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ABSTRACT

In previous papers [1], [2] we introduced a model for
pseudo-periodic sounds based on Wornell results [3]
concerning the synthesis of 1/f noise by means of the
Wavelet transform (WT). This method provided a good
model for representing not only the harmonic part of real-
life sounds but also the stochastic components. The latter
are of fundamental importance from a perceptual point of
view since they contain all the information related to the
natural dynamic of musical timbres. In this paper we
introduce a refinement of the method, making the spectral-
model technique more flexible and the resynthesis
coefficient model more accurate. In this way we obtain a
powerful tool for sound processing and cross-synthesis.

1. INTRODUCTION

The main motivation of our 1/f pseudo-periodic model
derives from the observation that the sidebands of the
harmonics of a large class of voiced sound have an
approximate 1/f  behavior. These sidebands contain the
stochastic components of the sound, i.e., the information
concerning the "stochastic evolution" of the timbre and the
added noises, as breath in wind instruments, so important
in order to perceive a sound as a natural one. In [1, 2] we
introduced a new set of wavelets, which we called the
Harmonic Band Wavelets (HWBT). By means of the
HBWT we were able to extend Wornell result about the
synthesis of 1/f-like processes by means of WT to the
pseudo-periodic 1/f-like case. This was realized by means
of the demodulation-modulation scheme introduced in [2].
We showed that it is possible to synthesize pseudo-periodic
1/f-like power spectra by employing white noise, with
wavelet band dependent energy, as coefficients. The
spectrum of the synthetic signal can be adapted to that of a
real-life pseudo-periodic sound by extracting a limited set

of parameters from the HBWT analysis coefficients to
control the energies of the spectral sidebands.
Different levels of approximation can be achieved in the
synthesis of noise components of pseudo-periodic sounds.
A refinement of the technique consists in setting our
method free from the strict constraints of the 1/f model in
order to obtain a better approximation of the spectrum
shape. This can be achieved by employing the Frequency
Warped Wavelet Transform (FWWT), recently introduced
by one of the authors [4, 5]. We obtain arbitrary
segmentation of the frequency axis, i.e., of the wavelet
analysis and synthesis bands. In this way we can better
reproduce the deviation of real spectra with respect to the
strict pseudo-periodic 1/f -like model (see for example Fig.
1, where relevant non-harmonic peaks are present in the
spectrum of a french horn).
Furthermore white noise resynthesis coefficients are only a
rough approximation, which allows for very low coding
rates but involves large distortion. In fact the HBWT
analytical results show an important aspect, which the
white noise approximation does not take into account: the
existence of a small but non-zero correlation in the analysis
coefficients. We model this correlation by means of AR
filters driven by white noise. The filters are obtained by
performing LPC analysis on the coefficients of the HWBT
analysis of the signal.
In our method we model only the steady part of sound and
we assume that transients have been extracted from the rest
of the signal. A pitch detector can be successfully
employed for automatic detection of the transient length.
As soon as the pitch becomes sufficiently stable, the
HBWT analysis starts.
This technique is a powerful approach to audio data
compression. Compression ratios of about 1/40 can be
achieved, while granting optimal sound quality and
naturalness.
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From a musical point of view straightforward applications
of our method are, for instance, cross synthesis and
morphing.
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Fig. 1  Two harmonics of the spectrum of a real life horn

The paper is organized as follows. In the next two sections
we briefly review the Frequency Warped Wavelets and the
Harmonic-Band Wavelets, respectively, and we introduce
the Frequency Warped HBWT. In section 4 we present the
synthesis method and the coefficient modeling techniques.
In section 5 we describe the sound processing potentialities
of the method. In the last section we finally draw our
conclusions.

2. WAVELETS AND FREQUENCY WARPED
WAVELETS

Wavelet transforms are a mathematical tool performing
multiresolution analysis. Their most appealing feature from
a DSP point of view is related to the non-uniform octave
band subdivision of the space-frequency or time-frequency
spaces in image and sound processing respectively. The
octave band subdivision as well as the principle of
selfsimilarity, lying behind it, seems to be successful from a
perceptual point of view for both our hearing and visual
system.
What we are trying to do here is to model the spectra of
pseudo-periodic signals. The harmonic-peaks of these
spectra have an approximately 1/f-like behavior, well
fitting the power-2 "observation perspective" of the
wavelet transform. This model can be improved if we make
the power-2 law more flexible and adaptable to real-life
deviations from the model itself. This can be obtained by
introducing the frequency warped WT, i.e., a WT with an
arbitrary non-uniform subdivision of the frequency axis
replacing the octave-band subdivision [5].

