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ABSTRACT

Theaim of thiswork was theimplementation of the so-called Vold-
Kaman filter. Thisfilter was introduced by Vold and Leuridan in
1993 [1], it is a heterodyne filter for tracking the sinusoidal com-
ponents of a noisy signal. The formulation of the Vold-Kalman
filter leads to aleast squares problem. The great advantage of this
time-varying filter isthat all sinusoids of asignal can be extracted
simultaneously yielding a suppression of beating phenomena of
close or crossing frequency trajectories. In this paper, we propose
arealization for offline processing using the preconditioned conju-
gate gradient method. Furthermore, we present trivial expressions
for the bandwidth and the transition time of first and second order
filters.

1. INTRODUCTION

Let us consider area valued signa as a sum of sinusoidals plus
noise: '

sig(n) = Z zi(n) e *™ 4 noise(n) (@)

k

A sinewaveinthissignal model can be represented as amodul ated
carrier wave where the frequency of the carrier is usually not con-
stant. The slowly time-varying (complex) amplitude z(n) mod-
ulates the carrier e***(™)_ If the phase sequence gy, (n) is known
exactly the envelope zx(n) is real valued (modulation of ampli-
tude only), but in most practical problems just an estimate of the
instantaneous frequency is available resulting in a complex valued
modulator (modulation of amplitude and phase).

The aim of atracking filter is to extract selected components
that means to determine the complex envelope z, (n) for anumber
of sinusoidals and given estimates for the instantaneous frequen-
cies. We will specify the sinusoids of interest with the subscripts
1... K.

The base of the Vold-Kaman filter isformed by two equations:
the data and the structural equation [1] [2].

1.1. DataEquation
In order to extract the K partials simultaneously, the so-called data
equationis

K

sig(n) — Z zi(n)e?*™ = §(n) @)

k=1

d(n) is an error sequence or noise which should be minimal. It
is also possible to track the sine waves independently — the data
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equation is simplified to
sig(n) — wk(n)ei“”“(n) = 0x(n) 3)

The advantage of coupling in equation (2) is the suppression of
beating phenomena of close or crossing frequency trajectories, the
drawback is amuch larger system of equations.

1.2. Structural Equation

The so-called structural equation (4) results in a smooth modula
tion sequence z(n) if the error sequence e (n) is minimized. It
works like alowpass filter.

VP zg(n) = ex(n) 4)

V¢ is the difference operator of order s and p is the order of our
filter. For example the structural equation of afirst order filter is

zr(n—1) —2zk(n) + zx(n + 1) = ex(n) (5)

1.3. Combination

The following realization uses a non-causd filter yielding a com-
plex envel ope without phase bias. It is not a realtime application.
Using vector notation, the data equation (2) can be written as

K
sig— > Cixg =4 (6)

k=1

where Crx = diag(cg)xr = cx © x (o means element-by-
element multiplication). The column vector ¢ contains the N
samples of the complex valued carrier cx(n) = e¥*™ of the
kt* partial, x; stands for the N unknown samples of the complex
envelope and sig for the N samples of the real valued signal. The
structural equation (4) reads as

Strp Xk = €k (M

with the matrix Str;, which equals for afirst order filter

-2 1 0 0
1 -2 1 0

Str1 = 0o 1 -2 . (8)
1
0 0 1 -2
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Furthermore, the error vectors e for k = 1... K are linked to
€= [(Rlsl)T, N (RKaK)T]T where Ry, isthe weighting factor
of the k" structural equation. Finally we join e and & together to
res = [, JT]T and minimize the norm of res:

min ||res||> = minres"res (9)
xX xX

The purpose of the weighting factor is to balance the influence
of the k** structural equation in the minimization of res. If Ry, is
large, res isstrongly influenced by the structural equation yielding
a very smooth modulator. That means that the bandwidth of the
filter for the k** sinusoid is very small (see section 3.1). Ry, can
be areal scalar or adiagona matrix.

ok , constant bandwidth
Ry = { diag (rx) , variant bandwidth (10)
Thelater can be used for abandwidth proportional to the frequency
of the sinusoid (constant percentage bandwidth) as an example.

2. THE LEAST SQUARES PROBLEM

The minimization in expression (9) is equivalent to find the opti-
mal solution (in the sense of least squares) of the following over-
constrained system

Ax=xb (11
which consists of (K + 1) N equations and KN unknown vari-
ables. The vector x contains the x;, for k = 1,...,K: x =
[x], x5 ... x}}]T. The matrix is

R, Stry 0 0
0 RyStr, --- 0
a=| SRR (12
0 0 Rk Strp
C1 Cs Ck

with the sparse band meatrix Str, obtained from the structural
equation and the diagonal matrix C}, from the data equation. The
vector on theright side of (11) is

b= [0, 0,...,0, sigT]T (13)

2.1. TheNormal Equations
Using the Normal Equations

AAx=A"b (19

one obtains a system of equations

B, 01,2 C1,K §1sig

Cey By -+ Cok Csig
) : ) } X = } (15)

Cka1 Ckyp2 -+ Bk C ksig

which has KN equations and KN unknown variables with the
complex diagonal matrices

Cu,'u = dlag (Eu o cv) (16)

and symmetric band matrices.
By = Stry RiStry + I (17)

A" means transposition and conjugation A" = A" and I is the
unity matrix.
In order to extract the partials independently, one hasto solve

the K smaller systems
kak ZEksig k:l,...,K (18)

Because NV is usualy very big and the problems (15) or (18) are
very ill-conditioned, we use the preconditioned conjugate gradient
method for solving the systems.

