
Network Working Group T. Connolly
Request for Comments: 1693 P. Amer
Category: Experimental P. Conrad
 University of Delaware
 November 1994

 An Extension to TCP : Partial Order Service

Status of This Memo

 This memo defines an Experimental Protocol for the Internet
 community. This memo does not specify an Internet standard of any
 kind. Discussion and suggestions for improvement are requested.
 Distribution of this memo is unlimited

IESG Note:

 Note that the work contained in this memo does not describe an
 Internet standard. The Transport AD and Transport Directorate do not
 recommend the implementation of the TCP modifications described.
 However, outside the context of TCP, we find that the memo offers a
 useful analysis of how misordered and incomplete data may be handled.
 See, for example, the discussion of Application Layer Framing by D.
 Clark and D. Tennenhouse in, "Architectural Considerations for a New
 Generation of Protocols", SIGCOM 90 Proceedings, ACM, September 1990.

Abstract

 This RFC introduces a new transport mechanism for TCP based upon
 partial ordering. The aim is to present the concepts of partial
 ordering and promote discussions on its usefulness in network
 communications. Distribution of this memo is unlimited.

Introduction

 A service which allows partial order delivery and partial reliability
 is one which requires some, but not all objects to be received in the
 order transmitted while also allowing objects to be transmitted
 unreliably (i.e., some may be lost).

 The realization of such a service requires, (1) communication and/or
 negotiation of what constitutes a valid ordering and/or loss-level,
 and (2) an algorithm which enables the receiver to ascertain the
 deliverability of objects as they arrive. These issues are addressed
 here - both conceptually and formally - summarizing the results of
 research and initial implementation efforts.

Connolly, Amer & Conrad [Page 1]

RFC 1693 An Extension to TCP: Partial Order Service November 1994

 The authors envision the use of a partial order service within a
 connection-oriented, transport protocol such as TCP providing a
 further level of granularity to the transport user in terms of the
 type and quality of offered service. This RFC focuses specifically
 on extending TCP to provide partial order connections.

 The idea of a partial order service is not limited to TCP. It may be
 considered a useful option for any transport protocol and we
 encourage researchers and practitioners to investigate further the
 most effective uses for partial ordering whether in a next-generation
 TCP, or another general purpose protocol such as XTP, or perhaps
 within a "special purpose" protocol tailored to a specific
 application and network profile.

 Finally, while the crux of this RFC relates to and introduces a new
 way of considering object ordering, a number of other classic
 transport mechanisms are also seen in a new light - among these are
 reliability, window management and data acknowledgments.

 Keywords: partial order, quality of service, reliability, multimedia,
 client/server database, Windows, transport protocol

Table of Contents

 1. Introduction and motivation 3
 2. Partial Order Delivery 4
 2.1 Example 1: Remote Database 4
 2.2 Example 2: Multimedia 8
 2.3 Example 3: Windows Screen Refresh 9
 2.4 Potential Savings ... 10
 3. Reliability vs. Order .. 12
 3.1 Reliability Classes ... 13
 4. Partial Order Connection 15
 4.1 Connection Establishment 16
 4.2 Data Transmission ... 19
 4.2.1 Sender .. 22
 4.2.2 Receiver .. 25
 5. Quantifying and Comparing Partial Order Services 30
 6. Future Direction ... 31
 7. Summary .. 32
 8. References ... 34
 Security Considerations ... 35
 Authors’ Addresses .. 36

Connolly, Amer & Conrad [Page 2]

RFC 1693 An Extension to TCP: Partial Order Service November 1994

1. Introduction and motivation

 Current applications that need to communicate objects (i.e., octets,
 packets, frames, protocol data units) usually choose between a fully
 ordered service such as that currently provided by TCP and one that
 does not guarantee any ordering such as that provided by UDP. A
 similar "all-or-nothing" choice is made for object reliability -
 reliable connections which guarantee all objects will be delivered
 verses unreliable data transport which makes no guarantee. What is
 more appropriate for some applications is a partial order and/or
 partial reliability service where a subset of objects being
 communicated must arrive in the order transmitted, yet some objects
 may arrive in a different order, and some (well specified subset) of
 the objects may not arrive at all.

 One motivating application for a partial order service is the
 emerging area of multimedia communications. Multimedia traffic is
 often characterized either by periodic, synchronized parallel streams
 of information (e.g., combined audio-video), or by structured image
 streams (e.g., displays of multiple overlapping and nonoverlapping
 windows). These applications have a high degree of tolerance for
 less-than-fully-ordered data transport as well as data loss. Thus
 they are ideal candidates for using a partial order, partial
 reliability service. In general, any application which communicates
 parallel and/or independent data structures may potentially be able
 to profit from a partial order service.

 A second application that could benefit from a partial order service
 involves remote or distributed databases. Imagine the case where a
 database user transmitting queries to a remote server expects objects
 (or records) to be returned in some order, although not necessarily
 total order. For example a user writing an SQL data query might
 specify this with the "order by" clause. There exist today a great
 number of commercial implementations of distributed databases which
 utilize - and thus are penalized by - an ordered delivery service.

 Currently these applications must use and pay for a fully
 ordered/fully reliable service even though they do not need it. The
 introduction of partial services allows applications to lower the
 demanded quality of service (QOS) of the communication assuming that
 such a service is more efficient and less costly. In effect, a
 partial order extends the service level from two extremes - ordered
 and unordered - to a range of discreet values encompassing both of
 the extremes and all possible partial orderings in between. A
 similar phenomenon is demonstrated in the area of reliability.

Connolly, Amer & Conrad [Page 3]

RFC 1693 An Extension to TCP: Partial Order Service November 1994

 It is worth mentioning that a TCP implementation providing a partial
 order service, as described here, would be able to communicate with a
 non-partial order implementation simply by recognizing this fact at
 connection establishment - hence this extension is backward
 compatible with earlier versions of TCP. Furthermore, it is
 conceivable for a host to support the sending-half (or receiving-
 half) of a partial order connection alone to reduce the size of the
 TCP as well as the effort involved in the implementation. Similar
 "levels of conformance" have been proposed in other internet
 extensions such as [Dee89] involving IP multicasting.

 This RFC proceeds as follows. The principles of partial order
 delivery, published in [ACCD93a], are presented in Section 2. The
 notion of partial reliability, published in [ACCD93b], is introduced
 in Section 3 followed by an explanation of "reliability classes".
 Then, the practical issues involved with setting up and maintaining a
 Partial Order Connection (POC) within a TCP framework are addressed
 in Section 4 looking first at connection establishment, and then
 discussing the sender’s role and the receiver’s role. Section 5
 provides insights into the expected performance improvements of a
 partial order service over an ordered service and Section 6 discusses
 some future directions. Concluding remarks are given in Section 7.

2. Partial Order Delivery

 Partial order services are needed and can be employed as soon as a
 complete ordering is not mandatory. When two objects can be
 delivered in either order, there is no need to use an ordered service
 that must delay delivery of the second one transmitted until the
 first arrives as the following examples demonstrate.

2.1 Example 1: Remote Database

 Simpson’s Sporting Goods (SSG) has recently installed a state-of-
 the-art enterprise-wide network. Their first "network application"
 is a client/server SQL database with the following four records,
 numbered {1 2 3 4} for convenience:

 SALESPERSON LOCATION CHARGES DESCRIPTION
 ------------- ----------------- --------- -----------------
 1 Anderson Atlanta, GA $4,200 Camping Gear
 2 Baker Boston, MA $849 Camping Gear
 3 Crowell Boston, MA $9,500 Sportswear
 4 Dykstra Wash., DC $1,000 Sportswear

 SSG employees running the client-side of the application can query
 the database server from any location in the enterprise net using
 standard SQL commands and the results will be displayed on their

Connolly, Amer & Conrad [Page 4]

RFC 1693 An Extension to TCP: Partial Order Service November 1994

 screen. From the employee’s perspective, the network is completely
 reliable and delivers data (records) in an order that conforms to
 their SQL request. In reality though, it is the transport layer
 protocol which provides the reliability and order on top of an
 unreliable network layer - one which introduces loss, duplication,
 and disorder.

 Consider the four cases in Figure 1 - in the first query (1.a),
 ordered by SALESPERSON, the records have only one acceptable order at
 the destination, 1,2,3,4. This is evident due to the fact that there
 are four distinct salespersons. If record 2 is received before
 record 1 due to a network loss during transmission, the transport
 service can not deliver it and must therefore buffer it until record
 1 arrives. An ordered service, also referred to as a virtual circuit
 or FIFO channel, provides the desired level of service in this case.

