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ABSTRACT 

A modular real-time PC-based audio processing software tool has 
been developed which offers a high degree of user control, 
intended for use by audio effect developers, signal processing 
engineers, sound designers, musicians, and educators. The key 
technical features are described, followed by a range of example 
applications in the field of signal processing and audio effect 
design. 

1. INTRODUCTION 

The disciplines of audio signal processing and computer music 
encompass a wide range of mathematical and engineering 
techniques which are often “hidden behind the graphics” of 
commercially-available audio manipulation software products. 
Whereas these products span a broad range of audio applications, 
they tend to be of a “black box” nature, and, thereby, are usually 
inappropriate for engineering prototyping or educational 
environments where flexibility, visibility, and controllability are 
the key requirements. For example, the developer, engineer, 
educator, or student wants to try out his/her own filter design and 
hear what it sounds like on audio material of their choice, without 
having to resort to writing their own code (at least not 
immediately!). “WaveWarp” is a software tool developed 
specifically for those applications where flexibility is essential. 

2. SOFTWARE DESCRIPTION 

2.1. Overview   

The architecture of the software is modular, comprising a library 
of pre-compiled DSP components which can be connected 
together in any desired fashion (series, parallel, feedforward, and 
feedback). All components are processed sample-by-sample, 
enabling the design of sample-perfect signal flow networks in an 
intuitive “WYSIWYN” (what-you-see-is-what-you-need) manner.  
Moreover, the audio engine is intrinsically multi-rate, enabling on-
the-fly integer-factor sample-rate conversion between 

components. This facilitates, for example, the rapid construction 
of elaborate polyphase filter networks, again in a straightforward 
“WYSIWYN” manner – a task which is notoriously cumbersome 
and error-prone when carried out “long-hand”. Additionally, the 
software architecture is intrinsically multi-channel, enabling the 
straightforward construction of customizable “surround sound” 
designs. The software runs in real-time on a standard Pentium®-
class PC, and all processing is fully “native”, requiring no 
peripheral hardware except a Windows®-compatible sound-card. 
Multiple sound-cards and/or multi-channel sound-cards are fully 
supported. In addition to audio file and live I/O support, the 
software interfaces directly with other applications via industry-
standard protocols (DirectX, etc), enabling seamless integration 
into existing computer studio/laboratory environments. The 
software also includes interfaces to the MATLAB technical 
computing environment, providing seamless access to powerful 
analysis, design, and visualisation capabilities. 
 

2.2. Modular DSP component library  

The main categories of modular signal processing components 
included in WaveWarp are listed in Table 1. 
 

Table 1 List of WaveWarp's modular processing 
component categories. 

CATEGOR
Y 

DESCRIPTION 

Audio files Audio files in WAV and ASCII format for use as 
data sources or sinks. Audio files can be played 
back with arbitrarily controllable sample ordering 
(e.g. for granular synthesis). 

I/O devices Windows-compatible soundcard drivers and 
DirectX ports for using sound-card I/O and 3rd-
party editor/sequencer applications as data 
sources or sinks. 

Basic 
connections 

Basic connection components such as summers, 
multipliers, switches, etc., plus basic arithmetic 
components (which operate primarily on 
parameter control signals). 
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Delays Digital delay components (including simple delay, 
feedback delay, reverse delay, controllable time-
varying delay etc.) 

Digital filters Recursive (IIR) digital filters including 
Butterworth, Chebyshev, Inverse Chebyshev, & 
Elliptic designs; generalized 2nd order highpass, 
lowpass, bandpass, bandstop, peak & notch 
designs; all-pass designs; non-recursive (FIR) 
digital filters including windowed lowpass, 
highpass, bandpass, bandstop designs, in both 
direct and fast (FFT-based) implementations. 
Most filters include an ASCII file interface for 
implementation of off-line filter designs (e.g. via 
MATLAB). 

Displays and 
scopes 

Real-time digital displays, oscilloscopes, and 
spectrum analysers. 

Distortion Non-linear amplitude distortion and wave-shaping  
components. 

Dynamic 
range 
controllers 

Compressors, expanders, limiters, and noise gates, 
plus the basic blocks for building customized 
dynamic processors. 

Flangers and 
chorus 

Flanger and chorus components plus the basic 
blocks for building customized flangers and chorus 
(based on time-varying modulated delays). 

