
Network Working Group A. Nicholson
Request for Comments: 1306 J. Young
 Cray Research, Inc.
 March 1992

 Experiences Supporting By-Request Circuit-Switched T3 Networks

Status of this Memo

 This RFC provides information for the Internet community. It does
 not specify an Internet standard. Distribution of this memo is
 unlimited.

Abstract

 This memo describes the experiences of a project team at Cray
 Research, Inc., in implementing support for circuit-switched T3
 services. While the issues discussed may not be directly relevant to
 the research problems of the Internet, they may be interesting to a
 number of researchers and implementers.

 Developers at Cray Research, Inc. were presented with an opportunity
 to use a circuit-switched T3 network for wide area networking. They
 devised an architectural model for using this new resource. This
 involves activating the circuit-switched connection when an
 application program engages in a bulk data transfer, and releasing
 the connection when the transfer is complete.

 Three software implementations for this feature have been tested, and
 the results documented here. A variety of issues are involved, and
 further research is necessary. Network users are beginning to
 recognize the value of this service, and are planning to make use of
 by-request circuit-switched networks. A standard method of access
 will be needed to ensure interoperability among vendors of circuit-
 switched network support products.

Acknowledgements

 The authors thank the T3 project team and other members of the
 Networking Group at Cray Research, Inc., for their efforts: Wayne
 Roiger, Gary Klesk, Joe Golio, John Renwick, Dave Borman and Craig
 Alesso.

Nicholson & Young [Page 1]

RFC 1306 Experiences with Circuit-Switched T3 March 1992

Overview

 Users of wide-area networks often must make a compromise between low
 cost and high speed when accessing long haul connections. The high
 money cost of dedicated high speed connections makes them
 uneconomical for scientists and engineers with limited budgets. For
 many traditional applications this has not been a problem. Datasets
 can be maintained on the remote computer and results were presented
 in a text-only form where a low-speed connection would suffice.
 However, for visualization and other data transfer intensive
 applications, this limitation can severely impact the usability of
 high performance computing tools which are available only through
 long-haul network connections.

 Supercomputers are one such high performance tool. Many users who
 can benefit from access to supercomputers are limited by slow network
 connections to a centrally located supercomputer. A solution to this
 problem is to use a circuit-switched network to provide high speed
 network connectivity at a reduced cost by allocating the network only
 when it is needed.

 Consider how a researcher using a visualization application might
 efficiently use a dedicated low speed link and a circuit switched
 high speed link. The researcher logs in to the remote supercomputer
 over the low speed link. After running whatever programs are
 necessary to prepare the visualization, the high speed connection is
 activated and used to transfer the graphics data to the researcher’s
 workstation.

 We built and demonstrated this capability in September, 1990, at the
 Telecommunications Association show in San Diego, using this type of
 visualization application. Further, it will be available in a
 forthcoming release of our system software.

Architectural Model

 We developed our support for circuit switched services around a
 simple model of a switched network. At some point in the path
 between two hosts, there is a switched network connection. This
 connection is likely to connect two enterprise networks operated by
 the same organization. Administrative overlap between the two
 networks is useful for accounting and configuration purposes. We
 believe that with further investigation circuit switched network
 support could be extended to multiple switched links in an internet
 environment.

 The switch which makes the network connection operates on a "by-
 request" basis (also called "on-demand"). When it receives a request

Nicholson & Young [Page 2]

RFC 1306 Experiences with Circuit-Switched T3 March 1992

 to make a network connection it will do so (if possible), and breaks
 the connection when requested. The switch will not activate
 automatically if there is an attempt to transfer data over an
 incomplete connection.

 We also made the assumption that the circuit would be switched on a
 connection basis rather than a packet basis. When an application
 begins sending data utilizing the switched connection, it will send
 all the data it has, without stopping, until it is finished. At this
 time it will release the connection. It is assumed that the quantity
 of data will be large enough that the circuit setup time is
 negligible relative to the period of the transfer. Otherwise, it is
 not worth the effort to support the circuit switched network for
 small data transfers.

 This model requires that just before the application begins a large
 bulk transfer of data, a request message is sent to the switch asking
 that the switched network connection be activated. Once the link is
 up, the application begins sending data, and the network routes all
 the data from the application through the switched network. As soon
 as all the data has been sent, a message is sent to the switch to
 turn off the switched link, and the network returns to routing data
 through the slower link.

 The prototype system we built for the TCA show was designed around
 this model of circuit switched services. We connected a FDDI
 backbone at Cray Research in Eagan, Minnesota to the TCA show’s FDDI
 network through 2 NSC 703 FDDI/T1/T3 routers. MCI provided a
 dedicated T1 line and a switched T3 line, using a DSC DS3 T3 switch
 located in Dallas, Texas. These networks provided connectivity
 between a Cray Research computer in Eagan to a Sun workstation on the
 show floor in San Diego.

