
Network Working Group SNMPv2 Working Group
Request for Comments: 1905 J. Case
Obsoletes: 1448 SNMP Research, Inc.
Category: Standards Track K. McCloghrie
 Cisco Systems, Inc.
 M. Rose
 Dover Beach Consulting, Inc.
 S. Waldbusser
 International Network Services
 January 1996

 Protocol Operations
 for Version 2 of the
 Simple Network Management Protocol (SNMPv2)

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

1. Introduction

 A management system contains: several (potentially many) nodes, each
 with a processing entity, termed an agent, which has access to
 management instrumentation; at least one management station; and, a
 management protocol, used to convey management information between
 the agents and management stations. Operations of the protocol are
 carried out under an administrative framework which defines
 authentication, authorization, access control, and privacy policies.

 Management stations execute management applications which monitor and
 control managed elements. Managed elements are devices such as
 hosts, routers, terminal servers, etc., which are monitored and
 controlled via access to their management information.

 Management information is viewed as a collection of managed objects,
 residing in a virtual information store, termed the Management
 Information Base (MIB). Collections of related objects are defined
 in MIB modules. These modules are written using a subset of OSI’s
 Abstract Syntax Notation One (ASN.1) [1], termed the Structure of
 Management Information (SMI) [2].

SNMPv2 Working Group Standards Track [Page 1]

RFC 1905 Protocol Operations for SNMPv2 January 1996

 The management protocol, version 2 of the Simple Network Management
 Protocol, provides for the exchange of messages which convey
 management information between the agents and the management
 stations. The form of these messages is a message "wrapper" which
 encapsulates a Protocol Data Unit (PDU). The form and meaning of the
 "wrapper" is determined by an administrative framework which defines
 both authentication and authorization policies.

 It is the purpose of this document, Protocol Operations for SNMPv2,
 to define the operations of the protocol with respect to the sending
 and receiving of the PDUs.

1.1. A Note on Terminology

 For the purpose of exposition, the original Internet-standard Network
 Management Framework, as described in RFCs 1155 (STD 16), 1157 (STD
 15), and 1212 (STD 16), is termed the SNMP version 1 framework
 (SNMPv1). The current framework is termed the SNMP version 2
 framework (SNMPv2).

2. Overview

2.1. Roles of Protocol Entities

 A SNMPv2 entity may operate in a manager role or an agent role.

 A SNMPv2 entity acts in an agent role when it performs SNMPv2
 management operations in response to received SNMPv2 protocol
 messages (other than an inform notification) or when it sends trap
 notifications.

 A SNMPv2 entity acts in a manager role when it initiates SNMPv2
 management operations by the generation of SNMPv2 protocol messages
 or when it performs SNMPv2 management operations in response to
 received trap or inform notifications.

 A SNMPv2 entity may support either or both roles, as dictated by its
 implementation and configuration. Further, a SNMPv2 entity can also
 act in the role of a proxy agent, in which it appears to be acting in
 an agent role, but satisfies management requests by acting in a
 manager role with a remote entity.

2.2. Management Information

 The term, variable, refers to an instance of a non-aggregate object
 type defined according to the conventions set forth in the SMI [2] or
 the textual conventions based on the SMI [3]. The term, variable
 binding, normally refers to the pairing of the name of a variable and

SNMPv2 Working Group Standards Track [Page 2]

RFC 1905 Protocol Operations for SNMPv2 January 1996

 its associated value. However, if certain kinds of exceptional
 conditions occur during processing of a retrieval request, a variable
 binding will pair a name and an indication of that exception.

 A variable-binding list is a simple list of variable bindings.

 The name of a variable is an OBJECT IDENTIFIER which is the
 concatenation of the OBJECT IDENTIFIER of the corresponding object-
 type together with an OBJECT IDENTIFIER fragment identifying the
 instance. The OBJECT IDENTIFIER of the corresponding object-type is
 called the OBJECT IDENTIFIER prefix of the variable.

2.3. Access to Management Information

 Three types of access to management information are provided by the
 protocol. One type is a request-response interaction, in which a
 SNMPv2 entity, acting in a manager role, sends a request to a SNMPv2
 entity, acting in an agent role, and the latter SNMPv2 entity then
 responds to the request. This type is used to retrieve or modify
 management information associated with the managed device.

 A second type is also a request-response interaction, in which a
 SNMPv2 entity, acting in a manager role, sends a request to a SNMPv2
 entity, also acting in a manager role, and the latter SNMPv2 entity
 then responds to the request. This type is used to notify a SNMPv2
 entity, acting in a manager role, of management information
 associated with another SNMPv2 entity, also acting in a manager role.

 The third type of access is an unconfirmed interaction, in which a
 SNMPv2 entity, acting in an agent role, sends a unsolicited message,
 termed a trap, to a SNMPv2 entity, acting in a manager role, and no
 response is returned. This type is used to notify a SNMPv2 entity,
 acting in a manager role, of an exceptional situation, which has
 resulted in changes to management information associated with the
 managed device.

2.4. Retransmission of Requests

 For all types of request in this protocol, the receiver is required
 under normal circumstances, to generate and transmit a response to
 the originator of the request. Whether or not a request should be
 retransmitted if no corresponding response is received in an
 appropriate time interval, is at the discretion of the application
 originating the request. This will normally depend on the urgency of
 the request. However, such an application needs to act responsibly
 in respect to the frequency and duration of re-transmissions.

SNMPv2 Working Group Standards Track [Page 3]

RFC 1905 Protocol Operations for SNMPv2 January 1996

2.5. Message Sizes

 The maximum size of a SNMPv2 message is limited to the minimum of:

(1) the maximum message size which the destination SNMPv2 entity can
 accept; and,

(2) the maximum message size which the source SNMPv2 entity can
 generate.

