
RFC 9669
BPF Instruction Set Architecture (ISA)

Abstract
eBPF (which is no longer an acronym for anything), also commonly referred to as BPF, is a
technology with origins in the Linux kernel that can run untrusted programs in a privileged
context such as an operating system kernel. This document specifies the BPF instruction set
architecture (ISA).

Stream:
RFC:
Category:
Published:
ISSN:
Author:

Internet Engineering Task Force (IETF)
9669
Standards Track
October 2024
2070-1721
D. Thaler, Ed.

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9669

Copyright Notice
Copyright (c) 2024 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Thaler Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9669
https://www.rfc-editor.org/info/rfc9669
https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

2. Documentation Conventions

2.1. Types

2.2. Functions

2.3. Definitions

2.4. Conformance Groups

3. Instruction Encoding

3.1. Basic Instruction Encoding

3.2. Wide Instruction Encoding

3.3. Instruction Classes

4. Arithmetic and Jump Instructions

4.1. Arithmetic Instructions

4.2. Byte Swap Instructions

4.3. Jump Instructions

4.3.1. Helper Functions

4.3.2. Program-Local Functions

5. Load and Store Instructions

5.1. Regular Load and Store Operations

5.2. Sign-Extension Load Operations

5.3. Atomic Operations

5.4. 64-bit Immediate Instructions

5.4.1. Maps

5.4.2. Platform Variables

5.5. Legacy BPF Packet Access Instructions

6. Security Considerations

3

3

4

4

5

5

6

6

7

8

9

9

12

13

14

15

15

16

16

17

18

19

19

19

19

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 2

7. IANA Considerations

7.1. BPF Instruction Conformance Groups Registry

7.1.1. BPF Instruction Conformance Groups Registration Template

7.2. BPF Instruction Set Registry

7.2.1. BPF Instruction Registration Template

7.3. Adding Instructions

7.4. Deprecating Instructions

7.5. Change Control

7.6. Expert Review Instructions

8. References

8.1. Normative References

8.2. Informative References

Appendix A. Initial BPF Instruction Set Values

Acknowledgements

Author's Address

20

20

21

22

22

23

23

24

25

25

25

25

25

37

37

1. Introduction
eBPF, also commonly referred to as BPF, is a technology with origins in the Linux kernel that can
run untrusted programs in a privileged context such as an operating system kernel. This
document specifies the BPF instruction set architecture (ISA).

As a historical note, BPF originally stood for Berkeley Packet Filter, but now that it can do so
much more than packet filtering, the acronym no longer makes sense. BPF is now considered a
standalone term that does not stand for anything. The original BPF is sometimes referred to as
cBPF (classic BPF) to distinguish it from the now widely deployed eBPF (extended BPF).

2. Documentation Conventions
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 3

For brevity and consistency, this document refers to families of types using a shorthand syntax
and refers to several expository, mnemonic functions when describing the semantics of
instructions. The range of valid values for those types and the semantics of those functions are
defined in the following subsections.

2.1. Types
This document refers to integer types with the notation SN to specify a type's signedness (S) and
bit width (N), respectively.

S Meaning

u unsigned

s signed

Table 1: Meaning of Signedness Notation

N Bit Width

8 8 bits

16 16 bits

32 32 bits

64 64 bits

128 128 bits

Table 2: Meaning of Bit-Width Notation

For example, u32 is a type whose valid values are all the 32-bit unsigned numbers and s16 is a
type whose valid values are all the 16-bit signed numbers.

2.2. Functions
The following byte swap functions are direction agnostic. That is, the same function is used for
conversion in either direction discussed below.

be16: Takes an unsigned 16-bit number and converts it between host byte order and big-
endian byte order .
be32: Takes an unsigned 32-bit number and converts it between host byte order and big-
endian byte order.
be64: Takes an unsigned 64-bit number and converts it between host byte order and big-
endian byte order.
bswap16: Takes an unsigned 16-bit number in either big- or little-endian format and returns
the equivalent number with the same bit width but opposite endianness.

•
[IEN137]

•

•

•

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 4

bswap32: Takes an unsigned 32-bit number in either big- or little-endian format and returns
the equivalent number with the same bit width but opposite endianness.
bswap64: Takes an unsigned 64-bit number in either big- or little-endian format and returns
the equivalent number with the same bit width but opposite endianness.
le16: Takes an unsigned 16-bit number and converts it between host byte order and little-
endian byte order.
le32: Takes an unsigned 32-bit number and converts it between host byte order and little-
endian byte order.
le64: Takes an unsigned 64-bit number and converts it between host byte order and little-
endian byte order.

•

•

•

•

•

2.3. Definitions

To sign extend an X-bit number, A, to a Y-bit number, B, means to

Copy all X bits from A to the lower X bits of B.
Set the value of the remaining Y - X bits of B to the value of the most significant bit of A.

Example

Sign extend an 8-bit number A to a 16-bit number B on a big-endian platform:

Sign Extend:

1.
2.

A: 10000110
B: 11111111 10000110

2.4. Conformance Groups
An implementation does not need to support all instructions specified in this document (e.g.,
deprecated instructions). Instead, a number of conformance groups are specified. An
implementation support the base32 conformance group and support additional
conformance groups, where supporting a conformance group means it support all
instructions in that conformance group.

The use of named conformance groups enables interoperability between a runtime that executes
instructions, and tools such as compilers that generate instructions for the runtime. Thus,
capability discovery in terms of conformance groups might be done manually by users or
automatically by tools.

Each conformance group has a short ASCII label (e.g., "base32") that corresponds to a set of
instructions that are mandatory. That is, each instruction has one or more conformance groups
of which it is a member.

