Net wor k Wor ki ng Group D. Bernstein
Request for Comments: 1143 NYU
February 1990

The Q Met hod of | nplenenting TELNET Option Negotiation

Status of This Meno

This is RFC di scusses an inplenentation approach to option
negotiation in the Tel net protocol (RFC 854). It does not propose
any changes to the TELNET protocol. Rather, it discusses the

i mpl enent ati on of the protocol of one feature, only. This is not a
protocol specification. This is an experinmental nethod of

i npl enenting a protocol. This neno is not a recomendation of the
Tel net Working Group of the Internet Engineering Task Force (I ETF).
This RFC is Copyright 1990, Daniel J. Bernstein. However,
distribution of this meno in original formis unlimted.

1. Introduction

This RFC anplifies, supplenents, and extends the RFC 854 [7] option
negotiation rules and guidelines, which are insufficient to prevent
all option negotiation |loops. This RFC al so presents an exanpl e of
correct inplenentation

DI SCUSSI ON

The two itens in this RFC of the nost interest to inplenentors are
1. the exanpl es of option negotiation |oops given below, and 2. the
exanpl e of a TELNET state machine preventing | oops.

1. Inplementors of TELNET should read the exanpl es of option
negoti ati on | oops and beware that preventing such loops is a
nontrivial task

2. Section 7 of this RFC shows by exanple a working mnet hod

of avoiding loops. It prescribes the state information that
you nmust keep about each side of each option; it shows what
to do in each state when you recei ve W LL/WONT/ DO DONT from
the network, and when the user or process requests that an
option be enabled or disabled. An inplenentor who uses the
procedures given in that exanple need not worry about
compliance with this RFC or with a | arge chunk of RFC 854.

In short, all inplementors should be famliar with TELNET | oops, and
sonme i nplementors may wi sh to use the pre-witten exanple here in

Bernstein [Page 1]

RFC 1143 Q Met hod February 1990

witing a new TELNET i npl enentation
NOTE: Readi ng Thi s Docunent

A TELNET inplenentation is not compliant with this RFCif it fails
to satisfy all rules marked MUST. It is conpliant if it satisfies
all rules marked MUST. If it is conpliant, it is unconditionally
compliant if it also satisfies all rules nmarked SHOULD and
conditionally conpliant otherw se. Rules narked MAY are optional

Options are in alnost all cases negotiated separately for each
side of the connection. The option on one side is separate from
the option on the other side. In this docunent, "the" option
referred to by a DONT/WONT or DOWLL is really two options,
conmbi ned only for semantic conveni ence. Each sentence could be
split into two, one with the words before the slash and one with
the words after the slash

An i npl enentor should be able to determ ne whether or not an

i mpl ementation conplies with this RFC without reading any text

mar ked DI SCUSSI ON. An i npl enentor should be able to inplenment
option negotiation machinery conmpliant with both this RFC and RFC
854 using just the information in Section 7.

2. RFC 854 Option Negotiation Requirenments

As specified by RFC 854: A TELNET i npl enentati on MJST obey a refusa
to enable an option; i.e., if it receives a DONT/WONT in response to
a WLL/DO, it MIST NOT enable the option

DI SCUSSI ON

Where RFC 854 inplies that the other side may reject a request to
enabl e an option, it nmeans that you must accept such a rejection

It MIUST therefore renmenber that it is negotiating a WLL/DO, and this
negoti ati on state MJST be separate fromthe enabled state and from
the disabled state. During the negotiation state, any effects of
havi ng the option enabl ed MUST NOT be used.

If it receives WONT/DONT and the option is enabled, it MJST respond
DONT/ WONT repectively and disable the option. 1t MJST NOT initiate a
DO WLL negotiation for an already enabl ed option or a DONT/ WONT
negotiation for a disabled option. It MJST NOT respond to receipt of
such a negotiation. It MJIST respond to receipt of a negotiation that
does propose to change the status quo.

Bernstein [Page 2]

RFC 1143 Q Met hod February 1990

DI SCUSSI ON

Many exi sting inplementations respond to rejection by confirning
the rejection; i.e., if they send WLL and recei ve DONT, they send
WONT. This has been construed as acceptabl e behavi or under a
certain (strained) interpretation of RFC 854. However, to allow
this possibility severely conplicates later rules; there seens to
be no use for the wasted bandwi dth and processing. Note that an

i mpl ementation conpliant with this RFC will sinply ignore the
extra WONT if the other side sends it.

The i nplenentati on MUST NOT autonatically respond to the rejection of
a request by submitting a new request. As a rule of thunb, new
requests should be sent either at the beginning of a connection or in
response to an external stinulus, i.e., input fromthe human user or
fromthe process behind the server.

A TELNET i npl enentati on MUST refuse (DONT/WONT) a request to enable
an option for which it does not conply with the appropriate protocol
speci fication.

