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     Integrated Services in the Internet Architecture: an Overview

Status of this Memo

   This memo provides information for the Internet community.  This memo
   does not specify an Internet standard of any kind.  Distribution of
   this memo is unlimited.

Abstract

   This memo discusses a proposed extension to the Internet architecture
   and protocols to provide integrated services, i.e., to support real-
   time as well as the current non-real-time service of IP.  This
   extension is necessary to meet the growing need for real-time service
   for a variety of new applications, including teleconferencing, remote
   seminars, telescience, and distributed simulation.

   This memo represents the direct product of recent work by Dave Clark,
   Scott Shenker, Lixia Zhang, Deborah Estrin, Sugih Jamin, John
   Wroclawski, Shai Herzog, and Bob Braden, and indirectly draws upon
   the work of many others.
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1. Introduction

   The multicasts of IETF meetings across the Internet have formed a
   large-scale experiment in sending digitized voice and video through a
   packet-switched infrastructure.  These highly-visible experiments
   have depended upon three enabling technologies.  (1) Many modern
   workstations now come equipped with built-in multimedia hardware,
   including audio codecs and video frame-grabbers, and the necessary
   video gear is now inexpensive.  (2) IP multicasting, which is not yet
   generally available in commercial routers, is being provided by the
   MBONE, a temporary "multicast backbone".  (3) Highly-sophisticated
   digital audio and video applications have been developed.

   These experiments also showed that an important technical element is
   still missing: real-time applications often do not work well across
   the Internet because of variable queueing delays and congestion
   losses.  The Internet, as originally conceived, offers only a very
   simple quality of service (QoS), point-to-point best-effort data
   delivery.  Before real-time applications such as remote video,
   multimedia conferencing, visualization, and virtual reality can be
   broadly used, the Internet infrastructure must be modified to support
   real-time QoS, which provides some control over end-to-end packet
   delays.  This extension must be designed from the beginning for
   multicasting; simply generalizing from the unicast (point-to-point)
   case does not work.

   Real-time QoS is not the only issue for a next generation of traffic
   management in the Internet.  Network operators are requesting the
   ability to control the sharing of bandwidth on a particular link
   among different traffic classes.  They want to be able to divide
   traffic into a few administrative classes and assign to each a
   minimum percentage of the link bandwidth under conditions of
   overload, while allowing "unused" bandwidth to be available at other
   times.  These classes may represent different user groups or
   different protocol families, for example.  Such a management facility
   is commonly called controlled link-sharing.  We use the term
   integrated services (IS) for an Internet service model that includes
   best-effort service, real-time service, and controlled link sharing.

   The requirements and mechanisms for integrated services have been the
   subjects of much discussion and research over the past several years
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   (the literature is much too large to list even a representative
   sample here; see the references in [CSZ92, Floyd92, Jacobson91,
   JSCZ93, Partridge92, SCZ93, RSVP93a] for a partial list).  This work
   has led to the unified approach to integrated services support that
   is described in this memo.  We believe that it is now time to begin
   the engineering that must precede deployment of integrated services
   in the Internet.

   Section 2 of this memo introduces the elements of an IS extension of
   the Internet.  Section 3 discusses real-time service models [SCZ93a,
   SCZ93b].  Section 4 discusses traffic control, the forwarding
   algorithms to be used in routers [CSZ92].  Section 5 discusses the
   design of RSVP, a resource setup protocol compatible with the
   assumptions of our IS model [RSVP93a, RSVP93b].

2. Elements of the Architecture

   The fundamental service model of the Internet, as embodied in the
   best-effort delivery service of IP, has been unchanged since the
   beginning of the Internet research project 20 years ago [CerfKahn74].
   We are now proposing to alter that model to encompass integrated
   service.  From an academic viewpoint, changing the service model of
   the Internet is a major undertaking; however, its impact is mitigated
   by the fact that we wish only to extend the original architecture.
   The new components and mechanisms to be added will supplement but not
   replace the basic IP service.

   Abstractly, the proposed architectural extension is comprised of two
   elements: (1) an extended service model, which we call the IS model,
   and (2) a reference implementation framework, which gives us a set of
   vocabulary and a generic program organization to realize the IS
   model.  It is important to separate the service model, which defines
   the externally visible behavior, from the discussion of the
   implementation, which may (and should) change during the life of the
   service model.  However, the two are related; to make the service
   model credible, it is useful to provide an example of how it might be
   realized.

   2.1 Integrated Services Model

      The IS model we are proposing includes two sorts of service
      targeted towards real-time traffic: guaranteed and predictive
      service.  It integrates these services with controlled link-
      sharing, and it is designed to work well with multicast as well as
      unicast.  Deferring a summary of the IS model to Section 3, we
      first discuss some key assumptions behind the model.
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      The first assumption is that resources (e.g., bandwidth) must be
      explicitly managed in order to meet application requirements.
      This implies that "resource reservation" and "admission control"
      are key building blocks of the service.  An alternative approach,
      which we reject, is to attempt to support real-time traffic
      without any explicit changes to the Internet service model.

      The essence of real-time service is the requirement for some
      service guarantees, and we argue that guarantees cannot be
      achieved without reservations.  The term "guarantee" here is to be
      broadly interpreted; they may be absolute or statistical, strict
      or approximate.  However, the user must be able to get a service
      whose quality is sufficiently predictable that the application can
      operate in an acceptable way over a duration of time determined by
      the user.  Again, "sufficiently" and "acceptable" are vague terms.
      In general, stricter guarantees have a higher cost in resources
      that are made unavailable for sharing with others.

      The following arguments have been raised against resource
      guarantees in the Internet.

      o    "Bandwidth will be infinite."

           The incredibly large carrying capacity of an optical fiber
           leads some to conclude that in the future bandwidth will be
           so abundant, ubiquitous, and cheap that there will be no
           communication delays other than the speed of light, and
           therefore there will be no need to reserve resources.
           However, we believe that this will be impossible in the short
           term and unlikely in the medium term.  While raw bandwidth
           may seem inexpensive, bandwidth provided as a network service
           is not likely to become so cheap that wasting it will be the
           most cost-effective design principle.  Even if low-cost
           bandwidth does eventually become commonly available, we do
           not accept that it will be available "everywhere" in the
           Internet.  Unless we provide for the possibility of dealing
           with congested links, then real-time services will simply be
           precluded in those cases.  We find that restriction
           unacceptable.

      o    "Simple priority is sufficient."

           It is true that simply giving higher priority to real-time
           traffic would lead to adequate real-time service at some
           times and under some conditions.  But priority is an
           implementation mechanism, not a service model.  If we define
           the service by means of a specific mechanism, we may not get
           the exact features we want.  In the case of simple priority,
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           the issue is that as soon as there are too many real-time
           streams competing for the higher priority, every stream is
           degraded.  Restricting our service to this single failure
           mode is unacceptable.  In some cases, users will demand that
           some streams succeed while some new requests receive a "busy
           signal".

      o    "Applications can adapt."

           The development of adaptive real-time applications, such as
           Jacobson’s audio program VAT, does not eliminate the need to
           bound packet delivery time.  Human requirements for
           interaction and intelligibility limit the possible range of
           adaptation to network delays.  We have seen in real
           experiments that, while VAT can adapt to network delays of
           many seconds, the users find that interaction is impossible
           in these cases.