Alternative Solution Strategies

 The first aspect of using the switched services involved the circuit
 switch. The DS3 switch available to us was accessed via a dial up
 modem, and it communicated using a subset of the CCITT Q.295
 protocol. Activating the switch required a 4 message exchange and
 deactivation required a 3 message exchange. We felt the protocol was
 awkward and might be different for other switch hardware.
 Furthermore, we believed that the dial up aspect of communicating
 with the switch suffered from the same drawbacks. A good solution
 would require a cleaner method of controlling the switch from the
 source host requesting the switched line.

 The next aspect of using switched services involves the source host
 software which requests and releases the switched network. Ideally,

Nicholson & Young [Page 3]

RFC 1306 Experiences with Circuit-Switched T3 March 1992

 the switched network is activated just before data transfer takes
 place and it is released as soon as all data has been sent. We
 considered using special utility programs which a user could execute
 to control the link, special system libraries which application
 programs could call, or building the capability into the kernel. We
 also considered the possibility that these methods could send
 messages to a daemon running on the source host which would then
 communicate with another entity actually controlling the switch.

 The last aspect of using switched services we considered is selection
 of the switch controlled network. This involves both policy issues
 and routing issues. Policy issues include which users running which
 applications will be able to use higher cost switched links. And
 packets must be routed amongst multiple connections offering varying
 levels of service after they leave their source.

Implementations

 We have developed a model for switch control through the internetwork
 which we believe to be reasonable. However, we have experimented
 with three different source host implementations. These different
 implementations are detailed here.

Switch control

 Our simplest design decisions involved the switch itself. We decided
 that the complex protocol and dial up line must be hidden from the
 source host requesting the switched link. We decided that the source
 host would use a simple request/release protocol with messages sent
 through the regular network (as opposed to dial up lines or other
 connections). Some host accessible through the local network would
 run a program translating the simple request and release messages
 into the more complicated switch protocol and also have the modem to
 handle the dial up connection.

 This has a variety of advantages. First, it isolates differences in
 switch hardware. Second, multiple hosts may access the switch
 without requiring multiple modems for the dial up line. And it
 provides a central point of control for switch access. We did not
 consider any alternatives to this model of switch control.

 Our initial implementation used a simple translator daemon running on
 a Sun workstation. Listening on a raw IP port, this program would
 wait for switch control messages. Upon receipt of such a message, it
 would dial up the switch and attempt to handle the request. It would
 then send back a success or failure response. This host, in
 conjunction with the translator daemon software, is referred to as
 the switch controller. The switch controller we used was local to

Nicholson & Young [Page 4]

RFC 1306 Experiences with Circuit-Switched T3 March 1992

 our enterprise network; however, it could reside anywhere in the
 Internet.

 Later we designed a simple protocol for switch control, which was
 implemented in the translator daemon. This protocol is documented in
 RFC 1307, "Dynamically Switched Link Control Protocol".

Source Control of the Switched Link

 This problem involves a decision regarding what entity on the source
 host will issue the switch request and release messages to the switch
 controller, and when those messages will be issued. Because we do
 not have very much field experience with this service, we do not feel
 that it is appropriate to recommend one method over the others. They
 all have advantages and disadvantages.

 What we did do is make 3 different implementations of the request
 software and can report our experiences with each. These are one set
 of special utility programs which communicate with the switch
 controller, and 2 kernel implementations. We did not experiment with
 special libraries, nor did we implement a daemon for switch control
 messages on the source host.

Switch control user programs

 This implementation of source host control of the switch is the
 simplest. Two programs were written which would communicate requests
 to the switch controller; one for activating the connection, and
 another to deactivate the connection. The applications using this
 feature were then put into shell scripts with the switch control
 programs for simple execution.

 This approach has the significant advantage of not requiring any
 kernel modifications to any machine. Furthermore, application
 programs do not need to be modified to access this feature. And
 access to the circuit-switched links can be controlled using the
 access permissions for the switch-control programs.

 However, there are disadvantages as well. First, there is
 significant potential for the switch to be active (and billing the
 user) for the dead time while the application program is doing tasks
 other than transferring bulk data. The granularity of turning the
 switch on and off is limited to a per-application basis.

 Another disadvantage is that most applications use only the
 destination host’s address for transfer, and this is the only
 information available to the transport and network layers for routing
 data packets. Some other method must be used to distinguish between

Nicholson & Young [Page 5]

RFC 1306 Experiences with Circuit-Switched T3 March 1992

 traffic which should use the circuit-switched connection and lower-
 priority traffic. This problem can be addressed using route aliases,
 described below.