 The former may be known on a per-recipient basis; and in the absence
 of such knowledge, is indicated by transport domain used when sending
 the message. The latter is imposed by implementation-specific local
 constraints.

 Each transport mapping for the SNMPv2 indicates the minimum message
 size which a SNMPv2 implementation must be able to produce or
 consume. Although implementations are encouraged to support larger
 values whenever possible, a conformant implementation must never
 generate messages larger than allowed by the receiving SNMPv2 entity.

 One of the aims of the GetBulkRequest-PDU, specified in this
 protocol, is to minimize the number of protocol exchanges required to
 retrieve a large amount of management information. As such, this PDU
 type allows a SNMPv2 entity acting in a manager role to request that
 the response be as large as possible given the constraints on message
 sizes. These constraints include the limits on the size of messages
 which the SNMPv2 entity acting in an agent role can generate, and the
 SNMPv2 entity acting in a manager role can receive.

 However, it is possible that such maximum sized messages may be
 larger than the Path MTU of the path across the network traversed by
 the messages. In this situation, such messages are subject to
 fragmentation. Fragmentation is generally considered to be harmful
 [4], since among other problems, it leads to a decrease in the
 reliability of the transfer of the messages. Thus, a SNMPv2 entity
 which sends a GetBulkRequest-PDU must take care to set its parameters
 accordingly, so as to reduce the risk of fragmentation. In
 particular, under conditions of network stress, only small values
 should be used for max-repetitions.

2.6. Transport Mappings

 It is important to note that the exchange of SNMPv2 messages requires
 only an unreliable datagram service, with every message being
 entirely and independently contained in a single transport datagram.
 Specific transport mappings and encoding rules are specified
 elsewhere [5]. However, the preferred mapping is the use of the User

SNMPv2 Working Group Standards Track [Page 4]

RFC 1905 Protocol Operations for SNMPv2 January 1996

 Datagram Protocol [6].

3. Definitions

 SNMPv2-PDU DEFINITIONS ::= BEGIN

 IMPORTS
 ObjectName, ObjectSyntax, Integer32
 FROM SNMPv2-SMI;

 -- protocol data units

 PDUs ::=
 CHOICE {
 get-request
 GetRequest-PDU,

 get-next-request
 GetNextRequest-PDU,

 get-bulk-request
 GetBulkRequest-PDU,

 response
 Response-PDU,

 set-request
 SetRequest-PDU,

 inform-request
 InformRequest-PDU,

 snmpV2-trap
 SNMPv2-Trap-PDU,

 report
 Report-PDU,
 }

 -- PDUs

 GetRequest-PDU ::=
 [0]
 IMPLICIT PDU

 GetNextRequest-PDU ::=

SNMPv2 Working Group Standards Track [Page 5]

RFC 1905 Protocol Operations for SNMPv2 January 1996

 [1]
 IMPLICIT PDU

 Response-PDU ::=
 [2]
 IMPLICIT PDU

 SetRequest-PDU ::=
 [3]
 IMPLICIT PDU

 -- [4] is obsolete

 GetBulkRequest-PDU ::=
 [5]
 IMPLICIT BulkPDU

 InformRequest-PDU ::=
 [6]
 IMPLICIT PDU

 SNMPv2-Trap-PDU ::=
 [7]
 IMPLICIT PDU

 -- Usage and precise semantics of Report-PDU are not presently
 -- defined. Any SNMP administrative framework making use of
 -- this PDU must define its usage and semantics.
 Report-PDU ::=
 [8]
 IMPLICIT PDU

 max-bindings
 INTEGER ::= 2147483647

 PDU ::=
 SEQUENCE {
 request-id
 Integer32,

 error-status -- sometimes ignored
 INTEGER {
 noError(0),
 tooBig(1),
 noSuchName(2), -- for proxy compatibility
 badValue(3), -- for proxy compatibility
 readOnly(4), -- for proxy compatibility
 genErr(5),

SNMPv2 Working Group Standards Track [Page 6]

RFC 1905 Protocol Operations for SNMPv2 January 1996

 noAccess(6),
 wrongType(7),
 wrongLength(8),
 wrongEncoding(9),
 wrongValue(10),
 noCreation(11),
 inconsistentValue(12),
 resourceUnavailable(13),
 commitFailed(14),
 undoFailed(15),
 authorizationError(16),
 notWritable(17),
 inconsistentName(18)
 },

 error-index -- sometimes ignored
 INTEGER (0..max-bindings),

 variable-bindings -- values are sometimes ignored
 VarBindList
 }

 BulkPDU ::= -- MUST be identical in
 SEQUENCE { -- structure to PDU
 request-id
 Integer32,

 non-repeaters
 INTEGER (0..max-bindings),

 max-repetitions
 INTEGER (0..max-bindings),

 variable-bindings -- values are ignored
 VarBindList
 }

 -- variable binding

 VarBind ::=
 SEQUENCE {
 name
 ObjectName,

 CHOICE {
 value

SNMPv2 Working Group Standards Track [Page 7]

RFC 1905 Protocol Operations for SNMPv2 January 1996

 ObjectSyntax,

 unSpecified -- in retrieval requests
 NULL,

 -- exceptions in responses
 noSuchObject[0]
 IMPLICIT NULL,

 noSuchInstance[1]
 IMPLICIT NULL,

 endOfMibView[2]
 IMPLICIT NULL
 }
 }

 -- variable-binding list

 VarBindList ::=
 SEQUENCE (SIZE (0..max-bindings)) OF
 VarBind

 END

4. Protocol Specification

4.1. Common Constructs

 The value of the request-id field in a Response-PDU takes the value
 of the request-id field in the request PDU to which it is a response.
 By use of the request-id value, a SNMPv2 application can distinguish
 the (potentially multiple) outstanding requests, and thereby
 correlate incoming responses with outstanding requests. In cases
 where an unreliable datagram service is used, the request-id also
 provides a simple means of identifying messages duplicated by the
 network. Use of the same request-id on a retransmission of a request
 allows the response to either the original transmission or the
 retransmission to satisfy the request. However, in order to
 calculate the round trip time for transmission and processing of a
 request-response transaction, the SNMPv2 application needs to use a
 different request-id value on a retransmitted request. The latter
 strategy is recommended for use in the majority of situations.

