Net wor k Wor ki ng Group Sun M crosystens, |nc.
Request For Comments: 1057 June 1988
bsol etes: RFC 1050

RPC. Renote Procedure Call
Prot ocol Specification
Version 2

STATUS OF THI S MEMO

This RFC describes a standard that Sun M crosystens and others are
using, and is one we wish to propose for the Internet’s
consideration. This nmeno is not an Internet standard at this tine.
Distribution of this neno is unlimted.

1. | NTRODUCTI ON

Thi s docunent specifies version two of the nessage protocol used in
Sun’s Renote Procedure Call (RPC) package. The nessage protocol is
specified with the eXternal Data Representation (XDR) |anguage [9].
Thi s docunent assunes that the reader is famliar with XDR It does
not attenpt to justify renote procedure calls systens or describe
their use. The paper by Birrell and Nelson [1] is recommended as an
excel I ent background for the renmpte procedure call concept.

2. TERM NOLOGY

This docunent discusses clients, calls, servers, replies, services,
progranms, procedures, and versions. Each renote procedure call has
two sides: an active client side that sends the call to a server

whi ch sends back a reply. A network service is a collection of one
or nore renote prograns. A renpte program i nplenments one or nore
renote procedures; the procedures, their paraneters, and results are
docunented in the specific progranmis protocol specification (see
Appendi x A for an exanple). A server may support nore than one
version of a renote programin order to be conpatible w th changi ng
pr ot ocol s.

For exanple, a network file service may be conposed of two prograns.
One program nay deal with high-1evel applications such as file system
access control and locking. The other may deal with |owlevel file

i nput and output and have procedures like "read" and "wite". A
client of the network file service would call the procedures
associated with the two prograns of the service on behalf of the
client.

The terns client and server only apply to a particular transaction; a

Sun M crosyst ems [Page 1]

RFC 1057 Renote Procedure Call, Version 2 June 1988

particul ar hardware entity (host) or software entity (process or
program could operate in both roles at different tines. For
exanpl e, a programthat supplies renote execution service could also
be a client of a network file service. On the other hand, it may
simplify software to separate client and server functionality into
separate libraries or prograns.

3. THE RPC MODEL

The Sun RPC protocol is based on the renote procedure call nodel

which is simlar to the | ocal procedure call nodel. 1In the loca
case, the caller places argunents to a procedure in sone well-
specified |l ocation (such as a register window). It then transfers
control to the procedure, and eventually regains control. At that

point, the results of the procedure are extracted fromthe well -
specified |l ocation, and the caller continues execution

The renote procedure call nodel is simlar. One thread of contro
logically winds through two processes: the caller’s process, and a
server’'s process. The caller process first sends a call nessage to
the server process and waits (blocks) for a reply nessage. The cal
nmessage includes the procedure’ s paranmeters, and the reply nmessage
i ncludes the procedure’s results. Once the reply nmessage is
received, the results of the procedure are extracted, and caller’s
execution is resuned.

On the server side, a process is dormant awaiting the arrival of a
call message. Wen one arrives, the server process extracts the
procedure’s parameters, conputes the results, sends a reply message
and then awaits the next call nessage.

In this nodel, only one of the two processes is active at any given
time. However, this nodel is only given as an exanple. The Sun RPC
prot ocol makes no restrictions on the concurrency nodel inplenented,
and others are possible. For exanple, an inplenmentation may choose
to have RPC calls be asynchronous, so that the client may do usefu
work while waiting for the reply fromthe server. Another
possibility is to have the server create a separate task to process
an inconing call, so that the original server can be free to receive
ot her requests.

There are a few inportant ways in which renote procedure calls differ
fromlocal procedure calls:

1. Error handling: failures of the renote server or network nust be
handl ed when using renmote procedure calls.

2. dobal variables and side-effects: since the server does not have

Sun M crosyst ens [Page 2]

RFC 1057 Renote Procedure Call, Version 2 June 1988

access to the client’s address space, hidden argunments cannot be
passed as gl obal variables or returned as side effects.

3. Performance: renote procedures usually operate one or nore orders
of magni tude sl ower than | ocal procedure calls.

4. Authentication: since renote procedure calls can be transported
over insecure networks, authentication may be necessary.

The conclusion is that even though there are tools to automatically
generate client and server libraries for a given service, protocols
nmust still be designed carefully.

4. TRANSPORTS AND SEMANTI CS

The RPC protocol can be inplenented on several different transport
protocols. The RPC protocol does not care how a nessage i s passed
fromone process to another, but only with specification and
interpretation of nmessages. On the other hand, the application may
wi sh to obtain information about (and perhaps control over) the
transport layer through an interface not specified in this docunent.
For exanple, the transport protocol may inpose a restriction on the
maxi mum si ze of RPC nessages, or it may be streamoriented |ike TCP
with no size limt. The client and server nust agree on their
transport protocol choices, through a mechani sm such as the one
descri bed in Appendi x A

It is inmportant to point out that RPC does not try to inplenment any
kind of reliability and that the application may need to be aware of
the type of transport protocol underneath RPC. If it knows it is
running on top of a reliable transport such as TCP [6], then nost of
the work is already done for it. On the other hand, if it is running
on top of an unreliable transport such as UDP [7], it must inplenent
its own tine-out, retransm ssion, and duplicate detection policies as
the RPC | ayer does not provide these services.

