations (SIP REGISTER or H.323
 RAS messages), static configuration, or dynamic searches, signalling
 servers must have some means by which they can determine where a user
 is currently located, in order to make intelligent choices about
 their proxying or redirection behavior.

 Signalling servers are also usually able to keep logs of transactions
 that pass through them, and to send e-mail to destinations on the
 Internet, under programmatic control.

6.2 Component interactions

 When an end system places a call, the call establishment request can
 proceed by a variety of routes through components of the network. To
 begin with, the originating end system must decide where to send its
 requests. There are two possibilities here: the originator may be
 configured so that all its requests go to a single local server; or
 it may resolve the destination address to locate a remote signalling
 server or end system to which it can send the request directly.

Lennox & Schulzrinne Informational [Page 8]

RFC 2824 CPL-F May 2000

 Once the request arrives at a signalling server, that server uses its
 user location database, its local policy, DNS resolution, or other
 methods, to determine the next signalling server or end system to
 which the request should be sent. A request may pass through any
 number of signalling servers: from zero (in the case when end systems
 communicate directly) to, in principle, every server on the network.
 What’s more, any end system or signalling server can (in principle)
 receive requests from or send them to any other.

 For example, in figure 1, there are two paths the call establishment
 request information may take. For Route 1, the originator knows only
 a user address for the user it is trying to contact, and it is
 configured to send outgoing calls through a local outgoing proxy
 server. Therefore, it forwards the request to its local server,
 which finds the server of record for that address, and forwards it on
 to that server.

 In this case, the organization the destination user belongs to uses a
 multi-stage setup to find users. The corporate server identifies
 which department a user is part of, then forwards the request to the
 appropriate departmental server, which actually locates the user.
 (This is similar to the way e-mail forwarding is often configured.)
 The response to the request will travel back along the same path.

 For Route 2, however, the originator knows the specific device
 address it is trying to contact, and it is not configured to use a
 local outgoing proxy. In this case, the originator can directly
 contact the destination without having to communicate with any
 network servers at all.

 We see, then, that in Internet telephony signalling servers cannot in
 general know the state of end systems they "control," since
 signalling information may have bypassed them. This architectural
 limitation implies a number of restrictions on how some services can
 be implemented. For instance, a network system cannot reliably know
 if an end system is currently busy or not; a call may have been
 placed to the end system without traversing that network system.
 Thus, signalling messages must explicitly travel to end systems to
 find out their state; in the example, the end system must explicitly
 return a "busy" indication.

Lennox & Schulzrinne Informational [Page 9]

RFC 2824 CPL-F May 2000

 Outgoing Corporate Departmental
 Proxy Server Server
 _______ Outgoing proxy contacts _______ _______
 | | corporate server | | | |
 | | -------------------------> | | ---------> | |
 |_____| |_____| |_____|
Route 1 ^ \Searches
 / \ for
Sends to/ \ User
 proxy / _|
 _______ _______
	Route 2	
	--->	
_____	Originator directly contacts destination	_____

 Originator Destination

 Figure 1: Possible paths of call setup messages

7 Interaction of CPL with network model

7.1 What a script does

 A CPL script runs in a signalling server, and controls that system’s
 proxy, redirect, or rejection actions for the set-up of a particular
 call. It does not attempt to coordinate the behavior of multiple
 signalling servers, or to describe features on a "Global Functional
 Plane" as in the Intelligent Network architecture [6].

 More specifically, a script replaces the user location functionality
 of a signalling server. As described in section 6.1.2, a signalling
 server typically maintains a database of locations where a user can
 be reached; it makes its proxy, redirect, and rejection decisions
 based on the contents of that database. A CPL script replaces this
 basic database lookup functionality; it takes the registration
 information, the specifics of a call request, and other external
 information it wants to reference, and chooses the signalling actions
 to perform.

 Abstractly, a script can be considered as a list of condition/action
 pairs; if some attribute of the registration, request, and external
 information matches a given condition, then the corresponding action
 (or more properly set of actions) is taken. In some circumstances,
 additional actions can be taken based on the consequences of the
 first action and additional conditions. If no condition matches the
 invitation, the signalling server’s standard action -- its location
 database lookup, for example -- is taken.