Kernel switch control

 We have made two different implementations of switch control
 facilities within the operating system kernel. Both rely upon the
 routing lookup code in the kernel to send switch connect and tear
 down messages. The difference is in how the time delay between
 request of the switch and a response is handled.

 For starters, routing table entries were expanded to include the
 internet address of the switch controller and state information for
 the switched connection. If there is a switch controller address
 specified, then the connection must be set up before packets may be
 sent on this route. We also added a separate module to handle the
 sending and receiving of the switch control messages.

 When a routing lookup is satisfied, the routing code would check
 whether the routing table entry specified a switch controller. If
 so, then the routine requesting switch setup would be called. This
 would send a message on the Internet to the switch controller to
 setup the connection.

 In our first implementation, the routing lookup call would return
 immediately after sending the switch connection request message. It
 would be the responsibility of the transport protocol to deal with
 the time delay while the connection is setup, and to tear down if the
 switched connection could not be made. This has significant
 ramifications. In the case of UDP and IP, packets must be buffered
 for later transmission or face almost certain extermination as they
 will probably start arriving at the switched connection before it is
 ready to carry traffic. Because of this problem, we decided that
 this feature would not be available for UDP or IP traffic.

 We did make this work for TCP. Since TCP is already designed to work
 so that it buffers all data for possible later retransmission, this
 was not a problem. Our first cut was to change TCP to check that the
 route it was using was up if it is a switch controlled route. TCP
 would not send any data until the route was complete, and it would
 close the connection if the switch did not come up.

 This did not work well at first because every time TCP tried to send
 data before the switch came up, the retransmit time would be reset
 and backed off. The rtt estimate, retransmit timeouts and the
 congestion control mechanism were seriously skewed before any data
 was ever sent. The retransmit timer would expire as many as 3 times

Nicholson & Young [Page 6]

RFC 1306 Experiences with Circuit-Switched T3 March 1992

 before data could be transmitted. We solved this problem by adding
 another timer for handling the delay while the route came up, and not
 allowing the delay to affect any of the normal rtt timers.

 Our experiences with this approach were not particularly positive,
 and we decided to try another. We also felt that unreliable datagram
 protocols should be able to use the service without excessive
 reworking. Our alternative still sends the switch control message
 when a routing lookup finds a controlled route. However, we now
 suspend execution of the thread of control until a response comes
 back from the switch controller.

 This proved to be easier to implement in many ways. However, there
 were two major areas requiring changes outside the routing code.
 First, we decided that if the switch refused to activate the
 connection, it was pointless to try again. So we changed the routing
 lookup interface so that it could return an error specifying a
 permanent error condition. The transport layer could then return an
 appropriate error such as a host unreachable condition.

 The other, more complex issue deals with the suspension of the thread
 of execution. Our operating system, UNICOS, is an ATT System V
 derivative, and our networking subsystem is based on the BSD tahoe
 and reno releases. The only way to suspend execution is to sleep.
 This is fine, as long as there is a user context to put to sleep.
 However, it is not a good idea to go to sleep when processing network
 interrupts, as when forwarding a packet.

 We solved this problem by using a global flag regarding whether it
 was ok for the switch control message code to sleep. If it is
 necessary to send a message and sleep, then the flag must be set and
 an error is returned if sleeping is not allowed. User system calls
 which might cause a switch control message to be sent set and clear
 the flag upon entrance and exit. We also made it impossible to
 forward packets on a switch controlled route. We feel that this is
 reasonable since the overhead of switch control should be incurred
 only when an application program has made an explicit request to
 begin transfer of data.

 The one other change we made was to make sure that TCP freed the
 route it is using upon entering TIME_WAIT state. There is no point
 in holding the circuit open for two minutes in case we need to
 retransmit the final ack. Of course, this assumes that an alternate
 path exists for the the peer to retransmit its fin.

 The advantage of building this facility into the kernel is that it
 allows a fine degree of control over when the switch will and will
 not need to be activated. Many applications which open a data

Nicholson & Young [Page 7]

RFC 1306 Experiences with Circuit-Switched T3 March 1992

 connection, transmit their bulk data, and then close the connection
 will not require modifications and will make efficient use of the
 resource. It also opens the possibility that applications written to
 use type-of-service can use the same network connection for low-
 bandwidth interactive traffic, change the type-of-service (thus
 activating the switched connection) for bulk transfers, and then
 release the switch upon returning to interactive traffic.

 Putting this feature into the kernel also allows strong control over
 when and how the switched link can be used, keeping accounting
 information, and limiting multiple use access to the switched link.

 The disadvantage is that significant kernel modifications are
 required, and some implementation details can be very difficult to
 handle.

