
Network Working Group E. Nordmark
Request for Comments: 2765 Sun Microsystems
Category: Standards Track February 2000

 Stateless IP/ICMP Translation Algorithm (SIIT)

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2000). All Rights Reserved.

Abstract

 This document specifies a transition mechanism algorithm in addition
 to the mechanisms already specified in [TRANS-MECH]. The algorithm
 translates between IPv4 and IPv6 packet headers (including ICMP
 headers) in separate translator "boxes" in the network without
 requiring any per-connection state in those "boxes". This new
 algorithm can be used as part of a solution that allows IPv6 hosts,
 which do not have a permanently assigned IPv4 addresses, to
 communicate with IPv4-only hosts. The document neither specifies
 address assignment nor routing to and from the IPv6 hosts when they
 communicate with the IPv4-only hosts.

Acknowledgements

 This document is a product of the NGTRANS working group. Some text
 has been extracted from an old Internet Draft titled "IPAE: The SIPP
 Interoperability and Transition Mechanism" authored by R. Gilligan,
 E. Nordmark, and B. Hinden. George Tsirtsis provides the figures for
 Section 1. Keith Moore provided a careful review of the document.

Nordmark Standards Track [Page 1]

RFC 2765 SIIT February 2000

Table of Contents

 1. Introduction and Motivation.............................. 2
 1.1. Applicability and Limitations....................... 5
 1.2. Assumptions... 7
 1.3. Impact Outside the Network Layer.................... 7
 2. Terminology.. 8
 2.1. Addresses... 9
 2.2. Requirements.. 9
 3. Translating from IPv4 to IPv6............................ 9
 3.1. Translating IPv4 Headers into IPv6 Headers.......... 11
 3.2. Translating UDP over IPv4........................... 13
 3.3. Translating ICMPv4 Headers into ICMPv6 Headers...... 13
 3.4. Translating ICMPv4 Error Messages into ICMPv6....... 16
 3.5. Knowing when to Translate........................... 16
 4. Translating from IPv6 to IPv4............................ 17
 4.1. Translating IPv6 Headers into IPv4 Headers.......... 18
 4.2. Translating ICMPv6 Headers into ICMPv4 Headers...... 20
 4.3. Translating ICMPv6 Error Messages into ICMPv4....... 22
 4.4. Knowing when to Translate........................... 22
 5. Implications for IPv6-Only Nodes......................... 22
 6. Security Considerations.................................. 23
 References... 24
 Author’s Address... 25
 Full Copyright Statement..................................... 26

1. Introduction and Motivation

 The transition mechanisms specified in [TRANS-MECH] handle the case
 of dual IPv4/IPv6 hosts interoperating with both dual hosts and
 IPv4-only hosts, which is needed early in the transition to IPv6.
 The dual hosts are assigned both an IPv4 and one or more IPv6
 addresses. As the number of available globally unique IPv4 addresses
 becomes smaller and smaller as the Internet grows there will be a
 desire to take advantage of the large IPv6 address and not require
 that every new Internet node have a permanently assigned IPv4
 address.

 There are several different scenarios where there might be IPv6-only
 hosts that need to communicate with IPv4-only hosts. These IPv6
 hosts might be IPv4-capable, i.e. include an IPv4 implementation but
 not be assigned an IPv4 address, or they might not even include an
 IPv4 implementation.

 - A completely new network with new devices that all support IPv6.
 In this case it might be beneficial to not have to configure the
 routers within the new network to route IPv4 since none of the

Nordmark Standards Track [Page 2]

RFC 2765 SIIT February 2000

 hosts in the new network are configured with IPv4 addresses. But
 these new IPv6 devices might occasionally need to communicate with
 some IPv4 nodes out on the Internet.

 - An existing network where a large number of IPv6 devices are
 added. The IPv6 devices might have both an IPv4 and an IPv6
 protocol stack but there is not enough global IPv4 address space
 to give each one of them a permanent IPv4 address. In this case
 it is more likely that the routers in the network already route
 IPv4 and are upgraded to dual routers.

 However, there are other potential solutions in this area:

 - If there is no IPv4 routing inside the network i.e., the cloud
 that contains the new devices, some possible solutions are to
 either use the translators specified in this document at the
 boundary of the cloud, or to use Application Layer Gateways (ALG)
 on dual nodes at the cloud’s boundary. The ALG solution is less
 flexible in that it is application protocol specific and it is
 also less robust since an ALG box is likely to be a single point
 of failure for a connection using that box.

 - Otherwise, if IPv4 routing is supported inside the cloud and the
 implementations support both IPv6 and IPv4 it might suffice to
 have a mechanism for allocating a temporary address IPv4 and use
 IPv4 end to end when communicating with IPv4-only nodes. However,
 it would seem that such a solution would require the pool of
 temporary IPv4 addresses to be partitioned across all the subnets
 in the cloud which would either require a larger pool of IPv4
 addresses or result in cases where communication would fail due to
 no available IPv4 address for the node’s subnet.

 This document specifies an algorithm that is one of the components
 needed to make IPv6-only nodes interoperate with IPv4-only nodes.
 Other components, not specified in this document, are a mechanism for
 the IPv6-only node to somehow acquire a temporary IPv4 address, and a
 mechanism for providing routing (perhaps using tunneling) to and from
 the temporary IPv4 address assigned to the node.

 The temporary IPv4 address will be used as an IPv4-translated IPv6
 address and the packets will travel through a stateless IP/ICMP
 translator that will translate the packet headers between IPv4 and
 IPv6 and translate the addresses in those headers between IPv4
 addresses on one side and IPv4-translated or IPv4-mapped IPv6
 addresses on the other side.