We now introduce the mathematics. We know that, given
an ordinary wavelet set orthonormal and complete in l2, we
can write any signal s(l)∈ l2 as:
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where the symbols ψ and ф denote, respectively, a Wavelet
sequence and a Scale sequence [6, 7]. The index n denotes
the wavelet scale; m is the time shift. Equation (1) is a
finite scale N expansion of s(l) on the set of functions
{ })(, lmnψ  and { })(, lmNφ , where n=1,�.,N and m∈ Z. The
wavelet expansion is computed by a cascade of filters g and
h, implementing a two-channel critically sampled filter-
bank [6, 7]. At each scale the high-pass filter g and the low-
pass filter h implement the wavelet projection and the scale
projection respectively. In (1) and in the rest of the paper a
sum with unspecified boundaries denotes that the index
runs from -∞ to +∞.
As mentioned above, in order to set the wavelet expansion
free from the rigid power of 2 time-frequency plane
subdivision, the frequency warped wavelets were
introduced [4, 5]. The frequency warped wavelets )(~

, lmnψ
and their corresponding frequency warped scale sequences
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where the gn,m and the hn,m. are some auxiliary sequences
given by:
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where the symbol λn,r denotes a Laguerre sequence [4] of
order r associated to the nth wavelet scale. The ordinary
quadrature mirror filters g and h in this case play the role of
coefficients of the Laguerre expansion of the functions gn,m
and hn,m respectively.
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The Frequency Warped Wavelets form orthonormal and
complete sets. For any s(l)∈ l2 (N ∪ {0}) we can write:
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Frequency warping or frequency axis deformation,
obtained by means of the Laguerre Transform, is controlled
by the parameter dn according to the following recurrence:

( )[ ]4/2tan 11 ωπ −=d   (7)
and

( )��
�

��

� Ω−= − nnnd ωπ
14

tan ,  (8)

where the ωn are the arbitrary cut-off frequencies by which
we subdivide the frequency axis, with ω1 >ω2 >�>ωn and
the frequency mapping )(ωnΩ is given by [5]:
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where )(ωθk  is the negative phase response of a first-order
allpass filter frequency response:
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3. HARMONIC-BAND WAVELETS (HBWT) AND
FREQUENCY WARPED HWBT

In [2] we introduced a new wavelet set, i.e., the Harmonic-
Band Wavelet Transform (HBWT). The HBWT are
orthonormal and complete in l2. They consist of a P-
channel filter-bank based on the Discrete Cosimne
transform (DCT) followed by a WT of each channel. Any
signal s(l)∈ l2 can be expanded on a HBWT set:
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where the )(,, lpmnξ  and the )(,, lpmnζ  represent a Discrete
Harmonic-Band Wavelet and a Discrete Harmonic-Band
Scale Function and are given by [8, 2]:
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The filters f implement the multichannel filterbank based
on the DCT type IV ([2]).
P is the number of channels and p is the channel index. If
s(l) is a pseudo-periodic signal, P correspond to the pitch
of s(l).
In this paper we are interested in pseudo-periodic signals.
The HBWT decomposition can be stated in a more
intuitive way, if we separate its two levels: the P-channel
filtering and the WT. In fact we can write s(l) as:
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where each )(ipν  is the P-downsampled version of the pth

band. If s(l) is a pseudo-periodic signal we can "tune" P
with the pitch of s(l). In this case )(ipν  represents one of

the two sideband of the kth harmonic, with ��

�
��
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The left sidebands correspond to odd p while the right
sidebands corresponds to even p (see Fig. 2). The HBWT
coefficients bn,m,p and an,m,p are obtained by wavelet
transforming the )(ipν :
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In order to obtain the Frequency Warped HBWT we need
simply to substitute ψ  and φ  by ψ~  and φ~ :

�
�

�

�

�
�

�

�
+= ���

= m
mNqmN

N

n m
mnpmnp iaibi )(~)(~)( ,,,

1
,,, φψν .  (16)

The great advantage is that each subband of each sideband
can be adjusted by an optimization procedure, in order to
fit any real-life spectrum of the kind of Fig. 1. In Fig. 3 we
show an example of how the frequency spectrum of Fig. 2
can be modified by means of frequency warping. The
position and bandwidth of each subband can be
independently set by means of properly chosen parameters
{ }pnd .  for each p and n.



 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy, December 7-9, 2000

DAFX-4

0   π/8 π/4 3π/8 π/2 5π/8 3π/4 7π/8  π  
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

scale residual

n=4

n=3

n=2

n=1

p=2 p=3 p=4 p=5p=1

Fig. 2 Frequency response of a filter-bank implementing
ordinary HBWT: two harmonics.
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Fig. 3 Frequency response of a filter-bank implementing
Frequency-Warped HBWT: two harmonics.
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Fig. 4 Analysis and Synthesis Frequency-Warped HBWT filter banks. F, G and H are the frequency responses of
the filters f, g, h, respectively. Λ0 and A are the frequency responses of the zero-order Laguerre sequence
and of the dispersive delay lines implemented by a cascade of all-pass filters [5].
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At the same time we obtain a finer tool for verifying the
pseudo-periodic 1/f-like model on data. In fact by means of
the HBWT analysis we obtain for each sideband p a set of
parameters corresponding to the energies of the subbands.
Each parameter is a point of the hypothetical 1/f-like
spectrum of the sideband p. By subdividing the latter with a
finer resolution we have more points at our disposal, by
which we can test the validity of the pseudo-periodic 1/f-
like model. The experimental results confirm once more
the already positive response obtained in [2].
In Fig. 4 we show the filer bank scheme, implementing the
Frequency Warped HBWT.