 At the other extreme, an unordered service is motivated in Figure 1.d
 where the employee has implicitly specified that any ordering is
 valid simply by omitting the "order by" clause. Here any of 4! = 24
 delivery orderings would satisfy the application, or from the
 transport layer’s point of view, all records are immediately
 deliverable as soon as they arrive from the network. No record needs
 to buffered should it arrive out of sequential order. As notation, 4
 ordered objects are written 1;2;3;4 and 4 unordered objects are
 written using a parallel operator: 1||2||3||4.

 Figures 1.b and 1.c demonstrate two possible partial orders that
 permit 2 and 4 orderings respectively at the destination. Using the
 notation just described, the valid orderings for the query in 1.b are
 specified as 1;(2||3);4, which is to say that record 1 must be
 delivered first followed by record 2 and 3 in either order followed
 by record 4. Likewise, the ordering for 1.c is (1||2);(3||4). In
 these two cases, an ordered service is too strict and an unordered
 service is not strict enough.

Connolly, Amer & Conrad [Page 5]

RFC 1693 An Extension to TCP: Partial Order Service November 1994

 +---+
 | SELECT SALESPERSON, LOCATION, CHARGES, DESCRIPTION |
 | FROM BILLING_TABLE |
 | |
 | SALESPERSON LOCATION CHARGES DESCRIPTION |
 | ------------- ----------------- --------- --------------- |
 | 1 Anderson Atlanta, GA $4,200 Camping Gear |
 | 2 Baker Boston, MA $849 Camping Gear |
 | 3 Crowell Boston, MA $9,500 Sportswear |
 | 4 Dykstra Wash., DC $1,000 Sportswear |
 +===+
 |a - ORDER BY SALESPERSON |
 | |
 | 1,2,3,4 1,2,3,4 |
 | |
 | Sender -----------> NETWORK --------------> Receiver |
 | (1 valid ordering) |
 +---+
 |b - ORDER BY LOCATION |
 | 1,2,3,4 |
 | 1,2,3,4 1,3,2,4 |
 | |
 | Sender -----------> NETWORK --------------> Receiver |
 | (2 valid orderings) |
 +---+
 |c - ORDER BY DESCRIPTION |
 | 1,2,3,4 |
 | 2,1,3,4 |
 | 1,2,3,4 1,2,4,3 |
 | 2,1,4,3 |
 | |
 | Sender -----------> NETWORK --------------> Receiver |
 | (4 valid orderings) |
 +---+
 |d - (no order by clause) |
 | 1,2,3,4 |
 | 1,2,4,3 |
 | 1,2,3,4 ... |
 | 4,3,2,1 |
 | |
 | Sender -----------> NETWORK --------------> Receiver |
 | (4!=24 valid orderings) |
 +---+
 Figure 1: Ordered vs. Partial Ordered vs. Unordered Delivery

 It is vital for the transport layer to recognize the exact
 requirements of the application and to ensure that these are met.
 However, there is no inherent need to exceed these requirements; on

Connolly, Amer & Conrad [Page 6]

RFC 1693 An Extension to TCP: Partial Order Service November 1994

 the contrary, by exceeding these requirements unecessary resources
 are consumed. This example application requires a reliable
 connection - all records must eventually be delivered - but has some
 flexibility when it comes to record ordering.

 In this example, each query has a different partial order. In total,
 there exist 16 different partial orders for the desired 4 records.
 For an arbitrary number of objects N, there exist many possible
 partial orders each of which accepts some number of valid orderings
 between 1 and N! (which correspond to the ordered and unordered
 cases respectively). For some classes of partial orders, the number
 of valid orderings can be calculated easily, for others this
 calculation is intractable. An in-depth discussion on calculating
 and comparing the number of orderings for a given partial order can
 be found in [ACCD93a].

Connolly, Amer & Conrad [Page 7]

RFC 1693 An Extension to TCP: Partial Order Service November 1994

2.2 Example 2: Multimedia

 A second example application that motivates a partial order service
 is a multimedia broadcast involving video, audio and text components.
 Consider an extended presentation of the evening news - extended to
 include two distinct audio channels, a text subtitle and a closed-
 captioned sign language video for the hearing impaired, in addition
 to the normal video signal, as modeled by the following diagram.

 (left audio) (right audio)
 +------+ +------+
 | ++++ | | ++++ |
 | ++++ | | ++++ |
 +------+ +------+
 ===
 I +---------------+I
 I | |I
 I | (hand signs) |I
 I | |I
 I +---------------+I
 I I
 I I
 I (Main Video) I
 I I
 I I
 I I
 I I
 I +--+ I
 I | (text subtitle) | I
 I +--+ I
 I I
 ===
 Figure 2: Multimedia broadcast example

 The multimedia signals have differing characteristics. The main video
 signal may consist of full image graphics at a rate of 30 images/sec
 while the video of hand signs requires a lower quality, say 10
 images/sec. Assume the audio signals are each divided into 60 sound
 fragments/sec and the text object each second consists of either (1)
 new text, (2) a command to keep the previous second of text, or (3) a
 command for no subtitle.

 During a one-second interval of the broadcast, a sender transmits 30
 full-motion video images, 10 closed-captioned hand sign images, 60
 packets of a digitized audio signal for each of the audio streams and
 a single text packet. The following diagram then might represent the
 characteristics of the multimedia presentation in terms of the media
 types, the number of each, and their ordering. Objects connected by a

Connolly, Amer & Conrad [Page 8]

RFC 1693 An Extension to TCP: Partial Order Service November 1994

 horizontal line must be received in order, while those in parallel
 have no inherent ordering requirement.

+--+
| |
	-o-	-o-	-o-	-o-	-o-	-o-	-o-	-o-	-o-...-o-	-o-	-o-	right audio
												(60/sec)
	-o-	-o-	-o-	-o-	-o-	-o-	-o-	-o-	-o-...-o-	-o-	-o-	left audio
							(60/sec)					
	---o---	---o---	---o---	---o---	---...---	---o---	normal video					
			(30/sec)									
	-----------o-----------	--------o--...--------o--	hand signs									
		(10/sec)										
	-----------------------------o-----...-----------	text										
		(1/sec)										
+--+
 Figure 3: Object ordering in multimedia application

 Of particular interest to our discussion of partial ordering is the
 fact that, while objects of a given media type generally must be
 received in order, there exists flexibility between the separate
 "streams" of multimedia data (where a "stream" represents the
 sequence of objects for a specific media type). Another significant
 characteristic of this example is the repeating nature of the object
 orderings. Figure 3 represents a single, one-second, partial order
 snapshot in a stream of possibly thousands of repeating sequential
 periods of communication.

 It is assumed that further synchronization concerns in presenting the
 objects are addressed by a service provided on top of the proposed
 partial order service. Temporal ordering for synchronized playback
 is considered, for example, in [AH91, HKN91].

2.3 Example 3: Windows Screen Refresh

 A third example to motivate a partial order service involves
 refreshing a workstation screen/display containing multiple windows
 from a remote source. In this case, objects (icons, still or video
 images) that do not overlap have a "parallel" relationship (i.e.,
 their order of refreshing is independent) while overlapping screen
 objects have a "sequential" relationship and should be delivered in
 order. Therefore, the way in which the windows overlap induces a
 partial order.

Connolly, Amer & Conrad [Page 9]

RFC 1693 An Extension to TCP: Partial Order Service November 1994

 Consider the two cases in Figure 4. A sender wishes to refresh a
 remote display that contains four active windows (objects) named {1 2
 3 4}. Assume the windows are transmitted in numerical order and the
 receiving application refreshes windows as soon as the transport
 service delivers them. If the windows are configured as in Figure
 4a, then there exist two different orderings for redisplay, namely
 1,2,3,4 or 1,3,2,4. If window 2 is received before window 1, the
 transport service cannot deliver it or an incorrect image will be
 displayed. In Figure 4b, the structure of the windows results in six
 possible orderings - 1,2,3,4 or 1,3,2,4 or 1,3,4,2 or 3,4,1,2 or
 3,1,4,2 or 3,1,2,4.

