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ABSTRACT

Removing reverberation effects from music and speech produced
in a sound reflecting environment is a useful process which al-
lows to recover the audio signals due to the acoustic source only.
In particular, this may be essential for performing the subsequent
acoustical optimization during a restoration procedure.

The process can be considered also from the point of view of
the control system theory as a special case of active control of the
reverberation time in real rooms as suggested by one of the authors
[1].

The present paper discusses the implementation of a simple
sound dereverberation method by means of a basic algorithm ap-
plied to minimum-phase excitation signals. The procedure will be
used for performing some sample deconvolutions using impulse
responses measured in the same boundary conditions as those ac-
tually holding during the sound recording: through this method we
will test the acoustic effectiveness of the algorithm.

1. INTRODUCTION

The basic dereverberation techniques developed for linear time-
invariant systems rely on the convolution relationship

y () ==z (t) «h(t) M

where z (¢) is the excitation signal, h (t) the impulse response and
y (t) the response due to x (¢). Whenever h can be measured or
taken as a known quantity, Eq. 1 makes it possible to transform
a given anechoic signal x into a signal y having the reverberation
pattern typical of the environment under consideration. This usu-
ally happens in room acoustics, where Eq. 1 is the basic equation
underlying the auralization techniques. The inverse problem, that
of de-reverberation, can be accomplished finding a function g(t)
such that h(t) * g(t) = 6(¢). If inserted into Eq. 1, g gives the
deconvolution relationship z(t) = y(t) * g(t), so that in principle,
from a recorded signal y it is possible to get back to its anechoic
source by determining the inverse impulse response and execut-
ing a convolution between this function and the waveform y itself.
However, some important constraints have to be taken into account
for putting the procedure into practice. Some are of acoustic na-
ture: firstly, the signal source should be point-like compared to
the typical wavelength of the recorded sound, otherwise the sig-
nal y would not be expressed by a simple time-convolution, for a
spatial integral on the effective extension of the source should be
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performed as well; moreover, the impulse response of an enclo-
sure is a temporal function depending on both the positions of the
source and the receiver [2]. This means that for a correct recovery
of x these positions must be the same when measuring y and h.

Other constraints are due to the signal processing rules and
regard mainly the restrictions of stability and causality imposed
on the inverse function. In fact, as shown by the wave theory of
room acoustics, the impulse response may be expressed as a sum
of complex exponential functions of time; in the discrete domain,
this is written as a finite sequence whose z-transform gives the
following “all-zero” transfer function

H(z)=]] (1 —aiz") ] (1 - bi2) 2)

i 1

where |a;|, |b;| are less than unity. It is now easy to see that the
poles of G = 1/H correspond to the zeros of H. As a conse-
quence, G is stable if and only if all the coefficients b are zero,
meaning that all the zeros of H are located inside the unit circle in
the complex z-plane, that is H is a minimum-phase function.

Unfortunately the minimum-phase condition is seldom ful-
filled by ordinary impulse responses, thus in general it is necessary
to devise special algorithms for finding approximate transfer func-
tions. Nonetheless, in the present work we will test experimentally
the deconvolution procedure in a case where the general algorithm
may be implemented for arbitrary impulse responses thanks to the
carefully chosen characteristics of the excitation [3]. To see how
this may be achieved, we remind that any transfer function may
be written as a product of a minimum-phase term H,,, and an “all-
pass” Hap term, such that |Hp, (2)| = |H(2)| and |Hap(2)| = 1.
If the excitation is a minimum-phase waveform X, (z), the con-
volution relationship becomes