Lennox & Schulzrinne Informational [Page 10]

RFC 2824 CPL-F May 2000

7.2 Which script is executed

 CPL scripts are usually associated with a particular Internet
 telephony address. When a call establishment request arrives at a
 signalling server which is a CPL server, that server associates the
 source and destination addresses specified in the request with its
 database of CPL scripts; if one matches, the corresponding script is
 executed.

 Once the script has executed, if it has chosen to perform a proxy
 action, a new Internet telephony address will result as the
 destination of that proxying. Once this has occurred, the server
 again checks its database of scripts to see if any of them are
 associated with the new address; if one is, that script as well is
 executed (assuming that a script has not attempted to proxy to an
 address which the server has already tried). For more details of this
 recursion process, and a description of what happens when a server
 has scripts that correspond both to a scripts origination address and
 its destination address, see section 9.2.

 In general, in an Internet telephony network, an address will denote
 one of two things: either a user, or a device. A user address refers
 to a particular individual, for example sip:joe@example.com,
 regardless of where that user actually is or what kind of device he
 or she is using. A device address, by contrast, refers to a
 particular physical device, such as sip:x26063@phones.example.com.
 Other, intermediate sorts of addresses are also possible, and have
 some use (such as an address for "my cell phone, wherever it
 currently happens to be registered"), but we expect them to be less
 common. A CPL script is agnostic to the type of address it is
 associated with; while scripts associated with user addresses are
 probably the most useful for most services, there is no reason that a
 script could not be associated with any other type of address as
 well. The recursion process described above allows scripts to be
 associated with several of a user’s addresses; thus, a user script
 could specify an action "try me at my cell phone," whereas a device
 script could say "I don’t want to accept cell phone calls while I’m
 out of my home area."

 It is also possible for a CPL script to be associated not with one
 specific Internet telephony address, but rather with all addresses
 handled by a signalling server, or a large set of them. For instance,
 an administrator might configure a system to prevent calls from or to
 a list of banned incoming or outgoing addresses; these should
 presumably be configured for everyone, but users should still to be
 able to have their own custom scripts as well. Exactly when such

Lennox & Schulzrinne Informational [Page 11]

RFC 2824 CPL-F May 2000

 scripts should be executed in the recursion process depends on the
 precise nature of the administrative script. See section 9.2 for
 further discussion of this.

7.3 Where a script runs

 Users can have CPL scripts on any network server which their call
 establishment requests pass through and with which they have a trust
 relationship. For instance, in the example in figure 1, the
 originating user could have a script on the outgoing proxy, and the
 destination user could have scripts on both the corporate server and
 the departmental server. These scripts would typically perform
 different functions, related to the role of the server on which they
 reside; a script on the corporate-wide server could be used to
 customize which department the user wishes to be found at, for
 instance, whereas a script at the departmental server could be used
 for more fine-grained location customization. Some services, such as
 filtering out unwanted calls, could be located at either server. See
 section 9.3 for some implications of a scenario like this.

 This model does not specify the means by which users locate a CPL-
 capable network server. In general, this will be through the same
 means by which they locate a local Internet telephony server to
 register themselves with; this may be through manual configuration,
 or through automated means such as the Service Location Protocol [7].
 It has been proposed that automated means of locating such servers
 should include a field to indicate whether the server allows users to
 upload CPLs.

8 Creation and transport of a call processing language script

 Users create call processing language scripts, typically on end
 devices, and transmit them through the network to signalling servers.
 Scripts persist in signalling servers until changed or deleted,
 unless they are specifically given an expiration time; a network
 system which supports CPL scripting will need stable storage.

 The end device on which the user creates the CPL script need not bear
 any relationship to the end devices to which calls are actually
 placed. For example, a CPL script might be created on a PC, whereas
 calls might be intended to be received on a simple audio-only
 telephone. Indeed, the device on which the script is created may not
 be an "end device" in the sense described in section 6.1.1 at all;
 for instance, a user could create and upload a CPL script from a
 non-multimedia-capable web terminal.