This document defines the following conformance groups:

MUST MAY
MUST

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 5

base32:

base64:

atomic32:

atomic64:

divmul32:

divmul64:

packet:

includes all instructions defined in this specification unless otherwise noted.

includes base32, plus instructions explicitly noted as being in the base64 conformance
group.

includes 32-bit atomic operation instructions (see Section 5.3).

includes atomic32, plus 64-bit atomic operation instructions.

includes 32-bit division, multiplication, and modulo instructions.

includes divmul32, plus 64-bit division, multiplication, and modulo instructions.

deprecated packet access instructions.

3. Instruction Encoding
BPF has two instruction encodings:

the basic instruction encoding, which uses 64 bits to encode an instruction
the wide instruction encoding, which appends a second 64 bits after the basic instruction for
a total of 128 bits.

•
•

3.1. Basic Instruction Encoding
A basic instruction is encoded as follows:

operation to perform, encoded as follows:

The format of these bits varies by instruction class

the instruction class (see Section 3.3)

the source and destination register numbers, encoded as follows on a little-endian host:

+-+
| opcode | regs | offset |
+-+
| imm |
+-+

opcode:

+-+-+-+-+-+-+-+-+
|specific |class|
+-+-+-+-+-+-+-+-+

specific:

class:

regs:

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 6

and as follows on a big-endian host:

the source register number (0-10), except where otherwise specified (64-bit
immediate instructions (see Section 5.4) reuse this field for other purposes)

the destination register number (0-10), unless otherwise specified (future
instructions might reuse this field for other purposes)

signed integer offset used with pointer arithmetic, except where otherwise specified
(some arithmetic instructions reuse this field for other purposes)

signed integer immediate value

Note that the contents of multi-byte fields ('offset' and 'imm') are stored using big-endian byte
ordering on big-endian hosts and little-endian byte ordering on little-endian hosts.

For example:

Note that most instructions do not use all of the fields. Unused fields be cleared to zero.

+-+-+-+-+-+-+-+-+
|src_reg|dst_reg|
+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+
|dst_reg|src_reg|
+-+-+-+-+-+-+-+-+

src_reg:

dst_reg:

offset:

imm:

opcode offset imm assembly
 src_reg dst_reg
07 0 1 00 00 44 33 22 11 r1 += 0x11223344 // little
 dst_reg src_reg
07 1 0 00 00 11 22 33 44 r1 += 0x11223344 // big

SHALL

3.2. Wide Instruction Encoding
Some instructions are defined to use the wide instruction encoding, which uses two 32-bit
immediate values. The 64 bits following the basic instruction format contain a pseudo instruction
with 'opcode', 'dst_reg', 'src_reg', and 'offset' all set to zero.

This is depicted in the following figure:

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 7

operation to perform, encoded as explained above

the source and destination register numbers (unless otherwise specified), encoded as
explained above

signed integer offset used with pointer arithmetic, unless otherwise specified

signed integer immediate value

unused, set to zero

second signed integer immediate value

+-+
| opcode | regs | offset |
+-+
| imm |
+-+
| reserved |
+-+
| next_imm |
+-+

opcode:

regs:

offset:

imm:

reserved:

next_imm:

3.3. Instruction Classes
The three least significant bits of the 'opcode' field store the instruction class:

class Value Description Reference

LD 0x0 non-standard load operations Section 5

LDX 0x1 load into register operations Section 5

ST 0x2 store from immediate operations Section 5

STX 0x3 store from register operations Section 5

ALU 0x4 32-bit arithmetic operations Section 4

JMP 0x5 64-bit jump operations Section 4

JMP32 0x6 32-bit jump operations Section 4

ALU64 0x7 64-bit arithmetic operations Section 4

Table 3: Instruction Class

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 8

4. Arithmetic and Jump Instructions
For arithmetic and jump instructions (ALU, ALU64, JMP, and JMP32), the 8-bit 'opcode' field is
divided into three parts:

the operation code, whose meaning varies by instruction class

the source operand location, which unless otherwise specified is one of:

source Value Description

K 0 use 32-bit 'imm' value as source operand

X 1 use 'src_reg' register value as source operand

Table 4: Source Operand Location

the instruction class (see Section 3.3)

+-+-+-+-+-+-+-+-+
| code |s|class|
+-+-+-+-+-+-+-+-+

code:

s (source):

class:

4.1. Arithmetic Instructions
ALU uses 32-bit wide operands while ALU64 uses 64-bit wide operands for otherwise identical
operations. ALU64 instructions belong to the base64 conformance group unless noted otherwise.
The 'code' field encodes the operation as below, where 'src' refers to the source operand and 'dst'
refers to the value of the destination register.

Name code offset Description

ADD 0x0 0 dst += src

SUB 0x1 0 dst -= src

MUL 0x2 0 dst *= src

DIV 0x3 0 dst = (src != 0) ? (dst / src) : 0

SDIV 0x3 1 dst = (src != 0) ? (dst s/ src) : 0

OR 0x4 0 dst |= src

AND 0x5 0 dst &= src

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 9

Name code offset Description

LSH 0x6 0 dst <<= (src & mask)

RSH 0x7 0 dst >>= (src & mask)

NEG 0x8 0 dst = -dst

MOD 0x9 0 dst = (src != 0) ? (dst % src) : dst

SMOD 0x9 1 dst = (src != 0) ? (dst s% src) : dst

XOR 0xa 0 dst ^= src

MOV 0xb 0 dst = src

MOVSX 0xb 8/16/32 dst = (s8,s16,s32)src

ARSH 0xc 0 sign extending (Section 2.3) dst >>= (src & mask)

END 0xd 0 byte swap operations (see Section 4.2)

Table 5: Arithmetic Instructions

Underflow and overflow are allowed during arithmetic operations, meaning the 64-bit or 32-bit
value will wrap. If BPF program execution would result in division by zero, the destination
register is instead set to zero. If execution would result in modulo by zero, for ALU64 the value of
the destination register is unchanged whereas for ALU the upper 32 bits of the destination
register are zeroed.