SNMPv2 Working Group Standards Track [Page 8]

RFC 1905 Protocol Operations for SNMPv2 January 1996

 A non-zero value of the error-status field in a Response-PDU is used
 to indicate that an exception occurred to prevent the processing of
 the request. In these cases, a non-zero value of the Response-PDU’s
 error-index field provides additional information by identifying
 which variable binding in the list caused the exception. A variable
 binding is identified by its index value. The first variable binding
 in a variable-binding list is index one, the second is index two,
 etc.

 SNMPv2 limits OBJECT IDENTIFIER values to a maximum of 128 sub-
 identifiers, where each sub-identifier has a maximum value of 2**32-
 1.

4.2. PDU Processing

 It is mandatory that all SNMPv2 entities acting in an agent role be
 able to generate the following PDU types: Response-PDU and SNMPv2-
 Trap-PDU; further, all such implementations must be able to receive
 the following PDU types: GetRequest-PDU, GetNextRequest-PDU,
 GetBulkRequest-PDU, and SetRequest-PDU.

 It is mandatory that all SNMPv2 entities acting in a manager role be
 able to generate the following PDU types: GetRequest-PDU,
 GetNextRequest-PDU, GetBulkRequest-PDU, SetRequest-PDU,
 InformRequest-PDU, and Response-PDU; further, all such
 implementations must be able to receive the following PDU types:
 Response-PDU, SNMPv2-Trap-PDU,

 InformRequest-PDU;

 In the elements of procedure below, any field of a PDU which is not
 referenced by the relevant procedure is ignored by the receiving
 SNMPv2 entity. However, all components of a PDU, including those
 whose values are ignored by the receiving SNMPv2 entity, must have
 valid ASN.1 syntax and encoding. For example, some PDUs (e.g., the
 GetRequest-PDU) are concerned only with the name of a variable and
 not its value. In this case, the value portion of the variable
 binding is ignored by the receiving SNMPv2 entity. The unSpecified
 value is defined for use as the value portion of such bindings.

 On generating a management communication, the message "wrapper" to
 encapsulate the PDU is generated according to the "Elements of
 Procedure" of the administrative framework in use is followed. While
 the definition of "max-bindings" does impose an upper-bound on the
 number of variable bindings, in practice, the size of a message is
 limited only by constraints on the maximum message size -- it is not
 limited by the number of variable bindings.

SNMPv2 Working Group Standards Track [Page 9]

RFC 1905 Protocol Operations for SNMPv2 January 1996

 On receiving a management communication, the "Elements of Procedure"
 of the administrative framework in use is followed, and if those
 procedures indicate that the operation contained within the message
 is to be performed locally, then those procedures also indicate the
 MIB view which is visible to the operation.

4.2.1. The GetRequest-PDU

 A GetRequest-PDU is generated and transmitted at the request of a
 SNMPv2 application.

 Upon receipt of a GetRequest-PDU, the receiving SNMPv2 entity
 processes each variable binding in the variable-binding list to
 produce a Response-PDU. All fields of the Response-PDU have the same
 values as the corresponding fields of the received request except as
 indicated below. Each variable binding is processed as follows:

(1) If the variable binding’s name exactly matches the name of a
 variable accessible by this request, then the variable binding’s
 value field is set to the value of the named variable.

(2) Otherwise, if the variable binding’s name does not have an OBJECT
 IDENTIFIER prefix which exactly matches the OBJECT IDENTIFIER
 prefix of any (potential) variable accessible by this request, then
 its value field is set to ‘noSuchObject’.

(3) Otherwise, the variable binding’s value field is set to
 ‘noSuchInstance’.

 If the processing of any variable binding fails for a reason other
 than listed above, then the Response-PDU is re-formatted with the
 same values in its request-id and variable-bindings fields as the
 received GetRequest-PDU, with the value of its error-status field set
 to ‘genErr’, and the value of its error-index field is set to the
 index of the failed variable binding.

 Otherwise, the value of the Response-PDU’s error-status field is set
 to ‘noError’, and the value of its error-index field is zero.

 The generated Response-PDU is then encapsulated into a message. If
 the size of the resultant message is less than or equal to both a
 local constraint and the maximum message size of the originator, it
 is transmitted to the originator of the GetRequest-PDU.

 Otherwise, an alternate Response-PDU is generated. This alternate
 Response-PDU is formatted with the same value in its request-id field
 as the received GetRequest-PDU, with the value of its error-status
 field set to ‘tooBig’, the value of its error-index field set to

SNMPv2 Working Group Standards Track [Page 10]

RFC 1905 Protocol Operations for SNMPv2 January 1996

 zero, and an empty variable-bindings field. This alternate
 Response-PDU is then encapsulated into a message. If the size of the
 resultant message is less than or equal to both a local constraint
 and the maximum message size of the originator, it is transmitted to
 the originator of the GetRequest-PDU. Otherwise, the snmpSilentDrops
 [9] counter is incremented and the resultant message is discarded.

4.2.2. The GetNextRequest-PDU

 A GetNextRequest-PDU is generated and transmitted at the request of a
 SNMPv2 application.