 +================================+============================+
 |a +-----------+ |b +----------+ | | | | | | |
 | | 1 | | | 1 | |
 | | | | | +----------+ |
 | +---------+ +----------+ | +-----| 2 | |
 | | 2 |----| 3 | | | | |
 | | +-----------+ | | +----------+ |
 | | | 4 | | | +----------+ |
 | +-----| |-------+ | | 3 | |
 | | | | | +----------+ |
 | +-----------+ | +------| 4 | |
 | | | | |
 | | +----------+ |
 | | |
 | 1;(2||3);4 | (1;2)||(3;4) |
 +================================+============================+
 Figure 4: Window screen refresh

2.4 Potential Savings

 In each of these examples, the valid orderings are strictly dependent
 upon, and must be specified by the application. Intuitively, as the
 number of acceptable orderings increases, the amount of resources
 utilized by a partial order transport service, in terms of buffers
 and retransmissions, should decrease as compared to a fully ordered
 transport service thus also decreasing the overall cost of the
 connection. Just how much lower will depend largely upon the
 flexibility of the application and the quality of the underlying
 network.

 As an indication of the potential for improved service, let us
 briefly look at the case where a database has the following 14
 records.

Connolly, Amer & Conrad [Page 10]

RFC 1693 An Extension to TCP: Partial Order Service November 1994

 SALESPERSON LOCATION CHARGES DESCRIPTION
 ------------- ----------------- --------- ---------------
 1 Anderson Washington $4,200 Camping Gear
 2 Anderson Philadelphia $2,000 Golf Equipment
 3 Anderson Boston $450 Bowling shoes
 4 Baker Boston $849 Sportswear
 5 Baker Washington $3,100 Weights
 6 Baker Washington $2000 Camping Gear
 7 Baker Atlanta $290 Baseball Gloves
 8 Baker Boston $1,500 Sportswear
 9 Crowell Boston $9,500 Camping Gear
 10 Crowell Philadelphia $6,000 Exercise Bikes
 11 Crowell New York $1,500 Sportswear
 12 Dykstra Atlanta $1,000 Sportswear
 13 Dykstra Dallas $15,000 Rodeo Gear
 14 Dykstra Miami $3,200 Golf Equipment

 Using formulas derived in [ACCD93a] one may calculate the total
 number of valid orderings for any partial order that can be
 represented in the notation mentioned previously. For the case where
 a user specifies "ORDER BY SALESPERSON", the partial order above can
 be expressed as,

 (1||2||3);(4||5||6||7||8);(9||10||11);(12||13||14)

 Of the 14!=87,178,291,200 total possible combinations, there exist
 25,920 valid orderings at the destination. A service that may
 deliver the records in any of these 25,920 orderings has a great deal
 more flexibility than in the ordered case where there is only 1 valid
 order for 14 objects. It is interesting to consider the real
 possibility of hundreds or even thousands of objects and the
 potential savings in communication costs.

 In all cases, the underlying network is assumed to be unreliable and
 may thus introduce loss, duplication, and disorder. It makes no
 sense to put a partial order service on top of a reliable network.
 While the exact amount of unreliability in a network may vary and is
 not always well understood, initial experimental research indicates
 that real world networks, for example the service provided by the
 Internet’s IP level, "yield high losses, duplicates and reorderings
 of packets" [AS93,BCP93]. The authors plan to conduct further
 experimentation into measuring Internet network unreliability. This
 information would say a great deal about the practical merit of a
 partial order service.

Connolly, Amer & Conrad [Page 11]

RFC 1693 An Extension to TCP: Partial Order Service November 1994

3. Reliability vs. Order

 While TCP avoids the loss of even a single object, in fact for many
 applications, there exists a genuine ability to tolerate loss.
 Losing one frame per second in a 30 frame per second video or losing
 a segment of its accompanying audio channel is usually not a problem.
 Bearing this in mind, it is of value to consider a quality of service
 that combines a partial order with a level of tolerated loss (partial
 reliability). Traditionally there exist 4 services: reliable-
 ordered, reliable-unordered, unreliable-ordered, and unreliable-
 unordered. See Figure 5. Reliable-ordered service (denoted by a
 single point) represents the case where all objects are delivered in
 the order transmitted. File transfer is an example application
 requiring such a service.

 reliable-ordered reliable-unordered
 | |
 | |
 v v
 zero loss-->*---------------------------------*
 min loss-->|<-- |<--
 . | |
 . |<-- |<--
 | |
 |<-- unreliable- |<-- unreliable-
 RELIABILITY | ordered | unordered
 |<-- |<--
 | |
 |<-- |<--
 max loss-->| |
 +-+--+--+--+--+--+--+--+--+--+--+-+
 ordered partial ordered unordered

 ORDER

 Figure 5: Quality Of Service: Reliability vs. Order -
 Traditional Service Types

 In a reliable-unordered service (also a single point), all objects
 must be delivered, but not necessarily according to the order
 transmitted; in fact, any order will suffice. Some transaction
 processing applications such as credit card verification require such
 a service.

 Unreliable-ordered service allows some objects to be lost. Those
 that are delivered, however, must arrive in relative order (An
 "unreliable" service does not necessarily lose objects; rather, it
 may do so without failing to provide its advertised quality of

Connolly, Amer & Conrad [Page 12]

RFC 1693 An Extension to TCP: Partial Order Service November 1994

 service; e.g., the postal system provides an unreliable service).
 Since there are varying degrees of unreliability, this service is
 represented by a set of points in Figure 5. An unreliable-ordered
 service is applicable to packet-voice or teleconferencing
 applications.

 Finally unreliable-unordered service allows objects to be lost and
 delivered in any order. This is the kind of service used for normal
 e-mail (without acknowledgment receipts) and electronic announcements
 or junk e-mail.

 As mentioned previously, the concept of a partial order expands the
 order dimension from the two extremes of ordered and unordered to a
 range of discrete possibilities as depicted in Figure 6.
 Additionally, as will be discussed presently, the notion of
 reliability is extended to allow for varying degrees of reliability
 on a per-object basis providing even greater flexibility and improved
 resource utilization.

 reliable-PO

 | | | | | | | | | | | |
 | | | | | | | | | | | |
 v v v v v v v v v v v v
 zero loss-->*---------------------------------*
 min loss-->| |
 . | |
 . | |
 | |
 RELIABILITY | . . . unreliable-PO . . . |
 | |
 | |
 | |
 | |
 max loss-->| |
 +-+--+--+--+--+--+--+--+--+--+--+-+
 ordered partial ordered unordered

 ORDER

 Figure 6: Quality Of Service: Reliability vs. Order - Partial
 Order Service

3.1 Reliability Classes

 When considering unreliable service, one cannot assume that all
 objects are equal with regards to their reliability. This
 classification is reasonable if all objects are identical (e.g.,

Connolly, Amer & Conrad [Page 13]

RFC 1693 An Extension to TCP: Partial Order Service November 1994

 video frames in a 30 frame/second film). Many applications, such as
 multimedia systems, however, often contain a variety of object types.
 Thus three object reliability classes are proposed: BART-NL, BART-L,
 and NBART-L. Objects are assigned to one of these classes depending
 on their temporal value as will be show presently.

 BART-NL objects must be delivered to the destination. These objects
 have temporal value that lasts for an entire established connection
 and require reliable delivery (NL = No Loss allowed). An example of
 BART-NL objects would be the database records in Example 2.1 or the
 windows in the screen refresh in Example 2.3. If all objects are of
 type BART-NL, the service is reliable. One possible way to assure
 eventual delivery of a BART-NL object in a protocol is for the sender
 to buffer it, start a timeout timer, and retransmit it if no ACK
 arrives before the timeout. The receiver in turn returns an ACK when
 the object has safely arrived and been delivered (BART = Buffers,
 ACKs, Retransmissions, Timers).

 BART-L objects are those that have temporal value over some
 intermediate amount of time - enough to permit timeout and
 retransmission, but not everlasting. Once the temporal value of
 these objects has expired, it is better to presume them lost than to
 delay further the delivery pipeline of information. One possibility
 for deciding when an object’s usefulness has expired is to require
 each object to contain information defining its precise temporal
 value [DS93]. An example of a BART-L object would be a movie
 subtitle, sent in parallel with associated film images, which is
 valuable any time during a twenty second film sequence. If not
 delivered sometime during the first ten seconds, the subtitle loses
 its value and can be presumed lost. These objects are buffered-
 ACKed-retransmitted up to a certain point in time and then presumed
 lost.