Lennox & Schulzrinne Informational [Page 12]

RFC 2824 CPL-F May 2000

 The CPL also might not necessarily be created on a device near either
 the end device or the signalling server in network terms. For
 example, a user might decide to forward his or her calls to a remote
 location only after arriving at that location.

 The exact means by which the end device transmits the script to the
 server remains to be determined; it is likely that many solutions
 will be able to co-exist. This method will need to be authenticated
 in almost all cases. The methods that have been suggested include
 web file upload, SIP REGISTER message payloads, remote method
 invocation, SNMP, ACAP, LDAP, and remote file systems such as NFS.

 Users can also retrieve their current script from the network to an
 end system so it can be edited. The signalling server should also be
 able to report errors related to the script to the user, both static
 errors that could be detected at upload time, and any run-time errors
 that occur.

 If a user has trust relationships with multiple signalling servers
 (as discussed in section 7.3), the user may choose to upload scripts
 to any or all of those servers. These scripts can be entirely
 independent.

9 Feature interaction behavior

 Feature interaction is the term used in telephony systems when two or
 more requested features produce ambiguous or conflicting behavior
 [8]. Feature interaction issues for features implemented with a call
 processing language can be roughly divided into three categories:
 feature-to-feature in one server, script-to-script in one server, and
 server-to-server.

9.1 Feature-to-feature interactions

 Due to the explicit nature of event conditions discussed in the
 previous section, feature-to-feature interaction is not likely to be
 a problem in a call processing language environment. Whereas a
 subscriber to traditional telephone features might unthinkingly
 subscribe to both "call waiting" and "call forward on busy," a user
 creating a CPL script would only be able to trigger one action in
 response to the condition "a call arrives while the line is busy."
 Given a good user interface for creation, or a CPL server which can
 check for unreachable code in an uploaded script, contradictory
 condition/action pairs can be avoided.

Lennox & Schulzrinne Informational [Page 13]

RFC 2824 CPL-F May 2000

9.2 Script-to-script interactions

 Script-to-script interactions arise when a server invokes multiple
 scripts for a single call, as described in section 7.2. This can
 occur in a number of cases: if both the call originator and the
 destination have scripts specified on a single server; if a script
 forwards a request to another address which also has a script; or if
 an administrative script is specified as well as a user’s individual
 script.

 The solution to this interaction is to determine an ordering among
 the scripts to be executed. In this ordering, the "first" script is
 executed first; if this script allows or permits the call to be
 proxied, the script corresponding to the next address is executed.
 When the first script says to forward the request to some other
 address, those actions are considered as new requests which arrive at
 the second script. When the second script sends back a final
 response, that response arrives at the first script in the same
 manner as if a request arrived over the network. Note that in some
 cases, forwarding can be recursive; a CPL server must be careful to
 prevent forwarding loops.

 Abstractly, this can be viewed as equivalent to having each script
 execute on a separate signalling server. Since the CPL architecture
 is designed to allow scripts to be executed on multiple signalling
 servers in the course of locating a user, we can conceptually
 transform script-to-script interactions into the server-to-server
 interactions described in the next section, reducing the number of
 types of interactions we need to concern ourselves with.

 The question, then, is to determine the correct ordering of the
 scripts. For the case of a script forwarding to an address which
 also has a script, the ordering is obvious; the other two cases are
 somewhat more subtle. When both originator and destination scripts
 exist, the originator’s script should be executed before the
 destination script; this allows the originator to perform address
 translation, call filtering, etc., before a destination address is
 determined and a corresponding script is chosen.

 Even more complicated is the case of the ordering of administrative
 scripts. Many administrative scripts, such as ones that restrict
 source and destination addresses, need to be run after originator
 scripts, but before destination scripts, to avoid a user’s script
 evading administrative restrictions through clever forwarding;
 however, others, such as a global address book translation function,
 would need to be run earlier or later. Servers which allow

Lennox & Schulzrinne Informational [Page 14]

RFC 2824 CPL-F May 2000

 administrative scripts to be run will need to allow the administrator
 to configure when in the script execution process a particular
 administrative script should fall.