{ADD, X, ALU}, where 'code' = ADD, 'source' = X, and 'class' = ALU, means:

where '(u32)' indicates that the upper 32 bits are zeroed.

{ADD, X, ALU64} means:

{XOR, K, ALU} means:

{XOR, K, ALU64} means:

 dst = (u32) ((u32) dst + (u32) src)

 dst = dst + src

 dst = (u32) dst ^ (u32) imm

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 10

Note that most arithmetic instructions have 'offset' set to 0. Only three instructions (SDIV, SMOD,
MOVSX) have a non-zero 'offset'.

Division, multiplication, and modulo operations for ALU are part of the "divmul32" conformance
group, and division, multiplication, and modulo operations for ALU64 are part of the "divmul64"
conformance group. The division and modulo operations support both unsigned and signed
flavors.

For unsigned operations (DIV and MOD), for ALU, 'imm' is interpreted as a 32-bit unsigned value.
For ALU64, 'imm' is first sign extended (Section 2.3) from 32 to 64 bits, and then interpreted as a
64-bit unsigned value.

For signed operations (SDIV and SMOD), for ALU, 'imm' is interpreted as a 32-bit signed value. For
ALU64, 'imm' is first sign extended (Section 2.3) from 32 to 64 bits, and then interpreted as a 64-bit
signed value.

Note that there are varying definitions of the signed modulo operation when the dividend or
divisor are negative, where implementations often vary by language such that Python, Ruby, etc.
differ from C, Go, Java, etc. This specification requires that signed modulo use truncated
division (where -13 % 3 == -1) as implemented in C, Go, etc.:

The MOVSX instruction does a move operation with sign extension. {MOVSX, X, ALU} sign extends
(Section 2.3) 8-bit and 16-bit operands into 32-bit operands, and zeroes the remaining upper 32
bits. {MOVSX, X, ALU64} sign extends (Section 2.3) 8-bit, 16-bit, and 32-bit operands into 64-bit
operands. Unlike other arithmetic instructions, MOVSX is only defined for register source
operands (X).

{MOV, K, ALU64} means:

{MOV, X, ALU} means:

{MOVSX, X, ALU} with 'offset' 8 means:

 dst = dst ^ imm

MUST

 a % n = a - n * trunc(a / n)

 dst = (s64)imm

 dst = (u32)src

 dst = (u32)(s32)(s8)src

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 11

The NEG instruction is only defined when the source bit is clear (K).

Shift operations use a mask of 0x3F (63) for 64-bit operations and 0x1F (31) for 32-bit operations.

4.2. Byte Swap Instructions
The byte swap instructions use instruction classes of ALU and ALU64 and a 4-bit 'code' field of END.

The byte swap instructions operate on the destination register only and do not use a separate
source register or immediate value.

For ALU, the 1-bit source operand field in the opcode is used to select what byte order the
operation converts from or to. For ALU64, the 1-bit source operand field in the opcode is reserved
and be set to 0.

class source Value Description

ALU LE 0 convert between host byte order and little endian

ALU BE 1 convert between host byte order and big endian

ALU64 Reserved 0 do byte swap unconditionally

Table 6: Byte Swap Instructions

The 'imm' field encodes the width of the swap operations. The following widths are supported:
16, 32, and 64. Width 64 operations belong to the base64 conformance group and other swap
operations belong to the base32 conformance group.

Examples:

{END, LE, ALU} with 'imm' = 16/32/64 means:

{END, BE, ALU} with 'imm' = 16/32/64 means:

{END, TO, ALU64} with 'imm' = 16/32/64 means:

MUST

 dst = le16(dst)
 dst = le32(dst)
 dst = le64(dst)

 dst = be16(dst)
 dst = be32(dst)
 dst = be64(dst)

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 12

 dst = bswap16(dst)
 dst = bswap32(dst)
 dst = bswap64(dst)

4.3. Jump Instructions
JMP32 uses 32-bit wide operands and indicates the base32 conformance group; JMP uses 64-bit
wide operands for otherwise identical operations and indicates the base64 conformance group
unless otherwise specified. The 'code' field encodes the operation as below:

code Value src_reg Description Notes

JA 0x0 0x0 PC += offset {JA, K, JMP} only

JA 0x0 0x0 PC += imm {JA, K, JMP32} only

JEQ 0x1 any PC += offset if dst == src

JGT 0x2 any PC += offset if dst > src unsigned

JGE 0x3 any PC += offset if dst >= src unsigned

JSET 0x4 any PC += offset if dst & src

JNE 0x5 any PC += offset if dst != src

JSGT 0x6 any PC += offset if dst > src signed

JSGE 0x7 any PC += offset if dst >= src signed

CALL 0x8 0x0 call helper function by static
ID

{CALL, K, JMP} only, see Section
4.3.1

CALL 0x8 0x1 call PC += imm {CALL, K, JMP} only, see Section
4.3.2

CALL 0x8 0x2 call helper function by BTF
ID

{CALL, K, JMP} only, see Section
4.3.1

EXIT 0x9 0x0 return {CALL, K, JMP} only

JLT 0xa any PC += offset if dst < src unsigned

JLE 0xb any PC += offset if dst <= src unsigned

JSLT 0xc any PC += offset if dst < src signed

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 13

code Value src_reg Description Notes

JSLE 0xd any PC += offset if dst <= src signed

Table 7: Jump Instructions

where 'PC' denotes the program counter, and the offset to increment by is in units of 64-bit
instructions relative to the instruction following the jump instruction. Thus 'PC += 1' skips
execution of the next instruction if it's a basic instruction or results in undefined behavior if the
next instruction is a 128-bit wide instruction.