2.2. The Preconditioned CG Method

I"d like to present the preconditioned conjugate gradient method
for solving Ax = b now [3]. The superscript /) indicates the
iteration number.

choose x©  set g(o) =4x? —p

solve Mg“’) = g(o) set d© = g“’)

forj=0,1,...
RO
) (87) e
Q¥ = ey (19
(d(])) AdG)
KUHD — 3 0) _ o g (20)
gt = gi) _ o) 49 1)
solve Mg(j‘H) = g(j+1) (22)
if convergence stop loop
) Ho.
" (g<y+1>) gl
Y = —Tg— (23)
(g(J)) gl
dU+D — ﬂ(j)d(j) + g(]’+1) (24)

There are two criteria to choose the preconditioning matrix M :
e Thematrix M should be similar to A.

e In every step the equation (22) has to be solved, therefore
the inversion of M should be easy.

The problem is that these two points contradict each other.
Fortunately, we found an ideal matrix M by chance. Concern-

ing the first criterion, one can say that Str; Strp is the dominant

part of A especially for large values of r, (small filter bandwidths).

M= (LU)"" = Str)Stry = A ifry >>1 (25

where

L= o (26)
and

U=L"= 27)
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The second criterion is that the inversion of M should be easy: L
and U can be inverted without any problems.

1
11
L'=|. . (28)
11 1
and
11 1
. 1 - 1
Utl=(L7) = L (29)
0 1

Thus the matrix M is optimal for the PCG agorithm and an enor-
mous speedup will be achieved compared to the standard CG me-
thod where M = I. Figure 1 illustrates the effect of this precon-
ditioning. The cost function ||res||?, which should be minimized,
is calculated after every step 5 and plotted.

X 10 lIres|> order=1 r=10° N=10*

25

M=1I (CG)

15

0.5
0 10 20 30 40 50 60 70 80 90 100
j ... iteration steps

M71
(22) in every step. Thisis easily done by
M™'v = ..U 'L7'v
= ...flip (cumsum (flip (cumsum(v))))
(30)

where flip(v) reverses the vector v and cumsum(v) resultsin a
vector containing the cumulative sums of the elements of v.

3. CHARACTERISTICSOF THE VOLD-KALMAN
FILTER

We examined the Vold-Kalman filter to find trivial expressions for
the bandwidth (—3 dB) and the transition time (10 % — 90 %) of
first and second order filters as functions of the weighting fac-
tor. Concerning the filter shape one can say that the selectivity
increases with growing filter order (see [4] and [5] for more infor-
mation).

3.1. Bandwidth

Vold proposed in [2] to construct an empirical table of weighting
factors and corresponding bandwidth values to obtain a desired
bandwidth by interpolating in this table. We found trivial math-
ematical expressions (31) and (32) so we no longer need such a
table. L

BSdB (T‘) =1.58r"2 (31)
Thisisthe —3 dB bandwidth of the first order Vold-Ka man band-
passfilter in radians. One hasto multiply it by 2f—; to get Hz where
fs isthe sampling rate in Hz. For the second order filter we got:

1

Bsgn (7“) =1.70r"3 (32)
Figure 2 shows these two functions.
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Figure 2: The Bandwidth as a function of the weighting factor.

3.2. Transition Time

Concerning the time response we measured the 10 % — 90 % tran-
sition time and found the following expression for a first order
filter:

4.51 1
T(r) = =2.857r2 33
(r) Baan (1) (33
and for asecond order filter:
4.75 1
T(r) = =2.80r3 34
(r) Boan (1) (34

The product T' Bs4p is a constant. It's important to mention that
the measurementsyielded resultswith abig variance. So equations
(31) — (34) should not be regarded as the ultimate results.

3.3. TheEffect of Coupling

As aready mentioned, solving the larger system of equations (15)
instead of the set of the K smaller ones (18) leads to a suppres-
sion of beating phenomena of close or crossing frequency tracks.
Figures 3 — 5illustrate this great advantage. The signal in this ex-
ample consists of two sinusoids. Thefirst one (labeled with 1) has
a constant frequency of 30 Hz and a constant amplitude of 2. The
frequency of the second one (labeled with 2) goes linearly from
20 Hz to 40 Hz, the amplitude linearly from 0.5 to 1. Figure 4
shows the results of (18) where the amplitudes are extracted in-
dependently. In the area of the crossing of the frequency tracks
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an increase can be observed because the distribution of the energy
between the sinusoids is not well defined. Any other conventional
heterodyne filter produces comparable results. In figure 5 where
the results of (15) are plotted, this problem is eliminated.
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Figure 4: The independently extracted amplitudes.
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Figure 5: The simultaneously extracted amplitudes.
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