Because of transport independence, the RPC protocol does not attach
specific semantics to the renpte procedures or their execution
requi renents. Semantics can be inferred from (but should be

explicitly specified by) the underlying transport protocol. For
exanpl e, consider RPC running on top of an unreliable transport such
as UDP. If an application retransnmts RPC call nessages after tine-
outs, and does not receive a reply, it cannot infer anything about
the nunber of tines the procedure was executed. |If it does receive a
reply, then it can infer that the procedure was executed at | east
once.

A server may wish to renenber previously granted requests froma

Sun M crosyst ens [Page 3]

RFC 1057 Renote Procedure Call, Version 2 June 1988

client and not regrant themin order to insure sone degree of
execut e-at - nost-once semantics. A server can do this by taking
advantage of the transaction ID that is packaged with every RPC
message. The main use of this transaction is by the client RPC | ayer
in matching replies to calls. However, a client application may
choose to reuse its previous transaction ID when retransnitting a
call. The server nmay choose to renenber this ID after executing a
call and not execute calls with the sane ID in order to achieve sone
degree of execute-at-nost-once semantics. The server is not allowed
to exanine this IDin any other way except as a test for equality.

On the other hand, if using a "reliable" transport such as TCP, the
application can infer froma reply nessage that the procedure was
executed exactly once, but if it receives no reply message, it cannot
assune the renote procedure was not executed. Note that even if a
connection-oriented protocol like TCP is used, an application stil
needs time-outs and reconnection to handl e server crashes.

There are other possibilities for transports besides datagram or
connection-oriented protocols. For exanple, a request-reply protocol
such as VMIP [2] is perhaps a natural transport for RPC. The Sun RPC
package currently uses both TCP and UDP transport protocols, wth
experinmentation underway on others such as | SO TP4 and TPO.

5. BI NDI NG AND RENDEZVOUS | NDEPENDENCE

The act of binding a particular client to a particular service and
transport paraneters is NOT part of this RPC protocol specification
This inportant and necessary function is left up to some higher-I|eve
software. (The software nay use RPC itself; see Appendix A)

| mpl enentors could think of the RPC protocol as the junp-subroutine
instruction ("JSR') of a network; the |oader (binder) makes JSR
useful, and the |l oader itself uses JSRto acconplish its task

Li kewi se, the binding software nmakes RPC useful, possibly using RPC
to acconplish this task.

6. AUTHENTI CATI ON

The RPC protocol provides the fields necessary for a client to
identify itself to a service, and vice-versa, in each call and reply
message. Security and access control nechanisns can be built on top
of this nessage authentication. Several different authentication
protocol s can be supported. A field in the RPC header indicates

whi ch protocol is being used. Mre infornmation on specific

aut hentication protocols is in section 9: "Authentication Protocols".

Sun M crosyst ens [Page 4]

RFC 1057 Renote Procedure Call, Version 2 June 1988

7. RPC PROTOCOL REQUI REMENTS
The RPC protocol mnust provide for the foll ow ng:

(1) Unique specification of a procedure to be call ed.

(2) Provisions for matching response nessages to request nessages.

(3) Provisions for authenticating the caller to service and vice-
ver sa.

Besi des these requirenents, features that detect the follow ng are
worth supporting because of protocol roll-over errors, inplenentation
bugs, user error, and network adm nistration:

(1) RPC protocol m smatches.

(2) Renote program protocol version mnisnmatches

(3) Protocol errors (such as m sspecification of a procedure’s
par aneters).

(4) Reasons why renote authentication failed.

(5) Any other reasons why the desired procedure was not call ed.

7.1 RPC Prograns and Procedures

The RPC call nessage has three unsigned integer fields -- renote
program nunber, renote program version nunber, and renote procedure
nunber -- which uniquely identify the procedure to be call ed.

Program nunbers are admni ni stered by some central authority (like
Sun). Once inplenentors have a program nunber, they can inpl enent
their renote prograny the first inplenentation would nost |ikely have
the version nunber 1. Because nost new protocols evolve, a version
field of the call nmessage identifies which version of the protoco

the caller is using. Version nunbers nmake speaking old and new
protocol s through the sane server process possible.

The procedure nunber identifies the procedure to be called. These
nunbers are documented in the specific programnm s protoco
specification. For exanple, a file service's protocol specification
may state that its procedure nunber 5 is "read" and procedure nunber
12 is "wite".

Just as renote program protocols may change over several versions,
the actual RPC nessage protocol could al so change. Therefore, the
call nessage also has in it the RPC version nunber, which is always
equal to two for the version of RPC described here.

The reply nmessage to a request nmessage has enough information to
di stinguish the follow ng error conditions:

(1) The renote inplenentation of RPC does not speak protocol version

Sun M crosyst ens [Page 5]

RFC 1057 Renote Procedure Call, Version 2 June 1988

2. The |l owest and hi ghest supported RPC versi on nunbers are returned.
(2) The renote programis not available on the renote system

(3) The renote program does not support the requested version nunber
The | owest and hi ghest supported renote program version nunbers are
returned.

(4) The requested procedure number does not exist. (This is usually
a client side protocol or programmng error.)

(5) The paraneters to the renpte procedure appear to be garbage from
the server’s point of view. (Again, this is usually caused by a
di sagreenent about the protocol between client and service.)