Nordmark Standards Track [Page 3]

RFC 2765 SIIT February 2000

 This specification does not cover how an IPv6 node can acquire a
 temporary IPv4 address and how such a temporary address be registered
 in the DNS. The DHCP protocol, perhaps with some extensions, could
 probably be used to acquire temporary addresses with short leases but
 that is outside the scope of this document. Also, the mechanism for
 routing this IPv4-translated IPv6 address in the site is not
 specified in this document.

 The figures below show how the Stateless IP/ICMP Translation
 algorithm (SIIT) can be used initially for small networks (e.g., a
 single subnet) and later for a site which has IPv6-only hosts in a
 dual IPv4/IPv6 network. This use assumes a mechanism for the IPv6
 nodes to acquire a temporary address from the pool of IPv4 addresses.
 Note that SIIT is not likely to be useful later during transition
 when most of the Internet is IPv6 and there are only small islands of
 IPv4 nodes, since such use would either require the IPv6 nodes to
 acquire temporary IPv4 addresses from a "distant" SIIT box operated
 by a different administration, or require that the IPv6 routing
 contain routes for IPv6-mapped addresses. (The latter is known to be
 a very bad idea due to the size of the IPv4 routing table that would
 potentially be injected into IPv6 routing in the form of IPv4-mapped
 addresses.)

 / \
 [IPv6 Host]---[SIIT]---------< IPv4 network>--[IPv4 Host]
 | ___________/
 (pool of IPv4 addresses)

 IPv4-translatable -> IPv4->IPv4 addresser
 IPv4-mapped

 Figure 1. Using SIIT for a single IPv6-only subnet.

 ___________ ___________
 / \ / \
 [IPv6 Host]--< Dual network>--[SIIT]--< IPv4 network>--[IPv4 Host]
 ___________/ | ___________/
 (pool of IPv4 addresses)

 IPv4-translatable -> IPv4->IPv4 addresser
 IPv4-mapped

 Figure 2. Using SIIT for an IPv6-only or dual cloud (e.g. a site)
 which contains some IPv6-only hosts as well as IPv4 hosts.

Nordmark Standards Track [Page 4]

RFC 2765 SIIT February 2000

 The protocol translators are assumed to fit around some piece of
 topology that includes some IPv6-only nodes and that may also include
 IPv4 nodes as well as dual nodes. There has to be a translator on
 each path used by routing the "translatable" packets in and out of
 this cloud to ensure that such packets always get translated. This
 does not require a translator at every physical connection between
 the cloud and the rest of the Internet since the routing can be used
 to deliver the packets to the translator.

 The IPv6-only node communicating with an IPv4 node through a
 translator will see an IPv4-mapped address for the peer and use an
 IPv4-translatable address for its local address for that
 communication. When the IPv6-only node sends packets the IPv4-mapped
 address indicates that the translator needs to translate the packets.
 When the IPv4 node sends packets those will translated to have the
 IPv4-translatable address as a destination; it is not possible to use
 an IPv4-mapped or an IPv4-compatible address as a destination since
 that would either route the packet back to the translator (for the
 IPv4-mapped address) or make the packet be encapsulated in IPv4 (for
 the IPv4-compatible address). Thus this specification introduces the
 new notion of an IPv4-translatable address.

1.1. Applicability and Limitations

 The use of this translation algorithm assumes that the IPv6 network
 is somehow well connected i.e. when an IPv6 node wants to communicate
 with another IPv6 node there is an IPv6 path between them. Various
 tunneling schemes exist that can provide such a path, but those
 mechanisms and their use is outside the scope of this document.

 The IPv6 protocol [IPv6] has been designed so that the TCP and UDP
 pseudo-header checksums are not affected by the translations
 specified in this document, thus the translator does not need to
 modify normal TCP and UDP headers. The only exceptions are
 unfragmented IPv4 UDP packets which need to have a UDP checksum
 computed since a pseudo-header checksum is required for UDP in IPv6.
 Also, ICMPv6 include a pseudo-header checksum but it is not present
 in ICMPv4 thus the checksum in ICMP messages need to be modified by
 the translator. In addition, ICMP error messages contain an IP
 header as part of the payload thus the translator need to rewrite
 those parts of the packets to make the receiver be able to understand
 the included IP header. However, all of the translator’s operations,
 including path MTU discovery, are stateless in the sense that the
 translator operates independently on each packet and does not retain
 any state from one packet to another. This allows redundant
 translator boxes without any coordination and a given TCP connection
 can have the two directions of packets go through different
 translator boxes.

Nordmark Standards Track [Page 5]

RFC 2765 SIIT February 2000

 The translating function as specified in this document does not
 translate any IPv4 options and it does not translate IPv6 routing
 headers, hop-by-hop extension headers, or destination options
 headers. It could be possible to define a translation between source
 routing in IPv4 and IPv6. However such a translation would not be
 semantically correct due to the slight differences between the IPv4
 and IPv6 source routing. Also, the usefulness of source routing when
 going through a header translator might be limited since all the
 IPv6-only routers would need to have an IPv4-translated IPv6 address
 since the IPv4-only node will send a source route option containing
 only IPv4 addresses.

 At first sight it might appear that the IPsec functionality [IPv6-SA,
 IPv6-ESP, IPv6-AH] can not be carried across the translator.
 However, since the translator does not modify any headers above the
 logical IP layer (IP headers, IPv6 fragment headers, and ICMP
 messages) packets encrypted using ESP in Transport-mode can be
 carried through the translator. [Note that this assumes that the key
 management can operate between the IPv6-only node and the IPv4-only
 node.] The AH computation covers parts of the IPv4 header fields
 such as IP addresses, and the identification field (fields that are
 either immutable or predictable by the sender) [IPv6-AUTH]. While
 the SIIT algorithm is specified so that those IPv4 fields can be
 predicted by the IPv6 sender it is not possible for the IPv6 receiver
 to determine the value of the IPv4 Identification field in packets
 sent by the IPv4 node. Thus as the translation algorithm is
 specified in this document it is not possible to use end-to-end AH
 through the translator.

