
Network Working Group A. Bhushan
Request for Comments: 264 MIT
NIC: 7812 B. Braden
 UCLA
 W. Crowther
 BBN
 E. Harslem
 J. Heafner
 Rand
 A. McKenzie
 BBN
 J. Melvin
 SRI
 B. Sundberg
 Harvard
 D. Watson
 SRI
 J. White
 UCSB
 15 November 1971

 THE DATA TRANSFER PROTOCOL

 This paper is a revision of RFC 171, NIC 6793. The changes to RFC
 171 are given below. The protocol is then restated for your
 convenience.

CHANGES TO RFC 171

 1) The sequence number field is changed to 16 bits in the error (Type
 B5) transactions, thus resolving the ambiguity in the previous
 specification. In addition, the information separators (Type B4)
 transactions shall also contain a 16-bit sequence number field.

 2) The modes available (Type B3) transactions shall define only the
 modes available for receive, instead of both receive and send. In
 simplex connections modes available transactions should not be
 sent as they are meaningless. In full-duplex connections, the
 modes available transactions are still required.

 3) The code assignments for "End Code" in information separators and
 for "function" in abort transactions have been changed to reflect
 a numerical order rather than "bit-coding".

 4) Minor editorial changes.

Bhushan, et. al. [Page 1]

RFC 264 The Data Transfer Protocol 15 November 1971

I. INTRODUCTION

 A common protocol is desirable for data transfer in such diverse
 applications as remote job entry, file transfer, network mail
 system, graphics, remote program execution, and communication with
 block data terminals (such as printers, card, paper tape, and
 magnetic tape equipment, especially in context of terminal IMPs).
 Although it would be possible to include some or even all of the
 above applications in an all-inclusive file transfer protocol, a
 separation between data transfer and application functions may
 provide flexibility in implementation, and reduce complexity.
 Separating the data transfer function from the specific
 applications functions may also reduce proliferation of programs
 and protocols.

 We have therefore defined a data transfer protocol (DTP) which
 should be used for transfer of data in file transfer, remote job
 entry, and other applications protocols. This paper concerns
 itself only with the data transfer protocol. A companion paper
 (RFC 265) describes the file transfer protocol.

II. DISCUSSION

 The data transfer protocol (DTP) serves three basic functions. It
 provides for convenient separation of NCP messages into "logical"
 blocks (transactions, units, records, groups, and files), it
 allows for the separation of data and control information, and it
 includes some error control mechanisms.

Transfer Modes

 Three modes of separating messages into transactions [1] are
 allowed by DTP. The first is an indefinite bit stream which
 terminates only when the connection is closed (i.e., the bit
 stream represents a single transaction for duration of
 connection). This mode would be useful in data transfer between
 hosts and terminal IMPs (TIPs).

 The second mode utilizes a "transparent" block convention, similar
 to the ASCII DLE (Data Link Escape) convention. In "transparent"
 mode, transactions (which may be arbitrarily long) end whenever
 the character sequence DLE ETX is encountered (DLE and ETX are 8-
 bit character codes). To prevent the possibility of a DLE ETX
 sequence occurring within data stream, any occurrence of DLE is
 replaced by DLE DLE on transmission. The extra DLE is stripped on
 reception. A departure from the ASCII convention is that

Bhushan, et. al. [Page 2]

RFC 264 The Data Transfer Protocol 15 November 1971

 "transparent" block does not begin with DLE STX, but with a
 transaction type byte. This mode would be useful in data transfer
 between terminal IMPs.

 The third mode utilizes a count mechanism. Each transaction
 begins with a fixed-length descriptor field containing separate
 binary counts of information bits and filler (i.e., not
 information) bits. If a transaction has no filler bits, its
 filler count is zero. This mode would be useful in most host-to-
 host data transfer applications.

 DTP allows for transfer modes to be intermixed over the same
 connection (i.e., the transfer mode is not associated with
 connection, but only with transaction). The transfer modes can
 represent transfer of either data or control information. The
 protocol allows for separating data and control information at a
 lower level, by providing different "type" codes (see
 SPECIFICATIONS) for data and control transactions. This provision
 may simplify some implementations.

 The implementation of a subset of transfer modes is specifically
 permitted by DTP. To provide compatibility between hosts using
 different subsets of transfer modes, an initial "handshake"
 procedure may be used. The handshake involves exchanging
 information on modes available for receive. This will enable host
 programs to agree on transfer modes acceptable for a connection.

Using DTP

 The manner in which DTP is used would depend largely on the
 applications protocol. It is the applications protocol which
 defines the use of transfer modes and the use of information
 separator and abort functions provided in DTP (see
 SPECIFICATIONS). For example, in a remote job entry protocol,
 aborts may be used to stop the execution of a job, while they may
 not cause any action in another applications protocol.

 It should also be noted that DTP does not define a data transfer
 service. There is no standard server socket, or initial
 connection protocol defined for DTP. What DTP defines is a
 mechanism for data transfer which can be used to provide services
 for block data transfers, file transfers, remote job entry,
 network mail and other applications.