7.2 Authentication

Provi sions for authentication of caller to service and vice-versa are
provided as a part of the RPC protocol. The call nessage has two
authentication fields, the credentials and verifier. The reply
nmessage has one authentication field, the response verifier. The RPC
protocol specification defines all three fields to be the foll ow ng
opaque type (in the eXternal Data Representation (XDR) |anguage [9]):

enum aut h_flavor {
AUTH_NULL
AUTH_UNI X
AUTH_SHORT
AUTH_DES
/* and nore to be

0
1
2,
3
d

efined */

b

struct opaque_auth {
auth_flavor flavor;
opaque body<400>;

In other words, any "opaque_auth" structure is an "auth_flavor"
enureration foll owed by bytes which are opaque to (uninterpreted by)
the RPC protocol inplenentation.

The interpretation and semantics of the data contained within the
aut hentication fields is specified by individual, independent

aut henti cation protocol specifications. (Section 9 defines the
various authentication protocols.)

If authentication paraneters were rejected, the reply nmessage
contains information stating why they were rejected.

Sun M crosyst ens [Page 6]

RFC 1057 Renote Procedure Call, Version 2 June 1988

7.3 Program Nunber Assi gnnent

Program nunbers are given out in groups of hexadeci mal 20000000
(deci mal 536870912) according to the follow ng chart:

0 - 1fffffff defined by Sun
20000000 - 3fffffff defined by user
40000000 - Sfffffff transi ent
60000000 - 7fffffff reserved
80000000 - Offfffff reserved
a0000000 - bfffffff reserved
c0000000 - dfffffff reserved
e0000000 - ffffffff reserved

The first group is a range of nunmbers administered by Sun

M crosystens and should be identical for all sites. The second range
is for applications peculiar to a particular site. This range is
intended primarily for debuggi ng new prograns. Wen a site devel ops
an application that night be of general interest, that application
shoul d be given an assigned nunber in the first range. The third
group is for applications that generate program nunmbers dynarmically.
The final groups are reserved for future use, and should not be used.

7.4 Oher Uses of the RPC Protoco

The intended use of this protocol is for calling renote procedures.
Nornmal |y, each call nmessage is matched with a reply nessage

However, the protocol itself is a nessage-passing protocol wth which
ot her (non-procedure call) protocols can be inplemented. Sun
currently uses, or perhaps abuses, the RPC nessage protocol for the
bat ching (or pipelining) and broadcast renote procedure calls.

7.4.1 Batching

Batching is useful when a client wishes to send an arbitrarily large
sequence of call nessages to a server. Batching typically uses
reliable byte streamprotocols (like TCP) for its transport. 1In the
case of batching, the client never waits for a reply fromthe server
and the server does not send replies to batch calls. A sequence of
batch calls is usually ternminated by a legitimte renote procedure
call operation in order to flush the pipeline and get positive
acknow edgenent .

7.4.2 Broadcast Renpte Procedure Calls
In broadcast protocols, the client sends a broadcast call to the

network and waits for nunmerous replies. This requires the use of
packet - based protocols (like UDP) as its transport protocol. Servers

Sun M crosyst ens [Page 7]

RFC 1057 Renote Procedure Call, Version 2 June 1988

that support broadcast protocols only respond when the call is
successfully processed, and are silent in the face of errors.
Broadcast calls use the Port Mapper RPC service to achieve their
semantics. See Appendix A for nore information.

8. THE RPC MESSACGE PROTOCOL

This section defines the RPC nessage protocol in the XDR data
description | anguage [9].

enum nmeg_type {
CALL = 0,
REPLY = 1

Areply to a call message can take on two forns: The nessage was
ei ther accepted or rejected.

enumreply stat {
MSG_ACCEPTED
MSG_DENI ED

0:
1

b

G ven that a call nmessage was accepted, the following is the status
of an attenpt to call a renote procedure.

enum accept _stat {
SUCCESS = 0, /* RPC executed successfully */
PROG UNAVAIL =1, /* renote hasn’'t exported program */
PROG M SMATCH = 2, /* renbte can’t support version # */
PROC UNAVAIL = 3, /* programcan't support procedure */
GARBAGE ARGS =4 /* procedure can’t decode parans */

H
Reasons why a call nessage was rejected:
enumreject_stat {

RPC M SWMATCH = 0, /* RPC version nunber != 2 */
AUTH ERROR = 1 /* renpte can’'t authenticate caller */

b

Sun M crosyst ens [Page 8]

RFC 1057 Renote Procedure Call, Version 2 June 1988

Why aut hentication fail ed:

enum aut h_stat {
AUTH_BADCRED
AUTH_REJECTEDCRED
AUTH_BADVERF
AUTH_REJECTEDVERF
AUTH_TOOWEAK

~
*

bad credentials (seal broken) */
/* client nust begin new session */
/* bad verifier (seal broken) */
/* verifier expired or replayed */
/* rejected for security reasons */

IRNTRRTENTINT
GIENYAR N

i
The RPC nessage:

Al'l messages start with a transaction identifier, xid, followed by a
two-arned discrimnated union. The union’s discrinmnant is a
msg_type which switches to one of the two types of the nmessage. The
xid of a REPLY nessage al ways matches that of the initiating CALL
message. NB: The xid field is only used for clients matching reply
messages with call nessages or for servers detecting retransn ssions;
the service side cannot treat this id as any type of sequence nunber.