Y(2) = X (2)Hm(2)Hap(2) = Ym(2)Hap(2) )

where the right-hand term holds since a product of two minimum-
phase signals gives a minimum-phase signal. Therefore, for the
recovery of X, it suffices to determine the minimum-phase com-
ponent of the output signal and subsequently operate on it with the
inverse of the minimum-phase component of the transfer function.
The most important step in the procedure is the determination of
the minimum-phase component of the impulse response and the
signal y, which is accomplished by the “homomorphic filtering”
technique. The algorithm follows from the property according to
which the logarithmic magnitude and phase of the Fourier trans-
form of a minimum-phase signal satisfy a Hilbert transform rela-
tion. This allows to obtain for any mixed-phase sequence s the
complex cepstrum Sy, of the minimum-phase sequence s,, having
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the same Fourier transform magnitude as s, the basic relationship
being

Sm(n) = cs(n)w(n) @

where ¢; denotes the real cepstrum of s and w the “frequency-
invariant” linear filter: w(n) = 2u(n) — 6(n) [4]. The sequence
Sm may then be recovered from the inverse complex cepstrum of

Sm.

2. EXPERIMENTAL METHOD

The setup was developed so as to meet the above-mentioned phys-
ical restrictions which should be fulfilled for treating signals by
means of simple convolutions: an approximation valid when the
source can be considered as point-like and omnidirectional. The
source and the receiver were respectively a B&K loudspeaker mod.
4295 (Omnisource), which is characterized by an almost isotropic
response and a small radiating surface, and an electrostatic mi-
crophone. They were placed 3m far from each other in a small
empty room of 3.3 x 5 x 3.4 m?, having a reverberation time
(Tso) of about 3 s. We simultaneously generated and recorded
some minimum-phase sequences and then, keeping the system in
the same geometrical configuration (that is with the positions of
the source and the receiver unchanged), we measured the corre-
sponding room impulse response which served us for executing
the deconvolution. The unit of input/output was a PC equipped
with a full-duplex PCMCIA sound board (Digigram VXpocket®).
As regards the signals, the impulse response measurements were
performed with the aid a software employing the MLS technique
(WinMLS®), while for the playback and recording of the test se-
quences the SpectraLAB® software was used. The processing,
from the minimum-phase decomposition to the implementation of
the deconvolution algorithm (the latter executed in the frequency
domain via FFT), was accomplished by MATLAB® routines.

For building the excitation signals we used weighted sine waves

z(n) = A" sin(ng) -1<A<1 )

(¢ = 2nf/fs) whose minimum-phase property is clearly high-
lighted by the unilateral z-transform

(Asing)z™!

X(z) = 1—(2Acos¢) z71 + A2272

(6)

In order to avoid the non-linear effect which an abrupt start of
the excitation could cause to the response of the loudspeaker we
used a smoothed version of the sequences of Eq. 5: the start of
signal was put equal to z(n) = (n/ng) A" sin(n¢) in the range
corresponding to n less than a given no. Though not directly ev-
ident from the calculation of the z-transform, it can be shown by
the algorithm of Eq. 4 that the smoothed z(n) is still a minimum-
phase sequence and therefore can be employed in our experiment.
In practice, the frequencies used were around 250 Hz with an
attenuation factor A = 0.9998; the chosen smoothing interval
was ng = 400 corresponding, for the sampling frequency used
(fs =16 kHz), to atime interval no/ fs = 0.025 s, which proved
to be sufficient for preventing the distortion.

3. RESULTS

The typical pattern of the excitation signal z is shown in Fig. 1,
corresponding to f = 246 Hz. Figg. 2 and 3 respectively show
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Figure 1: Bypical pattern of the excitation signal.
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Figure 2: The room impulse response.