MATLAB MATLAB-enabled components which interface 
seamlessly with the MATLAB environment, 
utilising MATLAB for design, visualisation, and 
real-time processing. Components include FIR 
and IIR digital filters, “MATLAB in the loop” 
real-time processors, oscilloscopes based on 
MATLAB GUI’s,  MATLAB-based signal and 
envelope generators, etc.    

Mixers                Multi-channel mixers. 
Mult irate Integer-factor down-samplers, up-samplers, 

decimators, interpolators, and filterbanks. 
Noise 
reduction 

Noise reduction components (based on spectral 
subtraction). 

Panners  Panners (static and time-varying). 
Phasers Phaser components plus the basic blocks for 

building customized phasers. 
Pitch shifters Simple (time-domain) pitch shifters. 
Reverbs Reverb components plus the basic blocks for 

building customized reverbs. 
Signal 
generators 

Signal and envelope generators including sine 
wave, triangular wave, square wave, periodic and 
pseudo-random white noise and telegraph noise, 
chaotic sequences, impulse and pulse trains, 
ADSR envelope generators, etc., plus amplitude 
and/or frequency controllable oscillators. Many of 
the oscillators and signal generators include an 
ASCII file interface for importing off-line 
wavetable and envelope designs (e.g. from 

MATLAB). 
Spectral 
transformers 

Frequency-domain effects such as convolution, 
spectral cross-synthesis, spectral shaping, 
morphing, etc. 

  

3. EXAMPLE APPLICATIONS 

3.1. Example: reverberation based on a random FIR filter 

The schematic in Figure 1 depicts an artificial reverberator (room 
simulator) based on an exponentially-decaying pseudo-random 
FIR filter. The design, adapted from [2], is novel in the fact that 
the FIR filter taps are chosen randomly rather than from measured 
room responses or geometrical ray-tracing models. The FIR filter 
represents the "early reflections segment", with a feedback delay 
path ("around" the FIR filter) to create the dense reverberant field. 
Low-pass filters are added in the forward and backward paths to 
represent the absorption in the air (found to significantly improve 
the subjective quality of the reverberant effect [2]). Figure 2 
contains a screenshot of the WaveWarp implementation of this 
reverberator algorithm. Again, the layout closely resembles the 
corresponding block diagram (Figure 1), thereby illustrating the 
convenience of WaveWarp's modular architecture. In this example, 
all the filters are designed in MATLAB then imported to 
WaveWarp via a seamless interface, thereby combining the 
powerful design capabilities of MATLAB with the high-speed 
real-time audio processing capabilities of WaveWarp. As noted in 
[3], MATLAB is too slow for practical computation of the large 
convolutions typically required for realistic reverberation (and 
other computationally intensive signal processing algorithms), 
especially at the high sample rates required for professional audio. 
WaveWarp, on the other hand, is designed specifically for such 
purposes. 
 
 
 
 
 
 

Figure 1 Schematic of the reverberation algorithm adapted 
from [2].  
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Figure 2  WaveWarp implementation of the reverberation 
algorithm depicted in Figure 1. The FIR filter has 8092-
taps, the feedback delay is equal to the FIR length,  and the 
IIR low-pass filters are first-order. In this example, all 
filter designs were carried out in MATLAB then imported 
to WaveWarp for execution in real-time at 44.1 kHz with 
zero latency. The input signal in this case is a stored audio 
file in WAV format ("drums.wav"). 

 

3.2. Example: “MATLAB-in-the-loop” real-time processing 

The screenshots in Figure 3 illustrates the use of WaveWarp’s 
seamless interface to the MATLAB programming environment. 
Specifically, WaveWarp sends the real-time audio stream (in this 
case, from the WAV file "Wavewarp.wav") into MATLAB where 
it is processed in real-time (by any arbitrary algorithm written in 
MATLAB), then returned to WaveWarp for further processing or 
playback. Via this intuitive and versatile interface, it is 
straightforward to enter any valid MATLAB expression to define 
the desired real-time input-output relationship on a buffer-by-
buffer basis. The example in Figure 3 utilises the built-in 
MATLAB function "Y=flipud(X)" which has the (entertaining) 
effect of reversing the audio (chunk-by-chunk). Naturally, this can 
be replaced by any other expression which makes use of 
MATLAB workspace variables, m-file scripts, m-file functions, 
and compiled mex functions ( for speed). 
 