 Upon receipt of a GetNextRequest-PDU, the receiving SNMPv2 entity
 processes each variable binding in the variable-binding list to
 produce a Response-PDU. All fields of the Response-PDU have the same
 values as the corresponding fields of the received request except as
 indicated below. Each variable binding is processed as follows:

(1) The variable is located which is in the lexicographically ordered
 list of the names of all variables which are accessible by this
 request and whose name is the first lexicographic successor of the
 variable binding’s name in the incoming GetNextRequest-PDU. The
 corresponding variable binding’s name and value fields in the
 Response-PDU are set to the name and value of the located variable.

(2) If the requested variable binding’s name does not lexicographically
 precede the name of any variable accessible by this request, i.e.,
 there is no lexicographic successor, then the corresponding
 variable binding produced in the Response-PDU has its value field
 set to ‘endOfMibView’, and its name field set to the variable
 binding’s name in the request.

 If the processing of any variable binding fails for a reason other
 than listed above, then the Response-PDU is re-formatted with the
 same values in its request-id and variable-bindings fields as the
 received GetNextRequest-PDU, with the value of its error-status field
 set to ‘genErr’, and the value of its error-index field is set to the
 index of the failed variable binding.

 Otherwise, the value of the Response-PDU’s error-status field is set
 to ‘noError’, and the value of its error-index field is zero.

 The generated Response-PDU is then encapsulated into a message. If
 the size of the resultant message is less than or equal to both a
 local constraint and the maximum message size of the originator, it
 is transmitted to the originator of the GetNextRequest-PDU.

SNMPv2 Working Group Standards Track [Page 11]

RFC 1905 Protocol Operations for SNMPv2 January 1996

 Otherwise, an alternate Response-PDU is generated. This alternate
 Response-PDU is formatted with the same values in its request-id
 field as the received GetNextRequest-PDU, with the value of its
 error-status field set to ‘tooBig’, the value of its error-index
 field set to zero, and an empty variable-bindings field. This
 alternate Response-PDU is then encapsulated into a message. If the
 size of the resultant message is less than or equal to both a local
 constraint and the maximum message size of the originator, it is
 transmitted to the originator of the GetNextRequest-PDU. Otherwise,
 the snmpSilentDrops [9] counter is incremented and the resultant
 message is discarded.

4.2.2.1. Example of Table Traversal

 An important use of the GetNextRequest-PDU is the traversal of
 conceptual tables of information within a MIB. The semantics of this
 type of request, together with the method of identifying individual
 instances of objects in the MIB, provides access to related objects
 in the MIB as if they enjoyed a tabular organization.

 In the protocol exchange sketched below, a SNMPv2 application
 retrieves the media-dependent physical address and the address-
 mapping type for each entry in the IP net-to-media Address
 Translation Table [7] of a particular network element. It also
 retrieves the value of sysUpTime [9], at which the mappings existed.
 Suppose that the agent’s IP net-to-media table has three entries:

 Interface-Number Network-Address Physical-Address Type

 1 10.0.0.51 00:00:10:01:23:45 static
 1 9.2.3.4 00:00:10:54:32:10 dynamic
 2 10.0.0.15 00:00:10:98:76:54 dynamic

 The SNMPv2 entity acting in a manager role begins by sending a
 GetNextRequest-PDU containing the indicated OBJECT IDENTIFIER values
 as the requested variable names:

 GetNextRequest (sysUpTime,
 ipNetToMediaPhysAddress,
 ipNetToMediaType)

 The SNMPv2 entity acting in an agent role responds with a Response-
 PDU:

 Response ((sysUpTime.0 = "123456"),
 (ipNetToMediaPhysAddress.1.9.2.3.4 =
 "000010543210"),
 (ipNetToMediaType.1.9.2.3.4 = "dynamic"))

SNMPv2 Working Group Standards Track [Page 12]

RFC 1905 Protocol Operations for SNMPv2 January 1996

 The SNMPv2 entity acting in a manager role continues with:

 GetNextRequest (sysUpTime,
 ipNetToMediaPhysAddress.1.9.2.3.4,
 ipNetToMediaType.1.9.2.3.4)

 The SNMPv2 entity acting in an agent role responds with:

 Response ((sysUpTime.0 = "123461"),
 (ipNetToMediaPhysAddress.1.10.0.0.51 =
 "000010012345"),
 (ipNetToMediaType.1.10.0.0.51 = "static"))

 The SNMPv2 entity acting in a manager role continues with:

 GetNextRequest (sysUpTime,
 ipNetToMediaPhysAddress.1.10.0.0.51,
 ipNetToMediaType.1.10.0.0.51)

 The SNMPv2 entity acting in an agent role responds with:

 Response ((sysUpTime.0 = "123466"),
 (ipNetToMediaPhysAddress.2.10.0.0.15 =
 "000010987654"),
 (ipNetToMediaType.2.10.0.0.15 = "dynamic"))

 The SNMPv2 entity acting in a manager role continues with:

 GetNextRequest (sysUpTime,
 ipNetToMediaPhysAddress.2.10.0.0.15,
 ipNetToMediaType.2.10.0.0.15)

 As there are no further entries in the table, the SNMPv2 entity
 acting in an agent role responds with the variables that are next in
 the lexicographical ordering of the accessible object names, for
 example:

 Response ((sysUpTime.0 = "123471"),
 (ipNetToMediaNetAddress.1.9.2.3.4 =
 "9.2.3.4"),
 (ipRoutingDiscards.0 = "2"))

 This response signals the end of the table to the SNMPv2 entity
 acting in a manager role.

SNMPv2 Working Group Standards Track [Page 13]

RFC 1905 Protocol Operations for SNMPv2 January 1996

4.2.3. The GetBulkRequest-PDU

 A GetBulkRequest-PDU is generated and transmitted at the request of a
 SNMPv2 application. The purpose of the GetBulkRequest-PDU is to
 request the transfer of a potentially large amount of data,
 including, but not limited to, the efficient and rapid retrieval of
 large tables.

