
fitch.sty: Fitch-style natural deduction macros

Peter Selinger
Dalhousie University

Richard Zach
University of Calgary∗

Version 1.0
December 17, 2023

1 Overview

This document describes how to use the fitch.sty macros for typesetting Fitch-style natural
deduction derivations. To load the macros, simply put \usepackage{fitch} into the preamble
of your LATEX file.

Here is a natural deduction derivation, together with the code that produced it:

1 P ∨Q

2 ¬Q

3 P

4 P R, 3

5 Q

6 ¬Q R, 2

7 ⊥ ¬E, 5, 6

8 P ⊥E, 7

9 P ∨E, 1, 3–4, 5–8

1 $\begin{nd}
2 \hypo {1} {P\vee Q}

3 \hypo {2} {\neg Q}

4 \open

5 \hypo {3} {P}

6 \have {4} {P} \r{3}

7 \close

8 \open

9 \hypo {aa} {Q}

10 \have {6} {\neg Q} \r{2}

11 \have {7} {\bot} \ne{aa,6}

12 \have {8} {P} \be{7}

13 \close

14 \have {9} {P} \oe{1,3-4,aa-8}

15 \end{nd}$

A derivation consists of lines, and each line contains a line label and a formula. Some
lines also carry a justification. Moreover, each line is either a hypothesis or a derived formula.
Usually, derived formulas carry a justification, whereas hypotheses do not; however, the macros
do not enforce this.

Proofs set using fitch.sty will have lines numbered automatically in the output. It is
possible to override the automatic numbering (see Section 3.6). You can refer to line numbers
in the text using \ndref (see Section 3.2). Various dimensions, formatting of justifications and
line references, and the shorthand macros used to produce rule names can be customized (see
Section 4).

Several new commands and customization options have been introduced in v1.0. It is mostlyNew in 1.0

∗The current maintainer of this package is Richard Zach. The package repository is at https://github.com/
OpenLogicProject/fitch/, where you can also report any issues with it.

1

https://richardzach.org
https://github.com/OpenLogicProject/fitch/
https://github.com/OpenLogicProject/fitch/
https://github.com/OpenLogicProject/fitch/issues

backwards compatible with earlier versions, but see section 5. In particular, if you redefined
any internal fitch commands, you will have to change nd* to nd@.

2 Usage

Derivations are typeset inside the nd environment. By default, the standard array environmentnd (env.)

nd (env.) is used to do this, so the nd environment must must be used in math mode, i.e., it should be
surrounded by $...$ or \[...\].

The environment fitchproof typesets the proof on its own in text, not math mode. ProofsNew in 1.0
will be set flush left, with the default \partopsep spacing surrounding lists added. You do
not have to insert $ to switch to math mode for fitchproof—by default. However, it only
works if you generate proofs using the tabular environment, e.g., by loading fitch with the
arrayenv=tabular option.

The commands \hypo and \have are used to typeset one line of the derivation; \hypo\hypo

\have is used for hypotheses, and \have for derived formulas. Both commands take a label and a
formula as an argument. Note that the labels used to identify lines in the derivation need not
be actual line numbers; for instance, in the above example, we used the label aa instead of 5.
In the output, lines are automatically numbered consecutively. Labels may not contain any
punctuation characters or spaces.

Subderivations are opened and closed with the commands \open and \close. Finally, the\open

\close following commands are provided for annotating lines with justifications:

\r reiteration
\ii implication introduction
\ie implication elimination
\ai and introduction
\ae and elimination
\oi or introduction
\oe or elimination

\ni not introduction
\ne not elimination
\be bottom elimination
\nne double negation elimination
\Ai forall introduction
\Ae forall elimination
\Ei exists introduction
\Ee exists elimination

These commands and what they produce can be customized, see Section 4.New in 1.0
Each such command takes a reference list as an argument. A reference list is a string made

from labels, commas, and hyphens, for instance 1,3a-3b,4a-4d.