 NBART-L objects are those with temporal values too short to bother
 timing out and retransmitting. An example of a NBART-L object would
 be a single packet of speech in a packetized phone conversation or
 one image in a 30 image/sec film. A sender transmits these objects
 once and the service makes a best effort to deliver them. If the one
 attempt is unsuccessful, no further attempts are made.

 An obvious question comes to mind - what about NBART-NL objects? Do
 such objects exist? The authors have considered the notion of
 communicating an object without the use of BART and still being able
 to provide a service without loss. Perhaps with the use of forward
 error correction this may become a viable alternative and could
 certainly be included in the protocol. However, for our purposes in
 this document, only the first three classifications will be
 considered.

Connolly, Amer & Conrad [Page 14]

RFC 1693 An Extension to TCP: Partial Order Service November 1994

 While classic transport protocols generally treat all objects
 equally, the sending and receiving functions of a protocol providing
 partial order/partial reliability service will behave differently for
 each class of object. For example, a sender buffers and, if
 necessary, retransmits any BART-NL or BART-L objects that are not
 acknowledged within a predefined timeout period. On the contrary,
 NBART-L objects are forgotten as soon as they are transmitted.

4. Partial Order Connection

 The implementation of a protocol that provides partial order service
 requires, at a minimum, (1) communication of the partial ordering
 between the two endpoints, and (2) dynamic evaluation of the
 deliverability of objects as they arrive at the receiver. In
 addition, this RFC describes the mechanisms needed to (3) initiate a
 connection, (4) provide varying degrees of reliability for the
 objects being transmitted, and (5) improve buffer utilization at the
 sender based on object reliability.

 Throughout the discussion of these issues, the authors use the
 generic notion of "objects" in describing the service details. Thus,
 one of the underlying requirements of a partial order service is the
 ability to handle such an abstraction (e.g., recognize object
 boundaries). The details of object management are implementation
 dependent and thus are not specified in this RFC. However, as this
 represents a potential fundamental change to the TCP protocol, some
 discussion is in order.

 At one extreme, it is possible to consider octets as objects and
 require that the application specify the partial order accordingly
 (octet by octet). This likely would entail an inordinate amount of
 overhead, processing each octet on an individual basis (literally
 breaking up contiguous segments to determine which, if any, octets
 are deliverable and which are not). At the other extreme, the
 transport protocol could maintain object atomicity regardless of size
 - passing arbitrarily large data structures to IP for transmission.
 At the sending side of the connection this would actually work since
 IP is prepared to perform source fragmentation, however, there is no
 guarantee that the receiving IP will be able to reassemble the
 fragments! IP relies on the TCP max segment size to prevent this
 situation from occurring[LMKQ89].

 A more realistic approach given the existing IP constraints might be
 to maintain the current notion of a TCP max segment size for the
 lower-layer interface with IP while allowing a much larger object
 size at the upper-layer interface. Of course this presents some
 additional complexities. First of all, the transport layer will now
 have to be concerned with fragmentation/reassembly of objects larger

Connolly, Amer & Conrad [Page 15]

RFC 1693 An Extension to TCP: Partial Order Service November 1994

 than the max segment size and secondly, the increased object sizes
 will require significantly more buffer space at the receiver if we
 want to buffer the object until it arrives in entirety.
 Alternatively, one may consider delivering "fragments" of an object
 as they arrive as long as the ordering of the fragments is correct
 and the application is able to process the fragments (this notion of
 fragmented delivery is discussed further in Section 6).

4.1 Connection Establishment

 By extending the transport paradigm to allow partial ordering and
 reliability classes, a user application may be able to take advantage
 of a more efficient data transport facility by negotiating the
 optimal service level which is required - no more, no less. This is
 accomplished by specifying these variables as QOS parameters or, in
 TCP terminology, as options to be included in the TCP header [Pos81].

 A TCP implementation that provides a partial order service requires
 the use of two new TCP options. The first is an enabling option
 "POC-permitted" (Partial Order Connection Permitted) that may be used
 in a SYN segment to request a partial order service. The other is
 the "POC-service-profile" option which is used periodically to
 communicate the service characteristics. This second option may be
 sent only after successful transmission and acknowledgment of the
 POC-permitted option.

 A user process issuing either an active or passive OPEN may choose to
 include the POC-permitted option if the application can benefit from
 the use of a partial order service and in fact, in cases where the
 viability of such service is unknown, it is suggested that the option
 be used and that the decision be left to the user’s peer.

 For example, a multimedia server might issue a passive <SYN> with the
 POC-permitted option in preparation for the connection by a remote
 user.

 Upon reception of a <SYN> segment with the POC-permitted option, the
 receiving user has the option to respond with a similar POC-permitted
 indication or may reject a partial order connection if the
 application does not warrant the service or the receiving user is
 simply unable to provide such a service (e.g., does not recognize the
 POC-permitted option).

 In the event that simultaneous initial <SYN> segments are exchanged,
 the TCP will initiate a partial order connection only if both sides
 include the POC-permitted option.

Connolly, Amer & Conrad [Page 16]

RFC 1693 An Extension to TCP: Partial Order Service November 1994

 A brief example should help to demonstrate this procedure. The
 following notation (a slight simplification on that employed in RFC
 793) will be used. Each line is numbered for reference purposes.
 TCP-A (on the left) will play the role of the receiver and TCP-B will
 be the sender. Right arrows (-->) indicate departure of a TCP
 segment from TCP-A to TCP-B, or arrival of a segment at B from A.
 Left arrows indicate the reverse. TCP states represent the state
 AFTER the departure or arrival of the segment (whose contents are
 shown in the center of the line). Liberties are taken with the
 contents of the segments where only the fields of interest are shown.

 TCP-A TCP-B

 1. CLOSED LISTEN

 2. SYN-SENT --> <CTL=SYN><POC-perm> --> SYN-RECEIVED

 3. ESTABLISHED <-- <CTL=SYN,ACK><POC-perm> <-- SYN-RECEIVED

 4. ESTABLISHED --> <CTL=ACK> --> ESTABLISHED

 Figure 7. Basic 3-Way handshake for a partial order connection

 In line 1 of Figure 7, the sending user has already issued a passive
 OPEN with the POC-permitted option and is waiting for a connection.
 In line 2, the receiving user issues an active OPEN with the same
 option which in turn prompts TCP-A to send a SYN segment with the
 POC-permitted option and enter the SYN-SENT state. TCP-B is able to
 confirm the use of a PO connection and does so in line 3, after which
 TCP-A enters the established state and completes the connection with
 an ACK segment in line 4.

 In the event that either side is unable to provide partial order
 service, the POC-permitted option will be omitted and normal TCP
 processing will ensue.

 For completeness, the authors include the following specification for
 both the POC-permitted option and the POC-service-profile option in a
 format consistent with the TCP specification document [Pos81].

 TCP POC-permitted Option:

 Kind: 9 Length: - 2 bytes

 +-----------+-------------+
 | Kind=9 | Length=2 |
 +-----------+-------------+

Connolly, Amer & Conrad [Page 17]

RFC 1693 An Extension to TCP: Partial Order Service November 1994

 TCP POC-service-profile Option:

 Kind: 10 Length: 3 bytes

 1 bit 1 bit 6 bits
 +----------+----------+------------+----------+--------+
 | Kind=10 | Length=3 | Start_flag | End_flag | Filler |
 +----------+----------+------------+----------+--------+

 The first option represents a simple indicator communicated between
 the two peer transport entities and needs no further explanation.
 The second option serves to communicate the information necessary to
 carry out the job of the protocol - the type of information which is
 typically found in the header of a TCP segment - and raises some
 interesting questions.

 Standard TCP maintains a 60-byte maximum header size on all segments.
 The obvious intuition behind this rule is that one would like to
 minimize the amount of overhead information present in each packet
 while simultaneously increasing the payload, or data, section. While
 this is acceptable for most TCP connections today, a partial-order
 service would necessarily require that significantly more control
 information be passed between transport entities at certain points
 during a connection. Maintaining the strict interpretation of this
 rule would prove to be inefficient. If, for example, the service
 profile occupied a total of 400 bytes (a modest amount as will be
 confirmed in the next section), then one would have to fragment this
 information across at least 10 segments, allocating 20 bytes per
 segment for the normal TCP header.

 Instead, the authors propose that the service profile be carried in
 the data section of the segment and that the 3-byte POC-service-
 profile option described above be placed in the header to indicate
 the presence of this information. Upon reception of such a segment,
 the TCP extracts the service profile and uses it appropriately as
 will be discussed in the following sections.

