Net wor k Wor ki ng Group D.L. MIIs
Request for Comments: 1004 Uni versity of Del aware
April 1987

A Distributed-Protocol Authentication Schene

Status of this Meno

The purpose of this RFC is to focus discussion on authentication
problens in the Internet and possi bl e nethods of solution. The
proposed solutions this docunent are not intended as standards for
the Internet at this time. Rather, it is hoped that a genera
consensus will enmerge as to the appropriate solution to

aut henti cation problens, |eading eventually to the adoption of
standards. Distribution of this meno is unlinited.

1. Introduction and Overvi ew

Thi s docunent suggests nedi ated access-control and aut hentication
procedures suitable for those cases when an association is to be set
up between multiple users belonging to different trust environnents,
but running distributed protocols like the existing Exterior Gateway
Protocol (EGP) [2], proposed Dissinilar Gateway Protocol (DGP) [3]
and simlar protocols. The proposed prcedures are evol ved fromthose
descri bed by Needham and Shroeder [5], but specialized to the

di stributed, multiple-user nodel typical of these protocols.

The trust nodel and threat environment are identical to that used by
Kent and others [1]. An association is defined as the end-to-end
networ k path between two users, where the users thenselves are
secured, but the path between themis not. The network may drop
duplicate or deliver nessages with errors. In addition, it is

possi ble that a hostile user (host or gateway) night intercept,

nmodi fy and retransnit nmessages. An association is sinilar to the
tradi tional connection, but w thout the usual connection requirenents
for error-free delivery. The users of the association are sonetines
cal | ed associ at es.

The proposed procedures require each association to be assigned a
random sessi on key, which is provided by an authentication server
call ed the Cookie Jar. The procedures are designed to permt only

t hose associ ati ons sanctioned by the Cookie Jar while operating over
arbitrary network topol ogies, including non-secured networks and

br oadcast - nedi a networks, and in the presence of hostile attackers.
However, it is not the intent of these procedures to hide the data

MIls [Page 1]

RFC 1004 April 1987

(except for private keys) transnitted via these networks, but only to
aut henti cate nessages to avoid spoofing and replay attacks.

The procedures are intended for distributed systens where each user i
runs a comon protocol automaton using private state variables for
each of possibly several associations sinultaneously, one for each
user j. An association is initiated by interrogating the Cookie Jar
for a one-time key K(i,j), which is used to encrypt the checksum

whi ch aut henti cat es messages exchanged between the users. The
initiator then communi cates the key to its associate as part of a
connection establishment procedure such as described in [3].

The i nformati on being exchanged in this protocol nodel is largely

i ntended to converge a distributed data base to specified (as far as
practical) contents, and does not ordinarily require a reliable

di stribution of event occurances, other than to speed the convergence
process. Thus, the nodel is intrinsically resistant to nmessage |oss
or duplication. Wiere inportant, sequence nunbers are used to reduce
the inpact of nessage reordering. The nodel assunes that associations
bet ween peers, once having been sancti oned, are naintained
indefinitely. The exception when an association is broken may be due
to a crash, loss of connectivity or adm nistrative action such as
reconfiguration or rekeying. Finally, the rate of information
exchange is specifically designed to be nuch | ess than the noni na
capabilities of the network, in order to keep overheads | ow.

2. Procedures

Each user i is assigned a public address A(i) and private key K(i) by
an out - of -band procedure beyond the scope of this discussion. The
address can take many forms: an autononobus systemidentifier [2], an
Internet address [6] or sinply an arbitrary nanme. However, no matter
what formit takes, every nessage is presuned to carry both the
sender and receiver addresses in its header. Each address and its
access-control list is presuned available in a public directory
accessable to all users, but the private key is known only to the
user and Cookie Jar and is not disclosed in nessages exchanged

bet ween users or between users and the Cookie Jar.

An association between i and j is identified by the bitstring
consisting of the catenation of the addresses A(i) and A(j), together
with a one-tinme key K(i,j), inthe form[A(i),A(j),K(i,j)]. Note that
the reciprocal association [A(j),A(i),K(j,i)] is distinguished only
by which associate calls the Cookie Jar first. It is the intent in
the protocol nodel that all state variables and keys relevant to a
previ ous associ ati on be erased when a new association is initiated
and no caching (as suggested in [5]) is allowed.