      We conclude that there is an inescapable requirement for routers
      to be able to reserve resources, in order to provide special QoS
      for specific user packet streams, or "flows".  This in turn
      requires flow-specific state in the routers, which represents an
      important and fundamental change to the Internet model.  The
      Internet architecture was been founded on the concept that all
      flow-related state should be in the end systems [Clark88].
      Designing the TCP/IP protocol suite on this concept led to a
      robustness that is one of the keys to its success.  In section 5
      we discuss how the flow state added to the routers for resource
      reservation can be made "soft", to preserve the robustness of the
      Internet protocol suite.

      There is a real-world side effect of resource reservation in
      routers.  Since it implies that some users are getting privileged
      service, resource reservation will need enforcement of policy and
      administrative controls.  This in turn will lead to two kinds of
      authentication requirements:  authentication of users who make
      reservation requests, and authentication of packets that use the
      reserved resources.  However, these issues are not unique to "IS";
      other aspects of the evolution of the Internet, including
      commercialization and commercial security, are leading to the same
      requirements.  We do not discuss the issues of policy or security
      further in this memo, but they will require attention.

      We make another fundamental assumption, that it is desirable to
      use the Internet as a common infrastructure to support both non-
      real-time and real-time communication.  One could alternatively
      build an entirely new, parallel infrastructure for real-time
      services, leaving the Internet unchanged.  We reject this
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      approach, as it would lose the significant advantages of
      statistical sharing between real-time and non-real-time traffic,
      and it would be much more complex to build and administer than a
      common infrastructure.

      In addition to this assumption of common infrastructure, we adopt
      a unified protocol stack model, employing a single internet-layer
      protocol for both real-time and non-real-time service.  Thus, we
      propose to use the existing internet-layer protocol (e.g., IP or
      CLNP) for real-time data.  Another approach would be to add a new
      real-time protocol in the internet layer [ST2-90].  Our unified
      stack approach provides economy of mechanism, and it allows us to
      fold controlled link-sharing in easily.  It also handles the
      problem of partial coverage, i.e., allowing interoperation between
      IS-capable Internet systems and systems that have not been
      extended, without the complexity of tunneling.

      We take the view that there should be a single service model for
      the Internet.  If there were different service models in different
      parts of the Internet, it is very difficult to see how any end-
      to-end service quality statements could be made.  However, a
      single service model does not necessarily imply a single
      implementation for packet scheduling or admission control.
      Although specific packet scheduling and admission control
      mechanisms that satisfy our service model have been developed, it
      is quite possible that other mechanisms will also satisfy the
      service model.  The reference implementation framework, introduced
      below, is intended to allow discussion of implementation issues
      without mandating a single design.

      Based upon these considerations, we believe that an IS extension
      that includes additional flow state in routers and an explicit
      setup mechanism is necessary to provide the needed service.  A
      partial solution short of this point would not be a wise
      investment.  We believe that the extensions we propose preserve
      the essential robustness and efficiency of the Internet
      architecture, and they allow efficient management of the network
      resources; these will be important goals even if bandwidth becomes
      very inexpensive.

   2.2 Reference Implementation Framework

      We propose a reference implementation framework to realize the IS
      model.  This framework includes four components: the packet
      scheduler, the admission control routine, the classifier, and the
      reservation setup protocol.  These are discussed briefly below and
      more fully in Sections 4 and 5.
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      In the ensuing discussion, we define the "flow" abstraction as a
      distinguishable stream of related datagrams that results from a
      single user activity and requires the same QoS.  For example, a
      flow might consist of one transport connection or one video stream
      between a given host pair.  It is the finest granularity of packet
      stream distinguishable by the IS.  We define a flow to be simplex,
      i.e., to have a single source but N destinations.  Thus, an N-way
      teleconference will generally require N flows, one originating at
      each site.

      In today’s Internet, IP forwarding is completely egalitarian; all
      packets receive the same quality of service, and packets are
      typically forwarded using a strict FIFO queueing discipline.  For
      integrated services, a router must implement an appropriate QoS
      for each flow, in accordance with the service model.  The router
      function that creates different qualities of service is called
      "traffic control".  Traffic control in turn is implemented by
      three components: the packet scheduler, the classifier, and
      admission control.

      o    Packet Scheduler

           The packet scheduler manages the forwarding of different
           packet streams using a set of queues and perhaps other
           mechanisms like timers.  The packet scheduler must be
           implemented at the point where packets are queued; this is
           the output driver level of a typical operating system, and
           corresponds to the link layer protocol.  The details of the
           scheduling algorithm may be specific to the particular output
           medium.  For example, the output driver will need to invoke
           the appropriate link-layer controls when interfacing to a
           network technology that has an internal bandwidth allocation
           mechanism.

           An experimental packet scheduler has been built that
           implements the IS model described in Section 3 and [SCZ93];
           this is known as the CSZ scheduler and is discussed further
           in Section 4.  We note that the CSZ scheme is not mandatory
           to accomplish our service model; indeed for parts of the
           network that are known always to be underloaded, FIFO will
           deliver satisfactory service.

           There is another component that could be considered part of
           the packet scheduler or separate: the estimator [Jacobson91].
           This algorithm is used to measure properties of the outgoing
           traffic stream, to develop statistics that control packet
           scheduling and admission control.  This memo will consider
           the estimator to be a part of the packet scheduler.
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      o    Classifier

           For the purpose of traffic control (and accounting), each
           incoming packet must be mapped into some class; all packets
           in the same class get the same treatment from the packet
           scheduler.  This mapping is performed by the classifier.
           Choice of a class may be based upon the contents of the
           existing packet header(s) and/or some additional
           classification number added to each packet.

           A class might correspond to a broad category of flows, e.g.,
           all video flows or all flows attributable to a particular
           organization.  On the other hand, a class might hold only a
           single flow.  A class is an abstraction that may be local to
           a particular router; the same packet may be classified
           differently by different routers along the path.  For
           example, backbone routers may choose to map many flows into a
           few aggregated classes, while routers nearer the periphery,
           where there is much less aggregation, may use a separate
           class for each flow.

      o    Admission Control

           Admission control implements the decision algorithm that a
           router or host uses to determine whether a new flow can be
           granted the requested QoS without impacting earlier
           guarantees.  Admission control is invoked at each node to
           make a local accept/reject decision, at the time a host
           requests a real-time service along some path through the
           Internet.  The admission control algorithm must be consistent
           with the service model, and it is logically part of traffic
           control.  Although there are still open research issues in
           admission control, a first cut exists [JCSZ92].

           Admission control is sometimes confused with policing or
           enforcement, which is a packet-by-packet function at the
           "edge" of the network to ensure that a host does not violate
           its promised traffic characteristics.  We consider policing
           to be one of the functions of the packet scheduler.

           In addition to ensuring that QoS guarantees are met,
           admission control will be concerned with enforcing
           administrative policies on resource reservations.  Some
           policies will demand authentication of those requesting
           reservations.  Finally, admission control will play an

Braden, Clark & Shenker                                         [Page 8]



RFC 1633            Integrated Services Architecture           June 1994

           important role in accounting and administrative reporting.

      The fourth and final component of our implementation framework is
      a reservation setup protocol, which is necessary to create and
      maintain flow-specific state in the endpoint hosts and in routers
      along the path of a flow.  Section  discusses a reservation setup
      protocol called RSVP (for "ReSerVation Protocol") [RSVP93a,
      RSVP93b].  It may not be possible to insist that there be only one
      reservation protocol in the Internet, but we will argue that
      multiple choices for reservation protocols will cause confusion.
      We believe that multiple protocols should exist only if they
      support different modes of reservation.

      The setup requirements for the link-sharing portion of the service
      model are far less clear than those for resource reservations.
      While we expect that much of this can be done through network
      management interfaces, and thus need not be part of the overall
      architecture, we may also need RSVP to play a role in providing
      the required state.