3 Details

3.1 Guards

Some natural deduction derivations with quantifiers use guards, as in the following example:

2

1 ∃x∀y.P (x, y)

2 v u ∀y.P (u, y)

3 P (u, v) ∀E, 2

4 ∃x.P (x, v) ∃I, 3

5 ∃x.P (x, v) ∃E, 1, 2–5

6 ∀y∃x.P (x, y) ∀I, 2–5

1 $
2 \begin{nd}

3 \hypo {1} {\exists x\forall y.P(x,y)}

4 \open[v]

5 \open[u]

6 \hypo {2} {\forall y.P(u,y)}

7 \have {3} {P(u,v)} \

Ae{2}

8 \have {4} {\exists x.P(x,v)} \

Ei{3}

9 \close

10 \have {5} {\exists x.P(x,v)} \

Ee{1,2-5}

11 \close

12 \have {6} {\forall y\exists x.P(x,y)}

\Ai{2-5}

13 \end{nd}

14 $

The guards v and u in line 2 were typeset by giving optional arguments to the \open

commands of the respective subderivations.
For most purposes, the above way of specifying guards is sufficient. However, there is\guard

another method, which allows a more flexible placement of guards: before any line, you can
give the command \guard{u} to add a guard u to the top-level subderivation at that line,
or \guard[n]{u} to add a guard to the nth enclosing subderivation at that line. Thus, the
above example could have also been typeset by inserting the two commands \guard{u} and
\guard[2]{v} just after the second \open statement.

3.2 Label and reference list details

Labels for lines given to the \have and \hypo commands need not be numeric, although the
package will output them as consecutive numbers (see Section 3.6 for how to adjust the num-
bering). Labels, however, may not contain commas, periods, semicolons, hyphens, parentheses,
or spaces. In a reference list, spaces are ignored (even within a label!), whereas commas, peri-
ods, semicolons, parentheses, and hyphens are copied to the output. All other characters are
interpreted as part of a label. Attempting to reference a label which has not been previously
defined by any \hypo or \have command produces a warning message of the form:New in 0.6

! Package fitch Warning: Undefined line reference: lab17.

(In earlier versions, this resulted in an error, not a warning.)
Labels defined in an nd environment can be referenced in the text with the \ndref command.\ndref

This command takes a reference list as an argument, and produces the corresponding output.
However, it is only possible to reference labels after the corresponding derivation has been
typeset. There is currently no convenient way of defining forward references. Also, if a label is
used more than once, \ndref will always refer to the most recent time it was used.

3.3 Generic justifications

Non-standard justifications can be created with the \by command. This command takes two ar-\by

guments: a name and a reference list. For instance, the command \by{De Morgan}{lab3,lab4}

might produce the output “De Morgan, 3, 4”. Note that the justification is typeset in text
mode.

3

In the default justification format, a comma is automatically inserted between the name
and the reference list, unless the reference list is empty. The formatting of justifications can
be changed, see Section 4. If the second argument (the reference list) is empty, only the first
argument (without formatting or punctuation) is printed. If the first argument is empty, onlyNew in 1.0
the reference list is printed.

Since the \by command outputs its first argument without additional formatting when the
second argument is empty, you can use \by{...}{} to produce arbitrary text in the justification.
You can use the \ndref command here.

1 A ⇒ B Premise

2 A Premise

3 B 1, 2 (but how?)

4 A ∧B 2, 3

1 $
2 \begin{nd}

3 \hypo {a} {A \Rightarrow B}

4 \by{Premise}{}

5 \hypo {b} {A} \by{Premise}{}

6 \have {c} {B}

7 \by{\ndref{a,b}

8 (but \emph{how?})}{}

9 \have {d} {A \wedge B} \by{}{b,c}

10 \end{nd}

11 $

3.4 Scope

The commands \hypo, \have, \open, \close, \by, \r, \ii, and so forth are only available in-
side an nd environment. These commands may have a different meaning elsewhere in the same
document. The only commands provided by the fitch.sty package which are visible outside
an nd environment are the command \ndref described in Section 3.2, the commands \ndrules,
\ndjustformat, \ndrefformat, and \nddim, and the dimension \ndindent described in Sec-
tion 4.