Example:

{JSGE, X, JMP32} means:

where 's>=' indicates a signed '>=' comparison.

{JLE, K, JMP} means:

{JA, K, JMP32} means:

where 'imm' means the branch offset comes from the 'imm' field.

Note that there are two flavors of JA instructions. The JMP class permits a 16-bit jump offset
specified by the 'offset' field, whereas the JMP32 class permits a 32-bit jump offset specified by the
'imm' field. A conditional jump greater than 16 bits may be converted to a conditional jump less
than 16 bits plus a 32-bit unconditional jump.

All CALL and JA instructions belong to the base32 conformance group.

 if (s32)dst s>= (s32)src goto +offset

 if dst <= (u64)(s64)imm goto +offset

 gotol +imm

4.3.1. Helper Functions

Helper functions are a concept whereby BPF programs can call into a set of function calls
exposed by the underlying platform.

Historically, each helper function was identified by a static ID encoded in the 'imm' field. Further
documentation of helper functions is outside the scope of this document and standardization is
left for future work, but use is widely deployed and more information can be found in platform-
specific documentation (e.g., Linux kernel documentation).

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 14

Platforms that support the BPF Type Format (BTF) support identifying a helper function by a BTF
ID encoded in the 'imm' field, where the BTF ID identifies the helper name and type. Further
documentation of BTF is outside the scope of this document and standardization is left for future
work, but use is widely deployed and more information can be found in platform-specific
documentation (e.g., Linux kernel documentation).

4.3.2. Program-Local Functions

Program-local functions are functions exposed by the same BPF program as the caller, and are
referenced by offset from the instruction following the call instruction, similar to JA. The offset is
encoded in the 'imm' field of the call instruction. An EXIT within the program-local function will
return to the caller.

5. Load and Store Instructions
For load and store instructions (LD, LDX, ST, and STX), the 8-bit 'opcode' field is divided as follows:

The mode modifier is one of:

mode Value Description Reference

IMM 0 64-bit immediate instructions Section 5.4

ABS 1 legacy BPF packet access (absolute) Section 5.5

IND 2 legacy BPF packet access (indirect) Section 5.5

MEM 3 regular load and store operations Section 5.1

MEMSX 4 sign-extension load operations Section 5.2

ATOMIC 6 atomic operations Section 5.3

Table 8: Mode Modifier

The size modifier is one of:

size Value Description

W 0 word (4 bytes)

H 1 half word (2 bytes)

+-+-+-+-+-+-+-+-+
|mode |sz |class|
+-+-+-+-+-+-+-+-+

mode:

sz (size):

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 15

size Value Description

B 2 byte

DW 3 double word (8 bytes)

Table 9: Size Modifier

Instructions using DW belong to the base64 conformance group.

The instruction class (see Section 3.3)class:

5.1. Regular Load and Store Operations
The MEM mode modifier is used to encode regular load and store instructions that transfer data
between a register and memory.

{MEM, <size>, STX} means:

{MEM, <size>, ST} means:

{MEM, <size>, LDX} means:

Where '<size>' is one of: B, H, W, or DW, and 'unsigned size' is one of: u8, u16, u32, or u64.

 *(size *) (dst + offset) = src

 *(size *) (dst + offset) = imm

 dst = *(unsigned size *) (src + offset)

5.2. Sign-Extension Load Operations
The MEMSX mode modifier is used to encode sign-extension load instructions (Section 2.3) that
transfer data between a register and memory.

{MEMSX, <size>, LDX} means:

Where '<size>' is one of: B, H, or W, and 'signed size' is one of: s8, s16, or s32.

 dst = *(signed size *) (src + offset)

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 16

5.3. Atomic Operations
Atomic operations operate on memory and cannot be interrupted or corrupted by other access to
the same memory region by other BPF programs or means outside of this specification.

All atomic operations supported by BPF are encoded as store operations that use the ATOMIC
mode modifier as follows:

{ATOMIC, W, STX} for 32-bit operations, which are part of the "atomic32" conformance
group.
{ATOMIC, DW, STX} for 64-bit operations, which are part of the "atomic64" conformance
group.
8-bit and 16-bit wide atomic operations are not supported.

The 'imm' field is used to encode the actual atomic operation. Simple atomic operations use a
subset of the values defined to encode arithmetic operations in the 'imm' field to encode the
atomic operation:

imm Value Description

ADD 0x00 atomic add

OR 0x40 atomic or

AND 0x50 atomic and

XOR 0xa0 atomic xor

Table 10: Simple Atomic Operations

{ATOMIC, W, STX} with 'imm' = ADD means:

{ATOMIC, DW, STX} with 'imm' = ADD means:

In addition to the simple atomic operations, there is also a modifier and two complex atomic
operations:

imm Value Description

FETCH 0x01 modifier: return old value

•

•

•

 *(u32 *)(dst + offset) += src

 *(u64 *)(dst + offset) += src

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 17

imm Value Description

XCHG 0xe0 | FETCH atomic exchange

CMPXCHG 0xf0 | FETCH atomic compare and exchange

Table 11: Complex Atomic Operations and a Modifier

The FETCH modifier is optional for simple atomic operations and is always set for the complex
atomic operations. If the FETCH flag is set, then the operation also overwrites src with the value
that was in memory before it was modified.