 The option itself, as shown here, contains two 1-bit flags necessary
 to handle the case where the service profile does not fit in a single
 TCP segment. The "Start_flag" indicates that the information in the
 data section represents the beginning of the service profile and the
 "End_flag" represents the converse. For service profiles which fit
 completely in a single segment, both flags will be set to 1.
 Otherwise, the Start_flag is set in the initial segment and the
 End_flag in the final segment allowing the peer entity to reconstrcut
 the entire service profile (using the normal sequence numbers in the
 segment header). The "Filler" field serves merely to complete the
 third byte of the option.

Connolly, Amer & Conrad [Page 18]

RFC 1693 An Extension to TCP: Partial Order Service November 1994

 Note that the length of the service profile may vary during the
 connection as the order or reliability requirements of the user
 change but this length must not exceed the buffering ability of the
 peer TCP entity since the entire profile must be stored. The exact
 makeup of this data structure is presented in Section 4.2.

4.2 Data Transmission

 Examining the characteristics of a partial order TCP in chronological
 fashion, one would start off with the establishment of a connection
 as described in Section 4.1. After which, although both ends have
 acknowledged the acceptability of partial order transport, neither
 has actually begun a partial order transmission - in other words,
 both the sending-side and the receiving-side are operating in a
 normal, ordered-reliable mode. For the subsequent discussion, an
 important distinction is made in the terms sending-side and
 receiving-side which refer to the data flow from the sender and that
 from the receiver, respectively.

 For the partial ordering to commence, the TCP must be made aware of
 the acceptable object orderings and reliability for both the send-
 side and receive-side of the connection for a given set of objects
 (hereafter referred to as a "period"). This information is contained
 in the service profile and it is the responsibility of the user
 application to define this profile. Unlike standard TCP where
 applications implicitly define a reliable, ordered profile; with
 partial order TCP, the application must explicity define a profile.

 The representation of the service profile is one of the concerns for
 the transport protocol. It would be useful if the TCP could encode a
 partial ordering in as few bits as possible since these bits will be
 transmitted to the destination each time the partial order changes.
 A matrix representation appears to be well-suited to encoding the
 partial order and a vector has been proposed to communicate and
 manage the reliability aspects of the service. Temporal values may
 be included within the objects themselves or may be defined as a
 function of the state of the connection [DS93]. Using these data
 structures, the complete service profile would include (1) a partial
 order matrix, (2) a reliability vector and (3) an object_sizes vector
 which represents the size of the objects in octets (see
 [ACCD93a,CAC93] for a discussion on alternative structures for these
 variables).

 Throughout this section, we use the following service profile as a
 running example. Shown here is a partial order matrix and graphical
 representation for a simple partial order with 6 objects -
 ((1;2)||(3;4)||5);6. In the graphical diagram, arrows (-->) denote
 sequential order and objects in parallel can be delivered in either

Connolly, Amer & Conrad [Page 19]

RFC 1693 An Extension to TCP: Partial Order Service November 1994

 order. So in this example, object 2 must be delivered after object
 1, object 4 must be delivered after object 3, and object 6 must be
 delivered after objects 1 through 5 have all been delivered. Among
 the 6 objects, there are 30 valid orderings for this partial order
 (each valid ordering is known as a linear extension of the partial
 order).

 1 2 3 4 5 6
 +-------------+
 1 | - 1 0 0 0 1 | | | |
 2 | - - 0 0 0 1 | |-->1-->|-->2-->| |
 3 | - - - 1 0 1 | | | |
 4 | - - - - 0 1 | |-->3-->|-->4-->|-->6-->|
 5 | - - - - - 1 | | | |
 6 | - - - - - - | |------>5------>| |
 +-------------+ | | |

 PO Matrix PO Graph

 In the matrix, a 1 in row i of column j denotes that object i must be
 delivered before object j. Note that if objects are numbered in any
 way such that 1,2,3,...,N is a valid ordering, only the upper right
 triangle of the transitively closed matrix is needed [ACCD93a].
 Thus, for N objects, the partial order can be encoded in (N*(N-1)/2)
 bits.

 The reliability vector for the case where reliability classes are
 enumerated types such as {BART-NL=1, BART-L=2, NBART-L = 3} and all
 objects are BART-NL would simply be, <1, 1, 1, 1, 1, 1>. Together
 with the object_sizes vector, the complete service profile is
 described.

 This information must be packaged and communicated to the sending TCP
 before the first object is transmitted using a TCP service primitive
 or comparable means depending upon the User/TCP interface. Once the
 service profile has been specified to the TCP, it remains in effect
 until the connection is closed or the sending user specifies a new
 service profile. In the event that the largest object size can not
 be processed by the receiving TCP, the user application is informed
 that the connection cannot be maintained and the normal connection
 close procedure is followed.

 Typically, as has been described here, the service profile definition
 and specification is handled at the sending end of the connection,
 but there could be applications (such as the screen refresh) where
 the receiving user has this knowledge. Under these circumstances the
 receiving user is obliged to transmit the object ordering on the

Connolly, Amer & Conrad [Page 20]

RFC 1693 An Extension to TCP: Partial Order Service November 1994

 return side of the connection (e.g., when making the request for a
 screen refresh) and have the sender interpret this data to be used on
 the send side of the connection.

 Requiring that the sending application specify the service profile is
 not an arbitrary choice. To ensure proper object identification, the
 receiving application must transmit the new object numbering to the
 sending application (not the sending transport layer). Since the
 sending application must receive this information in any case, it
 simplifies matters greatly to require that the sending application be
 the only side that may specify the service profile to the transport
 layer.

 Consider now the layered architecture diagram in Figure 8 and assume
 that a connection already is established. Let us now say that UserA
 specifies the service profile for the sending-side of the connection
 via its interface with TCP-A. TCP-A places the profile in the header
 of one or more data packets (depending upon the size of the service
 profile, the profile may require several packets), sets the POC-
 service-profile option and passes it to IP for transmission over the
 network. This packet must be transmitted reliably, therefore TCP-A
 buffers it and starts a normal retransmit timer. Subsequently, the
 service profile arrives at the destination node and is handed to
 TCP-B (as indicated by the arrows in Figure 8). TCP-B returns an
 acknowledgment and immediately adopts the service profile for one
 direction of data flow over the connection. When the acknowledgment
 arrives back at TCP-A, the cycle is complete and both sides are now
 able to use the partial order service.

 +--------+ +----------+
 Service | UserA | | UserB |
 Profile +--------+ +----------+
 | | |
 | | |
 v | |
 | +---------+ +-----------+ Service
 | | TCP-A | | TCP-B | Profile
 | +---------+ +-----------+ ^
 | | | |
 | | | |
 | | | |
 | +---------------------------------------+ |
 v | | |
 ------>| ---- Service Profile -------------> |----->
 +---------------------------------------+

 Figure 8. Layered Communication Architecture

Connolly, Amer & Conrad [Page 21]

RFC 1693 An Extension to TCP: Partial Order Service November 1994

 Note that one of the TCP entities learns of the profile via its user
 interface, while the other TCP entity is informed via its network
 interface.

 For the remaining discussions, we will assume that a partial order
 profile has been successfully negotiated for a single direction of
 the connection (as depicted in Figure 8) and that we may now speak of
 a "sending TCP" (TCP-A) and a "receiving TCP" (TCP-B). As such,
 TCP-A refers to the partial order data stream as the "send-side" of
 the connection, while TCP-B refers to the same data stream as the
 "receive-side".

 Having established a partial order connection, the communicating TCPs
 each have their respective jobs to perform to ensure proper data
 delivery. The sending TCP ascertains the object ordering and
 reliability from the service profile and uses this information in its
 buffering/retransmission policy. The receiver modifications are more
 significant, particularly the issues of object deliverability and
 reliability. And both sides will need to redefine the notion of
 window management. Let us look specifically at how each side of the
 TCP connection is managed under this new paradigm.

4.2.1 Sender

 The sender’s concerns are still essentially four-fold - transmitting
 data, managing buffer space, processing acknowledgments and
 retransmitting after a time-out - however, each takes on a new
 meaning in a partial order service. Additionally, the management of
 the service profile represents a fifth duty not previously needed.