 For ESP Tunnel-mode to work through the translator the IPv6 node
 would have to be able to both parse and generate "inner" IPv4 headers
 since the inner IP will be encrypted together with the transport
 protocol.

 Thus in practise, only ESP transport mode is relatively easy to make
 work through a translator.

 IPv4 multicast addresses can not be mapped to IPv6 multicast
 addresses. For instance, ::ffff:224.1.2.3 is an IPv4 mapped IPv6
 address with a class D address, however it is not an IPv6 multicast
 address. While the IP/ICMP header translation aspect of this memo in
 theory works for multicast packets this address mapping limitation
 makes it impossible to apply the techniques in this memo for
 multicast traffic.

Nordmark Standards Track [Page 6]

RFC 2765 SIIT February 2000

1.2. Assumptions

 The IPv6 nodes using the translator must have an IPv4-translated IPv6
 address while it is communicating with IPv4-only nodes.

 The use of the algorithm assumes that there is an IPv4 address pool
 used to generate IPv4-translated addresses. Routing needs to be able
 to route any IPv4 packets, whether generated "outside" or "inside"
 the translator, destined to addresses in this pool towards the
 translator. This implies that the address pool can not be assigned
 to subnets but must be separated from the IPv4 subnets used on the
 "inside" of the translator.

 Fragmented IPv4 UDP packets that do not contain a UDP checksum (i.e.
 the UDP checksum field is zero) are not of significant use over
 wide-areas in the Internet and will not be translated by the
 translator. An informal trace [MILLER] in the backbone showed that
 out of 34,984,468 IP packets there were 769 fragmented UDP packets
 with a zero checksum. However, all of them were due to malicious or
 broken behavior; a port scan and first fragments of IP packets that
 are not a multiple of 8 bytes.

1.3. Impact Outside the Network Layer

 The potential existence of stateless IP/ICMP translators is already
 taken care of from a protocol perspective in [IPv6]. However, an
 IPv6 node that wants to be able to use translators needs some
 additional logic in the network layer.

 The network layer in an IPv6-only node, when presented by the
 application with either an IPv4 destination address or an IPv4-mapped
 IPv6 destination address, is likely to drop the packet and return
 some error message to the application. In order to take advantage of
 translators such a node should instead send an IPv6 packet where the
 destination address is the IPv4-mapped address and the source address
 is the node’s temporarily assigned IPv4-translated address. If the
 node does not have a temporarily assigned IPv4-translated address it
 should acquire one using mechanisms that are not discussed in this
 document.

 Note that the above also applies to a dual IPv4/IPv6 implementation
 node which is not configured with any IPv4 address.

 There are no extra changes needed to applications to operate through
 a translator beyond what applications already need to do to operate
 on a dual node. The applications that have been modified to work on
 a dual node already have the mechanisms to determine whether they are
 communicating with an IPv4 or an IPv6 peer. Thus if the applications

Nordmark Standards Track [Page 7]

RFC 2765 SIIT February 2000

 need to modify their behavior depending on the type of the peer, such
 as ftp determining whether to fallback to using the PORT/PASV command
 when EPRT/EPSV fails (as specified in [FTPEXT]), they already need to
 do that when running on dual nodes and the presense of translators
 does not add anything. For example, when using the socket API
 [BSDAPI] the applications know that the peer is IPv6 if they get an
 AF_INET6 address from the name service and the address is not an
 IPv4-mapped address (i.e., IN6_IS_ADDR_V4MAPPED returns false). If
 this is not the case, i.e., the address is AF_INET or an IPv4-mapped
 IPv6 address, the peer is IPv4.

 One way of viewing the translator, which might help clarify why
 applications do not need to know that a translator is used, is to
 look at the information that is passed from the transport layer to
 the network layer. If the transport passes down an IPv4 address
 (whether or not is in the IPv4-mapped encoding) this means that at
 some point there will be IPv4 packets generated. In a dual node the
 generation of the IPv4 packets takes place in the sending node. In
 an IPv6-only node conceptually the only difference is that the IPv4
 packet is generated by the translator - all the information that the
 transport layer passed to the network layer will be conveyed to the
 translator in some form. That form just "happens" to be in the form
 of an IPv6 header.

2. Terminology

 This documents uses the terminology defined in [IPv6] and
 [TRANS-MECH] with these clarifications:

 IPv4 capable node:
 A node which has an IPv4 protocol stack.
 In order for the stack to be usable the node must be
 assigned one or more IPv4 addresses.

 IPv4 enabled node:
 A node which has an IPv4 protocol stack
 and is assigned one or more IPv4 addresses. Both
 IPv4-only and IPv6/IPv4 nodes are IPv4 enabled.

 IPv6 capable node:
 A node which has an IPv6 protocol stack.
 In order for the stack to be usable the node must be
 assigned one or more IPv6 addresses.

 IPv6 enabled node:
 A node which has an IPv6 protocol stack
 and is assigned one or more IPv6 addresses. Both
 IPv6-only and IPv6/IPv4 nodes are IPv6 enabled.

Nordmark Standards Track [Page 8]

RFC 2765 SIIT February 2000

2.1. Addresses

 In addition to the forms of addresses defined in [ADDR-ARCH] this
 document also introduces the new form of IPv4-translated address.
 This is needed to avoid using IPv4-compatible addresses outside the
 intended use of automatic tunneling. Thus the address forms are:

 IPv4-mapped:
 An address of the form 0::ffff:a.b.c.d which refers
 to a node that is not IPv6-capable. In addition to
 its use in the API this protocol uses IPv4-mapped
 addresses in IPv6 packets to refer to an IPv4 node.