The XCHG operation atomically exchanges src with the value addressed by dst + offset.

The CMPXCHG operation atomically compares the value addressed by dst + offset with R0. If
they match, the value addressed by dst + offset is replaced with src. In either case, the value
that was at dst + offset before the operation is zero-extended and loaded back to R0.

5.4. 64-bit Immediate Instructions
Instructions with the IMM 'mode' modifier use the wide instruction encoding defined in Section 3,
and use the 'src_reg' field of the basic instruction to hold an opcode subtype.

The following table defines a set of {IMM, DW, LD} instructions with opcode subtypes in the
'src_reg' field, using new terms such as "map" defined further below:

src_reg Pseudocode imm Type dst Type

0x0 dst = (next_imm << 32) | imm integer integer

0x1 dst = map_by_fd(imm) map fd map

0x2 dst = map_val(map_by_fd(imm)) + next_imm map fd data address

0x3 dst = var_addr(imm) variable id data address

0x4 dst = code_addr(imm) integer code address

0x5 dst = map_by_idx(imm) map index map

0x6 dst = map_val(map_by_idx(imm)) + next_imm map index data address

Table 12: 64-bit Immediate Instructions

where

map_by_fd(imm) means to convert a 32-bit file descriptor into an address of a map (see
Section 5.4.1)
map_by_idx(imm) means to convert a 32-bit index into an address of a map

•

•

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 18

map_val(map) gets the address of the first value in a given map
var_addr(imm) gets the address of a platform variable (see Section 5.4.2) with a given id
code_addr(imm) gets the address of the instruction at a specified relative offset in number of
(64-bit) instructions
the 'imm type' can be used by disassemblers for display
the 'dst type' can be used for verification and just-in-time compilation purposes

•
•
•

•
•

5.4.1. Maps

Maps are shared memory regions accessible by BPF programs on some platforms. A map can
have various semantics as defined in a separate document, and may or may not have a single
contiguous memory region, but the 'map_val(map)' is currently only defined for maps that do
have a single contiguous memory region.

Each map can have a file descriptor (fd) if supported by the platform, where 'map_by_fd(imm)'
means to get the map with the specified file descriptor. Each BPF program can also be defined to
use a set of maps associated with the program at load time, and 'map_by_idx(imm)' means to get
the map with the given index in the set associated with the BPF program containing the
instruction.

5.4.2. Platform Variables

Platform variables are memory regions, identified by integer ids, exposed by the runtime, and
accessible by BPF programs on some platforms. The 'var_addr(imm)' operation means to get the
address of the memory region identified by the given id.

5.5. Legacy BPF Packet Access Instructions
BPF previously introduced special instructions for access to packet data that were carried over
from classic BPF. These instructions used an instruction class of LD, a size modifier of W, H, or B,
and a mode modifier of ABS or IND. The 'dst_reg' and 'offset' fields were set to zero, and 'src_reg'
was set to zero for ABS. However, these instructions are deprecated and no longer be
used. All legacy packet access instructions belong to the "packet" conformance group.

SHOULD

6. Security Considerations
BPF programs could use BPF instructions to do malicious things with memory, CPU, networking,
or other system resources. This is not fundamentally different from any other type of software
that may run on a device. Execution environments should be carefully designed to only run BPF
programs that are trusted and verified, and sandboxing and privilege level separation are key
strategies for limiting security and abuse impact. For example, BPF verifiers are well-known and
widely deployed and are responsible for ensuring that BPF programs will terminate within a
reasonable time, only interact with memory in safe ways, adhere to platform-specified API
contracts, and don't use instructions with undefined behavior. This level of verification can often
provide a stronger level of security assurance than for other software and operating system code.

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 19

While the details are out of scope of this document, Linux and PREVAIL
provide many details. Future IETF work will document verifier expectations and building blocks
for allowing safe execution of untrusted BPF programs.

Executing programs using the BPF instruction set also requires either an interpreter or a
compiler to translate them to built-in hardware processor instructions. In general, interpreters
are considered a source of insecurity (e.g., gadgets susceptible to side-channel attacks due to
speculative execution) whenever one is used in the same memory address space as data with
confidentiality concerns. As such, use of a compiler is recommended instead. Compilers should
be audited carefully for vulnerabilities to ensure that compilation of a trusted and verified BPF
program to built-in processor instructions does not introduce vulnerabilities.

Exposing functionality via BPF extends the interface between the component executing the BPF
program and the component submitting it. Careful consideration of what functionality is exposed
and how that impacts the security properties desired is required.

[LINUX] [PREVAIL]

7. IANA Considerations
This document defines two registries.

7.1. BPF Instruction Conformance Groups Registry
This document defines an IANA registry for BPF instruction conformance groups, as follows:

Name of the registry: BPF Instruction Conformance Groups
Name of the registry group: BPF Instructions
Required information for registrations: See the BPF Instruction Conformance Groups
Registration Template (Section 7.1.1)
Syntax of registry entries: Each entry has the following fields: name, description, includes,
excludes, status, change controller, and reference. See Section 7.1.1 for more details.
Registration policy (see for details):

Permanent: Standards Action or IESG Approval
Provisional: Specification Required
Historical: Specification Required

Contact: BPF Working Group
Change Controller: IETF

Initial entries in this registry are as follows:

Name Description Includes Excludes Status Reference

atomic32 32-bit atomic
instructions

- - Permanent RFC 9669,
Section 5.3

•
•
•

•

• Section 4 of [RFC8126]

◦
◦
◦

•
•

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 20

https://rfc-editor.org/rfc/rfc8126#section-4

Name Description Includes Excludes Status Reference

atomic64 64-bit atomic
instructions

atomic32 - Permanent RFC 9669,
Section 5.3

base32 32-bit base
instructions

- - Permanent RFC 9669

base64 64-bit base
instructions

base32 - Permanent RFC 9669

divmul32 32-bit division and
modulo

- - Permanent RFC 9669,
Section 4.1

divmul64 64-bit division and
modulo

divmul32 - Permanent RFC 9669,
Section 4.1

packet Legacy packet
instructions

- - Historical RFC 9669,
Section 5.5

Table 13: Initial Conformance Groups

7.1.1. BPF Instruction Conformance Groups Registration Template

This template describes the fields that must be supplied in a registration request:

Alphanumeric label indicating the name of the conformance group.