      In order to state its resource requirements, an application must
      specify the desired QoS using a list of parameters that is called
      a "flowspec" [Partridge92].  The flowspec is carried by the
      reservation setup protocol, passed to admission control for to
      test for acceptability, and ultimately used to parametrize the
      packet scheduling mechanism.

      Figure  shows how these components might fit into an IP router
      that has been extended to provide integrated services.  The router
      has two broad functional divisions:  the forwarding path below the
      double horizontal line, and the background code above the line.

      The forwarding path of the router is executed for every packet and
      must therefore be highly optimized.  Indeed, in most commercial
      routers, its implementation involves a hardware assist.  The
      forwarding path is divided into three sections: input driver,
      internet forwarder, and output driver.  The internet forwarder
      interprets the internetworking protocol header appropriate to the
      protocol suite, e.g., the IP header for TCP/IP, or the CLNP header
      for OSI.  For each packet, an internet forwarder executes a
      suite-dependent classifier and then passes the packet and its
      class to the appropriate output driver.  A classifier must be both
      general and efficient.  For efficiency, a common mechanism should
      be used for both resource classification and route lookup.

      The output driver implements the packet scheduler.  (Layerists
      will observe that the output driver now has two distinct sections:
      the packet scheduler that is largely independent of the detailed
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      mechanics of the interface, and the actual I/O driver that is only
      concerned with the grittiness of the hardware.  The estimator
      lives somewhere in between.  We only note this fact, without
      suggesting that it be elevated to a principle.).

        _____________________________________________________________
       |         ____________     ____________     ___________       |
       |        |            |   | Reservation|   |           |      |
       |        |   Routing  |   |    Setup   |   | Management|      |
       |        |    Agent   |   |    Agent   |   |  Agent    |      |
       |        |______._____|   |______._____|   |_____._____|      |
       |               .                .    |          .            |
       |               .                .   _V________  .            |
       |               .                .  | Admission| .            |
       |               .                .  |  Control | .            |
       |               V                .  |__________| .            |
       |           [Routing ]           V               V            |
       |           [Database]     [Traffic Control Database]         |
       |=============================================================|
       |        |                  |     _______                     |
       |        |   __________     |    |_|_|_|_| => o               |
       |        |  |          |    |      Packet     |     _____     |
       |     ====> |Classifier| =====>   Scheduler   |===>|_|_|_| ===>
       |        |  |__________|    |     _______     |               |
       |        |                  |    |_|_|_|_| => o               |
       | Input  |   Internet       |                                 |
       | Driver |   Forwarder      |     O u t p u t   D r i v e r   |
       |________|__________________|_________________________________|

             Figure 1: Implementation Reference Model for Routers

      The background code is simply loaded into router memory and
      executed by a general-purpose CPU.  These background routines
      create data structures that control the forwarding path.  The
      routing agent implements a particular routing protocol and builds
      a routing database.  The reservation setup agent implements the
      protocol used to set up resource reservations; see Section .  If
      admission control gives the "OK" for a new request, the
      appropriate changes are made to the classifier and packet
      scheduler database to implement the desired QoS.  Finally, every
      router supports an agent for network management.  This agent must
      be able to modify the classifier and packet scheduler databases to
      set up controlled link-sharing and to set admission control
      policies.
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      The implementation framework for a host is generally similar to
      that for a router, with the addition of applications.  Rather than
      being forwarded, host data originates and terminates in an
      application.  An application needing a real-time QoS for a flow
      must somehow invoke a local reservation setup agent.  The best way
      to interface to applications is still to be determined.  For
      example, there might be an explicit API for network resource
      setup, or the setup might be invoked implicitly as part of the
      operating system scheduling function.  The IP output routine of a
      host may need no classifier, since the class assignment for a
      packet can be specified in the local I/O control structure
      corresponding to the flow.

      In routers, integrated service will require changes to both the
      forwarding path and the background functions.  The forwarding
      path, which may depend upon hardware acceleration for performance,
      will be the more difficult and costly to change.  It will be vital
      to choose a set of traffic control mechanisms that is general and
      adaptable to a wide variety of policy requirements and future
      circumstances, and that can be implemented efficiently.

3. Integrated Services Model

   A service model is embedded within the network service interface
   invoked by applications to define the set of services they can
   request.  While both the underlying network technology and the
   overlying suite of applications will evolve, the need for
   compatibility requires that this service interface remain relatively
   stable (or, more properly, extensible; we do expect to add new
   services in the future but we also expect that it will be hard to
   change existing services).  Because of its enduring impact, the
   service model should not be designed in reference to any specific
   network artifact but rather should be based on fundamental service
   requirements.

   We now briefly describe a proposal for a core set of services for the
   Internet; this proposed core service model is more fully described in
   [SCZ93a, SCZ93b].  This core service model addresses those services
   which relate most directly to the time-of-delivery of packets.  We
   leave the remaining services (such as routing, security, or stream
   synchronization) for other standardization venues.  A service model
   consists of a set of service commitments; in response to a service
   request the network commits to deliver some service.  These service
   commitments can be categorized by the entity to whom they are made:
   they can be made to either individual flows or to collective entities
   (classes of flows).  The service commitments made to individual flows
   are intended to provide reasonable application performance, and thus
   are driven by the ergonomic requirements of the applications; these
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   service commitments relate to the quality of service delivered to an
   individual flow.  The service commitments made to collective entities
   are driven by resource-sharing, or economic, requirements; these
   service commitments relate to the aggregate resources made available
   to the various entities.

   In this section we start by exploring the service requirements of
   individual flows and propose a corresponding set of services.  We
   then discuss the service requirements and services for resource
   sharing.  Finally, we conclude with some remarks about packet
   dropping.

   3.1 Quality of Service Requirements

      The core service model is concerned almost exclusively with the
      time-of-delivery of packets.  Thus, per-packet delay is the
      central quantity about which the network makes quality of service
      commitments.  We make the even more restrictive assumption that
      the only quantity about which we make quantitative service
      commitments are bounds on the maximum and minimum delays.

      The degree to which application performance depends on low delay
      service varies widely, and we can make several qualitative
      distinctions between applications based on the degree of their
      dependence.  One class of applications needs the data in each
      packet by a certain time and, if the data has not arrived by then,
      the data is essentially worthless; we call these real-time
      applications.  Another class of applications will always wait for
      data to arrive; we call these " elastic" applications.  We now
      consider the delay requirements of these two classes separately.

      3.1.1 Real-Time Applications

         An important class of such real-time applications, which are
         the only real-time applications we explicitly consider in the
         arguments that follow, are "playback" applications.  In a
         playback application, the source takes some signal, packetizes
         it, and then transmits the packets over the network.  The
         network inevitably introduces some variation in the delay of
         the delivered packets.  The receiver depacketizes the data and
         then attempts to faithfully play back the signal.  This is done
         by buffering the incoming data and then replaying the signal at
         some fixed offset delay from the original departure time; the
         term "playback point" refers to the point in time which is
         offset from the original departure time by this fixed delay.
         Any data that arrives before its associated playback point can
         be used to reconstruct the signal; data arriving after the
         playback point is essentially useless in reconstructing the
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         real-time signal.

         In order to choose a reasonable value for the offset delay, an
         application needs some "a priori" characterization of the
         maximum delay its packets will experience.  This "a priori"
         characterization could either be provided by the network in a
         quantitative service commitment to a delay bound, or through
         the observation of the delays experienced by the previously
         arrived packets; the application needs to know what delays to
         expect, but this expectation need not be constant for the
         entire duration of the flow.