 Upon receipt of a GetBulkRequest-PDU, the receiving SNMPv2 entity
 processes each variable binding in the variable-binding list to
 produce a Response-PDU with its request-id field having the same
 value as in the request. Processing begins by examining the values
 in the non-repeaters and max-repetitions fields. If the value in the
 non-repeaters field is less than zero, then the value of the field is
 set to zero. Similarly, if the value in the max-repetitions field is
 less than zero, then the value of the field is set to zero.

 For the GetBulkRequest-PDU type, the successful processing of each
 variable binding in the request generates zero or more variable
 bindings in the Response-PDU. That is, the one-to-one mapping
 between the variable bindings of the GetRequest-PDU, GetNextRequest-
 PDU, and SetRequest-PDU types and the resultant Response-PDUs does
 not apply for the mapping between the variable bindings of a
 GetBulkRequest-PDU and the resultant Response-PDU.

 The values of the non-repeaters and max-repetitions fields in the
 request specify the processing requested. One variable binding in
 the Response-PDU is requested for the first N variable bindings in
 the request and M variable bindings are requested for each of the R
 remaining variable bindings in the request. Consequently, the total
 number of requested variable bindings communicated by the request is
 given by N + (M * R), where N is the minimum of: a) the value of the
 non-repeaters field in the request, and b) the number of variable
 bindings in the request; M is the value of the max-repetitions field
 in the request; and R is the maximum of: a) number of variable
 bindings in the request - N, and b) zero.

 The receiving SNMPv2 entity produces a Response-PDU with up to the
 total number of requested variable bindings communicated by the
 request. The request-id shall have the same value as the received
 GetBulkRequest-PDU.

 If N is greater than zero, the first through the (N)-th variable
 bindings of the Response-PDU are each produced as follows:

(1) The variable is located which is in the lexicographically ordered
 list of the names of all variables which are accessible by this
 request and whose name is the first lexicographic successor of the

SNMPv2 Working Group Standards Track [Page 14]

RFC 1905 Protocol Operations for SNMPv2 January 1996

 variable binding’s name in the incoming GetBulkRequest-PDU. The
 corresponding variable binding’s name and value fields in the
 Response-PDU are set to the name and value of the located variable.

(2) If the requested variable binding’s name does not lexicographically
 precede the name of any variable accessible by this request, i.e.,
 there is no lexicographic successor, then the corresponding
 variable binding produced in the Response-PDU has its value field
 set to ‘endOfMibView’, and its name field set to the variable
 binding’s name in the request.

 If M and R are non-zero, the (N + 1)-th and subsequent variable
 bindings of the Response-PDU are each produced in a similar manner.
 For each iteration i, such that i is greater than zero and less than
 or equal to M, and for each repeated variable, r, such that r is
 greater than zero and less than or equal to R, the (N + ((i-1) * R)
 + r)-th variable binding of the Response-PDU is produced as follows:

(1) The variable which is in the lexicographically ordered list of the
 names of all variables which are accessible by this request and
 whose name is the (i)-th lexicographic successor of the (N + r)-th
 variable binding’s name in the incoming GetBulkRequest-PDU is
 located and the variable binding’s name and value fields are set to
 the name and value of the located variable.

(2) If there is no (i)-th lexicographic successor, then the
 corresponding variable binding produced in the Response-PDU has its
 value field set to ‘endOfMibView’, and its name field set to either
 the last lexicographic successor, or if there are no lexicographic
 successors, to the (N + r)-th variable binding’s name in the
 request.

 While the maximum number of variable bindings in the Response-PDU is
 bounded by N + (M * R), the response may be generated with a lesser
 number of variable bindings (possibly zero) for either of three
 reasons.

(1) If the size of the message encapsulating the Response-PDU
 containing the requested number of variable bindings would be
 greater than either a local constraint or the maximum message size
 of the originator, then the response is generated with a lesser
 number of variable bindings. This lesser number is the ordered set
 of variable bindings with some of the variable bindings at the end
 of the set removed, such that the size of the message encapsulating
 the Response-PDU is approximately equal to but no greater than
 either a local constraint or the maximum message size of the
 originator. Note that the number of variable bindings removed has
 no relationship to the values of N, M, or R.

SNMPv2 Working Group Standards Track [Page 15]

RFC 1905 Protocol Operations for SNMPv2 January 1996

(2) The response may also be generated with a lesser number of variable
 bindings if for some value of iteration i, such that i is greater
 than zero and less than or equal to M, that all of the generated
 variable bindings have the value field set to the ‘endOfMibView’.
 In this case, the variable bindings may be truncated after the (N +
 (i * R))-th variable binding.

(3) In the event that the processing of a request with many repetitions
 requires a significantly greater amount of processing time than a
 normal request, then an agent may terminate the request with less
 than the full number of repetitions, providing at least one
 repetition is completed.

 If the processing of any variable binding fails for a reason other
 than listed above, then the Response-PDU is re-formatted with the
 same values in its request-id and variable-bindings fields as the
 received GetBulkRequest-PDU, with the value of its error-status field
 set to ‘genErr’, and the value of its error-index field is set to the
 index of the variable binding in the original request which
 corresponds to the failed variable binding.

 Otherwise, the value of the Response-PDU’s error-status field is set
 to ‘noError’, and the value of its error-index field to zero.

 The generated Response-PDU (possibly with an empty variable-bindings
 field) is then encapsulated into a message. If the size of the
 resultant message is less than or equal to both a local constraint
 and the maximum message size of the originator, it is transmitted to
 the originator of the GetBulkRequest-PDU. Otherwise, the
 snmpSilentDrops [9] counter is incremented and the resultant message
 is discarded.

4.2.3.1. Another Example of Table Traversal

 This example demonstrates how the GetBulkRequest-PDU can be used as
 an alternative to the GetNextRequest-PDU. The same traversal of the
 IP net-to-media table as shown in Section 4.2.2.1 is achieved with
 fewer exchanges.