3.5 Breaking it across pages

The nd environment is derived from the LATEX array environment, and thus it does not breakndresume (env.)

fitchproof* (env.) across pages automatically. However, if a derivation is too long to fit on a single page, it is
possible to split it manually into physically independent, but logically consecutive subparts.
For this purpose, the ndresume environment is provided to continue a previously interrupted
derivation. The environment fitchproof* works the same way, except typesets the proof justNew in 1.0
like the fitchproof environment (no need for math mode, flush left, spacing before and after).
However, like fitchproof, it requires the arrayenv=tabular option. Here is an example:

4

1 P ∨Q

2 ¬Q

3 P

4 P R, 3

5 Q

6 ¬Q R, 2

Derivations can be interrupted and resumed
at any point.

7 ⊥ ¬E, 5, 6

8 P ⊥E, 7

9 P ∨E, 1, 3–4, 5–8

1 \begin{fitchproof}[arrayenv=tabular]

2 \hypo {1} {P\vee Q}

3 \hypo {2} {\neg Q}

4 \open

5 \hypo {3} {P}

6 \have {4} {P} \r{3}

7 \close

8 \open

9 \hypo {aa} {Q}

10 \have {6} {\neg Q} \r{2}

11 \end{fitchproof}

12 Derivations can be interrupted and

13 resumed at any point.

14 \begin{fitchproof*}[arrayenv=tabular]

15 \have {7} {\bot} \ne{aa,6}

16 \have {8} {P} \be{7}

17 \close

18 \have {9} {P} \oe{1,3-4,aa-8}

19 \end{fitchproof*}

You can also have derivations break across pages automatically. In order to do this, youNew in 1.0
have to load the longtable package, and load fitch with the arrayenv=longtable option.
Since the longtable environment works in text (not math) mode, you should then only use
fitchproof, or the nd environment but not in text mode. Note that the longtable package
does not work in 2-column mode or inside a multicolumn environment. You can always produce
a proof inside a multicolumn environment by passing arrayenv=tabular as an option to the
nd or fitchproof environment.

3.6 Custom line numbers

One often needs to write derivation schemas, rather than derivations. This often requires the
use of symbolic constants such as n, n+1, etc, instead of actual line numbers. The \have and
\hypo commands have an optional first argument which is a symbolic constant. For instance,
\have[n] will cause the current line to be numbered with the symbolic constant n. Subsequent
lines are automatically numbered n+ 1 etc. An initial offset can be given as a second optional
argument, as in \have[n][-1], which will cause the current line to be numbered n − 1, the
following line n, etc. In an explicit offset is given, the symbolic constant can also be absent: for
instance, the command \have[][7] resets the current line number to 7. The following example
illustrates this behavior:

5

https://ctan.org/pkg/longtable

1 P ∨Q

2 P
...

...

n− 1 A ∧B

n Q
...

...

m A ∧B

m+ 1 A ∧B ∨E, 1, 2–(n− 1), n–m
...

...

100 A ∧E, m+ 1

1 $
2 \begin{nd}[justsep=1em]

3 \hypo {1} {P\vee Q}

4 \open

5 \hypo {2} {P}

6 \have [\vdots] {3} {\vdots}

7 \have [n][-1] {4} {A\wedge B}

8 \close

9 \open

10 \hypo {5} {Q}

11 \have [\vdots] {6} {\vdots}

12 \have [m] {7} {A\wedge B}

13 \close

14 \have {8} {A\wedge B}

15 \oe{1,2-(4),5-7}

16 \have [\vdots] {9} {\vdots}

17 \have [][100] {10} {A} \ae{8}

18 \end{nd}

19 $

Note that in the justification for line m+ 1, parentheses had to be put around the label 4.
There is currently no way of doing this automatically.

Exercise. How does one typeset an empty line number?
Solution. Since \have[] has a special meaning as explained above, we need to use

\have[~] instead.

3.7 Continuation lines

Sometimes one has to typeset a very long formula that does not fit on a single line. As of
version 0.5 of the fitch.sty macros, it is possible to break a formula into several lines using
\\ as a line separator. Continuation lines are automatically indented, as shown in the following
example.