 There are to be no restrictions on the manner in which DTP is
 implemented at various sites. For example, DTP may be imbedded in
 an applications program such as for file transfer, or it may be a
 separate service program or subroutine used by several

Bhushan, et. al. [Page 3]

RFC 264 The Data Transfer Protocol 15 November 1971

 applications programs. Another implementation may employ macros
 or UUO’s (unimplemented user operations on PDP-10’s), to achieve
 the functions specified in DTP. It is also possible that in
 implementation, the separation between the DTP and applications
 protocols be only at a conceptual level.

III. SPECIFICATIONS

 1. Byte Size for Network Connection

 The standard byte size for network connections using DTP is 8
 bits. However, other byte sizes specified by applications
 protocols are also allowed by DTP. For the purpose of this
 document bytes are assumed to be 8-bits, unless otherwise
 stated.

 2. Transactions

 At DTP level, all information transmitted over a connection is
 a sequence of transactions. DTP defines the rules for
 delimiting transactions.

 2A. Types

 The first 8-bit byte of each transaction shall define a
 transaction type, as shown below. (Note that code assignments
 do not conflict with assignments in TELNET protocol.) The
 transaction types will be referred to by the hexadecimal code
 assigned to them. (The transaction types are discussed in more
 detail in Section 2B.)

 Code Transaction Type
 Hex Octal

 B0 260 Indefinite bit stream -- data.
 B1 261 Transparent (DLE) block--data.
 B2 262 Descriptor and counts--data.
 B3 263 Modes available (handshake).
 B4 264 Information Separators.
 B5 265 Error codes.
 B6 266 Abort.
 B7 267 No operation (NoOp).
 B8 270 Indefinite bit stream--control.
 B9 271 Transparent (DLE) block--control.
 BA 272 Descriptor and counts--control.
 BB 273
 through through Unassigned but reserved for DTP.
 BF 277

Bhushan, et. al. [Page 4]

RFC 264 The Data Transfer Protocol 15 November 1971

 2B. Syntax and Semantics

 2B.1 Type B0 and B8 (indefinite bitstream modes) transactions
 terminate only when the NCP connection is "closed". There is
 no other escape convention defined in DTP at this level. It
 should be noted that the closing of a connection in bitstream
 mode is an implicit file separator (see Section 2B.5).

 2B.2 Type B1 and B9 (transparent block modes) transactions terminate
 when the byte sequence DLE ETX is encountered. The sender
 shall replace any occurrence of DLE in data stream by the
 sequence DLE DLE. The receiver shall strip the extra DLE. The
 transaction is assumed to be byte-oriented. The code for DLE
 is Hex ’90’ or Octal ’220’ (this is different from the ASCII
 DLE which is Hex ’10’ or Octal ’020). [2] ETX is Hex ’03’ or
 Octal ’03’ (the same as ASCII ETX).

 2B.3 Type B2 and BA (descriptor and counts modes) transactions have
 three fields, a 9-byte (72-bit) descriptor field (as shown
 below) and variable length (including zero) info and filler
 fields. The total length of a transaction is (72+info+filler)
 bits.

 |<B2 or BA>|<Info count>| <NUL> <Sequence #>| <NUL> |<filler count>|
 |<-8-bit-> |<--24-bit-->|<8-bit><--16-bit-->|<8-bit>|<---8-bit---->|
 |<--------------------72-bit descriptor field--------------------->|

 Info count is a binary count of the number of bits in the
 info field, not including descriptor or filler bits. The
 number of info bits is limited to (2**24 - 1), as there are 24
 bits in info count field.

 Sequence # is a sequential count in round-robin manner of B2,
 BA, and B4 type transactions. The inclusion of sequence
 numbers will help in debugging and error control, as sequence
 numbers may be used to check for missing transactions and aid
 in locating errors. Hosts not wishing to implement this
 mechanism should have all 1’s in the field. The count shall
 start from zero and continue sequentially to all 1’s, after
 which it is reset to all zeros. The permitted sequence numbers
 are one greater than the previous, all 1’s, and zero for the
 first transaction only.

 Filler count is a binary count of bits used as fillers (i.e.,
 not information) after the end of meaningful data. Number of
 filler bits is limited to 255, as there are 8 bits in filler
 count field.

Bhushan, et. al. [Page 5]

RFC 264 The Data Transfer Protocol 15 November 1971

 The NUL bytes must contain all 0’s.

 2B.4 Type B3 (modes available) transactions have a fixed length of
 two bytes, as shown below. First byte defines the transaction
 type B3, and second byte defines the transfer modes available
 for receive.

 +-----------------+---------------------+
 |Type | I receive | | | | | | | |
 | B3 | |
 | |0|0|BA|B2|B9|B1|B8|B0|
 +-----------------+---------------------+

 The modes are indicated by bit-coding, as shown above. The
 particular bits, if set to logical "1", indicate that the
 corresponding modes are handled by the sender’s receive side.
 The two most significant bits should be set to logical "0".
 Mode available transactions have no significance in a simplex
 connection. The use of type B3 transactions is discussed in
 section 3B.