 Taking a rather simplistic view, normal TCP output processing
 involves (1) setting up the header, (2) copying user data into the
 outgoing segment, (3) sending the segment, (4) making a copy in a
 send buffer for retransmission and (5) starting a retransmission
 timer. The only difference with a partial order service is that the
 reliability vector must be examined to determine whether or not to
 buffer the object and start a timer - if the object is classified as
 NBART-L, then steps 4 and 5 are omitted.

 Buffer management at the sending end of a partial order connection is
 dependent upon the object reliability class and the object size.
 When transmitting NBART-L objects the sender need not store the data
 for later possible retransmission since NBART-L objects are never
 retransmitted. The details of buffer management - such as whether to
 allocate fixed-size pools of memory, or perhaps utilize a dynamic
 heap allocation strategy - are left to the particular system
 implementer.

Connolly, Amer & Conrad [Page 22]

RFC 1693 An Extension to TCP: Partial Order Service November 1994

 Acknowledgment processing remains essentially intact -
 acknowledgments are cumulative and specify the peer TCP’s window
 advertisement. However, determination of this advertisement is no
 longer a trivial process dependent only upon the available buffer
 space (this is discussed further in Section 4.2.2). Moreover, it
 should be noted that the introduction of partial ordering and partial
 reliability presents several new and interesting alternatives for the
 acknowledgment policy. The authors are investigating several of
 these strategies through a simulation model and have included a brief
 discussion of these issues in Section 6.

 The retransmit function of the TCP is entirely unchanged and is
 therefore not discussed further.

 For some applications, it may be possible to maintain the same
 partial order for multiple periods (e.g., the application repeats the
 same partial order). In the general case, however, the protocol must
 be able to change the service profile during an existing connection.
 When a change in the service profile is requested, the sending TCP is
 obliged to complete the processing of the current partial order
 before commencing with a new one. This ensures consistency between
 the user applications in the event of a connection failure and
 simplifies the protocol (future study is planned to investigate the
 performance improvement gained by allowing concurrent different
 partial orders). The current partial order is complete when all
 sending buffers are free. Then negotiation of the new service
 profile is performed in the same manner as with the initial profile.

 Combining these issues, we propose the following simplified state
 machine for the protocol (connection establishment and tear down
 remains the same and is not show here).

 (1)Send Request (5)Ack Arrival
 +------+ +-----------+
 | | | |
 | V | |
 +----------+ (4) New PO Profile +----------+ |
 +---->| |----------------------->| PO |<-----+
 | | ESTAB | | |
 (2) | | | | SETUP |
 Ack +-----| |<-----------------------| |<-----+
 Arrival +----------+ (7)PO Setup Complete +----------+ |
 ^ | | |
 | | | |
 +------+ +---------+
 (3)Timeout (6)Timeout

Connolly, Amer & Conrad [Page 23]

RFC 1693 An Extension to TCP: Partial Order Service November 1994

 Event (1) - User Makes a Data Send Request
 =========
 If Piggyback Timer is set then
 cancel piggyback timer
 Package and send the object (with ACK for receive-side)
 If object type = (BART-L,BART-NL) then
 Store the object and start a retransmit timer
 If sending window is full then
 Block Event (1) - allow no further send requests from user

 Event (2) - ACK Arrives
 =========
 If ACKed object(s) is buffered then
 Release the buffer(s) and stop the retransmit timer(s)
 Extract the peer TCP’s window advertisement
 If remote TCP’s window advertisement > sending window then
 Enable Event (1)
 If remote TCP’s window advertisement <= sending window then
 Block Event (1) - allow no further send requests from user
 Adjust sending window based on received window advertisement

 Event (3) - Retransmit Timer Expires
 =========
 If Piggyback Timer is set then
 cancel piggyback timer
 Re-transmit the segment (with ACK for receive-side)
 Restart the timer

 Event (4) - PO Service Profile Arrives at the User Interface
 =========
 Transition to the PO SETUP state
 Store the Send-side PO service profile
 Package the profile into 1 or more segments, setting the
 POC-Service-Profile option on each
 If Piggyback Timer is set then
 cancel piggyback timer
 Send the segment(s) (with ACK for receive-side)
 Store the segment(s) and start a retransmit timer

 Event (5) - ACK Arrival
 =========
 If ACKed object(s) is buffered then
 Release the buffer(s) and stop the retransmit timer(s)
 Extract the peer TCP’s window advertisement
 If all objects from previous service profile have been ACKed and
 the new service profile has been ACKed then enable Event (7)

Connolly, Amer & Conrad [Page 24]

RFC 1693 An Extension to TCP: Partial Order Service November 1994

 Event (6) - Retransmit Timer Expires
 =========
 If Piggyback Timer is set then
 cancel piggyback timer
 Re-transmit the segment (with ACK for receive-side)
 Restart the timer

 Event (7) - PO Setup Completed
 =========
 Transition to the ESTAB state and begin processing new service
 profile

4.2.2 Receiver

 The receiving TCP has additional decisions to make involving object
 deliverability, reliability and window management. Additionally, the
 service profile must be established (and re-established) periodically
 and some special processing must be performed at the end of each
 period.

 When an object arrives, the question is no longer, "is this the next
 deliverable object?", but rather, "is this ONE OF the next
 deliverable objects?" Hence, it is convenient to think of a
 "Deliverable Set" of objects with a partial order protocol. To
 determine the elements of this set and answer the question of
 deliverability, the receiver relies upon the partial order matrix
 but, unlike the sender, the receiver dynamically updates the matrix
 as objects are processed thus making other objects (possibly already
 buffered objects) deliverable as well. A check of the object type
 also must be performed since BART-NL and BART-L objects require an
 ACK to be returned to the sender but NBART-L do not. Consider our
 example from the previous section.

 1 2 3 4 5 6
 +-------------+
 1 | - 1 0 0 0 1 | | | |
 2 | - - 0 0 0 1 | |-->1-->|-->2-->| |
 3 | - - - 1 0 1 | | | |
 4 | - - - - 0 1 | |-->3-->|-->4-->|-->6-->|
 5 | - - - - - 1 | | | |
 6 | - - - - - - | |------>5------>| |
 +-------------+ | | |

 PO Matrix PO Graph

 When object 5 arrives, the receiver scans column 5, finds that the
 object is deliverable (since there are no 1’s in the column) and
 immediately delivers the object to the user application. Then, the

Connolly, Amer & Conrad [Page 25]

RFC 1693 An Extension to TCP: Partial Order Service November 1994

 matrix is updated to remove the constraint of any object whose
 delivery depends on object 5 by clearing all entries of row 5. This
 may enable other objects to be delivered (for example, if object 2 is
 buffered then the delivery of object 1 will make object 2
 deliverable). This leads us to the next issue - delivery of stored
 objects.

 In general, whenever an object is delivered, the buffers must be
 examined to see if any other stored object(s) becomes deliverable.
 CAC93 describes an efficient algorithm to implement this processing
 based on traversing the precedence graph.

 Consideration of object reliability is interesting. The authors have
 taken a polling approach wherein a procedure is executed
 periodically, say once every 100 milliseconds, to evaluate the
 temporal value of outstanding objects on which the destination is
 waiting. Those whose temporal value has expired (i.e. which are no
 longer useful as defined by the application) are "declared lost" and
 treated in much the same manner as delivered objects - the matrix is
 updated, and if the object type is BART-L, an ACK is sent. Any
 objects from the current period which have not yet been delivered or
 declared lost are candidates for the "Terminator" as the procedure is
 called. The Terminator’s criterion is not specifically addressed in
 this RFC, but one example might be for the receiving user to
 periodically pass a list of no-longer-useful objects to TCP-B.

 Another question which arises is, "How does one calculate the send
 and receive windows?" With a partial order service, these windows
 are no longer contiguous intervals of objects but rather sets of
 objects. In fact, there are three sets which are of interest to the
 receiving TCP one of which has already been mentioned - the
 Deliverable Set. Additionally, we can think of the Bufferable Set
 and the Receivable Set. Some definitions are in order:

 Deliverable Set: objects which can be immediately passed up to
 the user.

 Buffered Set: objects stored in a buffer awaiting delivery.

 Bufferable Set: objects which can be stored but not immediately
 delivered (due to some ordering constraint).

 Receivable Set: union of the Deliverable Set and the Bufferable
 Set (which are disjoint) - intuitively, all objects which
 are "receivable" must be either "deliverable" or
 "bufferable".