 The SNMPv2 entity acting in a manager role begins by sending a
 GetBulkRequest-PDU with the modest max-repetitions value of 2, and
 containing the indicated OBJECT IDENTIFIER values as the requested
 variable names:

 GetBulkRequest [non-repeaters = 1, max-repetitions = 2]
 (sysUpTime,
 ipNetToMediaPhysAddress,
 ipNetToMediaType)

SNMPv2 Working Group Standards Track [Page 16]

RFC 1905 Protocol Operations for SNMPv2 January 1996

 The SNMPv2 entity acting in an agent role responds with a Response-PDU:

 Response ((sysUpTime.0 = "123456"),
 (ipNetToMediaPhysAddress.1.9.2.3.4 =
 "000010543210"),
 (ipNetToMediaType.1.9.2.3.4 = "dynamic"),
 (ipNetToMediaPhysAddress.1.10.0.0.51 =
 "000010012345"),
 (ipNetToMediaType.1.10.0.0.51 = "static"))

 The SNMPv2 entity acting in a manager role continues with:

 GetBulkRequest [non-repeaters = 1, max-repetitions = 2]
 (sysUpTime,
 ipNetToMediaPhysAddress.1.10.0.0.51,
 ipNetToMediaType.1.10.0.0.51)

 The SNMPv2 entity acting in an agent role responds with:

 Response ((sysUpTime.0 = "123466"),
 (ipNetToMediaPhysAddress.2.10.0.0.15 =
 "000010987654"),
 (ipNetToMediaType.2.10.0.0.15 =
 "dynamic"),
 (ipNetToMediaNetAddress.1.9.2.3.4 =
 "9.2.3.4"),
 (ipRoutingDiscards.0 = "2"))

 This response signals the end of the table to the SNMPv2 entity
 acting in a manager role.

4.2.4. The Response-PDU

 The Response-PDU is generated by a SNMPv2 entity only upon receipt of
 a GetRequest-PDU, GetNextRequest-PDU, GetBulkRequest-PDU,
 SetRequest-PDU, or InformRequest-PDU, as described elsewhere in this
 document.

 If the error-status field of the Response-PDU is non-zero, the value
 fields of the variable bindings in the variable binding list are
 ignored.

 If both the error-status field and the error-index field of the
 Response-PDU are non-zero, then the value of the error-index field is
 the index of the variable binding (in the variable-binding list of
 the corresponding request) for which the request failed. The first
 variable binding in a request’s variable-binding list is index one,
 the second is index two, etc.

SNMPv2 Working Group Standards Track [Page 17]

RFC 1905 Protocol Operations for SNMPv2 January 1996

 A compliant SNMPv2 entity acting in a manager role must be able to
 properly receive and handle a Response-PDU with an error-status field
 equal to ‘noSuchName’, ‘badValue’, or ‘readOnly’. (See Section 3.1.2
 of [8].)

 Upon receipt of a Response-PDU, the receiving SNMPv2 entity presents
 its contents to the SNMPv2 application which generated the request
 with the same request-id value.

4.2.5. The SetRequest-PDU

 A SetRequest-PDU is generated and transmitted at the request of a
 SNMPv2 application.

 Upon receipt of a SetRequest-PDU, the receiving SNMPv2 entity
 determines the size of a message encapsulating a Response-PDU having
 the same values in its request-id and variable-bindings fields as the
 received SetRequest-PDU, and the largest possible sizes of the
 error-status and error-index fields. If the determined message size
 is greater than either a local constraint or the maximum message size
 of the originator, then an alternate Response-PDU is generated,
 transmitted to the originator of the SetRequest-PDU, and processing
 of the SetRequest-PDU terminates immediately thereafter. This
 alternate Response-PDU is formatted with the same values in its
 request-id field as the received SetRequest-PDU, with the value of
 its error-status field set to ‘tooBig’, the value of its error-index
 field set to zero, and an empty variable-bindings field. This
 alternate Response-PDU is then encapsulated into a message. If the
 size of the resultant message is less than or equal to both a local
 constraint and the maximum message size of the originator, it is
 transmitted to the originator of the SetRequest-PDU. Otherwise, the
 snmpSilentDrops [9] counter is incremented and the resultant message
 is discarded. Regardless, processing of the SetRequest-PDU
 terminates.

 Otherwise, the receiving SNMPv2 entity processes each variable
 binding in the variable-binding list to produce a Response-PDU. All
 fields of the Response-PDU have the same values as the corresponding
 fields of the received request except as indicated below.

 The variable bindings are conceptually processed as a two phase
 operation. In the first phase, each variable binding is validated;
 if all validations are successful, then each variable is altered in
 the second phase. Of course, implementors are at liberty to
 implement either the first, or second, or both, of these conceptual
 phases as multiple implementation phases. Indeed, such multiple
 implementation phases may be necessary in some cases to ensure
 consistency.

SNMPv2 Working Group Standards Track [Page 18]

RFC 1905 Protocol Operations for SNMPv2 January 1996

 The following validations are performed in the first phase on each
 variable binding until they are all successful, or until one fails:

(1) If the variable binding’s name specifies an existing or non-
 existent variable to which this request is/would be denied access
 because it is/would not be in the appropriate MIB view, then the
 value of the Response-PDU’s error-status field is set to
 ‘noAccess’, and the value of its error-index field is set to the
 index of the failed variable binding.

(2) Otherwise, if there are no variables which share the same OBJECT
 IDENTIFIER prefix as the variable binding’s name, and which are
 able to be created or modified no matter what new value is
 specified, then the value of the Response-PDU’s error-status field
 is set to ‘notWritable’, and the value of its error-index field is
 set to the index of the failed variable binding.