 IPv4-compatible:
 An address of the form 0::0:a.b.c.d which refers to
 an IPv6/IPv4 node that supports automatic tunneling.
 Such addresses are not used in this protocol.

 IPv4-translated:
 An address of the form 0::ffff:0:a.b.c.d which refers
 to an IPv6-enabled node. Note that the prefix
 0::ffff:0:0:0/96 is chosen to checksum to zero to
 avoid any changes to the transport protocol’s pseudo
 header checksum.

2.2. Requirements

 The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
 SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this
 document, are to be interpreted as described in [KEYWORDS].

3. Translating from IPv4 to IPv6

 When an IPv4-to-IPv6 translator receives an IPv4 datagram addressed
 to a destination that lies outside of the attached IPv4 island, it
 translates the IPv4 header of that packet into an IPv6 header. It
 then forwards the packet based on the IPv6 destination address. The
 original IPv4 header on the packet is removed and replaced by an IPv6
 header. Except for ICMP packets the transport layer header and data
 portion of the packet are left unchanged.

Nordmark Standards Track [Page 9]

RFC 2765 SIIT February 2000

 +-------------+ +-------------+
 | IPv4 | | IPv6 |
 | Header | | Header |
 +-------------+ +-------------+
 | Transport | | Fragment |
 | Layer | ===> | Header |
 | Header | |(not always) |
 +-------------+ +-------------+
 | | | Transport |
 ˜ Data ˜ | Layer |
 | | | Header |
 +-------------+ +-------------+
 | |
 ˜ Data ˜
 | |
 +-------------+

 IPv4-to-IPv6 Translation

 One of the differences between IPv4 and IPv6 is that in IPv6 path MTU
 discovery is mandatory but it is optional in IPv4. This implies that
 IPv6 routers will never fragment a packet - only the sender can do
 fragmentation.

 When the IPv4 node performs path MTU discovery (by setting the DF bit
 in the header) the path MTU discovery can operate end-to-end i.e.
 across the translator. In this case either IPv4 or IPv6 routers
 might send back ICMP "packet too big" messages to the sender. When
 these ICMP errors are sent by the IPv6 routers they will pass through
 a translator which will translate the ICMP error to a form that the
 IPv4 sender can understand. In this case an IPv6 fragment header is
 only included if the IPv4 packet is already fragmented.

 However, when the IPv4 sender does not perform path MTU discovery the
 translator has to ensure that the packet does not exceed the path MTU
 on the IPv6 side. This is done by fragmenting the IPv4 packet so
 that it fits in 1280 byte IPv6 packet since IPv6 guarantees that 1280
 byte packets never need to be fragmented. Also, when the IPv4 sender
 does not perform path MTU discovery the translator MUST always
 include an IPv6 fragment header to indicate that the sender allows
 fragmentation. That is needed should the packet pass through an
 IPv6-to-IPv4 translator.

 The above rules ensure that when packets are fragmented either by the
 sender or by IPv4 routers that the low-order 16 bits of the fragment
 identification is carried end-end to ensure that packets are
 correctly reassembled. In addition, the rules use the presence of an

Nordmark Standards Track [Page 10]

RFC 2765 SIIT February 2000

 IPv6 fragment header to indicate that the sender might not be using
 path MTU discovery i.e. the packet should not have the DF flag set
 should it later be translated back to IPv4.

 Other than the special rules for handling fragments and path MTU
 discovery the actual translation of the packet header consists of a
 simple mapping as defined below. Note that ICMP packets require
 special handling in order to translate the content of ICMP error
 message and also to add the ICMP pseudo-header checksum.

3.1. Translating IPv4 Headers into IPv6 Headers

 If the DF flag is not set and the IPv4 packet will result in an IPv6
 packet larger than 1280 bytes the IPv4 packet MUST be fragmented
 prior to translating it. Since IPv4 packets with DF not set will
 always result in a fragment header being added to the packet the IPv4
 packets must be fragmented so that their length, excluding the IPv4
 header, is at most 1232 bytes (1280 minus 40 for the IPv6 header and
 8 for the Fragment header). The resulting fragments are then
 translated independently using the logic described below.

 If the DF bit is set and the packet is not a fragment (i.e., the MF
 flag is not set and the Fragment Offset is zero) then there is no
 need to add a fragment header to the packet. The IPv6 header fields
 are set as follows:

 Version:
 6

 Traffic Class:
 By default, copied from IP Type Of Service and
 Precedence field (all 8 bits are copied). According
 to [DIFFSERV] the semantics of the bits are identical
 in IPv4 and IPv6. However, in some IPv4 environments
 these fields might be used with the old semantics of
 "Type Of Service and Precedence". An implementation
 of a translator SHOULD provide the ability to ignore
 the IPv4 "TOS" and always set the IPv6 traffic class
 to zero.

 Flow Label:
 0 (all zero bits)

 Payload Length:
 Total length value from IPv4 header, minus the size
 of the IPv4 header and IPv4 options, if present.

Nordmark Standards Track [Page 11]

RFC 2765 SIIT February 2000

 Next Header:
 Protocol field copied from IPv4 header

 Hop Limit:
 TTL value copied from IPv4 header. Since the
 translator is a router, as part of forwarding the
 packet it needs to decrement either the IPv4 TTL
 (before the translation) or the IPv6 Hop Limit (after
 the translation). As part of decrementing the TTL or
 Hop Limit the translator (as any router) needs to
 check for zero and send the ICMPv4 or ICMPv6 "ttl
 exceeded" error.