1 A ∧B

2 A ∧B ⇒

C ∧D

3 C ∧D ⇒E, 1, 2

4 A ∧B ∧

C ∧D ∧I, 1, 3

1 $
2 \begin{nd}

3 \hypo{1} {A\wedge B}

4 \hypo{2} {A\wedge B\Rightarrow{} \\

5 C\wedge D}

6 \have{3} {C\wedge D} \ie{1,2}

7 \have{4} {A\wedge B\wedge{} \\

8 C\wedge D} \ai{1,3}

9 \end{nd}

10 $

Alternatively, the \havecont and \hypocont commands can be used to specify each con-\hypocont

\havecont tinuation line separately, as the following example illustrates.

6

1 A ∧B

2 A ∧B ⇒

C ∧D

3 C ∧D ⇒E, 1, 2

4 A ∧B ∧ ∧I, 1, 3

C ∧D

1 $
2 \begin{nd}

3 \hypo{1} {A\wedge B}

4 \hypo{2} {A\wedge B\Rightarrow{}}

5 \hypocont {C\wedge D}

6 \have{3} {C\wedge D} \ie{1,2}

7 \have{4} {A\wedge B\wedge{}} \ai{1,3}

8 \havecont {C\wedge D}

9 \end{nd}

10 $

This latter style gives slightly more flexibility in the placement of justifications, since each
line and continuation line can have its own justification and its own guard (via the \guard

command). It also allows a derivation to be interrupted between a line and its continuation, as
discussed in Section 3.5.

4 Customization

The relative sizes of the various elements of a natural deduction proof are preset to reasonable
values depending on the size of the currently selected font. However, it will sometimes be nec-
essary to customize these dimensions. The customizable dimensions are given in the following
diagram.

P

Q

R

1

Rule

2

3

la
b

el
se

p

in
d

en
t

h
se

p

h
se

p

ju
st

se
p

depth

height

topheight

In addition, ⟨linethickness⟩ determines the thickness of scope lines, and ⟨cindent⟩ the extra
indentation of continuation lines (as discussed in Section 3.7). The default dimensions are:

⟨height⟩ 4.5ex ⟨topheight⟩ 3.5ex
⟨depth⟩ 1.5ex ⟨labelsep⟩ 1em
⟨indent⟩ 1.6em ⟨hsep⟩ .5em
⟨justsep⟩ 2.5em ⟨linethickness⟩ .2mm
⟨cindent⟩ 1em

To change these default dimensions, pass a list of key-value pairs as package options, asNew in 1.0
optional arguments to the nd or fitchproof environment, or use the \setkeys command:

\usepackage[justsep=1em]{fitch}

\begin{nd}[rules=myrules]

\begin{fitchproof}[linethickness=1pt]

\setkeys{fitch}{hsep=1em,indent=1em}

7

In addition, the macros used to generate the table containing the proof, to format justifi-
cations, format line number references, and to initialize macros to produce justifications in the
proof can be customized:

option default
rules=⟨macroname⟩ ndrules

justformat=⟨macroname⟩ ndjustformat

refformat=⟨macroname⟩ ndrefformat

arrayenv=⟨envname⟩ array

For compatibility with earlier versions of fitch.sty, the default for ⟨arrayenv⟩ is array, i.e.,
the table containing the proof is generated using an array environment, and must therefore
occur inside math mode. The fitchproof and fitchproof* environments assume that you
use a text table command instead, such as tabular. Hence, you should not use fitchproof

in math mode, and you must use the option arrayenv=tabular (when loading fitch, as an
optional argument to fitchproof, or using \setkeys{fitch}{arrayenv=tabular}. Any other
table environment that takes the same table format argument as array and tabular can be
used here, e.g., the longtable environment from the longtable package (which must be loaded
separately).

The package defines the macros \ndrules, which defines the rule macros given at the end\ndrules

of Section 2, using

\def\ndrules{%

\def\ii{\by{\RightarrowI}}%

\def\ie{\by{\RightarrowE}}%

\def\Ai{\by{\forallI}}%

\def\Ae{\by{\forallE}}%

\def\Ei{\by{\existsI}}%

\def\Ee{\by{\existsE}}%

\def\ai{\by{\wedgeI}}%

\def\ae{\by{\wedgeE}}%

\def\ai{\by{\wedgeI}}%

\def\ae{\by{\wedgeE}}%

\def\oi{\by{\veeI}}%

\def\oe{\by{\veeE}}%

\def\ni{\by{\negI}}%

\def\ne{\by{\negE}}%

\def\be{\by{\botE}}%

\def\nne{\by{$\neg\neg$E}}%

\def\r{\by{R}}}

The macro \ndjustformat is defined as\ndjustformat

\newcommand{\ndjustformat}[2]{#1, #2}

The first argument takes the rule name, the second the reference list. It is used to typeset the
justification.