(3) Otherwise, if the variable binding’s value field specifies,
 according to the ASN.1 language, a type which is inconsistent with
 that required for all variables which share the same OBJECT
 IDENTIFIER prefix as the variable binding’s name, then the value of
 the Response-PDU’s error-status field is set to ‘wrongType’, and
 the value of its error-index field is set to the index of the
 failed variable binding.

(4) Otherwise, if the variable binding’s value field specifies,
 according to the ASN.1 language, a length which is inconsistent
 with that required for all variables which share the same OBJECT
 IDENTIFIER prefix as the variable binding’s name, then the value of
 the Response-PDU’s error-status field is set to ‘wrongLength’, and
 the value of its error-index field is set to the index of the
 failed variable binding.

(5) Otherwise, if the variable binding’s value field contains an ASN.1
 encoding which is inconsistent with that field’s ASN.1 tag, then
 the value of the Response-PDU’s error-status field is set to
 ‘wrongEncoding’, and the value of its error-index field is set to
 the index of the failed variable binding. (Note that not all
 implementation strategies will generate this error.)

(6) Otherwise, if the variable binding’s value field specifies a value
 which could under no circumstances be assigned to the variable,
 then the value of the Response-PDU’s error-status field is set to
 ‘wrongValue’, and the value of its error-index field is set to the
 index of the failed variable binding.

(7) Otherwise, if the variable binding’s name specifies a variable
 which does not exist and could not ever be created (even though

SNMPv2 Working Group Standards Track [Page 19]

RFC 1905 Protocol Operations for SNMPv2 January 1996

 some variables sharing the same OBJECT IDENTIFIER prefix might
 under some circumstances be able to be created), then the value of
 the Response-PDU’s error-status field is set to ‘noCreation’, and
 the value of its error-index field is set to the index of the
 failed variable binding.

(8) Otherwise, if the variable binding’s name specifies a variable
 which does not exist but can not be created under the present
 circumstances (even though it could be created under other
 circumstances), then the value of the Response-PDU’s error-status
 field is set to ‘inconsistentName’, and the value of its error-
 index field is set to the index of the failed variable binding.

(9) Otherwise, if the variable binding’s name specifies a variable
 which exists but can not be modified no matter what new value is
 specified, then the value of the Response-PDU’s error-status field
 is set to ‘notWritable’, and the value of its error-index field is
 set to the index of the failed variable binding.

(10) Otherwise, if the variable binding’s value field specifies a value
 that could under other circumstances be held by the variable, but
 is presently inconsistent or otherwise unable to be assigned to the
 variable, then the value of the Response-PDU’s error-status field
 is set to ‘inconsistentValue’, and the value of its error-index
 field is set to the index of the failed variable binding.

(11) When, during the above steps, the assignment of the value specified
 by the variable binding’s value field to the specified variable
 requires the allocation of a resource which is presently
 unavailable, then the value of the Response-PDU’s error-status
 field is set to ‘resourceUnavailable’, and the value of its error-
 index field is set to the index of the failed variable binding.

(12) If the processing of the variable binding fails for a reason other
 than listed above, then the value of the Response-PDU’s error-
 status field is set to ‘genErr’, and the value of its error-index
 field is set to the index of the failed variable binding.

(13) Otherwise, the validation of the variable binding succeeds.

 At the end of the first phase, if the validation of all variable
 bindings succeeded, then the value of the Response-PDU’s error-status
 field is set to ‘noError’ and the value of its error-index field is
 zero, and processing continues as follows.

 For each variable binding in the request, the named variable is
 created if necessary, and the specified value is assigned to it.
 Each of these variable assignments occurs as if simultaneously with

SNMPv2 Working Group Standards Track [Page 20]

RFC 1905 Protocol Operations for SNMPv2 January 1996

 respect to all other assignments specified in the same request.
 However, if the same variable is named more than once in a single
 request, with different associated values, then the actual assignment
 made to that variable is implementation-specific.

 If any of these assignments fail (even after all the previous
 validations), then all other assignments are undone, and the
 Response-PDU is modified to have the value of its error-status field
 set to ‘commitFailed’, and the value of its error-index field set to
 the index of the failed variable binding.

 If and only if it is not possible to undo all the assignments, then
 the Response-PDU is modified to have the value of its error-status
 field set to ‘undoFailed’, and the value of its error-index field is
 set to zero. Note that implementations are strongly encouraged to
 take all possible measures to avoid use of either ‘commitFailed’ or
 ‘undoFailed’ - these two error-status codes are not to be taken as
 license to take the easy way out in an implementation.

 Finally, the generated Response-PDU is encapsulated into a message,
 and transmitted to the originator of the SetRequest-PDU.

4.2.6. The SNMPv2-Trap-PDU

 A SNMPv2-Trap-PDU is generated and transmitted by a SNMPv2 entity
 acting in an agent role when an exceptional situation occurs.

 The destination(s) to which a SNMPv2-Trap-PDU is sent is determined
 in an implementation-dependent fashion by the SNMPv2 entity. The
 first two variable bindings in the variable binding list of an
 SNMPv2-Trap-PDU are sysUpTime.0 [9] and snmpTrapOID.0 [9]
 respectively. If the OBJECTS clause is present in the invocation of
 the corresponding NOTIFICATION-TYPE macro, then each corresponding
 variable, as instantiated by this notification, is copied, in order,
 to the variable-bindings field. If any additional variables are
 being included (at the option of the generating SNMPv2 entity), then
 each is copied to the variable-bindings field.

4.2.7. The InformRequest-PDU

 An InformRequest-PDU is generated and transmitted at the request of
 an application in a SNMPv2 entity acting in a manager role, that
 wishes to notify another application (in a SNMPv2 entity also acting
 in a manager role) of information in a MIB view which is remote to
 the receiving application.