struct rpc_nsg {
unsi gned int xid;
union switch (nmsg_type ntype) {

case CALL:
cal |l _body cbody;
case REPLY:
reply_body rbody;
} body;

Body of an RPC call:

In version 2 of the RPC protocol specification, rpcvers nmust be equa
to 2. The fields prog, vers, and proc specify the renote program
its version nunber, and the procedure within the renote programto be
called. After these fields are two authentication paraneters: cred
(authentication credentials) and verf (authentication verifier). The
two aut hentication paraneters are foll owed by the paraneters to the
renote procedure, which are specified by the specific program

pr ot ocol

Sun M crosyst ens [Page 9]

RFC 1057

Renote Procedure Call, Version 2 June 1988

struct call _body {

unsi gned int rpcvers; /* must be equal to two (2) */
unsi gned int prog;

unsi gned int vers;

unsi gned int proc;

opaque_aut h cred;

opaque_aut h verf;

/* procedure specific paranmeters start here */

b

Body of a reply to an RPC call:

Reply

Ther e
field
or der
whose
uni on

union reply body switch (reply stat stat) {
case MSG_ACCEPTED:
accepted_reply areply;
case MSG _DEN ED.
rejected reply rreply;
} reply;

to an RPC call that was accepted by the server

could be an error even though the call was accepted. The first
is an authentication verifier that the server generates in

to validate itself to the client. 1t is followed by a union
discrimnant is an enum accept_stat. The SUCCESS arm of the
is protocol specific. The PROG UNAVAIL, PROC UNAVAIL, and

GARBACE_ARGS arns of the union are void. The PROG M SMATCH arm
specifies the | owest and hi ghest version nunbers of the renote
program supported by the server.

Sun M crosyst ens [Page 10]

RFC 1057 Renote Procedure Call, Version 2 June 1988

struct accepted reply {
opaque_aut h verf;
union switch (accept_stat stat) {
case SUCCESS:
opaque resul ts[0];
/*
* procedure-specific results start here
*/
case PROG_M SMATCH:
struct {
unsi gned int |ow
unsi gned int high;
} mismatch_info;
defaul t:
/*
* Void. Cases include PROG UNAVAI L, PROC _UNAVAI L,
* and GARBAGE_ARGS.
*/
voi d;
} reply_data;
s

Reply to an RPC call that was rejected by the server:

The call can be rejected for two reasons: either the server is not
runni ng a conpatible version of the RPC protocol (RPC M SMATCH), or
the server refuses to authenticate the caller (AUTH ERROR). |In case
of an RPC version msmatch, the server returns the | owest and hi ghest
supported RPC version nunbers. |In case of refused authentication,
failure status is returned.

union rejected reply switch (reject_stat stat) {
case RPC_M SNVATCH:
struct {
unsi gned int |ow
unsi gned int high;
} mismatch_info;
case AUTH_ERROR:
auth_stat stat;
s

Sun M crosyst ens [Page 11]

RFC 1057 Renote Procedure Call, Version 2 June 1988

9. AUTHENTI CATI ON PROTOCOLS

As previously stated, authentication paraneters are opaque, but
open-ended to the rest of the RPC protocol. This section defines
some "flavors" of authentication inplenented at (and supported by)
Sun. Oher sites are free to invent new aut hentication types, with
the sane rules of flavor nunber assignnment as there is for program
number assi gnment .

9.1 Null Authentication

Oten calls nust be nmade where the client does not knowits identity
or the server does not care who the client is. |In this case, the
flavor value (the discrimnant of the opaque_auth’s union) of the RPC
nmessage’s credentials, verifier, and reply verifier is "AUTH NULL".
The bytes of the opaque_auth’s body are undefined. It is recommended
that the opaque | ength be zero.

9.2 UNI X Aut hentication

The client may wish to identify itself as it is identified on a
UNI X(tm) system The value of the credential’s discrimnant of an
RPC call nmessage is "AUTH UNI X'. The bytes of the credential’s
opaque body encode the the follow ng structure:

struct auth_unix {
unsi gned int stanp;
string machi nenane<255>;
unsi gned int uid;
unsi gned int gid;
unsi gned int gids<16>;

s

The "stanp" is an arbitrary I D which the caller machi ne may generate.
The "machi nenane” is the nane of the caller’s machine (like
"krypton"). The "uid" is the caller’'s effective user ID. The "gid"
is the caller’'s effective group ID. The "gids" is a counted array of
groups which contain the caller as a nmenber. The verifier
acconpanyi ng the credentials should be of "AUTH NULL" (defined
above). Note these credentials are only unique within a particul ar
domai n of machi ne nanmes, uids, and gids. Inter-donmain namng is
beyond the scope of this docunent.

The val ue of the discrimnant of the reply verifier received in the
reply message fromthe server may be "AUTH NULL" or "AUTH SHORT". In
the case of "AUTH SHORT", the bytes of the reply verifier’s string
encode an opaque structure. This new opaque structure nmay now be
passed to the server instead of the original "AUTH UNI X' flavor

Sun M crosyst ens [Page 12]

RFC 1057 Renote Procedure Call, Version 2 June 1988

credentials. The server nay keep a cache whi ch nmaps shorthand opaque
structures (passed back by way of an "AUTH SHORT" style reply
verifier) to the original credentials of the caller. The caller can
save network bandwi dth and server cpu cycles by using the new
credenti al s.