 Source Address:
 The low-order 32 bits is the IPv4 source address.
 The high-order 96 bits is the IPv4-mapped prefix
 (::ffff:0:0/96)

 Destination Address:
 The low-order 32 bits is the IPv4 destination
 address. The high-order 96 bits is the IPv4-
 translated prefix (0::ffff:0:0:0/96)

 If IPv4 options are present in the IPv4 packet, they are ignored
 i.e., there is no attempt to translate them. However, if an
 unexpired source route option is present then the packet MUST instead
 be discarded, and an ICMPv4 "destination unreachable/source route
 failed" (Type 3/Code 5) error message SHOULD be returned to the
 sender.

 If there is need to add a fragment header (the DF bit is not set or
 the packet is a fragment) the header fields are set as above with the
 following exceptions:

 IPv6 fields:

 Payload Length:
 Total length value from IPv4 header, plus 8 for the
 fragment header, minus the size of the IPv4 header
 and IPv4 options, if present.

 Next Header:
 Fragment Header (44).

 Fragment header fields:

 Next Header:
 Protocol field copied from IPv4 header.

Nordmark Standards Track [Page 12]

RFC 2765 SIIT February 2000

 Fragment Offset:
 Fragment Offset copied from the IPv4 header.

 M flag:
 More Fragments bit copied from the IPv4 header.

 Identification:
 The low-order 16 bits copied from the Identification
 field in the IPv4 header. The high-order 16 bits set
 to zero.

3.2. Translating UDP over IPv4

 If a UDP packet has a zero UDP checksum then a valid checksum must be
 calculated in order to translate the packet. A stateless translator
 can not do this for fragmented packets but [MILLER] indicates that
 fragmented UDP packets with a zero checksum appear to only be used
 for malicious purposes. Thus this is not believed to be a noticeable
 limitation.

 When a translator receives the first fragment of a fragmented UDP
 IPv4 packet and the checksum field is zero the translator SHOULD drop
 the packet and generate a system management event specifying at least
 the IP addresses and port numbers in the packet. When it receives
 fragments other than the first it SHOULD silently drop the packet,
 since there is no port information to log.

 When a translator receives an unfragmented UDP IPv4 packet and the
 checksum field is zero the translator MUST compute the missing UDP
 checksum as part of translating the packet. Also, the translator
 SHOULD maintain a counter of how many UDP checksums are generated in
 this manner.

3.3. Translating ICMPv4 Headers into ICMPv6 Headers

 All ICMP messages that are to be translated require that the ICMP
 checksum field be updated as part of the translation since ICMPv6,
 unlike ICMPv4, has a pseudo-header checksum just like UDP and TCP.

 In addition all ICMP packets need to have the Type value translated
 and for ICMP error messages the included IP header also needs
 translation.

Nordmark Standards Track [Page 13]

RFC 2765 SIIT February 2000

 The actions needed to translate various ICMPv4 messages are:

 ICMPv4 query messages:

 Echo and Echo Reply (Type 8 and Type 0)
 Adjust the type to 128 and 129, respectively, and adjust the
 ICMP checksum both to take the type change into account and
 to include the ICMPv6 pseudo-header.

 Information Request/Reply (Type 15 and Type 16)
 Obsoleted in ICMPv4. Silently drop.

 Timestamp and Timestamp Reply (Type 13 and Type 14)
 Obsoleted in ICMPv6. Silently drop.

 Address Mask Request/Reply (Type 17 and Type 18)
 Obsoleted in ICMPv6. Silently drop.

 ICMP Router Advertisement (Type 9)
 Single hop message. Silently drop.

 ICMP Router Solicitation (Type 10)
 Single hop message. Silently drop.

 Unknown ICMPv4 types
 Silently drop.

 IGMP messages:

 While the MLD messages [MLD] are the logical IPv6
 counterparts for the IPv4 IGMP messages all the "normal" IGMP
 messages are single-hop messages and should be silently
 dropped by the translator. Other IGMP messages might be used
 by multicast routing protocols and, since it would be a
 configuration error to try to have router adjacencies across
 IPv4/IPv6 translators those packets should also be silently
 dropped.

 ICMPv4 error messages:

 Destination Unreachable (Type 3)
 For all that are not explicitly listed below set the Type to
 1.

 Translate the code field as follows:
 Code 0, 1 (net, host unreachable):
 Set Code to 0 (no route to destination).

Nordmark Standards Track [Page 14]

RFC 2765 SIIT February 2000

 Code 2 (protocol unreachable):
 Translate to an ICMPv6 Parameter Problem (Type 4,
 Code 1) and make the Pointer point to the IPv6 Next
 Header field.

 Code 3 (port unreachable):
 Set Code to 4 (port unreachable).

 Code 4 (fragmentation needed and DF set):
 Translate to an ICMPv6 Packet Too Big message (Type
 2) with code 0. The MTU field needs to be adjusted
 for the difference between the IPv4 and IPv6 header
 sizes. Note that if the IPv4 router did not set
 the MTU field i.e. the router does not implement
 [PMTUv4], then the translator must use the plateau
 values specified in [PMTUv4] to determine a likely
 path MTU and include that path MTU in the ICMPv6
 packet. (Use the greatest plateau value that is
 less than the returned Total Length field.)

 Code 5 (source route failed):
 Set Code to 0 (no route to destination). Note that
 this error is unlikely since source routes are not
 translated.

 Code 6,7:
 Set Code to 0 (no route to destination).

 Code 8:
 Set Code to 0 (no route to destination).

 Code 9, 10 (communication with destination host
 administratively prohibited):
 Set Code to 1 (communication with destination
 administratively prohibited)

 Code 11, 12:
 Set Code to 0 (no route to destination).

 Redirect (Type 5)
 Single hop message. Silently drop.

 Source Quench (Type 4)
 Obsoleted in ICMPv6. Silently drop.