The macro \ndrefformat is defined as\ndrefformat

\newcommand{\ndrefformat}[1]{#1}

It is used to typeset the line numbers in justifications.
\ndrules, \ndjustformat, and \ndrefformat can be redefined using \renewcommand, or

you can define your own commands to provide the rule names, the justification format, and
line number format, and pass the names (without initial \) as an option to the \usepackage

or individual \nd or \fitchproof commands.

8

1 A ∨B

2 ¬B

3 B

4 A (1), (2) by DS

5 A ∧B (3), (4) by ∧I

1 \newcommand{\myjust}[2]

2 {#2 by \textsf{#1}}

3 \newcommand{\myrules}{

4 \ndrules % include standard rules

5 \def\ds{\by{DS}}}

6 \renewcommand{\ndrefformat}[1]{(#1)}

7 $
8 \begin{nd}[rules=myrules,

9 justformat=myjust,

10 indent=1.5cm,

11 linethickness=1.5pt,

12 justsep=1cm]

13 \hypo {1} {A\vee B}

14 \hypo {2} {\neg B}

15 \open

16 \hypo {a} {B}

17 \have {3} {A} \ds{1,2}

18 \have {b} {A \wedge B} \ai{a,3}

19 \end{nd}

20 $

The boolean option outerline can be set to false to suppress the leftmost scope line. This
may be useful when printing inference rules, e.g.,

n A

...

m B

A ⇒ B ⇒I, n–m

1 $
2 \begin{nd}[outerline=false,

3 labelsep=0pt]

4 \open

5 \hypo [n]{1} {A}

6 \have [~]{2} {\raisebox{-1ex}{\vdots

}}

7 \have [m]{3} {B}

8 \close

9 \have [~]{b} {A \Rightarrow B} \ii

{1-3}

10 \end{nd}

11 $

5 Obsolete commands and backwards compatibility

The dimensions can also be changed with the \nddim command. The syntax of the command\nddim

is as follows:

\nddim{⟨height⟩}{⟨topheight⟩}{⟨depth⟩}{⟨labelsep⟩}
{⟨indent⟩}{⟨hsep⟩}{⟨justsep⟩}{⟨linethickness⟩},

where each of the eight parameters is a dimension. This still works, but using the key-value
pair options is the preferred method.

In versions before v1.0, the recommended way to change the extra indentation used onNew in 1.0

\ndindent continuation lines was to change dimension \ndindent directly using \setlength. As of v1.0,
you should use the cindent option instead.

The original code “hid” the internal macros by naming them \nd*.... In v1.0 this has
been changed to the standard \nd@.... Any low-level redefinition of fitch internals that uses
* will break in v1.0.

9

6 Other comments

The goal was to design a flexible package which would not impose any constraints on the form
of derivations, while making typesetting easy. With this package, it is in fact possible to typeset
incomplete, ill-formed, or invalid derivations. Sometimes it is pedagogically necessary to do so.

There are no arbitrary limits on the size or nesting depth of a derivation, except for the
obvious requirement of fitting horizontally on the printed page.

7 Copyright and license

This document and the accompanying fitch.sty macros are © 2002–2023 by Peter Selinger
and Richard Zach and distributed under the terms of the LPPL.

10

https://www.latex-project.org/lppl/

	1 Overview
	2 Usage
	3 Details
	3.1 Guards
	3.2 Label and reference list details
	3.3 Generic justifications
	3.4 Scope
	3.5 Breaking it across pages
	3.6 Custom line numbers
	3.7 Continuation lines

	4 Customization
	5 Obsolete commands and backwards compatibility
	6 Other comments
	7 Copyright and license