DI SCUSSI ON:

This is not stated as strongly in RFC 854. However, any other
action woul d be counterproductive. This rule appears in
Requirements for Internet Hosts [6, Section 3.2.2]; it appears
here for conpl et eness.

3. Rule: Renmenber DONT/WONT requests

A TELNET i npl enent ati on MUST renenber starting a DONT/ WONT
negoti ati on.

DI SCUSSI ON:

It is not clear from RFC 854 whether or not TELNET nust renenber
begi nni ng a DONT/ WONT negotiation. There seemto be no reasons to
renenber starting a DONT/ WONT negotiation: 1. The argunent for
remenbering a DO WLL negotiation (viz., the state of negotiating
for enabling nmeans different things for the data streamthan the
state of having the option enabl ed) does not apply. 2. There is
no choice for the other side in responding to a DONT/WONT; the
option is going to end up disabled. 3. If we sinply disable the
option imredi ately and forget negotiating, we will ignore the
WONT/ DONT response since the option is disabled.

Unfortunately, that conclusion is wong. Consider the foll ow ng
TELNET conversation between two parties, "us" and "hinf. (The

Bernstein [Page 3]

RFC 1143 Q Met hod February 1990

reader of this RFC nay want to sort the steps into chronol ogi cal
order for a different view)

LOOP EXAMPLE 1
Bot h si des know that the option is on.

On his side:
1 He decides to disable. He sends DONT and di sabl es the option.
2 He decides to reenable. He sends DO and renenbers he is
negoti ati ng.
5 He receives WONT and gi ves up on negoti ation.
6 He decides to try once again to reenable. He sends DO and
remenbers he is negotiating.
7 He receives WONT and gives up on negotiation.
For whatever reason, he decides to agree with future requests.
10 He receives WLL and agrees. He responds DO and enabl es the
option.
11 He receives WONT and sighs. He responds DONT and di sabl es the
option.
(repeat 10 and then 11, forever)

On our side:

3 W receive DONT and sigh. W respond WONT and di sable the
option.

4 W receive DO but disagree. W respond WONT.

8 W receive DO and decide to agree. W respond WLL and enabl e
the option.

9 We decide to disable. W send WONT and disable the option.
For whatever reason, we decide to agree with future requests.

12 W receive DO and agree. W send WLL and enabl e the option.

13 W& receive DONT and sigh. W send WONT and di sabl e the option.
(repeat 12 and then 13, forever)

Bot h sides have foll owed RFC 854; but we end in an option

negoti ati on | oop, as DONT DO DO and then DO DONT forever travel

t hrough the network one way, and WONT WONT fol |l owed by WLL WONT
forever travel through the network the other way. The behavior in
steps 1 and 9 is responsible for this loop. Hence this section's
rule. In Section 6 below is discussion of whether separate states
are needed for "negotiate for disable" and "negotiate for enable"
or whether a single "negotiate" state suffices.

4. Rule: Prohibit new requests before conpleting old negotiation
A TELNET i npl enentati on MUST NOT initiate a new W LL/WONT/ DO’ DONT

request about an option that is under negotiation, i.e., for which it
has al ready made such a request and not yet received a response.

Bernstein [Page 4]

RFC 1143 Q Met hod February 1990

DI SCUSSI ON

It is unclear from RFC 854 whether or not a TELNET inpl enentation
may al |l ow new requests about an option that is currently under
negotiation; it certainly seenms limting to prohibit "option
typeahead". Unfortunately, consider the follow ng

LOOP EXAMPLE 2

Suppose an option is disabled, and we decide in quick
succession to enable it, disable it, and reenable it. W send
WLL WONT WLL and at the end renenber that we are negoti ati ng.
The other side agrees with DO DONT DO. W receive the first DO
enabl e the option, and forget we have negotiated. Now DONT DO
are coming through the network and both sides have forgotten
they are negotiating; consequently we | oop

(Al'l possible TELNET | oops eventually degenerate into the same
form where WLL WONT [or WONT WLL, or WLL WONT WLL WONT, etc.]
go through the network while both sides think negotiation is over
the response is DO DONT and we | oop forever. TELNET inplenentors
are encouraged to inplenment any option that can detect such a | oop
and cut it off; e.g., a nmethod of explicitly differentiating
requests from acknow edgnents woul d be sufficient. No such option
exi sts as of February 1990.)

This particular case is of considerable practical inportance: nost
combi nations of existing user-server TELNET inplenmentations do
enter an infinite | oop when asked quickly a fewtinmes to enable
and then disable an option. This has taken on an even greater

i mportance with the advent of LINEMODE [4], because LI NEMODE is
the first option that tends to generate such rapidly changing
requests in the nornmal course of conmunication. It is clear that
a new rule is needed.