 Time Exceeded (Type 11)
 Set the Type field to 3. The Code field is unchanged.

Nordmark Standards Track [Page 15]

RFC 2765 SIIT February 2000

 Parameter Problem (Type 12)
 Set the Type field to 4. The Pointer needs to be updated to
 point to the corresponding field in the translated include
 IP header.

3.4. Translating ICMPv4 Error Messages into ICMPv6

 There are some differences between the IPv4 and the IPv6 ICMP error
 message formats as detailed above. In addition, the ICMP error
 messages contain the IP header for the packet in error which needs to
 be translated just like a normal IP header. The translation of this
 "packet in error" is likely to change the length of the datagram thus
 the Payload Length field in the outer IPv6 header might need to be
 updated.

 +-------------+ +-------------+
 | IPv4 | | IPv6 |
 | Header | | Header |
 +-------------+ +-------------+
 | ICMPv4 | | ICMPv6 |
 | Header | | Header |
 +-------------+ +-------------+
 | IPv4 | ===> | IPv6 |
 | Header | | Header |
 +-------------+ +-------------+
 | Partial | | Partial |
 | Transport | | Transport |
 | Layer | | Layer |
 | Header | | Header |
 +-------------+ +-------------+

 IPv4-to-IPv6 ICMP Error Translation

 The translation of the inner IP header can be done by recursively
 invoking the function that translated the outer IP headers.

3.5. Knowing when to Translate

 The translator is assumed to know the pool(s) of IPv4 address that
 are used to represent the internal IPv6-only nodes. Thus if the IPv4
 destination field contains an address that falls in these configured
 sets of prefixes the packet needs to be translated to IPv6.

Nordmark Standards Track [Page 16]

RFC 2765 SIIT February 2000

4. Translating from IPv6 to IPv4

 When an IPv6-to-IPv4 translator receives an IPv6 datagram addressed
 to an IPv4-mapped IPv6 address, it translates the IPv6 header of that
 packet into an IPv4 header. It then forwards the packet based on the
 IPv4 destination address. The original IPv6 header on the packet is
 removed and replaced by an IPv4 header. Except for ICMP packets the
 transport layer header and data portion of the packet are left
 unchanged.

 +-------------+ +-------------+
 | IPv6 | | IPv4 |
 | Header | | Header |
 +-------------+ +-------------+
 | Fragment | | Transport |
 | Header | ===> | Layer |
 |(if present) | | Header |
 +-------------+ +-------------+
 | Transport | | |
 | Layer | ˜ Data ˜
 | Header | | |
 +-------------+ +-------------+
 | |
 ˜ Data ˜
 | |
 +-------------+

 IPv6-to-IPv4 Translation

 There are some differences between IPv6 and IPv4 in the area of
 fragmentation and the minimum link MTU that effect the translation.
 An IPv6 link has to have an MTU of 1280 bytes or greater. The
 corresponding limit for IPv4 is 68 bytes. Thus, unless there were
 special measures, it would not be possible to do end-to-end path MTU
 discovery when the path includes an IPv6-to-IPv4 translator since the
 IPv6 node might receive ICMP "packet too big" messages originated by
 an IPv4 router that report an MTU less than 1280. However, [IPv6]
 requires that IPv6 nodes handle such an ICMP "packet too big" message
 by reducing the path MTU to 1280 and including an IPv6 fragment
 header with each packet. This allows end-to-end path MTU discovery
 across the translator as long as the path MTU is 1280 bytes or
 greater. When the path MTU drops below the 1280 limit the IPv6
 sender will originate 1280 byte packets that will be fragmented by
 IPv4 routers along the path after being translated to IPv4.

 The only drawback with this scheme is that it is not possible to use
 PMTU to do optimal UDP fragmentation (as opposed to completely
 avoiding fragmentation) at sender since the presence of an IPv6

Nordmark Standards Track [Page 17]

RFC 2765 SIIT February 2000

 Fragment header is interpreted that is it OK to fragment the packet
 on the IPv4 side. Thus if a UDP application wants to send large
 packets independent of the PMTU, the sender will only be able to
 determine the path MTU on the IPv6 side of the translator. If the
 path MTU on the IPv4 side of the translator is smaller then the IPv6
 sender will not receive any ICMP "too big" errors and can not adjust
 the size fragments it is sending.

 Other than the special rules for handling fragments and path MTU
 discovery the actual translation of the packet header consists of a
 simple mapping as defined below. Note that ICMP packets require
 special handling in order to translate the content of ICMP error
 message and also to add the ICMP pseudo-header checksum.

4.1. Translating IPv6 Headers into IPv4 Headers

 If there is no IPv6 Fragment header the IPv4 header fields are set as
 follows:

 Version:
 4

 Internet Header Length:
 5 (no IPv4 options)

 Type of Service and Precedence:
 By default, copied from the IPv6 Traffic Class (all 8
 bits). According to [DIFFSERV] the semantics of the
 bits are identical in IPv4 and IPv6. However, in
 some IPv4 environments these bits might be used with
 the old semantics of "Type Of Service and
 Precedence". An implementation of a translator
 SHOULD provide the ability to ignore the IPv6 traffic
 class and always set the IPv4 "TOS" to zero.

 Total Length:
 Payload length value from IPv6 header, plus the size
 of the IPv4 header.

 Identification:
 All zero.

 Flags:
 The More Fragments flag is set to zero. The Don’t
 Fragments flag is set to one.

 Fragment Offset:
 All zero.

Nordmark Standards Track [Page 18]

RFC 2765 SIIT February 2000

 Time to Live:
 Hop Limit value copied from IPv6 header. Since the
 translator is a router, as part of forwarding the
 packet it needs to decrement either the IPv6 Hop
 Limit (before the translation) or the IPv4 TTL (after
 the translation). As part of decrementing the TTL or
 Hop Limit the translator (as any router) needs to
 check for zero and send the ICMPv4 or ICMPv6 "ttl
 exceeded" error.