         The performance of a playback application is measured along two
         dimensions:  latency and fidelity.  Some playback applications,
         in particular those that involve interaction between the two
         ends of a connection such as a phone call, are rather sensitive
         to the latency; other playback applications, such as
         transmitting a movie or lecture, are not.  Similarly,
         applications exhibit a wide range of sensitivity to loss of
         fidelity.  We will consider two somewhat artificially
         dichotomous classes: intolerant applications, which require an
         absolutely faithful playback, and tolerant applications, which
         can tolerate some loss of fidelity.  We expect that the vast
         bulk of audio and video applications will be tolerant, but we
         also suspect that there will be other applications, such as
         circuit emulation, that are intolerant.

         Delay can affect the performance of playback applications in
         two ways.  First, the value of the offset delay, which is
         determined by predictions about the future packet delays,
         determines the latency of the application.  Second, the delays
         of individual packets can decrease the fidelity of the playback
         by exceeding the offset delay; the application then can either
         change the offset delay in order to play back late packets
         (which introduces distortion) or merely discard late packets
         (which creates an incomplete signal).  The two different ways
         of coping with late packets offer a choice between an
         incomplete signal and a distorted one, and the optimal choice
         will depend on the details of the application, but the
         important point is that late packets necessarily decrease
         fidelity.

         Intolerant applications must use a fixed offset delay, since
         any variation in the offset delay will introduce some
         distortion in the playback.  For a given distribution of packet
         delays, this fixed offset delay must be larger than the
         absolute maximum delay, to avoid the possibility of late
         packets.   Such an application can only set its offset delay
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         appropriately if it is given a perfectly reliable upper bound
         on the maximum delay of each packet.  We call a service
         characterized by a perfectly reliable upper bound on delay "
         guaranteed service", and propose this as the appropriate
         service model for intolerant playback applications.

         In contrast, tolerant applications need not set their offset
         delay greater than the absolute maximum delay, since they can
         tolerate some late packets.  Moreover, instead of using a
         single fixed value for the offset delay, they can attempt to
         reduce their latency by varying their offset delays in response
         to the actual packet delays experienced in the recent past.  We
         call applications which vary their offset delays in this manner
         "adaptive" playback applications.

         For tolerant applications we propose a service model called "
         predictive service" which supplies a fairly reliable, but not
         perfectly reliable, delay bound.  This bound, in contrast to
         the bound in the guaranteed service, is not based on worst case
         assumptions on the behavior of other flows.  Instead, this
         bound might be computed with properly conservative predictions
         about the behavior of other flows.  If the network turns out to
         be wrong and the bound is violated, the application’s
         performance will perhaps suffer, but the users are willing to
         tolerate such interruptions in service in return for the
         presumed lower cost of the service.  Furthermore, because many
         of the tolerant applications are adaptive, we augment the
         predictive service to also give "minimax" service, which is to
         attempt to minimize the ex post maximum delay.  This service is
         not trying to minimize the delay of every packet, but rather is
         trying to pull in the tail of the delay distribution.

         It is clear that given a choice, with all other things being
         equal, an application would perform no worse with absolutely
         reliable bounds than with fairly reliable bounds.  Why, then,
         do we offer predictive service?  The key consideration here is
         efficiency; when one relaxes the service requirements from
         perfectly to fairly reliable bounds, this increases the level
         of network utilization that can be sustained, and thus the
         price of the predictive service will presumably be lower than
         that of guaranteed service.  The predictive service class is
         motivated by the conjecture that the performance penalty will
         be small for tolerant applications but the overall efficiency
         gain will be quite large.

         In order to provide a delay bound, the nature of the traffic
         from the source must be characterized, and there must be some
         admission control algorithm which insures that a requested flow
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         can actually be accommodated. A fundamental point of our
         overall architecture is that traffic characterization and
         admission control are necessary for these real-time delay bound
         services.  So far we have assumed that an application’s data
         generation process is an intrinsic property unaffected by the
         network.  However, there are likely to be many audio and video
         applications which can adjust their coding scheme and thus can
         alter the resulting data generation process depending on the
         network service available.  This alteration of the coding
         scheme will present a tradeoff between fidelity (of the coding
         scheme itself, not of the playback process) and the bandwidth
         requirements of the flow.  Such "rate-adaptive" playback
         applications have the advantage that they can adjust to the
         current network conditions not just by resetting their playback
         point but also by adjusting the traffic pattern itself.  For
         rate-adaptive applications, the traffic characterizations used
         in the service commitment are not immutable.  We can thus
         augment the service model by allowing the network to notify
         (either implicitly through packet drops or explicitly through
         control packets) rate-adaptive applications to change their
         traffic characterization.

      3.1.2 Elastic Applications

         While real-time applications do not wait for late data to
         arrive, elastic applications will always wait for data to
         arrive.  It is not that these applications are insensitive to
         delay; to the contrary, significantly increasing the delay of a
         packet will often harm the application’s performance.  Rather,
         the key point is that the application typically uses the
         arriving data immediately, rather than buffering it for some
         later time, and will always choose to wait for the incoming
         data rather than proceed without it.  Because arriving data can
         be used immediately, these applications do not require any a
         priori characterization of the service in order for the
         application to function.  Generally speaking, it is likely that
         for a given distribution of packet delays, the perceived
         performance of elastic applications will depend more on the
         average delay than on the tail of the delay distribution.  One
         can think of several categories of such elastic applications:
         interactive burst (Telnet, X, NFS), interactive bulk transfer
         (FTP), and asynchronous bulk transfer (electronic mail, FAX).
         The delay requirements of these elastic applications vary from
         rather demanding for interactive burst applications to rather
         lax for asynchronous bulk transfer, with interactive bulk
         transfer being intermediate between them.
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         An appropriate service model for elastic applications is to
         provide "as-soon-as-possible", or ASAP service. (For
         compatibility with historical usage, we will use the term
         best-effort service when referring to ASAP service.).  We
         furthermore propose to offer several classes of best-effort
         service to reflect the relative delay sensitivities of
         different elastic applications.  This service model allows
         interactive burst applications to have lower delays than
         interactive bulk applications, which in turn would have lower
         delays than asynchronous bulk applications.  In contrast to the
         real-time service models, applications using this service are
         not subject to admission control.

         The taxonomy of applications into tolerant playback, intolerant
         playback, and elastic is neither exact nor complete, but was
         only used to guide the development of the core service model.
         The resulting core service model should be judged not on the
         validity of the underlying taxonomy but rather on its ability
         to adequately meet the needs of the entire spectrum of
         applications.  In particular, not all real-time applications
         are playback applications; for example, one might imagine a
         visualization application which merely displayed the image
         encoded in each packet whenever it arrived.  However, non-
         playback applications can still use either the guaranteed or
         predictive real-time service model, although these services are
         not specifically tailored to their needs.  Similarly, playback
         applications cannot be neatly classified as either tolerant or
         intolerant, but rather fall along a continuum; offering both
         guaranteed and predictive service allows applications to make
         their own tradeoff between fidelity, latency, and cost.
         Despite these obvious deficiencies in the taxonomy, we expect
         that it describes the service requirements of current and
         future applications well enough so that our core service model
         can adequately meet all application needs.