One nmight try to prevent the several -alternating-requests problem
by maintaining a nore el aborate state than YES/ NO WANTwhat ever
e.g., a state that records all outstandi ng requests. Dave Bornan
has proposed an apparently working schene [2] that won’t bl ow up
if both sides initiate several requests at once, and that seens to
prevent option negotiation |oops; conplete analysis of his
solution is sonewhat difficult since it nmeans that TELNET can no

| onger be a finite-state automaton. He has inpl enented his
solution in the latest BSD tel net version [5]; as of May 1989, he
does not intend to publish it for others to use [3].

Here the aut hor decided to preserve TELNET's finite-state
property, for robustness and because the result can be easily

Bernstein [Page 5]

RFC 1143 Q Met hod February 1990

proven to work. Hence the above rule.

A nore restrictive solution would be to buffer all data and do
absol utely nothing until the response cones back. There is no
apparent reason for this, though sone existing TELNET

i npl enentati ons do so anyway at the begi nning of a connection
when nost options are negoti at ed.

5. How to reallow the request queue
DI SCUSSI ON

The above rul e prevents queuei ng of nore than one request through
the network. However, it is possible to queue new requests within
the TELNET inpl ementation, so that "option typeahead" is

ef fectively restored.

An obvious possibility is to maintain a |ist of requests that have
been nade but not yet sent, so that when one negotiation finishes,
the next can be started inmmediately. So while negotiating for a
W LL, TELNET could buffer the user’s requests for WONT, then WLL
again, then WONT, then WLL, then WONT, as far as desired.

This requires a dynanic and potentially unmanageabl e buffer
However, the restrictions upon possible requests guarantee that
the list of requests nust sinply alternate between WONT and WLL.
It is wasteful to enable an option and then disable it, just to
enable it again; we mght as well just enable it in the first

pl ace. The few possible exceptions to this rule do not outweigh
the i Mmense sinplification afforded by renenbering only the |ast
few entries on the queue.

To be nore precise, during a WLL negotiation, the only sensible
queues are WONT and WONT WLL, and simlarly during a WONT
negotiation. In the interest of sinplicity, the Q nethod does not
all ow the WONT WLL possibility.

W are now left with a queue consisting of either nothing or the
opposite of the current negotiation. Wen we receive a reply to
the negotiation, if the queue indicates that the option should be
changed, we send the opposite request imediately and enpty the
queue. Note that this does not conflict with the RFC 854 rule
about automatic regeneration of requests, as these new requests
are sinply the del ayed effects of user or process comrands.

An i nmpl enentati on SHOULD support the queue, where support is defined
by the rules foll ow ng

Bernstein [Page 6]

RFC 1143 Q Met hod February 1990

If it does support the queue, and if an option is currently under
negotiation, it MJUST NOT handl e a new request from the user or
process to switch the state of that option by sending a new request
through the network. Instead, it MJST renmenber internally that the
new request was made.

If the user or process nakes a second new request, for sw tching back
again, while the original negotiation is still inconplete, the

i mpl enent ati on SHOULD handl e the request sinply by forgetting the
previous one. The third request SHOULD be treated like the first,
etc. In any case, these further requests MJST NOT generate inmedi ate
requests through the network.

When the option negotiation conpletes, if the inplementation is
remenbering a request internally, and that request is for the
opposite state to the result of the conpleted negotiation, then the

i npl ementati on MUST act as if that request had been nade after the
conpl etion of the negotiation. It SHOULD thus i medi ately generate a
new request through the network.

The inplenentati on MAY provide a nethod by which support for the
gqueue may be turned off and back on. 1In this case, it MJIST default
to having the support turned on. Furthernore, when support is turned
off, if the inplenentation is renenbering a new request for an

out st andi ng negotiation, it SHOULD continue renenbering and then dea
with it at the close of the outstanding negotiation, as if support
were still turned on through that point.

DI SCUSSI ON

It is intended (and it is the author’s belief) that this queue
systemrestores the full functionality of TELNET. Dave Bornan has
provi ded sonme informal analysis of this issue [1]; the nost

i mportant possible problemof note is that certain options which
may require buffering could be slowed by the queue. The author
bel i eves that network del ays caused by buffering are i ndependent
of the inplenentation nethod used, and that the Q Method does not
cause any problens; this is borne out by exanples.

6. Rul e: Separate WANTNO and WANTYES

| mpl enent ati ons SHOULD separate any states of negotiating WLL/DO
fromany states of negotiating WONT/ DONT.

DI SCUSSI ON

It is possible to maintain a working TELNET i nplenentation if the
NO' YES/ WANTNO WANTYES states are sinplified to NO YES/ WANT.

Bernstein [Page 7]

RFC 1143 Q Met hod February 1990

However, in a hostile environnent this is a bad idea, as it neans
that handling a DO WLL response to a WONT/ DONT cannot be done
correctly. 1t does not greatly sinplify code; and the sinplicity
gained is lost in the extra conplexity needed to maintain the
gueue.