the impulse response h and the response y due to the excitation,
while the result of the deconvolution, which will be called z” in the
following, is reported in Fig. 4. A clear resemblance between x’
and z can be grasped from a first glance. The first property to be in-
vestigated is the relative time-scaling of the two signals, which can
be evaluated through the comparison of their envelope functions.
We remind that, given a signal s(t), this quantity is defined as the
modulus of the corresponding analytic signal z(t) = s(t) + 7 s(t),
3(t) being the Hilbert transform of s(¢). Figg. 5 and 6, reporting
the two envelopes in the ranges: 0 + 0.1 s and 0.1 -+~ 0.5 s, show
that the deconvolved signal matches the excitation apart from local
fluctuations, which seem to be related to spurious low frequency
components. In fact, the effect is far less evident if the deconvolu-
tion is performed on a response y filtered below 100 H z, as shown
by the result reported by Fig. 7 and the initial envelope in Fig. 8.
An intuitive explanation of this fact might be given by considering
the different processing of the two quantities y and h: the first one
is obtained by simply averaging the response due to the excitation
z reproduced several times in the environment (about 12), while
the impulse response is the result of a cross-correlation between
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Figure 3: Response to the excitation signal shown in Fig. 1.
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Figure 4: Deconvolution between the measured signal (Fig. 3) and
the impulse response.

an excitation (a maximum-length sequence) and the correspond-
ing averaged response. In the second case the noise suppression
is more effective, especially at low frequencies, so that these com-
ponents become relatively high in the inverse frequency response
obtained from h, and as a consequence they tend to be amplified in
the deconvolved signal. A confirmation of this phenomenon may
be obtained by looking at the degree of correlation of the recov-
ered time history with respect to the excitation, as expressed by
the normalized cross-correlation function

(z®)a'(t+ 1))
(z2(2)) (22 ())

The function has been calculated for x’ obtained from both unfil-
tered and filtered y. Its pattern, exhibited by the envelope functions
reported in Fig. 9 ( —0.2s < 7 < 0.2s), shows that the cross-
correlation for unfiltered y is almost perfectly symmetrical around
its maximum but systematically lower than the other one. As an
absolute reference, the =’ -z similarity may be evaluated from the
indicator £ = max(R,,), located approximately at 7 = 0: the

R (7) = )
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Figure 5: Envelope functions of excitation (solid line) and decon-
volved response (dotted line) in the range 0--0.1 s.
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Figure 6: Envelope functions of excitation (solid line) and decon-
volved response (dotted line) in the range 0.1-0.5 s.
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Figure 7: Deconvolution of the filtered signal.
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Figure 8: Envelope function of the signal obtained from the decon-
volution of the filtered response.
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Figure 9: Cross correlation of excitation and recovered signal (en-
velopes). Upper line: y filtered. Lower line: y unfiltered.

two obtained values are £ ~ 0.805 and £ ~ 0.997, the second one
denoting a very good correlation of =’ to z. Anyway, atime cor-
respondence is present in both cases as indicated by the function
shape, which is almost perfectly symmetrical around the time ori-
gin: the noise is just responsible for the observed scale relationship
Ryo (7) = kRyu gur(T) where k >~ 1.2,

Besides the analysis of the deconvolution from the process-
ing viewpoint it is important to show the importance of the above
mentioned physical restrictions related to the source-receiver po-
sition. To this purpose, we made impulse response measurements
with the receiver displaced from the position occupied during the
recording: a subsequent deconvolution yielded waveforms defi-
nitely dissimilar to the original stimulus. As an example, Fig. 10
reports a deconvolution executed with an impulse response taken
about 1 m from signal y.
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Figure 10: Deconvolution of signals at different locations.

4. CONCLUSIONS

A test for evaluating the effectiveness of the basic deconvolution
procedure for the recovery of minimum-phase signals has been dis-
cussed. Results similar to those here presented have been obtained
for several examples of signals, though the accuracy of the proce-
dure proved to be somewhat dependent on the frequency content of
the excitation. This behavior is extremely important for investigat-
ing possible limitations inherent in the linear model assumption: a
rigorous study will be undertaken in our following research, which
will be extended to mixed-phase signals as well.

A quantitative characterization of the results has been achieved
by the comparison of the envelopes and by examining the time
history behavior through the cross-correlation function: this has
allowed us to appreciate the way how random noise is amplified
by the raw deconvolution. Finally, the critical role played by the
source-receiver placement has been highlighted. In this context,
an issue of great interest is the development of a deconvolution
procedure less sensitive to spatial constraints and therefore more
useful in practical situations.
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