 The destination(s) to which an InformRequest-PDU is sent is specified
 by the requesting application. The first two variable bindings in

SNMPv2 Working Group Standards Track [Page 21]

RFC 1905 Protocol Operations for SNMPv2 January 1996

 the variable binding list of an InformRequest-PDU are sysUpTime.0 [9]
 and snmpTrapOID.0 [9] respectively. If the OBJECTS clause is present
 in the invocation of the corresponding NOTIFICATION-TYPE macro, then
 each corresponding variable, as instantiated by this notification, is
 copied, in order, to the variable-bindings field.

 Upon receipt of an InformRequest-PDU, the receiving SNMPv2 entity
 determines the size of a message encapsulating a Response-PDU with
 the same values in its request-id, error-status, error-index and
 variable-bindings fields as the received InformRequest-PDU. If the
 determined message size is greater than either a local constraint or
 the maximum message size of the originator, then an alternate
 Response-PDU is generated, transmitted to the originator of the
 InformRequest-PDU, and processing of the InformRequest-PDU terminates
 immediately thereafter. This alternate Response-PDU is formatted
 with the same values in its request-id field as the received
 InformRequest-PDU, with the value of its error-status field set to
 ‘tooBig’, the value of its error-index field set to zero, and an
 empty variable-bindings field. This alternate Response-PDU is then
 encapsulated into a message. If the size of the resultant message is
 less than or equal to both a local constraint and the maximum message
 size of the originator, it is transmitted to the originator of the
 InformRequest-PDU. Otherwise, the snmpSilentDrops [9] counter is
 incremented and the resultant message is discarded. Regardless,
 processing of the InformRequest-PDU terminates.

 Otherwise, the receiving SNMPv2 entity:

(1) presents its contents to the appropriate SNMPv2 application;

(2) generates a Response-PDU with the same values in its request-id and
 variable-bindings fields as the received InformRequest-PDU, with
 the value of its error-status field is set to ‘noError’ and the
 value of its error-index field is zero; and

(3) transmits the generated Response-PDU to the originator of the
 InformRequest-PDU.

5. Security Considerations

 Security issues are not discussed in this memo.

SNMPv2 Working Group Standards Track [Page 22]

RFC 1905 Protocol Operations for SNMPv2 January 1996

6. Editor’s Address

 Keith McCloghrie
 Cisco Systems, Inc.
 170 West Tasman Drive
 San Jose, CA 95134-1706
 US

 Phone: +1 408 526 5260
 EMail: kzm@cisco.com

7. Acknowledgements

 This document is the result of significant work by the four major
 contributors:

 Jeffrey D. Case (SNMP Research, case@snmp.com)
 Keith McCloghrie (Cisco Systems, kzm@cisco.com)
 Marshall T. Rose (Dover Beach Consulting, mrose@dbc.mtview.ca.us)
 Steven Waldbusser (International Network Services, stevew@uni.ins.com)

 In addition, the contributions of the SNMPv2 Working Group are
 acknowledged. In particular, a special thanks is extended for the
 contributions of:

 Alexander I. Alten (Novell)
 Dave Arneson (Cabletron)
 Uri Blumenthal (IBM)
 Doug Book (Chipcom)
 Kim Curran (Bell-Northern Research)
 Jim Galvin (Trusted Information Systems)
 Maria Greene (Ascom Timeplex)
 Iain Hanson (Digital)
 Dave Harrington (Cabletron)
 Nguyen Hien (IBM)
 Jeff Johnson (Cisco Systems)
 Michael Kornegay (Object Quest)
 Deirdre Kostick (AT&T Bell Labs)
 David Levi (SNMP Research)
 Daniel Mahoney (Cabletron)
 Bob Natale (ACE*COMM)
 Brian O’Keefe (Hewlett Packard)
 Andrew Pearson (SNMP Research)
 Dave Perkins (Peer Networks)
 Randy Presuhn (Peer Networks)
 Aleksey Romanov (Quality Quorum)
 Shawn Routhier (Epilogue)
 Jon Saperia (BGS Systems)

SNMPv2 Working Group Standards Track [Page 23]

RFC 1905 Protocol Operations for SNMPv2 January 1996

 Bob Stewart (Cisco Systems, bstewart@cisco.com), chair
 Kaj Tesink (Bellcore)
 Glenn Waters (Bell-Northern Research)
 Bert Wijnen (IBM)

8. References

[1] Information processing systems - Open Systems Interconnection -
 Specification of Abstract Syntax Notation One (ASN.1),
 International Organization for Standardization. International
 Standard 8824, (December, 1987).

[2] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
 S. Waldbusser, "Structure of Management Information for Version 2
 of the Simple Network Management Protocol (SNMPv2)", RFC 1902,
 January 1996.

[3] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
 S. Waldbusser, "Textual Conventions for Version 2 of the Simple
 Network Management Protocol (SNMPv2)", RFC 1903, January 1996.

[4] Kent, C., and J. Mogul, Fragmentation Considered Harmful,
 Proceedings, ACM SIGCOMM ’87, Stowe, VT, (August 1987).

[5] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
 S. Waldbusser, "Transport Mappings for Version 2 of the Simple
 Network Management Protocol (SNMPv2)", RFC 1906, January 1996.

[6] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 USC/Information Sciences Institute, August 1980.

[7] McCloghrie, K., and M. Rose, Editors, "Management Information
 Base for Network Management of TCP/IP-based internets:
 MIB-II", STD 17, RFC 1213, March 1991.

[8] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
 S. Waldbusser, "Coexistence between Version 1 and Version 2
 of the Internet-standard Network Management Framework", RFC 1908,
 January 1996.

[9] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
 S. Waldbusser, "Management Information Base for Version 2 of the
 Simple Network Management Protocol (SNMPv2)", RFC 1907,
 January 1996.

SNMPv2 Working Group Standards Track [Page 24]