4. RESYNTHESIS AND COEFFICIENTS
MODELING

The main idea of the synthesis method we introduced in [1]
and [2] was to "dress" the frequency response of Fig. 2 on
the real-life spectrum for any given pseudo-periodic sound.
This requires a parameter extraction, which is made by
means of a HBWT analysis. More precisely we showed
that the process
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has time-averaged power spectrum approximately 1/f near
each harmonic, where the )(,, lpmnξ  form a discrete

Harmonic-Band Wavelet (HBWT) base and the pmn ,,ν  and

the pmn ,,µ are collections of white noise zero-mean
coefficients with properly scaled energies. As already
remarked, the index p in (17) represents the sidebands of

the harmonics 
P

q π2 , with �
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n corresponds to the wavelet scale, m is the time shift and
the pγ  are synthesis parameters derived from the HBWT

analysis. The parameters pγ  shape the 1/f �like spectral

behavior. The coefficients pmn ,,µ  correspond to the
deterministic-harmonic components of pseudo-periodic
sounds. In the resynthesis of the harmonic components we
do not employ the white noise coefficient model but the
whole set of the HBWT analysis coefficients { }pmNa ,, .
Their rate is low since each wavelet scale corresponds to a
downsampling of order 2.
As a first refinement we set the method free from the rigid
1/f-like pseudo-periodic model. In order to do this we

replace the coefficients 
p

nγ
22  with a set of coefficients

np,β  corresponding to the energies of the single subbands.
Using four wavelet scales levels implies a growth of the
number of parameters of approximately a factor 4, but we
still obtain a very good coding rate.
Furthermore we corrected the first approximation,
concerning the use of zero-correlation coefficients for the
resynthesis. The non-zero correlation of the HBWT
analysis coefficients is not negligible from an acoustical
point of view. In order to reproduce it, we used an LPC
synthesis of the HBWT coefficients. We obtained a set of
AR filters, one for each p and n, and we used them to color
each set of coefficient { }pmn ,, ν . In other words we add a
preliminary filtering of all the inputs of Fig. 4b. These AR
filters are fed with uncorrelated noise with wavelet-scale-
dependent variance.
A short-time version of the parameter extraction was also
implemented. After computing the complete set of analysis
HBWT coefficients, we update the parameters np,β  every
20 or less coefficients (the short-time window lengths
depending upon the scale level).
Finally we specify once more that the model does not
include the transient. An automatic detection of the
transient length is made by means of a pitch detector. As
soon as a stationary pitch is detected, we start HBW
transforming the signal, while the transient is separated and
preserved for the resynthesis as it is.

5. DIGITAL AUDIO APPLICATIONS

The HBWT analysis allows one to perform a partial
reconstruction of the signal. We can separate the different
subbands of all the harmonics (a single wavelet-band n of
all the channels p) or one specific subband of one specific
sideband, (fixed n and p) as well as any other arbitrary
combination of subbands. This provides several
possibilities in terms of sound processing results. More
precisely we can define the nth  noise subband (Nsb) as:
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1
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and the nth noise subband of the pth sideband (NSBsb) as:
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Also we can separate the noisy component of a single
harmonic sideband. The pth noise sideband (NSB) is:
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In such a way timbre hybridization is straightforward: We
can realize any "mixture" of subbands coming from the
analysis of different instruments. A very simple example
can be obtained combining the reconstructed harmonic
component
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of one instrument with the noise sidebands )(lsn  of another
one. This can be successfully employed as a new cross
synthesis technique. We obtained interesting results in
combining the subbands of a horn, a trumpet, a bassoon, a
clarinet and an oboe.
All the results of the last two sections are extendable to the
frequency warped case.

6. CONCLUSIONS

In this paper we reviewed our synthesis technique based on
the HBWT and we introduced many refinements to the
method. A better spectral modeling can be obtained by
introducing energy-parameters independently for each
wavelet scale and by means of a Frequency Warping
version of the HBWT. We improved the resynthesis
coefficient model, introducing a pre-filtering of the white
noise coefficients by means of AR filters, derived from the
analysis.
The possibility of partial reconstruction and resynthesis of
sounds gives interesting results. We can in fact employ the
method as a tool for cross-synthesis and timbre
hybridization.
Further developments of the method include first of all a
pitch synchronous version. The starting point is the time
varying case of modulated filter banks realized in [9]. This
would give to the method a higher level of generality. The
technique could then be applied to variable pitch sounds
(including for instance, vibrato and monodic tunes).
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