Connolly, Amer & Conrad [Page 26]

RFC 1693 An Extension to TCP: Partial Order Service November 1994

 The following example will help to illustrate these sets. Consider
 our simple service profile from earlier for the case where the size
 of each object is 1 MByte and the receiver has only 2 MBytes of
 buffer space (enough for 2 objects). Define a boolean vector of
 length N (N = number of objects in a period) called the Processed
 Vector which is used to indicate which objects from the current
 period have been delivered or declared lost. Initially, all buffers
 are empty and the PO Matrix and Processed Vector are as shown here,

 1 2 3 4 5 6
 +-------------+
 1 | - 1 0 0 0 1 |
 2 | - - 0 0 0 1 |
 3 | - - - 1 0 1 |
 4 | - - - - 0 1 |
 5 | - - - - - 1 | [F F F F F F]
 6 | - - - - - - | 1 2 3 4 5 6
 +-------------+

 PO Matrix Processed Vector

 From the PO Matrix, it is clear that the Deliverable Set =
 {(1,1),(1,3),(1,5)}, where (1,1) refers to object #1 from period #1,
 asssuming that the current period is period #1.

 The Bufferable Set, however, depends upon how one defines bufferable
 objects. Several approaches are possible. The authors’ initial
 approach to determining the Bufferable Set can best be explained in
 terms of the following rules,

 Rule 1: Remaining space must be allocated for all objects from
 period i before any object from period i+1 is buffered

 Rule 2: In the event that there exists enough space to buffer
 some but not all objects from a given period, space will
 be reserved for the first objects (i.e. 1,2,3,...,k)

 With these rules, the Bufferable Set = {(1,2),(1,4)}, the Buffered
 Set is trivially equal to the empty set, { }, and the Receivable Set
 = {(1,1),(1,2),(1,3),(1,4),(1,5)}.

 Note that the current acknowledgment scheme uses the min and max
 values in the Receivable Set for its window advertisement which is
 transmitted in all ACK segments sent along the receive-side of the
 connection (from receiver to sender). Moreover, the
 "piggyback_delay" timer is still used to couple ACKs with return data
 (as utilized in standard TCP).

Connolly, Amer & Conrad [Page 27]

RFC 1693 An Extension to TCP: Partial Order Service November 1994

 Returning to our example, let us now assume that object 1 and then 3
 arrive at the receiver and object 2 is lost. After processing both
 objects, the PO Matrix and Processed Vector will have the following
 updated structure,

 1 2 3 4 5 6
 +-------------+
 1 | - 0 0 0 0 0 |
 2 | - - 0 0 0 1 |
 3 | - - - 0 0 0 |
 4 | - - - - 0 1 |
 5 | - - - - - 1 | [T F T F F F]
 6 | - - - - - - | 1 2 3 4 5 6
 +-------------+

 PO Matrix Processed Vector

 We can see that the Deliverable Set = {(1,2),(1,4),(1,5)}, but what
 should the Bufferable Set consist of? Since only one buffer is
 required for the current period’s objects, we have 1 Mbyte of
 additional space available for "future" objects and therefore include
 the first object from period #2 in both the Bufferable and the
 Receivable Set,

 Deliverable Set = {(1,2),(1,4),(1,5)}

 Bufferable Set = {(1,6),(2,1)}

 Buffered Set = { }

 Receivable Set = {(1,2),(1,4),(1,5),(1,6),(2,1)}

 In general, the notion of window management takes on new meaning with
 a partial order service. One may re-examine the classic window
 relations with a partial order service in mind and devise new, less
 restrictive relations which may shed further light on the operation
 of such a service.

 Two final details: (1) as with the sender, the receiver must
 periodically establish or modify the PO service profile and (2) upon
 processing the last object in a period, the receiver must re-set the
 PO matrix and Processed vector to their initial states.

Connolly, Amer & Conrad [Page 28]

RFC 1693 An Extension to TCP: Partial Order Service November 1994

 Let us look at the state machine and pseudo-code for the receiver.

 (2)Data Segment Arrival (5)PO Profile fragment Arrival
 +------+ +-------+
 | | | |
 | V (1)First PO Profile | V
 +---------+ fragment arrives +---------+(6) Data Segment
 +---->| |----------------------->| |<-----+ Arrival
 | | ESTAB | | PO |------+
 | | | | |
 | | | | SETUP |<-----+
(3) +-----| |<-----------------------| |------+
Terminator+---------+ (9)PO Setup complete +---------+(7) Terminator
 ^ | | ^
 | | | |
 +------+ +------+
 (4)Piggyback Timeout (8)Piggyback Timeout

 Event 1 - First PO Service Profile fragment arrives at network
 ======= interface
 Transition to the PO SETUP state
 Store the PO service profile (fragment)
 Send an Acknowledgement of the PO service profile (fragment)

 Event 2 - Data Segment Arrival
 =======
 If object is in Deliverable Set then
 Deliver the object
 Update PO Matrix and Processed Vector
 Check buffers for newly deliverable objects
 If all objects from current period have been processed then
 Start the next period (re-initialize data structures)
 Start piggyback_delay timer to send an ACK
 Else if object is in Bufferable Set then
 Store the object
 Else
 Discard object
 Start piggyback_delay timer to send an ACK

 Event 3 - Periodic call of the Terminator
 =======
 For all unprocessed objects in the current period do
 If object is "no longer useful" then
 Update PO Matrix and Processed Vector
 If object is in a buffer then
 Release the buffer
 Check buffers for newly deliverable objects

Connolly, Amer & Conrad [Page 29]

RFC 1693 An Extension to TCP: Partial Order Service November 1994

 If all objects from current period have been processed
 then Start the next period (re-initialize data
 structures)

 Event 4 - Piggyback_delay Timer Expires
 =======
 Send an ACK
 Disable piggyback_delay timer

 Event 5 - PO Service Profile fragment arrives at network interface
 =======
 Store the PO service profile (fragment)
 Send an Acknowledgement of the PO service profile (fragment)
 If entire PO Service profile has been received then enable Event
 (9)

 Event 6 - Data Segment arrival
 =======
 (See event 2)

 Event 7 - Periodic call of the terminator
 =======
 (See Event 3)

 Event 8 - Piggyback_delay Timer Expires
 =======
 (See Event 4)

 Event 9 - PO Setup Complete
 =======
 Transition to the ESTAB state

 Note that, for reasons of clarity, we have used a transitively closed
 matrix representation of the partial order. A more efficient
 implementation based on an adjacency list representation of a
 transitively reduced precedence graph results in a more efficient
 running time [CAC93].

5. Quantifying and Comparing Partial Order Services

 While ordered, reliable delivery is ideal, the existence of less-
 than-ideal underlying networks can cause delays for applications that
 need only partial order or partial reliability. By introducing a
 partial order service, one may in effect relax the requirements on
 order and reliability and presumably expect some savings in terms of
 buffer utilization and bandwidth (due to fewer retransmissions) and
 shorter overall delays. A practical question to be addressed is,
 "what are the expected savings likely to be?"

Connolly, Amer & Conrad [Page 30]

RFC 1693 An Extension to TCP: Partial Order Service November 1994

 As mentioned in Section 2, the extent of such savings will depend
 largely on the quality of the underlying network - bandwidth, delay,
 amount and distribution of loss/duplication/disorder - as well as the
 flexibility of the partial order itself - specified by the PO matrix
 and reliability vector. If the underlying network has no loss, a
 partial order service essentially becomes an ordered service.
 Collecting experimental data to ascertain realistic network
 conditions is a straightforward task and will help to quantify in
 general the value of a partial order service [Bol93]. But how can
 one quantify and compare the cost of providing specific levels of
 service?

 Preliminary research indicates that the number of linear extensions
 (orderings) of a partial order in the presence of loss effectively
 measures the complexity of that order. The authors have derived
 formulae for calculating the number of extensions when a partial
 order is series-parallel and have proposed a metric for comparing
 partial orders based on this number [ACCD93b]. This metric could be
 used as a means for charging for the service, for example. What also
 may be interesting is a specific head-to-head comparison between
 different partial orders with varying degrees of flexibility. Work
 is currently underway on a simulation model aimed at providing this
 information. And finally, work is underway on an implementation of
 TCP which includes partial order service.

6. Future Direction

 In addition to the simulation and implementation work the authors are
 pursuing several problems related to partial ordering which will be
 mentioned briefly.

 An interesting question arises when discussing the acknowledgment
 strategy for a partial order service. For classic protocols, a
 cumulative ACK of object i confirms all objects "up to and including"
 i. But the meaning of "up to and including" with a partial order
 service has different implications than with an ordered service.