 Protocol:
 Next Header field copied from IPv6 header.

 Header Checksum:
 Computed once the IPv4 header has been created.

 Source Address:
 If the IPv6 source address is an IPv4-translated
 address then the low-order 32 bits of the IPv6 source
 address is copied to the IPv4 source address.
 Otherwise, the source address is set to 0.0.0.0. The
 use of 0.0.0.0 is to avoid completely dropping e.g.
 ICMPv6 error messages sent by IPv6-only routers which
 makes e.g. traceroute present something for the
 IPv6-only hops.

 Destination Address:
 IPv6 packets that are translated have an IPv4-mapped
 destination address. Thus the low-order 32 bits of
 the IPv6 destination address is copied to the IPv4
 destination address.

 If any of an IPv6 hop-by-hop options header, destination options
 header, or routing header with the Segments Left field equal to zero
 are present in the IPv6 packet, they are ignored i.e., there is no
 attempt to translate them. However, the Total Length field and the
 Protocol field would have to be adjusted to "skip" these extension
 headers.

 If a routing header with a non-zero Segments Left field is present
 then the packet MUST NOT be translated, and an ICMPv6 "parameter
 problem/ erroneous header field encountered" (Type 4/Code 0) error
 message, with the Pointer field indicating the first byte of the
 Segments Left field, SHOULD be returned to the sender.

Nordmark Standards Track [Page 19]

RFC 2765 SIIT February 2000

 If the IPv6 packet contains a Fragment header the header fields are
 set as above with the following exceptions:

 Total Length:
 Payload length value from IPv6 header, minus 8 for
 the Fragment header, plus the size of the IPv4
 header.

 Identification:
 Copied from the low-order 16-bits in the
 Identification field in the Fragment header.

 Flags:
 The More Fragments flag is copied from the M flag in
 the Fragment header. The Don’t Fragments flag is set
 to zero allowing this packet to be fragmented by IPv4
 routers.

 Fragment Offset:
 Copied from the Fragment Offset field in the Fragment
 Header.

 Protocol:
 Next Header value copied from Fragment header.

4.2. Translating ICMPv6 Headers into ICMPv4 Headers

 All ICMP messages that are to be translated require that the ICMP
 checksum field be updated as part of the translation since ICMPv6,
 unlike ICMPv4, has a pseudo-header checksum just like UDP and TCP.

 In addition all ICMP packets need to have the Type value translated
 and for ICMP error messages the included IP header also needs
 translation.

 The actions needed to translate various ICMPv6 messages are:

 ICMPv6 informational messages:

 Echo Request and Echo Reply (Type 128 and 129)
 Adjust the type to 0 and 8, respectively, and adjust the ICMP
 checksum both to take the type change into account and to
 exclude the ICMPv6 pseudo-header.

 MLD Multicast Listener Query/Report/Done (Type 130, 131, 132)
 Single hop message. Silently drop.

Nordmark Standards Track [Page 20]

RFC 2765 SIIT February 2000

 Neighbor Discover messages (Type 133 through 137)
 Single hop message. Silently drop.

 Unknown informational messages
 Silently drop.

 ICMPv6 error messages:

 Destination Unreachable (Type 1)
 Set the Type field to 3. Translate the code field as
 follows:
 Code 0 (no route to destination):
 Set Code to 1 (host unreachable).

 Code 1 (communication with destination administratively
 prohibited):
 Set Code to 10 (communication with destination host
 administratively prohibited).

 Code 2 (beyond scope of source address):
 Set Code to 1 (host unreachable). Note that this
 error is very unlikely since the IPv4-translatable
 source address is considered to have global scope.

 Code 3 (address unreachable):
 Set Code to 1 (host unreachable).

 Code 4 (port unreachable):
 Set Code to 3 (port unreachable).

 Packet Too Big (Type 2)
 Translate to an ICMPv4 Destination Unreachable with code 4.
 The MTU field needs to be adjusted for the difference between
 the IPv4 and IPv6 header sizes taking into account whether or
 not the packet in error includes a Fragment header.

 Time Exceeded (Type 3)
 Set the Type to 11. The Code field is unchanged.

 Parameter Problem (Type 4)
 If the Code is 1 translate this to an ICMPv4 protocol
 unreachable (Type 3, Code 2). Otherwise set the Type to 12
 and the Code to zero. The Pointer needs to be updated to
 point to the corresponding field in the translated include IP
 header.

 Unknown error messages
 Silently drop.

Nordmark Standards Track [Page 21]

RFC 2765 SIIT February 2000

4.3. Translating ICMPv6 Error Messages into ICMPv4

 There are some differences between the IPv4 and the IPv6 ICMP error
 message formats as detailed above. In addition, the ICMP error
 messages contain the IP header for the packet in error which needs to
 be translated just like a normal IP header. The translation of this
 "packet in error" is likely to change the length of the datagram thus
 the Total Length field in the outer IPv4 header might need to be
 updated.

 +-------------+ +-------------+
 | IPv6 | | IPv4 |
 | Header | | Header |
 +-------------+ +-------------+
 | ICMPv6 | | ICMPv4 |
 | Header | | Header |
 +-------------+ +-------------+
 | IPv6 | ===> | IPv4 |
 | Header | | Header |
 +-------------+ +-------------+
 | Partial | | Partial |
 | Transport | | Transport |
 | Layer | | Layer |
 | Header | | Header |
 +-------------+ +-------------+

 IPv6-to-IPv4 ICMP Error Translation

 The translation of the inner IP header can be done by recursively
 invoking the function that translated the outer IP headers.