   3.2 Resource-Sharing Requirements and Service Models

      The last section considered quality of service commitments; these
      commitments dictate how the network must allocate its resources
      among the individual flows.  This allocation of resources is
      typically negotiated on a flow-by-flow basis as each flow requests
      admission to the network, and does not address any of the policy
      issues that arise when one looks at collections of flows.  To
      address these collective policy issues, we now discuss resource-
      sharing service commitments.  Recall that for individual quality
      of service commitments we focused on delay as the only quantity of
      interest.  Here, we postulate that the quantity of primary
      interest in resource-sharing is aggregate bandwidth on individual
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      links.  Thus, this component of the service model, called "link-
      sharing", addresses the question of how to share the aggregate
      bandwidth of a link among various collective entities according to
      some set of specified shares.  There are several examples that are
      commonly used to explain the requirement of link-sharing among
      collective entities.

      Multi-entity link-sharing. -- A link may be purchased and used
      jointly by several organizations, government agencies or the like.
      They may wish to insure that under overload the link is shared in
      a controlled way, perhaps in proportion to the capital investment
      of each entity.  At the same time, they might wish that when the
      link is underloaded, any one of the entities could utilize all the
      idle bandwidth.

      Multi-protocol link-sharing -- In a multi-protocol Internet, it
      may be desired to prevent one protocol family (DECnet, IP, IPX,
      OSI, SNA, etc.) from overloading the link and excluding the other
      families. This is important because different families may have
      different methods of detecting and responding to congestion, and
      some methods may be more "aggressive" than others. This could lead
      to a situation in which one protocol backs off more rapidly than
      another under congestion, and ends up getting no bandwidth.
      Explicit control in the router may be required to correct this.
      Again, one might expect that this control should apply only under
      overload, while permitting an idle link to be used in any
      proportion.

      Multi-service sharing -- Within a protocol family such as IP, an
      administrator might wish to limit the fraction of bandwidth
      allocated to various service classes.  For example, an
      administrator might wish to limit the amount of real-time traffic
      to some fraction of the link, to avoid preempting elastic traffic
      such as FTP.

      In general terms, the link-sharing service model is to share the
      aggregate bandwidth according to some specified shares.  We can
      extend this link-sharing service model to a hierarchical version.
      For instance, a link could be divided between a number of
      organizations, each of which would divide the resulting allocation
      among a number of protocols, each of which would be divided among
      a number of services.  Here, the sharing is defined by a tree with
      shares assigned to each leaf node.

      An idealized fluid model of instantaneous link-sharing with
      proportional sharing of excess is the fluid processor sharing
      model (introduced in [DKS89] and further explored in [Parekh92]
      and generalized to the hierarchical case) where at every instant
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      the available bandwidth is shared between the active entities
      (i.e., those having packets in the queue) in proportion to the
      assigned shares of the resource.  This fluid model exhibits the
      desired policy behavior but is, of course, an unrealistic
      idealization.  We then propose that the actual service model
      should be to approximate, as closely as possible, the bandwidth
      shares produced by this ideal fluid model.  It is not necessary to
      require that the specific order of packet departures match those
      of the fluid model since we presume that all detailed per-packet
      delay requirements of individual flows are addressed through
      quality of service commitments and, furthermore, the satisfaction
      with the link-sharing service delivered will probably not depend
      very sensitively on small deviations from the scheduling implied
      by the fluid link-sharing model.

      We previously observed that admission control was necessary to
      ensure that the real-time service commitments could be met.
      Similarly, admission control will again be necessary to ensure
      that the link-sharing commitments can be met.  For each entity,
      admission control must keep the cumulative guaranteed and
      predictive traffic from exceeding the assigned link-share.

   3.3 Packet Dropping

      So far, we have implicitly assumed that all packets within a flow
      were equally important.  However, in many audio and video streams,
      some packets are more valuable than others.  We therefore propose
      augmenting the service model with a "preemptable" packet service,
      whereby some of the packets within a flow could be marked as
      preemptable.  When the network was in danger of not meeting some
      of its quantitative service commitments, it could exercise a
      certain packet’s "preemptability option" and discard the packet
      (not merely delay it, since that would introduce out-of-order
      problems).  By discarding these preemptable packets, a router can
      reduce the delays of the not-preempted packets.

      Furthermore, one can define a class of packets that is not subject
      to admission control.  In the scenario described above where
      preemptable packets are dropped only when quantitative service
      commitments are in danger of being violated, the expectation is
      that preemptable packets will almost always be delivered and thus
      they must included in the traffic description used in admission
      control.  However, we can extend preemptability to the extreme
      case of "expendable" packets (the term expendable is used to
      connote an extreme degree of preemptability), where the
      expectation is that many of these expendable packets may not be
      delivered.  One can then exclude expendable packets from the
      traffic description used in admission control; i.e., the packets
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      are not considered part of the flow from the perspective of
      admission control, since there is no commitment that they will be
      delivered.

   3.4 Usage Feedback

      Another important issue in the service is the model for usage
      feedback, also known as "accounting", to prevent abuse of network
      resources.   The link-sharing service described earlier can be
      used to provide administratively-imposed limits on usage.
      However, a more free-market model of network access will require
      back-pressure on users for the network resources they reserve.
      This is a highly contentious issue, and we are not prepared to say
      more about it at this time.

   3.5 Reservation Model

      The "reservation model" describes how an application negotiates
      for a QoS level.  The simplest model is that the application asks
      for a particular QoS and the network either grants it or refuses.
      Often the situation will be more complex.  Many applications will
      be able to get acceptable service from a range of QoS levels, or
      more generally, from anywhere within some region of the multi-
      dimensional space of a flowspec.

      For example, rather than simply refusing the request, the network
      might grant a lower resource level and inform the application of
      what QoS has been actually granted.  A more complex example is the
      "two-pass" reservation model, In this scheme, an "offered"
      flowspec is propagated along the multicast distribution tree from
      each sender Si to all receivers Rj.  Each router along the path
      records these values and perhaps adjusts them to reflect available
      capacity.  The receivers get these offers, generate corresponding
      "requested" flowspecs, and propagate them back along the same
      routes to the senders.  At each node, a local reconciliation must
      be performed between the offered and the requested flowspec to
      create a reservation, and an appropriately modified requested
      flowspec is passed on.  This two-pass scheme allows extensive
      properties like allowed delay to be distributed across hops in the
      path [Tenet90, ST2-90].  Further work is needed to define the
      amount of generality, with a corresponding level of complexity,
      that is required in the reservation model.
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4. Traffic Control Mechanisms

   We first survey very briefly the possible traffic control mechanisms.
   Then in Section 4.2 we apply a subset of these mechanisms to support
   the various services that we have proposed.

   4.1 Basic Functions

      In the packet forwarding path, there is actually a very limited
      set of actions that a router can take.  Given a particular packet,
      a router must select a route for it; in addition the router can
      either forward it or drop it, and the router may reorder it with
      respect to other packets waiting to depart.  The router can also
      hold the packet, even though the link is idle.  These are the
      building blocks from which we must fashion the desired behavior.

      4.1.1 Packet Scheduling

         The basic function of packet scheduling is to reorder the
         output queue.  There are many papers that have been written on
         possible ways to manage the output queue, and the resulting
         behavior.  Perhaps the simplest approach is a priority scheme,
         in which packets are ordered by priority, and highest priority
         packets always leave first.  This has the effect of giving some
         packets absolute preference over others; if there are enough of
         the higher priority packets, the lower priority class can be
         completely prevented from being sent.

         An alternative scheduling scheme is round-robin or some
         variant, which gives different classes of packets access to a
         share of the link. A variant called Weighted Fair Queueing, or
         WFQ, has been demonstrated to allocate the total bandwidth of a
         link into specified shares.