Brief description of the conformance group.

Any other conformance groups that are included by this group.

Any other conformance groups that are excluded by this group.

This reflects the status requested and must be one of 'Permanent', 'Provisional', or
'Historical'.

Person (including contact information) to contact for further information.

Organization or person (often the author of the defining specification),
including contact information, authorized to change this.

A reference to the defining specification. Include full citations for all referenced
documents. Registration requests for 'Provisional' registration can be included in an Internet-
Draft; when the documents are approved for publication as an RFC, the registration will be
updated to 'Permanent'.

Name:

Description:

Includes:

Excludes:

Status:

Contact:

Change Controller:

Reference:

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 21

7.2. BPF Instruction Set Registry
This document defines an IANA registry for BPF instructions, as follows:

Name of the registry: BPF Instruction Set
Name of the registry group: BPF Instructions
Required information for registrations: See the BPF Instruction Registration Template
(Section 7.2.1)
Syntax of registry entries: Each entry has the following fields: opcode, src, offset, imm,
description, groups, change controller, and reference. See Section 7.2.1 for more details.
Registration policy: New instructions require a new entry in the conformance group registry
and the same registration policies apply.
Contact: BPF Working Group
Change Controller: IETF
Initial registrations: See Appendix A. Instructions other than those listed as deprecated are
Permanent. Any listed as deprecated are Historical.

•
•
•

•

•

•
•
•

7.2.1. BPF Instruction Registration Template

This template describes the fields that must be supplied in a registration request:

A 1-byte value in hex format indicating the value of the opcode field.

Either a numeric value indicating the value of the src_reg field, or "any".

Either a numeric value indicating the value of the offset field, or "any".

Either a value indicating the value of the imm field, or "any".

Description of what the instruction does, typically in pseudocode.

A list of one or more comma-separated conformance groups to which the instruction
belongs.

Person (including contact information) to contact for further information.

Organization or person (often the author), including contact information,
authorized to change this.

A reference to the defining specification. Include full citations for all referenced
documents. Registration requests for 'Provisional' registration can be included in an Internet-
Draft; when the documents are approved for publication as an RFC, the registration will be
updated to 'Permanent'.

Opcode:

Src_reg:

Offset:

Imm:

Description:

Groups:

Contact:

Change Controller:

Reference:

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 22

7.3. Adding Instructions
A specification may add additional instructions to the BPF Instruction Set registry. Once a
conformance group is registered with a set of instructions, no further instructions can be added
to that conformance group. A specification should instead create a new conformance group that
includes the original conformance group, plus any newly added instructions. Inclusion of the
original conformance group is done via the "includes" column of the BPF Instruction
Conformance Groups registry, and inclusion of newly added instructions is done via the "groups"
column of the BPF Instruction Set registry.

For example, consider an existing hypothetical group called "example" with two instructions in
it. One might add two more instructions by first adding an "examplev2" group to the BPF
Instruction Conformance Groups registry as follows:

Name Description Includes Excludes Status

example Original example instructions - - Permanent

examplev2 Newer set of example instructions example - Permanent

Table 14: Conformance Group Example for Addition

And then adding the new instructions into the BPF Instruction Set registry as follows:

opcode ... Description Groups

aaa ... Original example instruction 1 example

bbb ... Original example instruction 2 example

ccc ... Added example instruction 3 examplev2

ddd ... Added example instruction 4 examplev2

Table 15: Instruction Addition Example

Supporting the "examplev2" group thus requires supporting all four example instructions.

7.4. Deprecating Instructions
Deprecating instructions that are part of an existing conformance group can be done by defining
a new conformance group for the newly deprecated instructions, and defining a new
conformance group that supersedes the existing conformance group containing the instructions,
where the new conformance group includes the existing one and excludes the deprecated
instruction group.

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 23

For example, if deprecating an instruction in an existing hypothetical group called "example",
two new groups ("legacyexample" and "examplev2") might be registered in the BPF Instruction
Conformance Groups registry as follows:

Name Description Includes Excludes Status

example Original example instructions - - Permanent

legacyexample Legacy example instructions - - Historical

examplev2 Example instructions example legacyexample Permanent

Table 16: Conformance Group Example for Deprecation

The BPF Instruction Set registry entries for the deprecated instructions would then be updated to
add "legacyexample" to the set of groups for those instructions, as follows:

opcode ... Description Groups

aaa ... Good original instruction 1 example

bbb ... Good original instruction 2 example

ccc ... Bad original instruction 3 example, legacyexample

ddd ... Bad original instruction 4 example, legacyexample

Table 17: Instruction Deprecation Example

Finally, updated implementations that dropped support for the deprecated instructions would
then be able to claim conformance to "examplev2" rather than "example".

7.5. Change Control
Registrations can be updated in a registry by the same mechanism as required for an initial
registration. In cases where the original definition of an entry is contained in an IESG-approved
document, in which case the IETF would be the change controller, update of the specification
also requires IESG approval.