 

 
 

 
 

Figure 3 Demonstration of WaveWarp's real-time 
"MATLAB-in-the-loop" capabilities. The "MATLAB In The 
Loop" component (in the upper panel) corresponds to a 
MATLAB GUI (lower panel) which enables the user to 
enter any desired input-output relation. 

3.3. Example:  controllable audio file playback and 
"granular sythnthesis" 

The screenshot in Figure 4 illustrates the use of WaveWarp’s 
controllable audio file playback mechanism which enables the 
individual samples of an audio file to be played back in any 
arbitrary order (rather than in the usual manner of one after-the-
other in succession). This enables interesting and elaborate effects 
to be achieved at low computational expense. For example, by 
selecting successive groups of samples (or "grains") and playing 
each group at a user-definable arbitrary rate and repeating the 
playback of each group for a user-definable arbitrary number of 
repetitions, a wide range of sounds can be synthesised from a 
single audio file.   
 

 
 

Figure 4 WaveWarp implementation of a "granular 
synthesiser" built from scratch. 
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3.4. Example: educational demonstration of aliasing 

The example layout in Figure 5 is for educational purposes, 
illustrating the phenomenon of aliasing associated with digital 
sample-rate conversion. This example makes use of the multirate 
processing capabilities of WaveWarp whereby the sample rate can 
vary (by integer factors) throughout the network. In this case, the 
original (sine-wave) signal with a sample rate of 44100 Hz is 
down-sampled (by a factor of two) to 22050 Hz. Two down-
samplers are compared for educational purposes: a simple one 
(upper branch of network) which merely omits every second 
sample, and a more elaborate one (lower branch) which contains a 
built-in Nyquist filter for alias protection. As can be observed in 
the spectrum analysers (lower panel), the alias suppression 
attained via the Nyquist filtering (right plot) is clearly observed 
(and audible) as a reduction in the 'spike' corresponding to the 
dominant aliased term.  

 

 
 

 

Figure 5 WaveWarp demonstration of the well-known 
aliasing phenomenon. 

3.5. Example: educational demonstration of a two-channel 
filterbank 

Figure 6 contains the block diagram of a two-channel  "filterbank 
without filters" (adapted from [1]) which serves to emphasise 
that perfect reconstruction can be achieved from down-sampled 
data as long as all information in all channels (or “phases”) is 
retained. In this example,  the output is identical to the input -- 
except for the unit delay. This is achieved in spite of the fact that 
the signal is down-sampled then up-sampled by a factor of two. 
The key to the perfect reconstruction is that the “even” (upper 
branch) and “odd” (lower branch) “phases” are retained 
throughout. 
 
 

 
 
 
 
 

Figure 6 An educational example of a two-channel  
"filterbank without filters" (adapted from [1]). In a real 
application, there would be filtering (and other processing) 
applied between the down- and up-samplers. 

 
Figure 7 contains a screenshot of the WaveWarp implementation 
of the two-channel “filterbank without filters” from Figure 6.  
Note the convenience of WaveWarp's modular architecture, 
whereby the processing components are connected together in an 
intuitive manner, closely mirroring the layout in the block diagram 
of  Figure 6. Also note how the multirate capabilities of 
WaveWarp enable the signal(s) to be re-sampled (by an integer 
factor , in this case by two) at any point of the network. 
 

 

Figure 7 WaveWarp implementation of the two-channel 
"filterbank without filters"  from Figure 6. In accordance 
with expectations, the output is observed to be an exact 
replica of the input delayed by one sample, thereby 
demonstrating WaveWarp's "sample-perfect" multirate 
architecture.   

3.6. Example: four-octave -band equaliser  

The screenshot in Figure 8 illustrates a practical use of 
WaveWarp’s multirate processing capabilities to create a four-
octave-band equaliser built from cascaded two-channel filterbanks 
in combination with with  individual gains for each spectral band. 
For efficiency, the filterbanks used here are hard-coded 
components rather than built from scratch (as in the previous 
educational example). Specifically, they utilise IIR all-pass 
structures in polyphase form. WaveWarp has many such hard-
coded components in addition to the basic building blocks. 
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Figure 8 WaveWarp implementation of a four-octave-band 
equaliser built from scratch. 

4. CONCLUSIONS 

A PC-based audio processing software tool has been developed 
with the explicit purpose of providing a high degree of flexibility 
and control to the user. Examples of usage have been presented, 
focusing on applications in signal processing and audio effect 
design.  
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