9.3 Server-to-server interactions

 The third case of feature interactions, server-to-server
 interactions, is the most complex of these three. The canonical
 example of this type of interaction is the combination of Originating
 Call Screening and Call Forwarding: a user (or administrator) may
 wish to prevent calls from being placed to a particular address, but
 the local script has no way of knowing if a call placed to some
 other, legitimate address will be proxied, by a remote server, to the
 banned address. This type of problem is unsolvable in an
 administratively heterogeneous network, even a "lightly"
 heterogeneous network such as current telephone systems. CPL does not
 claim to solve it, but the problem is not any worse for CPL scripts
 than for any other means of deploying services.

 Another class of server-to-server interactions are best resolved by
 the underlying signalling protocol, since they can arise whether the
 signalling servers are being controlled by a call processing language
 or by some entirely different means. One example of this is
 forwarding loops, where user X may have calls forwarded to Y, who has
 calls forwarded back to X. SIP has a mechanism to detect such loops.
 A call processing language server thus does not need to define any
 special mechanisms to prevent such occurrences; it should, however,
 be possible to trigger a different set of call processing actions in
 the event that a loop is detected, and/or to report back an error to
 the owner of the script through some standardized run-time error
 reporting mechanism.

9.4 Signalling ambiguity

 As an aside, [8] discusses a fourth type of feature interaction for
 traditional telephone networks, signalling ambiguity. This can arise
 when several features overload the same operation in the limited
 signal path from an end station to the network: for example, flashing
 the switch-hook can mean both "add a party to a three-way call" and
 "switch to call waiting." Because of the explicit nature of
 signalling in both the Internet telephony protocols discussed here,
 this issue does not arise.

10 Relationship with existing languages

 This document’s description of the CPL as a "language" is not
 intended to imply that a new language necessarily needs to be
 implemented from scratch. A server could potentially implement all

Lennox & Schulzrinne Informational [Page 15]

RFC 2824 CPL-F May 2000

 the functionality described here as a library or set of extensions
 for an existing language; Java, or the various freely-available
 scripting languages (Tcl, Perl, Python, Guile), are obvious
 possibilities.

 However, there are motivations for creating a new language. All the
 existing languages are, naturally, expressively complete; this has
 two inherent disadvantages. The first is that any function
 implemented in them can take an arbitrarily long time, use an
 arbitrarily large amount of memory, and may never terminate. For call
 processing, this sort of resource usage is probably not necessary,
 and as described in section 12.1, may in fact be undesirable. One
 model for this is the electronic mail filtering language Sieve [4],
 which deliberately restricts itself from being Turing-complete.

 Similar levels of safety and protection (though not automatic
 generation and parsing) could also be achieved through the use of a
 "sandbox" such as is used by Java applets, where strict bounds are
 imposed on the amount of memory, cpu time, stack space, etc., that a
 program can use. The difficulty with this approach is primarily in
 its lack of transparency and portability: unless the levels of these
 bounds are imposed by the standard, a bad idea so long as available
 resources are increasing exponentially with Moore’s Law, a user can
 never be sure whether a particular program can successfully be
 executed on a given server without running into the server’s resource
 limits, and a program which executes successfully on one server may
 fail unexpectedly on another. Non-expressively-complete languages, on
 the other hand, allow an implicit contract between the script writer
 and the server: so long as the script stays within the rules of the
 language, the server will guarantee that it will execute the script.

 The second disadvantage with expressively complete languages is that
 they make automatic generation and parsing of scripts very difficult,
 as every parsing tool must be a full interpreter for the language. An
 analogy can be drawn from the document-creation world: while text
 markup languages like HTML or XML can be, and are, easily manipulated
 by smart editors, powerful document programming languages such as
 LaTeX or Postscript usually cannot be. While there are word
 processors that can save their documents in LaTeX form, they cannot
 accept as input arbitrary LaTeX documents, let alone preserve the
 structure of the original document in an edited form. By contrast,
 essentially any HTML editor can edit any HTML document from the web,
 and the high-quality ones preserve the structure of the original
 documents in the course of editing them.