4.4. Knowing when to Translate

 When the translator receives an IPv6 packet with an IPv4-mapped
 destination address the packet will be translated to IPv4.

5. Implications for IPv6-Only Nodes

 An IPv6-only node which works through SIIT translators need some
 modifications beyond a normal IPv6-only node.

 As specified in Section 1.3 the application protocols need to handle
 operation on a dual stack node. In addition the protocol stack needs
 to be able to:

Nordmark Standards Track [Page 22]

RFC 2765 SIIT February 2000

 o Determine when an IPv4-translatable address needs to be allocated
 and the allocation needs to be refreshed/renewed. This can
 presumably be done without involving the applications by e.g.
 handling this under the socket API. For instance, when the
 connect or sendto socket calls are invoked they could check if the
 destination is an IPv4-mapped address and in that case
 allocate/refresh the IPv4-translatable address.

 o Ensure, as part of the source address selection mechanism, that
 when the destination address is an IPv4-mapped address the source
 address MUST be an IPv4-translatable address. And an IPv4-
 translatable address MUST NOT be used with other forms of IPv6
 destination addresses.

 o Should the peer have AAAA/A6 address records the application (or
 resolver) SHOULD never fall back to looking for A address records
 even if communication fails using the available AAAA/A6 records.
 The reason for this restriction is to prevent traffic between two
 IPv6 nodes (which AAAA/A6 records in the DNS) from accidentally
 going through SIIT translators twice; from IPv6 to IPv4 and to
 IPv6 again. It is considered preferable to instead signal a
 failure to communicate to the application.

6. Security Considerations

 The use of stateless IP/ICMP translators does not introduce any new
 security issues beyond the security issues that are already present
 in the IPv4 and IPv6 protocols and in the routing protocols which are
 used to make the packets reach the translator.

 As the Authentication Header [IPv6-AUTH] is specified to include the
 IPv4 Identification field and the translating function not being able
 to always preserve the Identification field, it is not possible for
 an IPv6 endpoint to compute AH on received packets that have been
 translated from IPv4 packets. Thus AH does not work through a
 translator.

 Packets with ESP can be translated since ESP does not depend on
 header fields prior to the ESP header. Note that ESP transport mode
 is easier to handle than ESP tunnel mode; in order to use ESP tunnel
 mode the IPv6 node needs to be able to generate an inner IPv4 header
 when transmitting packets and remove such an IPv4 header when
 receiving packets.

Nordmark Standards Track [Page 23]

RFC 2765 SIIT February 2000

References

 [KEYWORDS] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [IPv6] Deering, S. and R. Hinden, Editors, "Internet Protocol,
 Version 6 (IPv6) Specification", RFC 2460, December
 1998.

 [IPv4] Postel, J., "Internet Protocol", STD 5, RFC 791,
 September 1981.

 [ADDR-ARCH] Deering, S. and R. Hinden, Editors, "IP Version 6
 Addressing Architecture", RFC 2373, July 1998.

 [TRANS-MECH] Gilligan, R. and E. Nordmark, "Transition Mechanisms for
 IPv6 Hosts and Routers", RFC 1933, April 1996.

 [DISCOVERY] Narten, T., Nordmark, E. and W. Simpson, "Neighbor
 Discovery for IP Version 6 (IPv6)", RFC 2461, December
 1998.

 [IPv6-SA] Atkinson, R., "Security Architecture for the Internet
 Protocol", RFC 2401, November 1998.

 [IPv6-AUTH] Atkinson, R., "IP Authentication Header", RFC 2402,
 November 1998.

 [IPv6-ESP] Atkinson, R., "IP Encapsulating Security Payload (ESP)",
 RFC 2406, November 1998.

 [ICMPv4] Postel, J., "Internet Control Message Protocol", STD 5,
 RFC 792, September 1981.

 [ICMPv6] Conta, A. and S. Deering, "Internet Control Message
 Protocol (ICMPv6) for the Internet Protocol Version 6
 (IPv6)", RFC 2463, December 1998.

 [IGMP] Deering, S., "Host extensions for IP multicasting", STD
 5, RFC 1112, August 1989.

 [PMTUv4] Mogul, J. and S. Deering, "Path MTU Discovery", RFC
 1191, November 1990.

 [PMTUv6] McCann, J., Deering, S. and J. Mogul, "Path MTU
 Discovery for IP version 6", RFC 1981, August 1996.

Nordmark Standards Track [Page 24]

RFC 2765 SIIT February 2000

 [DIFFSERV] Nichols, K., Blake, S., Baker, F. and D. Black,
 "Definition of the Differentiated Services Field (DS
 Field) in the IPv4 and IPv6 Headers", RFC 2474, December
 1998.

 [MLD] Deering, S., Fenner, W. and B. Haberman, "Multicast
 Listener Discovery (MLD) for IPv6", RFC 2710, October
 1999.

 [FTPEXT] Allman, M., Ostermann, S. and C. Metz, "FTP Extensions
 for IPv6 and NATs.", RFC 2428, September 1998.

 [MILLER] G. Miller, Email to the ngtrans mailing list on 26 March
 1999.

 [BSDAPI] Gilligan, R., Thomson, S., Bound, J. and W. Stevens,
 "Basic Socket Interface Extensions for IPv6", RFC 2553,
 March 1999.

Author’s Address

 Erik Nordmark
 Sun Microsystems, Inc.
 901 San Antonio Road
 Palo Alto, CA 94303
 USA

 Phone: +1 650 786 5166
 Fax: +1 650 786 5896
 EMail: nordmark@sun.com

Nordmark Standards Track [Page 25]

RFC 2765 SIIT February 2000

Full Copyright Statement

 Copyright (C) The Internet Society (2000). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Nordmark Standards Track [Page 26]