Switch control libraries

 The switch control programs we used were built on a library of simple
 switch control routines; however, we did not alter any standard
 applications to use this library. We did consider some advantages
 and disadvantages. On the plus side, it is possible to achieve a
 satisfactory degree of switch control without requiring any kernel
 modifications.

 The primary disadvantage of this approach is that all applications
 must be altered and recompiled. This is particularly inconvenient
 when source is not available.

Link Selection

 When an application wishes to send data over a circuit-switched
 connection, it will be necessary to select the switched link over
 other links. This selection process may need to take place many
 times, depending on the local network between the source host and the
 bridge to the circuit switched connection.

 For example, if the kernel routing code is controlling the link, then
 there must be a way to choose a controlled route over another route.
 Further downstream, there must be a way to route packets to the
 switched link rather than other links.

 This issue has the potential for great complexity, and we avoided as
 much of the complexity as possible. Policy routing and local routing
 across multiple connections are fertile areas for work and it is
 outside the scope of this work to address those issues. Instead we
 opted for simple answers to difficult questions.

Nicholson & Young [Page 8]

RFC 1306 Experiences with Circuit-Switched T3 March 1992

 First of all, we added no special policies to link accessibility
 beyond that already found in UNICOS. And we handled local routing
 issues to the NSC FDDI/T1/T3 routers with routing table manipulation
 and IP Type-of-Service.

 We came up with three solutions for selecting a routing table entry.
 The first possibility is to use the type-of-service bits, which
 seemed natural to us. We changed the routing table to include type-
 of-service values associated with routing entries, and the routing
 lookups would select using the type-of-service. UNICOS already
 supports a facility to mark connections with a type-of-service value.
 A controlled route could be marked with high throughput type-of-
 service and an application wishing to transfer bulk data could set
 the socket for high throughput before making the connection. It
 could also be possible to change the type-of-service on an existing
 connection and start using the switched link if one is available.

 Using the type-of-service bits have the advantage that downstream
 routers can also use this information. In our demonstration system,
 the NSC FDDI/T1/T3 routers were configured to transfer packets with
 high throughput type-of-service over the T3 connection and all others
 over the T1 connection.

 Another possibility is to take advantage of the multiple addresses of
 a multi-homed host. Routing tables could be set up so that packets
 for one of the addresses get special treatment by traveling over the
 switched link. The routing table in the source host would have an
 entry for accessing the switch controller when sending to the high
 throughput destination address.

 We also derived a method we call route aliasing. Route aliasing
 involves associating extra addresses to a single host. However,
 rather than the destination being an actual multi-homed host, the
 alias is known only to the source host and is used as an alternative
 lookup key. When an application tries to connect to the alias
 address the routing lookup returns an aliased route. The route alias
 contains the actual address of the host, but because of looking up
 the special address, the switch is activated. The alias could also
 specify a type-of-service value to send in the packets so that
 downstream routers could properly route the packets to the switched
 link. We realize that some may bemoan the waste of the limited
 Internet address space for aliases; however, only the source host is
 aware of the alias, and the primary shortage is with Internet network
 addresses rather than host addresses. In fact, we argue that this is
 a more efficient use of the already sparse allocation of host
 addresses available with each network address.

Nicholson & Young [Page 9]

RFC 1306 Experiences with Circuit-Switched T3 March 1992

Future considerations

 We believe that by-request services will become increasingly
 important to certain classes of users. Many data centers make high
 performance resources available over a wide area, and these will be
 the first users to take advantage of wide-area circuit-switched
 networks. Some users, such as CICNet ([2]), are already interested
 in deploying this capability and telecom vendors are working to
 satisfy this need. However, there are a lot of issues involved in
 providing this functionality. We are working to involve others in
 this process.

References

 [1] Nicholson, et. al., "High Speed Networking at Cray Research",
 Computer Communications Review, January 1991.

 [2] CICNet DS3 Working Group, "High Performance Applications on
 CICNet: Impact on Design and Capacity", public report, CICNet,
 Inc., June 1991.

 [3] Young, J., and A. Nicholson, "Dynamically Switched Link Control
 Protocol", RFC 1307, Cray Research, Inc., March 1992.

Security Considerations

 Security issues are not discussed in this memo.

Authors’ Addresses

 Andy Nicholson
 Cray Research, Inc.
 655F Lone Oak Drive
 Eagan, MN 55123

 Phone: (612) 452-6650
 EMail: droid@cray.com

 Jeff Young
 Cray Research, Inc.
 655F Lone Oak Drive
 Eagan, MN 55123

 Phone: (612) 452-6650
 EMail: jsy@cray.com

Nicholson & Young [Page 10]