Lennox & Schulzrinne Informational [Page 16]

RFC 2824 CPL-F May 2000

11 Related work

11.1 IN service creation environments

 The ITU’s IN series describe, on an abstract level, service creation
 environments [6]. These describe services in a traditional circuit-
 switched telephone network as a series of decisions and actions
 arranged in a directed acyclic graph. Many vendors of IN services use
 modified and extended versions of this for their proprietary service
 creation environments.

11.2 SIP CGI

 SIP CGI [9] is an interface for implementing services on SIP servers.
 Unlike a CPL, it is a very low-level interface, and would not be
 appropriate for services written by non-trusted users.

 The paper "Programming Internet Telephony Services" [10] discusses
 the similarities and contrasts between SIP CGI and CPL in more
 detail.

12 Necessary language features

 This section lists those properties of a call processing language
 which we believe to be necessary to have in order to implement the
 motivating examples, in line with the described architecture.

12.1 Language characteristics

 These are some abstract attributes which any proposed call processing
 language should possess.

 o Light-weight, efficient, easy to implement

 In addition to the general reasons why this is desirable, a
 network server might conceivably handle very large call
 volumes, and we don’t want CPL execution to be a major
 bottleneck. One way to achieve this might be to compile scripts
 before execution.

 o Easily verifiable for correctness

 For a script which runs in a server, mis-configurations can
 result in a user becoming unreachable, making it difficult to
 indicate run-time errors to a user (though a second-channel
 error reporting mechanism such as e-mail could ameliorate
 this). Thus, it should be possible to verify, when the script

Lennox & Schulzrinne Informational [Page 17]

RFC 2824 CPL-F May 2000

 is committed to the server, that it is at least syntactically
 correct, does not have any obvious loops or other failure
 modes, and does not use too many server resources.

 o Executable in a safe manner

 No action the CPL script takes should be able to subvert
 anything about the server which the user shouldn’t have access
 to, or affect the state of other users without permission.
 Additionally, since CPL scripts will typically run on a server
 on which users cannot normally run code, either the language or
 its execution environment must be designed so that scripts
 cannot use unlimited amounts of network resources, server CPU
 time, storage, or memory.

 o Easily writeable and parsable by both humans and machines.

 For maximum flexibility, we want to allow humans to write their
 own scripts, or to use and customize script libraries provided
 by others. However, most users will want to have a more
 intuitive user-interface for the same functionality, and so
 will have a program which creates scripts for them. Both cases
 should be easy; in particular, it should be easy for script
 editors to read human-generated scripts, and vice-versa.

 o Extensible

 It should be possible to add additional features to a language
 in a way that existing scripts continue to work, and existing
 servers can easily recognize features they don’t understand and
 safely inform the user of this fact.

 o Independent of underlying signalling details

 The same scripts should be usable whether the underlying
 protocol is SIP, H.323, a traditional telephone network, or any
 other means of setting up calls. It should also be agnostic to
 address formats. (We use SIP terminology in our descriptions of
 requirements, but this should map fairly easily to other
 systems.) It may also be useful to have the language extend to
 processing of other sorts of communication, such as e-mail or
 fax.

Lennox & Schulzrinne Informational [Page 18]

RFC 2824 CPL-F May 2000

12.2 Base features -- call signalling

 To be useful, a call processing language obviously should be able to
 react to and initiate call signalling events.

 o Should execute actions when a call request arrives

 See section 7, particularly 7.1.

 o Should be able to make decisions based on event properties

 A number of properties of a call event are relevant for a
 script’s decision process. These include, roughly in order of
 importance:

 - Destination address

 We want to be able to do destination-based routing or
 screening. Note that in SIP we want to be able to filter on
 either or both of the addresses in the To header and the
 Request-URI.

 - Originator address

 Similarly, we want to be able to do originator-based
 screening or routing.

 - Caller Preferences

 In SIP, a caller can express preferences about the type of
 device to be reached -- see [11]. The script should be able
 to make decisions based on this information.