         There are more complex schemes for queue management, most of
         which involve observing the service objectives of individual
         packets, such as delivery deadline, and ordering packets based
         on these criteria.

      4.1.2 Packet Dropping

         The controlled dropping of packets is as important as their
         scheduling.

         Most obviously, a router must drop packets when its buffers are
         all full.  This fact, however, does not determine which packet
         should be dropped.  Dropping the arriving packet, while simple,
         may cause undesired behavior.
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         In the context of today’s Internet, with TCP operating over
         best effort IP service, dropping a packet is taken by TCP as a
         signal of congestion and causes it to reduce its load on the
         network.  Thus, picking a packet to drop is the same as picking
         a source to throttle.  Without going into any particular
         algorithm, this simple relation suggests that some specific
         dropping controls should be implemented in routers to improve
         congestion control.

         In the context of real-time services, dropping more directly
         relates to achieving the desired quality of service.  If a
         queue builds up, dropping one packet reduces the delay of all
         the packets behind it in the queue.  The loss of one can
         contribute to the success of many.  The problem for the
         implementor is to determine when the service objective (the
         delay bound) is in danger of being violated.  One cannot look
         at queue length as an indication of how long packets have sat
         in a queue.  If there is a priority scheme in place, packets of
         lower priority can be pre-empted indefinitely, so even a short
         queue may have very old packets in it.  While actual time
         stamps could be used to measure holding time, the complexity
         may be unacceptable.

         Some simple dropping schemes, such as combining all the buffers
         in a single global pool, and dropping the arriving packet if
         the pool is full, can defeat the service objective of a WFQ
         scheduling scheme.  Thus, dropping and scheduling must be
         coordinated.

      4.1.3 Packet Classification

         The above discussion of scheduling and dropping presumed that
         the packet had been classified into some flow or sequence of
         packets that should be treated in a specified way.  A
         preliminary to this sort of processing is the classification
         itself.  Today a router looks at the destination address and
         selects a route.  The destination address is not sufficient to
         select the class of service a packet must receive; more
         information is needed.

         One approach would be to abandon the IP datagram model for a
         virtual circuit model, in which a circuit is set up with
         specific service attributes, and the packet carries a circuit
         identifier.  This is the approach of ATM as well as protocols
         such as ST-II [ST2-90].  Another model, less hostile to IP, is
         to allow the classifier to look at more fields in the packet,
         such as the source address, the protocol number and the port
         fields.  Thus, video streams might be recognized by a
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         particular well-known port field in the UDP header, or a
         particular flow might be recognized by looking at both the
         source and destination port numbers.  It would be possible to
         look even deeper into the packets, for example testing a field
         in the application layer to select a subset of a
         hierarchically-encoded video stream.

         The classifier implementation issues are complexity and
         processing overhead.  Current experience suggests that careful
         implementation of efficient algorithms can lead to efficient
         classification of IP packets.  This result is very important,
         since it allows us to add QoS support to existing applications,
         such as Telnet, which are based on existing IP headers.

         One approach to reducing the overhead of classification would
         be to provide a "flow-id" field in the Internet-layer packet
         header.  This flow-id would be a handle that could be cached
         and used to short-cut classification of the packet.  There are
         a number of variations of this concept, and engineering is
         required to choose the best design.

      4.1.4 Admission Control

         As we stated in the introduction, real-time service depends on
         setting up state in the router and making commitments to
         certain classes of packets.  In order to insure that these
         commitments can be met, it is necessary that resources be
         explicitly requested, so that the request can be refused if the
         resources are not available.  The decision about resource
         availability is called admission control.

         Admission control requires that the router understand the
         demands that are currently being made on its assets.  The
         approach traditionally proposed is to remember the service
         parameters of past requests, and make a computation based on
         the worst-case bounds on each service.  A recent proposal,
         which is likely to provide better link utilization, is to
         program the router to measure the actual usage by existing
         packet flows, and to use this measured information as a basis
         of admitting new flows [JCSZ92]. This approach is subject to
         higher risk of overload, but may prove much more effective in
         using bandwidth.

         Note that while the need for admission control is part of the
         global service model, the details of the algorithm run in each
         router is a local matter.  Thus, vendors can compete by
         developing and marketing better admission control algorithms,
         which lead to higher link loadings with fewer service
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         overloads.

   4.2 Applying the Mechanisms

      The various tools described above can be combined to support the
      services which were discussed in section 3.

      o    Guaranteed delay bounds

           A theoretical result by Parekh [Parekh92] shows that if the
           router implements a WFQ scheduling discipline, and if the
           nature of the traffic source can be characterized (e.g. if it
           fits within some bound such as a token bucket) then there
           will be an absolute upper bound on the network delay of the
           traffic in question.  This simple and very powerful result
           applies not just to one switch, but to general networks of
           routers.  The result is a constructive one; that is, Parekh
           displays a source behavior which leads to the bound, and then
           shows that this behavior is the worst possible.  This means
           that the bound he computes is the best there can be, under
           these assumptions.

      o    Link sharing

           The same WFQ scheme can provide controlled link sharing.  The
           service objective here is not to bound delay, but to limit
           overload shares on a link, while allowing any mix of traffic
           to proceed if there is spare capacity.  This use of WFQ is
           available in commercial routers today, and is used to
           segregate traffic into classes based on such things as
           protocol type or application.  For example, one can allocate
           separate shares to TCP, IPX and SNA, and one can assure that
           network control traffic gets a guaranteed share of the link.

      o    Predictive real-time service

           This service is actually more subtle than guaranteed service.
           Its objective is to give a delay bound which is, on the one
           hand, as low as possible, and on the other hand, stable
           enough that the receiver can estimate it.  The WFQ mechanism
           leads to a guaranteed bound, but not necessarily a low bound.
           In fact, mixing traffic into one queue, rather than
           separating it as in WFQ, leads to lower bounds, so long as
           the mixed traffic is generally similar (e.g., mixing traffic
           from multiple video coders makes sense, mixing video and FTP
           does not).
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           This suggests that we need a two-tier mechanism, in which the
           first tier separates traffic which has different service
           objectives, and the second tier schedules traffic within each
           first tier class in order to meet its service objective.

   4.3 An example: The CSZ scheme

      As a proof of concept, a code package has been implemented which
      realizes the services discussed above.  It actually uses a number
      of the basic tools, combined in a way specific to the service
      needs.  We describe in general terms how it works, to suggest how
      services can be realized.  We stress that there are other ways of
      building a router to meet the same service needs, and there are in
      fact other implementations being used today.

      At the top level, the CSZ code uses WFQ as an isolation mechanism
      to separate guaranteed flows from each other, as well as from the
      rest of the traffic.  Guaranteed service gets the highest priority
      when and only when it needs the access to meets its deadline.  WFQ
      provides a separate guarantee for each and every guaranteed flow.

      Predictive service and best effort service are separated by
      priority.  Within the predictive service class, a further priority
      is used to provide sub-classes with different delay bounds.
      Inside each predictive sub-class, simple FIFO queueing is used to
      mix the traffic, which seems to produce good overall delay
      behavior.  This works because the top-tier algorithm has separated
      out the best effort traffic such as FTP.

      Within the best-effort class, WFQ is used to provide link sharing.
      Since there is a possible requirement for nested shares, this WFQ
      code can be used recursively.  There are thus two different uses
      of WFQ in this code, one to segregate the guaranteed classes, and
      one to segregate the link shares.  They are similar, but differ in
      detail.

      Within each link share of the best effort class, priority is used
      to permit more time-sensitive elastic traffic to precede other
      elastic traffic, e.g., to allow interactive traffic to precede
      asynchronous bulk transfers.