MIls [Page 2]

RFC 1004 April 1987

The one-tine key K(i,j) is generated by the Cookie Jar upon receipt
of a request fromuser i to associate with user j. The Cookie Jar has
access to a private table of entries in the form[A(i),K(i)], where
ranges over the set of sanctioned users. The public directory

i ncludes for each A(i) a list L(i) ={j1, j2, ...} of perntted
associates for i, which can be updated only by the Cookie Jar. The
Cooki e Jar first checks that the requested user j is in L(i), then
rolls a random nunmber for K(i,j) and returns this to the requestor
which saves it and passes it along to its associate during the
connection establishment procedure.

In the diagrans that follow all fields not specifically nentioned are
unencrypted. Wiile the natural inplenentation would include the
address fields of the nessage header in the checksum this raises
significant difficulties, since they may be necessary to deternine
the route through the network itself. As will be evident bel ow, even
if a perpetrator could successfully tanper with the address fields in
order to cause nessages to be misdelivered, the result would not be a
usef ul associ ation

The checksumfield is conputed by a algorithmusing all the bits in
the message including the address fields in the nessage header, then
is ordinarily encrypted along with the sequence-nunber field by an
appropriate algorithmusing the specified key, so that the intended
receiver is assured only the intended sender could have generated it.
In the Internet system the natural choice for checksumis the 16-
bit, ones-conplenment algorithm[6], while the natural choice for
encryption is the DES algorithm|[4] (see the discussion follow ng for
further consideration on these points). The detail ed procedures are
as follows:

1. The requestor i rolls a random nmessage ID | and sends it and
the association specifier [A(i),A(j)] as a request to the Cookie
Jar. The nmessage header includes the addresses [A(i),A(C], where
A(C) is the address of the Cookie Jar. The follow ng schematic
illustrates the result:

R R +

| A(i) | A(CO) | nessage header
S S +

| I | checksum | message |1 D
S S +

| A(i) | A(j) | assoc specifier
R R +

2. The Cooki e Jar checks the access list to deternine if the
association [A(i),A(j)] is valid. If so, it rolls a random nunber
K(i,j) and constructs the reply below. It checksuns the nessage,

MIls [Page 3]

RFC 1004 April 1987

MIls

encrypts the j cookie field with K(j), then encrypts it and the
other fields indicated with K(i) and finally sends the reply:

TS TS +

| A(CO) | A(T) | message header

[S [S +

| I | checksum | message | D (encrypt K(i))
R R +

| K(i,j) | i cookie (encrypt K(i))
TS +

| KGi,j) | j cookie (encrypt K(j)K(i))
[S +

3. Upon receipt of the reply the requestor i decrypts the

i ndicated fields, saves the (encrypted) j cookie field and copies
the i cookie field to the j cookie field, so that both cookie
fields are now the original K(i,j) provided by the Cookie Jar
Then it verifies the checksum and matches the nessage IDwith its
list of outstanding requests, retaining K(i,j) for its own use. It
then rolls a random nunber X for the j cookie field (to confuse
Wi retappers) and another |1’ for the (initial) nmessage ID, then
reconputes the checksum Finally, it inserts the saved j cookie
field in the i cookie field, encrypts the nessage ID fields with
K(i,j) and sends the followi ng nessage to its associate:

R R +

| A(i) | A(j) | nmessage header

TS TS +

| I’ | checksum | message I D (encrypt K(i,j))
[S [S +

| K(i,j) | i cookie (encrypt K(j))
R +

| X | j cookie (noise)
TS +

4. Upon receipt of the above nessage the associate j decrypts the
i cookie field, uses it to decrypt the nessage ID fields and
verifies the checksum retaining the I’ and K(i,j) for later use.
Finally, it rolls a randomnunber J' as its own initial nessage
ID, inserts it and the checksumin the confirm nessage, encrypts
the message ID fields with K(i,j) and sends the nessage:

. . +

| A(j) | A(i) | nmessage header

- - +

| J’ | checksum | message I D (encrypt K(i,j))
S S +

[Page 4]