 - Information about caller or call

 SIP has textual fields such as Subject, Organization,
 Priority, etc., and a display name for addresses; users can
 also add non-standard additional headers. H.323 has a single
 Display field. The script should be able to make decisions
 based on these parameters.

 - Media description

 Call invitations specify the types of media that will flow,
 their bandwidth usage, their network destination addresses,
 etc. The script should be able to make decisions based on
 these media characteristics.

Lennox & Schulzrinne Informational [Page 19]

RFC 2824 CPL-F May 2000

 - Authentication/encryption status

 Call invitations can be authenticated. Many properties of
 the authentication are relevant: the method of
 authentication/encryption, who performed the authentication,
 which specific fields were encrypted, etc. The script
 should be able to make decisions based on these security
 parameters.

 o Should be able to take action based on a call invitation

 There are a number of actions we can take in response to an
 incoming call setup request. We can:

 - reject it

 We should be able to indicate that the call is not
 acceptable or not able to be completed. We should also be
 able to send more specific rejection codes (including, for
 SIP, the associated textual string, warning codes, or
 message payload).

 - redirect it

 We should be able to tell the call initiator sender to try a
 different location.

 - proxy it

 We should be able to send the call invitation on to another
 location, or to several other locations ("forking" the
 invitation), and await the responses. It should also be
 possible to specify a timeout value after which we give up
 on receiving any definitive responses.

 o Should be able to take action based a response to a proxied or
 forked call invitation

 Once we have proxied an invitation, we need to be able to make
 decisions based on the responses we receive to that invitation
 (or the lack thereof). We should be able to:

 - consider its message fields

 We should be able to consider the same fields of a response
 as we consider in the initial invitation.

Lennox & Schulzrinne Informational [Page 20]

RFC 2824 CPL-F May 2000

 - relay it on to the call originator

 If the response is satisfactory, it should be returned to
 the sender.

 - for a fork, choose one of several responses to relay back

 If we forked an invitation, we obviously expect to receive
 several responses. There are several issues here -- choosing
 among the responses, and how long to wait if we’ve received
 responses from some but not all destinations.

 - initiate other actions

 If we didn’t get a response, or any we liked, we should be
 able to try something else instead (e.g., call forward on
 busy).

12.3 Base features -- non-signalling

 A number of other features that a call processing language should
 have do not refer to call signalling per se; however, they are still
 extremely desirable to implement many useful features.

 The servers which provide these features might reside in other
 Internet devices, or might be local to the server (or other
 possibilities). The language should be independent of the location of
 these servers, at least at a high level.

 o Logging

 In addition to the CPL server’s natural logging of events, the
 user will also want to be able to log arbitrary other items.
 The actual storage for this logging information might live
 either locally or remotely.

 o Error reporting

 If an unexpected error occurs, the script should be able to
 report the error to the script’s owner. This may use the same
 mechanism as the script server uses to report language errors
 to the user (see section 12.5).

 o Access to user-location info

 Proxies will often collect information on users’ current
 location, either through SIP REGISTER messages, the H.323 RRQ
 family of RAS messages, or some other mechanism (see section

Lennox & Schulzrinne Informational [Page 21]

RFC 2824 CPL-F May 2000

 6.2). The CPL should be able to refer to this information so a
 call can be forwarded to the registered locations or some
 subset of them.

 o Database access

 Much information for CPL control might be stored in external
 databases, for example a wide-area address database, or
 authorization information, for a CPL under administrative
 control. The language could specify some specific database
 access protocols (such as SQL or LDAP), or could be more
 generic.

 o Other external information

 Other external information a script could access includes web
 pages, which could be sent back in a SIP message body; or a
 clean interface to remote procedure calls such as Corba, RMI,
 or DCOM, for instance to access an external billing database.
 However, for simplicity, these interfaces may not be in the
 initial version of the protocol.