      The CSZ code thus uses both WFQ and priority in an alternating
      manner to build a mechanism to support a range of rather
      sophisticated service offerings.  This discussion is very brief,
      and does not touch on a number of significant issues, such as how
      the CSZ code fits real time traffic into the link sharing
      objectives.  But the basic building blocks are very simple, and
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      very powerful.  In particular, while priority has been proposed as
      a key to real-time services, WFQ may be the more general and
      powerful of the two schemes.  It, rather than priority, supports
      guaranteed service and link sharing.

5. Reservation Setup Protocol

   There are a number of requirements to be met by the design of a
   reservation setuop protocol.  It should be fundamentally designed for
   a multicast environment, and it must accommodate heterogeneous
   service needs.  It must give flexible control over the manner in
   which reservations can be shared along branches of the multicast
   delivery trees.  It should be designed around the elementary action
   of adding one sender and/or receiver to an existing set, or deleting
   one.  It must be robust and scale well to large multicast groups.
   Finally, it must provide for advance reservation of resources, and
   for the preemption that this implies.  The reservation setup protocol
   RSVP has been designed to meet these requirements [RSVP93a, RSVP93b].
   This section gives an overview of the design of RSVP.

   5.1 RSVP Overview

      Figure  shows multi-source, multi-destination data delivery for a
      particular shared, distributed application.  The arrows indicate
      data flow from senders S1 and S2 to receivers R1, R2, and R3, and
      the cloud represents the distribution mesh created by the
      multicast routing protocol.  Multicasting distribution replicates
      each data packet from a sender Si, for delivery to every receiver
      Rj.  We treat uncast delivery from S1 to R1 as a special case, and
      we call this multicast distribution mesh a session.  A session is
      defined by the common IP (multicast) destination address of the
      receiver(s).

                 Senders                              Receivers
                             _____________________
                            (                     ) ===> R1
                    S1 ===> (    Multicast        )
                            (                     ) ===> R2
                            (    distribution     )
                    S2 ===> (                     )
                            (                     ) ===> R3
                            (_____________________)

                   Figure 2: Multicast Distribution Session
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      5.1.1 Flowspecs and Filter Specs

         In general, an RSVP reservation request specifies the amount of
         resources to be reserved for all, or some subset of, the
         packets in a particular session.  The resource quantity is
         specified by a flowspec, while the packet subset to receive
         those resources is specified by a filter spec.  Assuming
         admission control succeeds, the flowspec will be used to
         parametrize a resource class in the packet scheduler, and the
         filter spec will be instantiated in the packet classifier to
         map the appropriate packets into this class.  The subset of the
         classifier state that selects a particular class is referred to
         in RSVP documentation as a (packet) "filter".

         The RSVP protocol mechanisms provide a very general facility
         for creating and maintaining distributed reservation state
         across the mesh of multicast delivery paths.  These mechanisms
         treat flowspecs and filter specs as mostly opaque binary data,
         handing them to the local traffic control machinery for
         interpretation.  Of course, the service model presented to an
         application must specify how to encode flowspecs and filter
         specs.

      5.1.2 Reservation Styles

         RSVP offers several different reservation "styles", which
         determine the manner in which the resource requirements of
         multiple receivers are aggregated in the routers.  These styles
         allow the reserved resources to more efficiently meet
         application requirements.  Currently there are three
         reservation styles, "wildcard", "fixed-filter", and " dynamic-
         filter".  A wildcard reservation uses a filter spec that is not
         source-specific, so all packets destined for the associated
         destination (session) may use a common pool of reserved
         resources.  This allows a single resource allocation to be made
         across all distribution paths for the group.  The wildcard
         reservation style is useful in support of an audio conference,
         where at most a small number of sources are active
         simultaneously and may share the resource allocation.

         The other two styles use filter specs that select particular
         sources.  A receiver may desire to receive from a fixed set of
         sources, or instead it may desire the network to switch between
         different source, by changing its filter spec(s) dymamically.
         A fixed-filter style reservation cannot be changed during its
         lifetime without re-invoking admission control.  Dynamic-filter
         reservations do allow a receiver to modify its choice of
         source(s) over time without additional admission control;
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         however, this requires that sufficient resources be allocated
         to handle the worst case when all downstream receivers take
         input from different sources.

      5.1.3 Receiver Initiation

         An important design question is whether senders or receivers
         should have responsibility for initiating reservations.  A
         sender knows the qualities of the traffic stream it can send,
         while a receiver knows what it wants to (or can) receive.
         Perhaps the most obvious choice is to let the sender initiate
         the reservation.  However, this scales poorly for large,
         dynamic multicast delivery trees and for heterogeneous
         receivers.

         Both of these scaling problems are solved by making the
         receiver responsible for initiating a reservation.  Receiver
         initiation  handles heterogeneous receivers easily; each
         receiver simply asks for a reservation appropriate to itself,
         and any differences among reservations from different receivers
         are resolved ("merged") within the network by RSVP.  Receiver
         initiation is also consisent with IP multicast, in which a
         multicast group is created implicitly by receivers joining it.

         Although receiver-initiated reservation is the natural choice
         for multicast sessions, the justification for receiver
         initiateion may appear weaker for unicast sessions, where the
         sender may be the logical session initiator.  However, we
         expect that every realtime application will have its higher-
         level signalling and control protocol, and this protocol can be
         used to signal the receiver to initiate a reservation (and
         perhaps indicate the flowspec to be used).  For simplicity and
         economy, a setup protocol should support only one direction of
         initiation, and, and receiver initiation appears to us to be
         the clear winner.

         RSVP uses receiver-initiation of rservations [RSVP93b].  A
         receiver is assumed to learn the senders’ offered flowspecs by
         a higher-level mechanism ("out of band"), it then generates its
         own desired flowspec and propagates it towards the senders,
         making reservations in each router along the way.

      5.1.4 Soft State

         There are two different possible styles for reservation setup
         protocols, the "hard state" (HS) approach (also called
         "connection-oriented"), and the "soft state" (SS) approach
         (also called "connectionless").  In both approaches, multicast
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         distribution is performed using flow-specific state in each
         router along the path.  Under the HS approach, this state is
         created and deleted in a fully deterministic manner by
         cooperation among the routers.  Once a host requests a session,
         the "network" takes responsibility for creating and later
         destroying the necessary state.  ST-II is an example of the HS
         approach [ST2-90].  Since management of HS session state is
         completely deterministic, the HS setup protocol must be
         reliable, with acknowledgments and retransmissions.  In order
         to achieve deterministic cleanup of state after a failure,
         there must be some mechanism to detect failures, i.e., an
         "up/down" protocol.  The router upstream (towards the source)
         from a failure takes responsibility for rebuilding the
         necessary state on the router(s) along an alternate route.

         RSVP takes the SS approach, which regards the reservation state
         as cached information that is installed and periodically
         refreshed by the end hosts.  Unused state is timed out by the
         routers.  If the route changes, the refresh messages
         automatically install the necessary state along the new route.
         The SS approach was chosen to obtain the simplicity and
         robustness that have been demonstrated by connectionless
         protocols such as IP [Clark88].

   5.2 Routing and Reservations

      There is a fundamental interaction between resource reservation
      set up and routing, since reservation requires the installation of
      flow state along the route of data packets.  If and when a route
      changes, there must be some mechanism to set up a reservation
      along the new route.