'Provisional' registrations can be updated by the change controller designated in the existing
registration. In addition, the IESG can reassign responsibility for a 'Provisional' registration or
can request specific changes to an entry. This will enable changes to be made to entries where
the original registrant is out of contact or unwilling or unable to make changes.

Transition from 'Provisional' to 'Permanent' status can be requested and approved in the same
manner as a new 'Permanent' registration. Transition from 'Permanent' to 'Historical' status
requires IESG approval. Transition from 'Provisional' to 'Historical' can be requested by anyone
authorized to update the 'Provisional' registration.

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 24

[IEN137]

[RFC2119]

[RFC8126]

[RFC8174]

[LINUX]

[PREVAIL]

8. References

8.1. Normative References

, , , 1 April 1980,
.

, , ,
, , March 1997,
.

, , and ,
, , , , June

2017, .

, ,
, , , May 2017,

.

8.2. Informative References

, .

, , , , , ,
, and ,

, , June 2019,
.

7.6. Expert Review Instructions
The IANA registries established by this document are informed by written specifications, which
themselves are facilitated and approved by an Expert Review process (see

).

Designated experts are expected to consult with the active BPF working group (e.g., via email to
the working group's mailing list) if it exists, as well as other interested parties (e.g., via email to
one or more active mailing list(s) for relevant BPF communities and platforms). The designated
expert is expected to verify that the encoding and semantics for any new instructions are
properly documented in a public-facing specification. In the event of future RFC documents for
ISA extensions, experts may permit early assignment before the RFC document is available, as
long as a specification that satisfies the above requirements exists.

Section 5.3 of
[RFC8126]

Cohen, D. "ON HOLY WARS AND A PLEA FOR PEACE" IEN 137
<https://www.rfc-editor.org/ien/ien137.txt>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Cotton, M. Leiba, B. T. Narten "Guidelines for Writing an IANA
Considerations Section in RFCs" BCP 26 RFC 8126 DOI 10.17487/RFC8126

<https://www.rfc-editor.org/info/rfc8126>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

"eBPF verifier" <https://www.kernel.org/doc/html/latest/bpf/verifier.html>

Gershuni, E. Amit, N. Gurfinkel, A. Narodytska, N. Navas, J. Rinetzky, N.
Ryzhyk, L. M. Sagiv "Simple and Precise Static Analysis of Untrusted Linux
Kernel Extensions" DOI 10.1145/3314221.3314590 <https://doi.org/
10.1145/3314221.3314590>

Appendix A. Initial BPF Instruction Set Values
Initial values for the BPF Instruction Set registry are given below. The descriptions in this table
are informative. In case of any discrepancy, the reference is authoritative.

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 25

https://rfc-editor.org/rfc/rfc8126#section-5.3
https://www.rfc-editor.org/ien/ien137.txt
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.kernel.org/doc/html/latest/bpf/verifier.html
https://doi.org/10.1145/3314221.3314590
https://doi.org/10.1145/3314221.3314590

opcode src_reg off-
set

imm Description Groups Ref

0x00 0x0 0 any (additional immediate
value)

base64 RFC 9669,
Section 5.4

0x04 0x0 0 any dst = (u32)((u32)dst +
(u32)imm)

base32 RFC 9669,
Section 4.1

0x05 0x0 any 0x00 goto +offset base32 RFC 9669,
Section 4.3

0x06 0x0 0 any goto +imm base32 RFC 9669,
Section 4.3

0x07 0x0 0 any dst += imm base64 RFC 9669,
Section 4.1

0x0c any 0 0x00 dst = (u32)((u32)dst +
(u32)src)

base32 RFC 9669,
Section 4.1

0x0f any 0 0x00 dst += src base64 RFC 9669,
Section 4.1

0x14 0x0 0 any dst = (u32)((u32)dst -
(u32)imm)

base32 RFC 9669,
Section 4.1

0x15 0x0 any any if dst == imm goto +offset base64 RFC 9669,
Section 4.3

0x16 0x0 any any if (u32)dst == imm goto
+offset

base32 RFC 9669,
Section 4.3

0x17 0x0 0 any dst -= imm base64 RFC 9669,
Section 4.1

0x18 0x0 0 any dst = (next_imm << 32) |
imm

base64 RFC 9669,
Section 5.4

0x18 0x1 0 any dst = map_by_fd(imm) base64 RFC 9669,
Section 5.4

0x18 0x2 0 any dst =
map_val(map_by_fd(imm)) +
next_imm

base64 RFC 9669,
Section 5.4

0x18 0x3 0 any dst = var_addr(imm) base64 RFC 9669,
Section 5.4

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 26

opcode src_reg off-
set

imm Description Groups Ref

0x18 0x4 0 any dst = code_addr(imm) base64 RFC 9669,
Section 5.4

0x18 0x5 0 any dst = map_by_idx(imm) base64 RFC 9669,
Section 5.4

0x18 0x6 0 any dst =
map_val(map_by_idx(imm))
+ next_imm

base64 RFC 9669,
Section 5.4

0x1c any 0 0x00 dst = (u32)((u32)dst -
(u32)src)

base32 RFC 9669,
Section 4.1

0x1d any any 0x00 if dst == src goto +offset base64 RFC 9669,
Section 4.3

0x1e any any 0x00 if (u32)dst == (u32)src goto
+offset

base32 RFC 9669,
Section 4.3

0x1f any 0 0x00 dst -= src base64 RFC 9669,
Section 4.1

0x20 0x0 0 any (deprecated,
implementation-specific)