The server nmay flush the shorthand opaque structure at any tinme. |If
this happens, the renote procedure call nessage will be rejected due
to an authentication error. The reason for the failure will be
"AUTH REJECTEDCRED'. At this point, the client may wish to try the
original "AUTH UNI X' style of credentials.

9. 3 DES Authentication
UNI X aut hentication suffers fromthree major problens:

(1) The naming is too UNI X ori ent ed.
(2) There is no universal nane, uid, and gid space.
(3) There is no verifier, so credentials can easily be faked.

DES aut hentication attenpts to address these problens.
9. 3.1 Nam ng

The first problemis handl ed by addressing the client by a sinple
string of characters instead of by an operating systemspecific
integer. This string of characters is known as the "netnane" or
network nane of the client. The server is not allowed to interpret
the contents of the client’s name in any other way except to identify
the client. Thus, netnanes should be unique for every client in the
I nternet.

It is up to each operating systen s inplenmentati on of DES

aut hentication to generate netnanes for its users that insure this
uni queness when they call upon renote servers. Operating systens

al ready know how to distinguish users local to their systens. It is
usually a sinple matter to extend this nmechanismto the network. For
exanple, a UNI X user at Sun with a user ID of 515 mi ght be assigned
the followi ng netnanme: "unix.515@&un.conf. This netnane contains
three itens that serve to insure it is unique. Going backwards
there is only one nam ng domain called "sun.cont in the Internet.
Wthin this donmain, there is only one UNI X user with user ID 515.
However, there may be another user on another operating system for
exanpl e VM5, within the sanme naning donain that, by coincidence
happens to have the same user ID. To insure that these two users can
be di stingui shed we add the operating system name. So one user is
"uni x. 515@un. con and the other is "vns.515@un. coni.

Sun M crosyst ens [Page 13]

RFC 1057 Renote Procedure Call, Version 2 June 1988

The first field is actually a nam ng nethod rather than an operating
system nane. |t happens that today there is al nost a one-to-one
correspondence between nani ng net hods and operating systens. |If the
worl d could agree on a naming standard, the first field could be the
nane of that standard, instead of an operating system nane.

9.3.2 DES Authentication Verifiers

Unli ke UNI X authentication, DES authentication does have a verifier
so the server can validate the client’s credential (and vice-versa).
The contents of this verifier is primarily an encrypted tinestanp.
The server can decrypt this timestanp, and if it is close to the rea
time, then the client nust have encrypted it correctly. The only way
the client could encrypt it correctly is to know the "conversation
key" of the RPC session. And if the client knows the conversation
key, then it nmust be the real client.

The conversation key is a DES [5] key which the client generates and
passes to the server in its first RPC call. The conversation key is
encrypted using a public key schene in this first transaction. The
particul ar public key scheme used in DES authentication is Diffie-

Hel lman [3] with 192-bit keys. The details of this encryption nethod
are described | ater.

The client and the server need the sanme notion of the current tinme in
order for all of this to work, perhaps by using the Network Tine
Protocol [4]. |If network tine synchronization cannot be guaranteed,
then the client can determ ne the server’s tine before beginning the
conversation using a sinpler time request protocol

The way a server determines if a client tinestanp is valid is
somewhat conplicated. For any other transaction but the first, the
server just checks for two things:

(1) the timestanp is greater than the one previously seen fromthe
sane client.
(2) the tinestanp has not expired.

Atimestanp is expired if the server’s tinme is later than the sum of
the client’s tinmestanmp plus what is known as the client’s "w ndow'.

The "wi ndow' is a nunber the client passes (encrypted) to the server
inits first transaction. You can think of it as alifetine for the

credenti al .

This explains everything but the first transaction. In the first
transaction, the server checks only that the tinestanp has not
expired. |If this was all that was done though, then it would be

quite easy for the client to send randomdata in place of the

Sun M crosyst ens [Page 14]

RFC 1057 Renote Procedure Call, Version 2 June 1988

timestanp with a fairly good chance of succeeding. As an added
check, the client sends an encrypted itemin the first transaction
known as the "wi ndow verifier" which nust be equal to the w ndow
mnus 1, or the server will reject the credential

The client too nust check the verifier returned fromthe server to be
sure it is legitinate. The server sends back to the client the
encrypted timestanp it received fromthe client, minus one second.

If the client gets anything different than this, it will reject it.

9. 3.3 Nicknanes and C ock Synchronization

After the first transaction, the server’s DES authentication
subsystemreturns in its verifier to the client an integer "nicknane"
which the client may use in its further transactions instead of
passing its netname, encrypted DES key and wi ndow every time. The

ni cknanme is nost likely an index into a table on the server which
stores for each client its netnane, decrypted DES key and w ndow.

Though they originally were synchronized, the client’s and server’s
cl ocks can get out of sync again. Wen this happens the client RPC
subsystem nost likely will get back "RPC _AUTHERROR' at which point it
shoul d resynchroni ze.

Aclient may still get the "RPC AUTHERROR' error even though it is
synchroni zed with the server. The reason is that the server’s

ni cknanme table is a limted size, and it may flush entries whenever
it wants. A client should resend its original credential in this
case and the server will give it a new nicknanme. |If a server
crashes, the entire nicknane table gets flushed, and all clients wll
have to resend their original credentials.