12.4 Language features

 Some features do not involve any operations external to the CPL’s
 execution environment, but are still necessary to allow some standard
 services to be implemented. (This list is not exhaustive.)

 o Pattern-matching

 It should be possible to give special treatment to addresses
 and other text strings based not only on the full string but
 also on more general or complex sub-patterns of them.

 o Address filtering

 Once a set of addresses has been retrieved through one of the
 methods in section 12.3, the user needs to be able to choose a
 sub-set of them, based on their address components or other
 parameters.

 o Randomization

 Some forms of call distribution are randomized as to where they
 actually end up.

Lennox & Schulzrinne Informational [Page 22]

RFC 2824 CPL-F May 2000

 o Date/time information

 Users may wish to condition some services (e.g., call
 forwarding, call distribution) on the current time of day, day
 of the week, etc.

12.5 Control

 As described in section 8, we must have a mechanism to send and
 retrieve CPL scripts, and associated data, to and from a signalling
 server. This method should support reporting upload-time errors to
 users; we also need some mechanism to report errors to users at
 script execution time. Authentication is vital, and encryption is
 very useful. The specification of this mechanism can be (and probably
 ought to be) a separate specification from that of the call
 processing language itself.

13 Security Considerations

 The security considerations of transferring CPL scripts are discussed
 in sections 8 and 12.5. Some considerations about the execution of
 the language are discussed in section 12.1.

14 Acknowledgments

 We would like to thank Tom La Porta and Jonathan Rosenberg for their
 comments and suggestions.

15 Authors’ Addresses

 Jonathan Lennox
 Dept. of Computer Science
 Columbia University
 1214 Amsterdam Avenue, MC 0401
 New York, NY 10027
 USA

 EMail: lennox@cs.columbia.edu

 Henning Schulzrinne
 Dept. of Computer Science
 Columbia University
 1214 Amsterdam Avenue, MC 0401
 New York, NY 10027
 USA

 EMail: schulzrinne@cs.columbia.edu

Lennox & Schulzrinne Informational [Page 23]

RFC 2824 CPL-F May 2000

16 Bibliography

 [1] Handley, M., Schulzrinne, H., Schooler, E. and J. Rosenberg,
 "SIP: Session Initiation Protocol", RFC 2543, March 1999.

 [2] International Telecommunication Union, "Packet based multimedia
 communication systems," Recommendation H.323, Telecommunication
 Standardization Sector of ITU, Geneva, Switzerland, Feb. 1998.

 [3] K. Coar and D. Robinson, "The WWW common gateway interface
 version 1.1", Work in Progress.

 [4] T. Showalter, "Sieve: A mail filtering language", Work in
 Progress.

 [5] J. Lennox and H. Schulzrinne, "CPL: a language for user control
 of internet telephony services", Work in Progress.

 [6] International Telecommunication Union, "General recommendations
 on telephone switching and signaling -- intelligent network:
 Introduction to intelligent network capability set 1,"
 Recommendation Q.1211, Telecommunication Standardization Sector
 of ITU, Geneva, Switzerland, Mar. 1993.

 [7] Guttman, E., Perkins, C., Veizades, J. and M. Day, "Service
 Location Protocol, Version 2", RFC 2608, June 1999.

 [8] E. J. Cameron, N. D. Griffeth, Y.-J. Lin, M. E. Nilson, W. K.
 Schure, and H. Velthuijsen, "A feature interaction benchmark for
 IN and beyond," Feature Interactions in Telecommunications
 Systems, IOS Press, pp. 1-23, 1994.

 [9] J. Lennox, J. Rosenberg, and H. Schulzrinne, "Common gateway
 interface for SIP", Work in Progress.

 [10] J. Rosenberg, J. Lennox, and H. Schulzrinne, "Programming
 internet telephony services," Technical Report CUCS-010-99,
 Columbia University, New York, New York, Mar. 1999.

 [11] H. Schulzrinne and J. Rosenberg, "SIP caller preferences and
 callee capabilities", Work in Progress.

Lennox & Schulzrinne Informational [Page 24]

RFC 2824 CPL-F May 2000

17 Full Copyright Statement

 Copyright (C) The Internet Society (2000). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Lennox & Schulzrinne Informational [Page 25]