      Some have suggested that reservation setup necessarily requires
      route set up, i.e., the imposition of a virtual-circuit internet
      layer.  However, our goal is to simply extend the Internet
      architecture, not replace it.  The fundamental connectionless
      internet layer [Clark88] has been highly successful, and we wish
      to retain it as an architectural foundation.  We propose instead
      to modify somewhat the pure datagram forwarding mechanism of the
      present Internet to accomodate "IS".
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      There are four routing issues faced by a reservation setup
      protocol such as RSVP.

      1.   Find a route that supports resource reservation.

           This is simply "type-of-service" routing, a facility that is
           already available in some modern routing protocols.

      2.   Find a route that has sufficient unreserved capacity for a
           new flow.

           Early experiments on the ARPANET showed that it is difficult
           to do load-dependent dynamic routing on a packet-by-packet
           basis without instability problems.  However, instability
           should not be a problem if load-dependent routing is
           performed only at reservation setup time.

           Two different approaches might be taken to finding a route
           with enough capacity.  One could modify the routing
           protocol(s) and interface them to the traffic control
           mechanism, so the route computation can consider the average
           recent load.  Alternatively, the routing protocol could be
           (re-)designed to provide multiple alternative routes, and
           reservation setup could be attempted along each in turn.

      3.   Adapt to a route failure

           When some node or link fails, adaptive routing finds an
           alternate path.  The periodic refresh messages of RSVP will
           automatically request a reservation along the new path.  Of
           course, this reservation may fail because there is
           insufficienct available capacity on the new path.  This is a
           problem of provisioning and network engineering, which cannot
           be solved by the routing or setup protocols.

           There is a problem of timeliness of establishing reservation
           state on the new path.  The end-to-end robustness mechanism
           of refreshes is limited in frequency by overhead, which may
           cause a gap in realtime service when an old route breaks and
           a new one is chosen.  It should be possible to engineer RSVP
           to sypplement the global refresh mechanism with a local
           repair mechanism, using hints about route changes from the
           routing mechanism.

      4.   Adapt to a route change (without failure)

           Route changes may occur even without failure in the affected
           path.  Although RSVP could use the same repair techniques as
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           those described in (3), this case raises a problem with the
           robustness of the QoS guarantees.  If it should happen that
           admission control fails on the new route, the user will see
           service degradation unnecessarily and capriciously, since the
           orginal route is still functional.

           To avoid this problem, a mechanism called "route pinning" has
           been suggested.  This would modify the routing protocol
           implementation and the interface to the classifier, so that
           routes associated with resource reservations would be
           "pinned".  The routing prootocol would not change a pinned
           route if it was still viable.

      It may eventually be possible to fold together the routing and
      reservation setup problems, but we do not yet understand enough to
      do that.  Furthermore, the reservation protocol needs to coexist
      with a number of different routing protocols in use in the
      Internet.  Therefore, RSVP is currently designed to work with any
      current-generation routing protocol without modification.  This is
      a short-term compromise, which may result in an occasional failure
      to create the best, or even any, real-time session, or an
      occasional service degradation due to a route change.  We expect
      that future generations of routing protocols will remove this
      compromise, by including hooks and mechanisms that, in conjunction
      with RSVP, will solve the problems (1) through (4) just listed.
      They will support route pinning, notification of RSVP to trigger
      local repair, and selection of routes with "IS" support and
      adequate capacity.

      The last routing-related issue is provided by mobile hosts.  Our
      conjecture is that mobility is not essentially different from
      other route changes, so that the mechanism suggested in (3) and
      (4) will suffice.  More study and experimentation is needed to
      prove or disprove this conjecture.

6. ACKNOWLEDGMENTS

   Many Internet researchers have contributed to the work described in
   this memo.  We want to especially acknowledge, Steve Casner, Steve
   Deering, Deborah Estrin, Sally Floyd, Shai Herzog, Van Jacobson,
   Sugih Jamin, Craig Partridge, John Wroclawski, and Lixia Zhang.  This
   approach to Internet integrated services was initially discussed and
   organized in the End-to-End Research Group of the Internet Research
   Taskforce, and we are grateful to all members of that group for their
   interesting (and sometimes heated) discussions.

Braden, Clark & Shenker                                        [Page 30]



RFC 1633            Integrated Services Architecture           June 1994

REFERENCES

[CerfKahn74]  Cerf, V., and R. Kahn, "A Protocol for Packet Network
    Intercommunication", IEEE Trans on Comm., Vol. Com-22, No. 5, May
    1974.

[Clark88]  Clark, D., "The Design Philosophy of the DARPA Internet
    Protocols", ACM SIGCOMM ’88, August 1988.

[CSZ92]  Clark, D., Shenker, S., and L. Zhang, "Supporting Real-Time
    Applications in an Integrated Services Packet Network: Architecture
    and Mechanisms", Proc. SIGCOMM ’92, Baltimore, MD, August 1992.

[DKS89]  Demers, A., Keshav, S., and S. Shenker.  "Analysis and
    Simulation of a Fair Queueing Algorithm", Journal of
    Internetworking: Research and Experience, 1, pp. 3-26, 1990.  Also
    in Proc. ACM SIGCOMM ’89, pp 3-12.

[SCZ93a]  Shenker, S., Clark, D., and L. Zhang, "A Scheduling Service
    Model and a Scheduling Architecture for an Integrated Services
    Packet Network", submitted to ACM/IEEE Trans. on Networking.

[SCZ93b]  Shenker, S., Clark, D., and L. Zhang, "A Service Model for the
    Integrated Services Internet", Work in Progress, October 1993.

[Floyd92]  Floyd, S., "Issues in Flexible Resource Management for
    Datagram Networks", Proceedings of the 3rd Workshop on Very High
    Speed Networks, March 1992.

[Jacobson91]  Jacobson, V., "Private Communication", 1991.

[JCSZ92]  Jamin, S., Shenker, S., Zhang, L., and D. Clark, "An Admission
    Control Algorithm for Predictive Real-Time Service", Extended
    abstract, in Proc. Third International Workshop on Network and
    Operating System Support for Digital Audio and Video, San Diego, CA,
    Nov. 1992, pp.  73-91.

[Parekh92]  Parekh, A., "A Generalized Processor Sharing Approach to
    Flow Control in Integrated Services Networks", Technical Report
    LIDS-TR-2089, Laboratory for Information and Decision Systems,
    Massachusetts Institute of Technology, 1992.

[Partridge92]  Partridge, C., "A Proposed Flow Specification", RFC 1363,
    BBN, July 1992.

[RSVP93a]  Zhang, L., Deering, S., Estrin, D., Shenker, S., and D.
    Zappala, "RSVP: A New Resource ReSerVation Protocol", Accepted for
    publication in IEEE Network, 1993.

Braden, Clark & Shenker                                        [Page 31]



RFC 1633            Integrated Services Architecture           June 1994

[RSVP93b]  Zhang, L., Braden, R., Estrin, D., Herzog, S., and S. Jamin,
    "Resource ReSerVation Protocol (RSVP) - Version 1 Functional
    Specification", Work in Progress, 1993.

[ST2-90]  Topolcic, C., "Experimental Internet Stream Protocol: Version
    2 (ST-II)", RFC 1190, BBN, October 1990.

[Tenet90]  Ferrari, D., and D. Verma, "A Scheme for Real-Time Channel
    Establishment in Wide-Area Networks", IEEE JSAC, Vol. 8, No. 3, pp
    368-379, April 1990.

Security Considerations

   As noted in Section 2.1, the ability to reserve resources will create
   a requirement for authentication, both of users requesting resource
   guarantees and of packets that claim to have the right to use those
   guarantees.  These authentication issues are not otherwise addressed
   in this memo, but are for further study.
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