9. 3.4 DES Authentication Protocol Specification

There are two kinds of credentials: one in which the client uses its
full network nane, and one in which it uses its "nicknanme" (just an
unsi gned integer) given to it by the server. The client nust use its
fullnane in its first transaction with the server, in which the
server will return to the client its nicknane. The client nay use
its nicknarme in all further transactions with the server. There is no
requi renent to use the nickname, but it is wise to use it for

per f or mance reasons.

enum aut hdes_nameki nd {
ADN_FULLNAME = 0,
ADN_NI CKNAME = 1

H

Sun M crosyst ens [Page 15]

RFC 1057 Renote Procedure Call, Version 2 June 1988

A 64-bit block of encrypted DES data:
typedef opaque des_bl ock[8];
Maxi mum | ength of a network user’s nane:
const MAXNETNAMELEN = 255;

A full nane contains the network nane of the client, an encrypted
conversation key and the wi ndow. The window is actually a lifetine
for the credential. |If the time indicated in the verifier tinestanp
pl us the wi ndow has past, then the server should expire the request
and not grant it. To insure that requests are not replayed, the
server should insist that tinmestanps are greater than the previous
one seen, unless it is the first transaction. |In the first
transaction, the server checks instead that the wi ndow verifier is
one | ess than the w ndow.

struct authdes_full nane {

string name<MAXNETNAMELEN>; /* nane of client */
des_bl ock key; /* PK encrypted conversation key */
opaque w ndow 4] ; /* encrypted wi ndow */

A credential is either a fullname or a ni cknane:

uni on aut hdes_cred swi tch (authdes_nameki nd adc_nameki nd) {
case ADN _FULLNAME

aut hdes_ful | nane adc_ful | nane;
case ADN_NI CKNAME

i nt adc_ni cknane;

i
A timestanp encodes the tinme since nidnight, March 1, 1970.
struct tinestanp {

unsi gned i nt seconds; /* seconds */

unsi gned i nt useconds; /* and m croseconds */

i
Verifier: client variety.
The wi ndow verifier is only used in the first transaction. In

conjunction with a fullname credential, these itens are packed into
the follow ng structure before being encrypted:

Sun M crosyst ens [Page 16]

RFC 1057 Renote Procedure Call, Version 2 June 1988

struct {
adv_ti nest anp; -- one DES bl ock
adc_ful I name. wi ndow,; -- one half DES bl ock
adv_wi nverf; -- one half DES bl ock
}

This structure is encrypted using CBC node encryption with an input
vector of zero. Al other encryptions of tinmestanps use ECB node
encryption.

struct authdes_verf_clnt {
des_bl ock adv_ti nest anp; /* encrypted tinestanp */
opaque adv_wi nverf[4]; /* encrypted wi ndow verifier */

H
Verifier: server variety.

The server returns (encrypted) the sane tinestanp the client gave it
m nus one second. It also tells the client its nickname to be used
in future transactions (unencrypted).

struct authdes_verf_svr {
des_bl ock adv_ti nmeverf; /* encrypted verifier */
i nt adv_ni cknane; /* new nicknane for client */

H
9.3.5 Diffie-Hellman Encryption

In this schene, there are two constants "BASE" and "MODULUS" [3].
The particul ar val ues Sun has chosen for these for the DES
aut henti cation protocol are:

const BASE = 3;
const MODULUS = "d4a0ba0250b6f d2ec626e7ef d637df 76c716e22d0944b88b"

The way this scheme works is best explained by an exanple. Suppose
there are two people "A" and "B" who want to send encrypted nessages
to each other. So, A and B both generate "secret" keys at random

whi ch they do not reveal to anyone. Let these keys be represented as
SK(A) and SK(B). They also publish in a public directory their
"public" keys. These keys are conputed as foll ows:

PK(A)
PK(B)

(BASE ** SK(A)) nod MODULUS
(BASE ** SK(B)) nod MODULUS

The "**" notation is used here to represent exponentiation. Now, both
A and B can arrive at the "comon" key between them represented here
as CK(A, B), without revealing their secret keys.

Sun M crosyst ens [Page 17]

RFC 1057 Renote Procedure Call, Version 2 June 1988

10.

A conput es:
CK(A, B) = (PK(B) ** SK(A)) nmbd MODULUS
whi | e B conput es:
CK(A, B) = (PK(A) ** SK(B)) nod MODULUS
These two can be shown to be equival ent:
(PK(B) ** SK(A)) mpd MODULUS = (PK(A) ** SK(B)) mpd MODULUS

We drop the "nmpbd MODULUS' parts and assune nodulo arithnmetic to
sinplify things:

PK(B) ** SK(A) = PK(A) ** SK(B)

Then, replace PK(B) by what B conputed earlier and |ikew se for PK(A).
((BASE ** SK(B)) ** SK(A) = (BASE ** SK(A)) ** SK(B)

whi ch | eads to:
BASE ** (SK(A) * SK(B)) = BASE ** (SK(A) * SK(B))

This common key CK(A, B) is not used to encrypt the tinmestanps used
in the protocol. Rather, it is used only to encrypt a conversation
key which is then used to encrypt the tinmestanps. The reason for
doing this is to use the conmmon key as little as possible, for fear
that it could be broken. Breaking the conversation key is a far |ess
serious offense, since conversations are relatively short-1lived.