 2B.5 Type B4 (information separator) transactions have a fixed
 length of four bytes, as shown below. First byte defines the
 transaction type B4, second byte defines the separator, and
 third and fourth bytes contain a 16-bit sequence number.

 +------------+------------+-------------------------+
 |Type | End Code | Sequence Number | |
 | B4 | | | |
 | | | | |
 +------------+------------+------------+------------+

 The following separator codes are assigned:

 Code Meaning
 Hex Octal

 01 001 Unit separator
 02 002 Record separator
 03 003 Group separator
 04 004 File separator

 Files, groups, records, and units may be data blocks that a
 user defines to be so. The only restriction is that of the
 hierarchical relationship File>Groups>Records>Units (where ’>’
 means ’contains’). Thus a file separator marks not only the
 end of file, but also the end of group, record, and unit.

Bhushan, et. al. [Page 6]

RFC 264 The Data Transfer Protocol 15 November 1971

 These separators may provide a convenient "logical" separation
 of data at the data transfer level. Their use is governed by
 the applications protocol.

 2B.6 Type B5 (error codes) transactions have a fixed length of four
 bytes, as shown below. First byte defines the transaction type
 B5, second byte indicates an error code, and third and fourth
 bytes may indicate the sequence number of a transaction in
 which an error occurred.

 +------------+------------+-------------------------+
 |Type | End Code | Sequence Number | |
 | B5 | | | |
 | | | | |
 +------------+------------+------------+------------+

 The following error codes are assigned:

 Error Code Meaning
 Hex Octal

 00 000 Undefined error
 01 001 Out of sync. (type code other
 than B0 through BF).
 02 002 Broken sequence (the sequence # field
 contains the first expected but not
 received sequence number).
 03 003 Illegal DLF sequence (other than DLE
 DLE or DLE FTX).
 B0 260
 through through The transaction type (indicated by
 BF 277 by error code) is not implemented.

 The error code transaction is defined only for the purpose of
 error control. DTP does not require the receiver of an error
 code to take any recovery action. The receiver may discard the
 error code transaction. In addition, DTP does not require that
 sequence numbers be remembered or transmitted.

 2B.7 Type B6 (abort) transactions have a fixed length of two bytes,
 as shown below. First byte defines the transaction type B6,
 and second byte defines the abort function.

 +------------+------------+
 |Type | Function |
 | B6 | |
 | | |
 +------------+------------+

Bhushan, et. al. [Page 7]

RFC 264 The Data Transfer Protocol 15 November 1971

 The following abort codes are assigned:

 Abort Code Meaning
 Hex Octal

 00 000 Abort preceding transaction
 01 001 Abort preceding unit
 02 002 Abort preceding record
 03 003 Abort preceding group
 04 004 Abort preceding file

 DTP does not require the receiver of an abort to take specific
 action, therefore a sender should not make any assumptions
 thereof. The manner in which abort is handled is to be
 specified by higher-level applications protocols.

 2B.8 Type B7 (NoOp) transactions are one byte (8-bit) long, and
 indicate no operation. These may be useful as fillers when the
 byte size used for network connections is other than 8-bits.

 3. Initial Connection, Handshake and Error Recovery

 3A. DTP does not specify the mechanism used in establishing
 connections. It is up to the applications protocol (e.g., file
 transfer protocol) to choose the mechanism which suits its
 requirements. [3]

 3B. The first transaction after a full-duplex connection is made
 will be type B3 (modes available) indicating the transfer modes
 available for receive. The modes available (Type B3)
 transaction is not applicable in simplex connections. It is
 the sender’s responsibility to choose a mode acceptable to the
 receiver. [4] If an acceptable mode is not available or if
 mode chosen is not acceptable, the connection may be closed.

 3C. No error recovery mechanisms are specified by DTP. The
 applications protocol may implement error recovery and further
 error control mechanisms.

Bhushan, et. al. [Page 8]

RFC 264 The Data Transfer Protocol 15 November 1971

Endnotes

 [1] The term transaction is used here to mean a block of data
 defined by the transfer mode.

 [2] This assignment was made to be consistent with the TELNET
 philosophy of maintaining the integrity of the 128 Network ASCII
 characters.

 [3] It is, however, recommended that the standard Initial Connection
 Protocol as specified in RFC 165 or any subsequent standard document
 be adopted where feasible.

 [4] It is suggested that when available, the sender should choose
 ’descriptor and count’ mode (Type B2 or BA). The ’indefinite
 bitstream’ mode (Type B0 or B8) should be chosen only when the other
 two modes are not available.

 [This RFC was put into machine readable form for entry]
 [into the online RFC archives by Ryan Kato 6/01]

Bhushan, et. al. [Page 9]