 Consider our example partial order, ((1;2)||(3;4)||5);6). What
 should a cumulative ACK of object 4 confirm? The most logical
 definition would say it confirms receipt of object 4 and all objects
 that precede 4 in the partial order, in this case, object 3. Nothing
 is said about the arrival of objects 1 or 2. With this alternative
 interpretation where cumulative ACKs depend on the partial order, the
 sender must examine the partial order matrix to determine which
 buffers can be released. In this example, scanning column 4 of the
 matrix reveals that object 3 must come before object 4 and therefore
 both object buffers (and any buffers from a previous period) can be
 released.

Connolly, Amer & Conrad [Page 31]

RFC 1693 An Extension to TCP: Partial Order Service November 1994

 Other partial order acknowledgment policies are possible for a
 protocol providing a partial order service including the use of
 selective ACKs (which has been proposed in [JB88] and implemented in
 the Cray TCP [Chang93]) as well as the current TCP strategy where an
 ACK of i also ACKs everything <= i (in a cyclical sequence number
 space). The authors are investigating an ACK policy which utilizes a
 combination of selective and "partial-order-cumulative"
 acknowledgments. This is accomplished by replacing the current TCP
 cumulative ACK with one which has the partial order meaning as
 described above and augmenting this with intermittent selective ACKs
 when needed.

 In another area, the notion of fragmented delivery, mentioned in the
 beginning of Section 4, looks like a promising technique for certain
 classes of applications which may offer a substantial improvement in
 memory utilization. Briefly, the term fragmented delivery refers to
 the ability to transfer less-than-complete objects between the
 transport layer and the user application (or session layer as the
 case may be). For example, a 1Mbyte object could potentially be
 delivered in multiple "chunks" as segments arrive thus freeing up
 valuable memory and reducing the delay on those pieces of data. The
 scenario becomes somewhat more complex when multiple "parallel
 streams" are considered where the application could now receive
 pieces of multiple objects associated with different streams.

 Additional work in the area of implementing a working partial order
 protocol is being performed both at the University of Delaware and at
 the LAAS du CNRS laboratory in Toulouse, France - particularly in
 support of distributed, high-speed, multimedia communication. It will
 be interesting to examine the processing requirements for an
 implementation of a partial order protocol at key events (such as
 object arrival) compared with a non-partial order implementation.

 Finally, the authors are interested in the realization of a network
 application utilizing a partial order service. The aim of such work
 is threefold: (1) provide further insight into the expected
 performance gains, (2) identify new issues unique to partial order
 transport and, (3) build a road-map for application designers
 interested in using a partial order service.

7. Summary

 This RFC introduces the concepts of a partial order service and
 discusses the practical issues involved with including partial
 ordering in a transport protocol. The need for such a service is
 motivated by several applications including the vast fields of
 distributed databases, and multimedia. The service has been
 presented as a backward-compatible extension to TCP to adapt to

Connolly, Amer & Conrad [Page 32]

RFC 1693 An Extension to TCP: Partial Order Service November 1994

 applications with different needs specified in terms of QOS
 parameters.

 The notion of a partial ordering extends QOS flexibility to include
 object delivery, reliability, and temporal value thus allowing the
 transport layer to effectively handle a wider range of applications
 (i.e., any which might benefit from such mechanisms). The service
 profile described in Section 4 accurately characterizes the QOS for a
 partial order service (which encompasses the two extremes of total
 ordered and unordered transport as well).

 Several significant modifications have been proposed and are
 summarized here:

 (1) Replacing the requirement for ordered delivery with one for
 application-dependent partial ordering

 (2) Allowing unreliable and partially reliable data transport

 (3) Conducting a non-symmetrical connection (not entirely foreign
 to TCP, the use of different MSS values for the two sides
 of a connection is an example)

 (4) Management of "objects" rather than octets

 (5) Modified acknowledgment strategy

 (6) New definition for the send and receive "windows"

 (7) Extension of the User/TCP interface to include certain
 QOS parameters

 (8) Use of new TCP options

 As evidenced by this list, a partial order and partial reliability
 service proposes to re-examine several fundamental transport
 mechanisms and, in so doing, offers the opportunity for substantial
 improvement in the support of existing and new application areas.

Connolly, Amer & Conrad [Page 33]

RFC 1693 An Extension to TCP: Partial Order Service November 1994

8. References

 [ACCD93a] Amer, P., Chassot, C., Connolly, T., and M. Diaz,
 "Partial Order Transport Service for Multimedia
 Applications: Reliable Service", Second International
 Symposium on High Performance Distributed Computing
 (HPDC-2), Spokane, Washington, July 1993.

 [ACCD93b] Amer, P., Chassot, C., Connolly, T., and M. Diaz,
 "Partial Order Transport Service for Multimedia
 Applications: Unreliable Service", Proc. INET ’93, San
 Francisco, August 1993.

 [AH91] Anderson, D., and G. Homsy, "A Continuous Media I/O
 Server and its Synchronization Mechanism", IEEE
 Computer, 24(10), 51-57, October 1991.

 [AS93] Agrawala, A., and D. Sanghi, "Experimental Assessment
 of End-to-End Behavior on Internet," Proc. IEEE INFOCOM
 ’93, San Francisco, CA, March 1993.

 [BCP93] Claffy, K., Polyzos, G., and H.-W. Braun, "Traffic
 Characteristics of the T1 NSFNET", Proc. IEEE INFOCOM
 ’93, San Francisco, CA, March 1993.

 [Bol93] Bolot, J., "End-to-End Packet Delay and Loss Behavior
 in the Internet", SIGCOMM ’93, Ithaca, NY, September
 1993.

 [CAC93] Conrad, P., Amer, P., and T. Connolly, "Improving
 Performance in Transport-Layer Communications Protocols
 by using Partial Orders and Partial Reliability",
 Work in Progress, December 1993.

 [Chang93] Chang, Y., "High-Speed Transport Protocol Evaluation --
 the Final Report", MCNC Center for Communications
 Technical Document, February 1993.

 [Dee89] Deering, S., "Host Extensions for IP Multicasting," STD
 5, RFC 1112 Stanford University, August 1989.

 [DS93] Diaz, M., and P. Senac, "Time Stream Petri Nets: A
 Model for Multimedia Synchronization", Proceedings of
 Multimedia Modeling ’93, Singapore, 1993.

Connolly, Amer & Conrad [Page 34]

RFC 1693 An Extension to TCP: Partial Order Service November 1994

 [HKN91] Hardt-Kornacki, S., and L. Ness, "Optimization Model
 for the Delivery of Interactive Multimedia Documents",
 In Proc. Globecom ’91, 669-673, Phoenix, Arizona,
 December 1991.

 [JB88] Jacobson, V., and R. Braden, "TCP Extensions for
 Long-Delay Paths", RFC 1072, LBL, USC/Information
 Sciences Institute, October 1988.

 [JBB92] Jacobson, V., Braden, R., and D. Borman, "TCP
 Extensions for High Performance", RFC 1323, LBL, Cray
 Research, USC/Information Sciences Institute, May 1992.

 [LMKQ89] Leffler, S., McKusick, M., Karels, M., and J.
 Quarterman, "4.3 BSD UNIX Operating System",
 Addison-Wesley Publishing Company, Reading, MA, 1989.

 [OP91] O’Malley, S., and L. Peterson, "TCP Extensions
 Considered Harmful", RFC 1263, University of Arizona,
 October 1991.

 [Pos81] Postel, J., "Transmission Control Protocol - DARPA
 Internet Program Protocol Specification," STD 7,
 RFC 793, DARPA, September 1981.

Security Considerations

 Security issues are not discussed in this memo.

Connolly, Amer & Conrad [Page 35]

RFC 1693 An Extension to TCP: Partial Order Service November 1994

Authors’ Addresses

 Tom Connolly
 101C Smith Hall
 Department of Computer & Information Sciences
 University of Delaware
 Newark, DE 19716 - 2586

 EMail: connolly@udel.edu

 Paul D. Amer
 101C Smith Hall
 Department of Computer & Information Sciences
 University of Delaware
 Newark, DE 19716 - 2586

 EMail: amer@udel.edu

 Phill Conrad
 101C Smith Hall
 Department of Computer & Information Sciences
 University of Delaware
 Newark, DE 19716 - 2586

 EMail: pconrad@udel.edu

Connolly, Amer & Conrad [Page 36]