The conversation key is encrypted using 56-bit DES keys, yet the
common key is 192 bits. To reduce the nunber of bits, 56 bits are
selected fromthe common key as follows. The m ddl e-npbst 8-bytes are
sel ected fromthe common key, and then parity is added to the | ower
order bit of each byte, producing a 56-bit key with 8 bits of parity.

RECORD MARKI NG STANDARD

When RPC nessages are passed on top of a byte streamtransport
protocol (like TCP), it is necessary to delint one nessage from
another in order to detect and possibly recover from protocol errors.
This is called record marking (RM. Sun uses this RMTCP/IP
transport for passing RPC nessages on TCP streanms. One RPC nessage
fits into one RMrecord.

A record is conposed of one or nore record fragnents. A record

Sun M crosyst ens [Page 18]

RFC 1057 Renote Procedure Call, Version 2 June 1988

fragment is a four-byte header followed by 0 to (2**31) - 1 bytes of
fragment data. The bytes encode an unsigned binary nunber; as with
XDR integers, the byte order is from highest to | owest. The nunber
encodes two val ues -- a bool ean which indicates whether the fragnent
is the last fragment of the record (bit value 1 inplies the fragnent
is the last fragnent) and a 31-bit unsigned binary value which is the
length in bytes of the fragnent’'s data. The bool ean value is the

hi ghest-order bit of the header; the length is the 31 | oworder bits.
(Note that this record specification is NOT in XDR standard form)

11. THE RPC LANGUAGE

Just as there was a need to describe the XDR data-types in a fornal

| anguage, there is also need to describe the procedures that operate
on these XDR data-types in a formal |anguage as well. The RPC
Language is an extension to the XDR | anguage, with the addition of
"progrant, "procedure”, and "version" declarations. The follow ng
exanple is used to describe the essence of the |anguage.

Sun M crosyst ens [Page 19]

RFC 1057 Renote Procedure Call, Version 2 June 1988

11.1 An Exanpl e Service Described in the RPC Language
Here is an exanple of the specification of a sinple ping program

pr ogram Pl NG_PROG {
/*
* Latest and greatest version
*
/
versi on PI NG VERS Pl NGBACK {
voi d
PI NGPROC_NULL(voi d) = 0;

/*
* Ping the client, return the round-trip tine
* (in mcroseconds). Returns -1 if the operation
* timed out.
*/
i nt
Pl NGPROC _PI NGBACK(void) =1
} =2

/*
* Original version
*/
versi on PING VERS ORI G {
voi d
PI NGPROC_NULL(void) = 0;
Y=L
} =L

const PING VERS = 2; /* latest version */

The first version described is PING VERS Pl NGBACK with two
procedures, PINGPROC NULL and PI NGPROC Pl NGBACK. PI NGPROC NULL takes
no argunents and returns no results, but it is useful for computing
round-trip times fromthe client to the server and back again. By
convention, procedure 0 of any RPC protocol should have the same
semantics, and never require any kind of authentication. The second
procedure is used for the client to have the server do a reverse ping
operation back to the client, and it returns the amount of tine (in

m croseconds) that the operation used. The next version,

PING VERS ORIG, is the original version of the protocol and it does
not contai n Pl NGPROC Pl NGBACK procedure. It is useful for
compatibility with old client progranms, and as this program nmatures
it may be dropped fromthe protocol entirely.

Sun M crosyst ens [Page 20]

RFC 1057 Renote Procedure Call, Version 2 June 1988

11.2 The RPC Language Specification

The RPC | anguage is identical to the XDR | anguage defined in RFC
1014, except for the added definition of a "programdef" described
bel ow

program def:
"progrant identifier "{"
ver si on- def
versi on- def *

"}" "=" constant ",

ver si on-def:
"version" identifier "{"
pr ocedur e- def
procedur e- def *

"}" "=" constant ",

pr ocedur e- def :
type-specifier identifier "(" type-specifier

("," type-specifier)* ")" "=" constant ";
11.3 Syntax Notes

(1) The follow ng keywords are added and cannot be used as
identifiers: "progrant and "version";

(2) A version name cannot occur nore than once within the scope of a
program definition. Nor can a version nunber occur nore than once
within the scope of a programdefinition

(3) A procedure nane cannot occur nore than once within the scope of
a version definition. Nor can a procedure nunber occur nore than once
within the scope of version definition

(4) Programidentifiers are in the sane nane space as constant and
type identifiers.

(5) Only unsigned constants can be assigned to prograns, versions and
pr ocedures.

Sun M crosyst ens [Page 21]

RFC 1057 Renote Procedure Call, Version 2 June 1988

APPENDI X A: PORT MAPPER PROGRAM PROTOCOL

The port mapper program maps RPC program and version nunbers to
transport-specific port numbers. This program makes dynani ¢ bi ndi ng
of renote prograns possible.

This is desirable because the range of reserved port nunbers is very
smal | and the nunber of potential renote programs is very large. By
running only the port mapper on a reserved port, the port nunbers of
other renote prograns can be ascertai ned by querying the port mapper.

The port mapper also aids in broadcast RPC. A given RPC program will
usual Iy have different port nunber bindings on different nachines, so
there is no way to directly broadcast to all of these programs. The
port mapper, however, does have a fixed port nunber. So, to
broadcast to a given program the client actually sends its message
to the port mapper |ocated at the broadcast address. Each port napper
that picks up the broadcast then calls the | ocal service specified by
the client. When the port napper gets the reply fromthe |oca
service, it sends the reply on back to the client.