RFC 1004 April 1987

5. Subsequent nessages are all coded in the sanme way. As new data
are generated the nessage IDis increnmented, a new checksum
conputed and the nmessage ID fields encrypted with K(i,j). The
recei ver decrypts the message ID fields with K(i,j) and discards
the message in case of incorrect checksum or sequence nunber

3. Discussion

Since the access lists are considered public read-only, there is no
need to validate Cookie Jar requests. A perpetrator might intercept,
nodi fy and replay portions of Cookie Jar replies or subsequent
messages exchanged between the associ ates. However, presuning the
per petrator does not know the keys involved, tanpered nessages woul d
fail the checksumtest and be di scarded.

The "natural" selection of Internet checksum al gorithm and DES
encryption should be reconsidered. The Internet checksum has severa
wel | - known vul nerabilities, including invariance to word order and
byte swap. In addition, the checksumfield itself is only sixteen
bits wide, so a determ ned perpetrator mnmight be able to discover the
key sinply by exam ning all possible perrmutations of the checksum
field. However, the procedures proposed herein are not intended to
conpensate for weaknesses of the checksumalgorithm since this

vul nerability exists whether authentication is used or not. Also note
that the encrypted fields include the sequence nunber as well as the
checksum I n EGP and the proposed DGP t he sequence nunber is a
sixteen-bit quantity and increnents for each successive nessage,

whi ch makes tanpering even nore difficult.

In the intended application to EGP, DG and sinilar protocols

associ ations nmay have an indefinite lifetinme, although nessages nay
be sent between associates on a relatively infrequent basis.
Therefore, every association should be rekeyed occasionally, which
can be done by either associate sinply by sending a new request to
the Cookie Jar and foll owi ng the above procedure. To protect against
stockpiling private user keys, each user should be rekeyed
occasionally, which is equivalent to changi ng passwords. The
mechani snms for doing this are beyond the scope of this proposal

It is a feature of this schene that the private user keys are not

di scl osed, except to the Cookie Jar. This is why two cookies are
used, one for i, which only it can decrypt, and the other for j,
decrypted first by i and then by j, which only then is valid. An

i nterceptor posing as i and playing back the Cookie Jar reply to j
wi |l be caught, since the nessage will fail the checksumtest. A
perpetrator with access to both the Cookie Jar reply to i and the
subsequent nessage to j will see essentially a random pernutation of

MIls [Page 5]

RFC 1004 April 1987

all fields. In all except the first nmessage to the Cookie Jar, the
checksumfield is encrypted, which nakes it difficult to recover the
original contents of the cookie fields before encryption by
exploiting the properties of the checksumalgorithmitself.

The fact that the addresses in the nessage headers are included in
the checksum protects agai nst playbacks wi th nodified addresses.
However, it may still be possible to destabilize an association by
pl ayi ng back unnodified nmessages from prior associations. There are
several possibilities:

1. Replays of the Cookie Jar nessages 1 and 2 are unlikely to
cause danmmge, since the requestor natches both the addresses and
once-only sequence nunmber with its |ist of pending requests.

2. Replays of nessage 3 may cause user j to falsely assune a new
association. User j will return message 4 encrypted with the
assuned session key, which might be an old one or even a currently
valid one, but with invalid sequence nunber. Either way, user i
will ignore nmessage 4.

3. Replays of nessage 4 or subsequent nessages are unlikely to
cause danmmge, since the sequence check will elimnate them

The second poi nt above represents an issue of legitimte concern
since a deternined attacker may stockpile nmessage 3 interceptions and
replay themat speed. While the attack is unlikely to succeed in

est ablishing a working association, it might produce frequent
timeouts and result in denial of service. In the Needham Shroeder
schene this problemis avoided by requiring an additional challenge

i nvol ving a nessage sent by user j and a reply sent by user i, which
amounts to a three-way handshake.

However, even if a three-way handshake were used, the additiona

prot ocol overhead induced by a deternmi ned attacker may still result
in denial of service; noreover, the protocol nodel is inherently

resi stant to poor network performance, which has the sanme perfornmance
signature as the attacker. The conclusion is that the additiona
expense and overhead of a three-way handshake is unjustified.