7. Exanple of Correct Inplenentation

To ease the task of witing TELNET inpl enentations, the author
presents here a preci se exanple of the response that a conpliant
TELNET i npl ementation could give in each possible situation. Al
TELNET i npl enentations conpliant with this RFC SHOULD foll ow t he
procedures shown here.

EXAMPLE STATE MACHI NE
FOR THE Q METHOD OF | MPLEMENTI NG TELNET OPTI ON NEGOTI ATI ON

There are two sides, we (us) and he (him. W keep four
vari abl es:

us: state of option on our side (NO WANTNO WANTYES/ YES)

usq: a queue bit (EMPTY/ OPPOCSITE) if us is WANTNO or WANTYES
him state of option on his side

hing: a queue bit if himis WANTNO or WANTYES

An option is enabled if and only if its state is YES. Note that
us/usq and hinm himg could be conbined into two six-choice states.

"Error" bel ow neans that producing diagnostic information may be a
good idea, though it isn't required

Upon recei pt of WLL, we choose based upon hi mand hi ng:
If we agree that he should enabl e, hinFYES, send
DO ot herw se, send DONT
YES | gnore
WANTNO EMPTY Error: DONT answered by WLL. hi m=ENO.
OPPCOSI TE Error: DONT answered by WLL. hi mFYES*
hi ng=EMPTY.
WANTYES EMPTY hi meYES.
OPPCSI TE hi m=WANTNO, hi ng=EMPTY, send DONT

* This behavior is debatable; DONT will never be answered by WLL
over a reliable connection between TELNETs conpliant with this
RFC, so this was chosen (1) not to generate further nessages,
because if we know we’'re dealing with a nonconpliant TELNET we
shouldn’t trust it to be sensible; (2) to enpty the queue
sensi bl y.

Bernstein [Page 8]

RFC 1143 Q Met hod February 1990

Upon recei pt of WONT, we choose based upon hi mand hi ng:
NO I gnore.
YES hi m=NO, send DONT.
WANTNO EMPTY hi meNO.
OPPCsSI TE hi m=WANTYES, hi ng=NONE, send DO
VWANTYES EMPTY hi meNO. *
OPPGCSI TE hi m=NO, hi ng=NONE. **

* Here is the only spot a |l ength-tw queue could be useful; after
a WLL negotiation was refused, a queue of WONT WLL woul d nean
to request the option again. This seens of too little utility
and too nmuch potential waste; there is little chance that the
other side will change its mind i nmedi ately.

** Here we don’'t have to generate another request because we' ve
been "refused into" the correct state anyway.

If we decide to ask himto enable:

NO hi m=WANTYES, send DO

YES Error: Al ready enabl ed.

WANTNO EMPTY If we are queuei ng requests, hi ng=0PPCSI TE;
otherwi se, Error: Cannot initiate new request
in the mddle of negotiation.

OPPCSI TE Error: Al ready queued an enabl e request.

WANTYES EMPTY Error: Al ready negotiating for enable.

OPPCSI TE hi ng=EMPTY.

If we decide to ask himto disable:

NO Error: Already disabl ed.

YES hi m=WANTNO, send DONT.

WANTNO EMPTY Error: Al ready negotiating for disable.

OPPCSI TE hi ng=EMPTY.

WANTYES EMPTY If we are queuei ng requests, hi ng=OPPCSI TE;
otherwi se, Error: Cannot initiate new request
in the mddle of negotiation.

OPPCSI TE Error: Al ready queued a di sable request.

We handl e the option on our side by the sane procedures, with DO
W LL, DONT-WONT, hinmus, hing-usq swapped.

8. References
[1] Borman, D., private conmunication, April 1989.
[2] Borman, D., private comunication, My 1989.

[3] Borman, D., private conmunication, My 1989.

Bernstein [Page 9]

RFC 1143 Q Met hod February 1990
[4] Borman, D., Editor, "Telnet Linenpde Option", RFC 1116, Cray
Research, August 1989.
[5] Borman, D., BSD Tel net Source, Novenber 1989.
[6] Braden, R, Editor, "Requirenents for Internet Hosts --
Application and Support"”, RFC 1123, USC/ I nformation Sciences
Institute, Cctober 1989.

[7] Postel, J., and J. Reynolds, "Telnet Protocol Specification", RFC
854, USC/Information Sciences Institute, May 1983.

9. Acknow edgnent s

Thanks to Dave Borman, dab@pus.cray.com for his hel pful coments.
Aut hor’ s Addr ess

Dani el J. Bernstein

5 Brewster Lane

Bel | port, Ny 11713

Phone: 516-286-1339

Emai |l : brnstnd@cf 10. nyu. edu

Bernstein [Page 10]