A.1 Port Mapper Protocol Specification (in RPC Language)
const PMAP_PORT = 111; /* portmapper port nunber */
A mappi ng of (program version, protocol) to port nunber:
struct mappi ng {
unsi gned int prog;
unsi gned int vers;

unsi gned int prot;
unsi gned int port;

i

Supported values for the "prot"” field:
const | PPROTO TCP = 6; /* protocol nunber for TCP/IP */
const | PPROTO UDP = 17; /* protocol nunber for UDP/IP */

A list of mappings:
struct *pmaplist {

nappi ng map;
prmapl i st next;

Sun M crosyst ens [Page 22]

RFC 1057 Renote Procedure Call

Argunments to callit:

struct call_args {
unsi gned int prog;
unsi gned int vers;
unsi gned int proc;
opaque args<>;

s
Results of callit

struct call _result {
unsi gned int port;
opaque res<>;

Port mapper procedures:

pr ogram PVAP_PROG {
versi on PMAP_VERS {
voi d
PMAPPROC _NULL(voi d)

bool
PMAPPROC _SET(mappi ng)

bool
PMAPPROC_UNSET(mappi ng)

unsi gned i nt
PMAPPROC GETPORT(mappi ng)

prmapl i st
PMAPPROC_DUMP(voi d)

call _result
PMAPPROC CALLI T(cal | _args)
} =2
} = 100000;

A.2 Port Mapper Operation

Version 2

June 1988

The portnmapper programcurrently supports two protocols (UDP and
TCP). The portmapper is contacted by talking to it on assigned port
number 111 (SUNRPC) on either of these protocols.

Sun M crosyst ens

[Page 23]

RFC 1057 Renote Procedure Call, Version 2 June 1988

The following is a description of each of the portnmapper procedures:
PMAPPROC NULL:

This procedure does no work. By convention, procedure zero of any
protocol takes no paraneters and returns no results.

PMAPPROC_SET:

When a program first beconmes avail able on a machine, it registers
itself with the port mapper program on the same machine. The program
passes its program nunber "prog", version nunber "vers", transport
protocol nunber "prot", and the port "port" on which it awaits
service request. The procedure returns a bool ean reply whose val ue
is "TRUE" if the procedure successfully established the mappi ng and
"FALSE" otherw se. The procedure refuses to establish a mapping if
one already exists for the tuple "(prog, vers, prot)".

PMAPPROC_UNSET:

When a program becones unavailable, it should unregister itself wth
the port mapper programon the same machine. The paraneters and
results have neanings identical to those of "PMAPPROC SET". The
protocol and port nunber fields of the argunent are ignored.

PMAPPROC_GETPORT:

G ven a program nunber "prog", version nunber "vers", and transport
prot ocol nunber "prot", this procedure returns the port nunber on
which the programis awaiting call requests. A port value of zeros
means the program has not been registered. The "port" field of the
argument is ignored.

PMAPPROC_DUMP

This procedure enunerates all entries in the port mapper’s database.
The procedure takes no paraneters and returns a |list of program
version, protocol, and port val ues.

PMAPPROC_CALLI T:

This procedure allows a client to call another renote procedure on
the sane nachi ne w thout knowi ng the renote procedure’s port nunber.
It is intended for supporting broadcasts to arbitrary renote prograns
via the well-known port nmapper’s port. The paraneters "prog"

"vers", "proc", and the bytes of "args" are the program nunber,
versi on nunber, procedure nunber, and paraneters of the renote
procedure. Note:

Sun M crosyst ens [Page 24]

RFC 1057 Renote Procedure Call, Version 2 June 1988

(1) This procedure only sends a reply if the procedure was
successfully executed and is silent (no reply) otherw se.

(2) The port mapper comunicates with the renote program usi ng UDP
only.

The procedure returns the renote program s port nunber, and the reply
is the reply of the renote procedure.

REFERENCES

[1] Birrell, A D. & Nelson, B. J., "Inplenenting Renote Procedure
Cal I s", XEROX CSL-83-7, COctober 1983.

[2] Cheriton, D., "VMIP: Versatile Message Transaction Protocol",
Prelimnary Version 0.3, Stanford University, January 1987.

[3] Diffie & Hel lman, "New Directions in Cryptography", |EEE
Transactions on Information Theory | T-22, Novenber 1976.

[4] MIls, D., "Network Time Protocol", RFC-958, M A-COM Linkabit,
Sept enber 1985.

[5] National Bureau of Standards, "Data Encryption Standard", Federal
I nformation Processing Standards Publication 46, January 1977.

[6] Postel, J., "Transm ssion Control Protocol - DARPA Internet
Program Prot ocol Specification", RFC-793, Information Sciences
Institute, Septenber 1981.

[7] Postel, J., "User Datagram Protocol", RFC- 768, Information
Sciences Institute, August 1980.

[8] Reynolds, J., and Postel, J., "Assigned Nunbers", RFC 1010,
Information Sciences Institute, May 1987.

[9] Sun Mcrosystens, "XDR External Data Representation Standard",
RFC- 1014, June 1987.

Sun M crosyst ens [Page 25]