4. Application to EGP and DGP

This schenme can be incorporated in the Exterior Gateway Protoco

(EGP) [2] and Dissinmilar Gateway Protocol (DGP) [3] nodel s by adding
the fields above to the Request and Confirm nessages in a
straightforward way. An exanple of how this m ght be done is given in
[3]. In order to retain the correctness of the state nmachine, it is

MIls [Page 6]

RFC 1004 April 1987

convenient to treat the Cookie Jar reply as a Start event, with the
under standi ng that the Cookie Jar request represents an extrinsic
event which evokes that response.

The nei ghbor-acquisition strategy intended in the Dissimlar Gateway
Protocol DGP follows the strategy in EGP. The stability of the EGP
state machine, used with ninor nodifications by DGP, was verified by
state simulation and di scussed in an appendix to [2]. Either

associ ate can send a Request command at any tinme, which causes both
the sender and the receiver to reinitialize all state information and
send a Confirmresponse. In DGP the Request operation involves the
Cooki e Jar transaction (nessages 1 and 2) and then the Request
command itself (message 3). In DGP the keys are reinitialized as well
and each retransm ssion of a Request command is separately

aut henti cat ed.

In DGP the Request conmand (nmessage 3) and all subsequent nessage
exchanges assune the keys provided by the Cookie Jar. Use of any
other keys results in checksum di screpanci es and di scarded nessages.
Thus the sender knows its command has been effected, at |east at the
time the response was sent. If either associate lost its state
variables after that time, it would ignore subsequent nessages and it
(or its associate) would eventually tine out and reinitiate the whol e
procedur e.

If both associates attenpt to authenticate at the sane tine, they nmay
wind up with the authentication sequences crossing in the network.
Not e that the Request nessage is self-authenticating, so that if a
Request command is received by an associate before the Confirm
response to an earlier Request command sent by that associate, the
keys woul d be reset. Thus when the subsequent Confirmresponse does
arrive, it will be disregarded and the Request command resent
following timeout. The race that results can only be broken when, due
to staggered tinmeouts, the sequences do not cross in the network

This is a little nore conplicated than EGP and does inply that nore
attention nust be paid to the tinmeouts.

A reliable dis-association is a slippery concept, as exanple TCP and
its closing sequences. However, the protocol nodel here is nuch |ess
demandi ng. The usual way an EGP association is dissolved is when one
associ ate sends a Cease command to the other, which then sends a
Cease- ack response; however, this is specifically assuned a non-
reliable transaction, with tinmeouts specified to break retry | oops.
In any case, a new Request conmand will erase all history and result
in a new associ ati on as described above.

O her than the above, the only way to reliably dis-associate is by
tinmeout. In this protocol nodel the associates engage in a

MIls [Page 7]

RFC 1004 April 1987

reachability protocol, which requires each to send a nessage to the
other fromtinme to tinme. Each associate individually tinmes out after
a period when no nessages are heard fromthe other.

5. Acknow edgnent s

Dan Nessett and Phil Karn both provi ded val uabl e i deas and comrents
on early drafts of this report. Steve Kent and Dennis Perry both
provi ded val uabl e advice on its review strategy.

6. References

[1] Kent, S.T., "Encryption-Based Protection for Interactive
User/ Conmput er Conmuni cation", Proc. Fifth Data Comuni cations
Synposi um Sept enber 1977.

[2] MIls, D L., "Exterior Gateway Protocol Formal Specification",
DARPA Net wor k Wor ki ng Group Report RFC-904, M A-COM Li nkabit,
April 1984,

[3] MlIls, DL, "Dssinmlar Gateway Protocol Draft Specification",
in preparation, University of Del aware.

[4] National Bureau of Standards, "Data Encryption Standard",
Federal Information Processing Standards Publication 46, January
1977.

[5] Needham R M, and M D. Schroeder, "Using Encryption for
Aut hentication in Large Networks of Conputers", Conmunications
of the ACM Vol. 21, No. 12, pp. 993-999, Decenber 1978.

[6] Postel, J., "Internet Protocol", DARPA Network Wrking G oup
Report RFC-791, USC Information Sciences Institute, Septenber
1981.

MIls [Page 8]