packet RFC 9669,
Section 5.5

0x24 0x0 0 any dst = (u32)(dst * imm) divmul32 RFC 9669,
Section 4.1

0x25 0x0 any any if dst > imm goto +offset base64 RFC 9669,
Section 4.3

0x26 0x0 any any if (u32)dst > imm goto
+offset

base32 RFC 9669,
Section 4.3

0x27 0x0 0 any dst *= imm divmul64 RFC 9669,
Section 4.1

0x28 0x0 0 any (deprecated,
implementation-specific)

packet RFC 9669,
Section 5.5

0x2c any 0 0x00 dst = (u32)(dst * src) divmul32 RFC 9669,
Section 4.1

0x2d any any 0x00 if dst > src goto +offset base64 RFC 9669,
Section 4.3

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 27

opcode src_reg off-
set

imm Description Groups Ref

0x2e any any 0x00 if (u32)dst > (u32)src goto
+offset

base32 RFC 9669,
Section 4.3

0x2f any 0 0x00 dst *= src divmul64 RFC 9669,
Section 4.1

0x30 0x0 0 any (deprecated,
implementation-specific)

packet RFC 9669,
Section 5.5

0x34 0x0 0 any dst = (u32)((imm != 0) ?
((u32)dst / (u32)imm) : 0)

divmul32 RFC 9669,
Section 4.1

0x34 0x0 1 any dst = (u32)((imm != 0) ?
((s32)dst s/ imm) : 0)

divmul32 RFC 9669,
Section 4.1

0x35 0x0 any any if dst >= imm goto +offset base64 RFC 9669,
Section 4.3

0x36 0x0 any any if (u32)dst >= imm goto
+offset

base32 RFC 9669,
Section 4.3

0x37 0x0 0 any dst = (imm != 0) ? (dst /
(u32)imm) : 0

divmul64 RFC 9669,
Section 4.1

0x37 0x0 1 any dst = (imm != 0) ? (dst s/
imm) : 0

divmul64 RFC 9669,
Section 4.1

0x3c any 0 0x00 dst = (u32)((src != 0) ?
((u32)dst / (u32)src) : 0)

divmul32 RFC 9669,
Section 4.1

0x3c any 1 0x00 dst = (u32)((src != 0) ?
((s32)dst s/(s32)src) : 0)

divmul32 RFC 9669,
Section 4.1

0x3d any any 0x00 if dst >= src goto +offset base64 RFC 9669,
Section 4.3

0x3e any any 0x00 if (u32)dst >= (u32)src goto
+offset

base32 RFC 9669,
Section 4.3

0x3f any 0 0x00 dst = (src != 0) ? (dst / src) : 0 divmul64 RFC 9669,
Section 4.1

0x3f any 1 0x00 dst = (src != 0) ? (dst s/ src) :
0

divmul64 RFC 9669,
Section 4.1

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 28

opcode src_reg off-
set

imm Description Groups Ref

0x40 any 0 any (deprecated,
implementation-specific)

packet RFC 9669,
Section 5.5

0x44 0x0 0 any dst = (u32)(dst | imm) base32 RFC 9669,
Section 4.1

0x45 0x0 any any if dst & imm goto +offset base64 RFC 9669,
Section 4.3

0x46 0x0 any any if (u32)dst & imm goto
+offset

base32 RFC 9669,
Section 4.3

0x47 0x0 0 any dst |= imm base64 RFC 9669,
Section 4.1

0x48 any 0 any (deprecated,
implementation-specific)

packet RFC 9669,
Section 5.5

0x4c any 0 0x00 dst = (u32)(dst | src) base32 RFC 9669,
Section 4.1

0x4d any any 0x00 if dst & src goto +offset base64 RFC 9669,
Section 4.3

0x4e any any 0x00 if (u32)dst & (u32)src goto
+offset

base32 RFC 9669,
Section 4.3

0x4f any 0 0x00 dst |= src base64 RFC 9669,
Section 4.1

0x50 any 0 any (deprecated,
implementation-specific)

packet RFC 9669,
Section 5.5

0x54 0x0 0 any dst = (u32)(dst & imm) base32 RFC 9669,
Section 4.1

0x55 0x0 any any if dst != imm goto +offset base64 RFC 9669,
Section 4.3

0x56 0x0 any any if (u32)dst != imm goto
+offset

base32 RFC 9669,
Section 4.3

0x57 0x0 0 any dst &= imm base64 RFC 9669,
Section 4.1

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 29

opcode src_reg off-
set

imm Description Groups Ref

0x5c any 0 0x00 dst = (u32)(dst & src) base32 RFC 9669,
Section 4.1

0x5d any any 0x00 if dst != src goto +offset base64 RFC 9669,
Section 4.3

0x5e any any 0x00 if (u32)dst != (u32)src goto
+offset

base32 RFC 9669,
Section 4.3

0x5f any 0 0x00 dst &= src base64 RFC 9669,
Section 4.1

0x61 any any 0x00 dst = *(u32 *)(src + offset) base32 RFC 9669,
Section 5

0x62 0x0 any any *(u32 *)(dst + offset) = imm base32 RFC 9669,
Section 5

0x63 any any 0x00 *(u32 *)(dst + offset) = src base32 RFC 9669,
Section 5

0x64 0x0 0 any dst = (u32)(dst << imm) base32 RFC 9669,
Section 4.1

0x65 0x0 any any if dst s> imm goto +offset base64 RFC 9669,
Section 4.3

0x66 0x0 any any if (s32)dst s> (s32)imm goto
+offset

base32 RFC 9669,
Section 4.3

0x67 0x0 0 any dst <<= imm base64 RFC 9669,
Section 4.1

0x69 any any 0x00 dst = *(u16 *)(src + offset) base32 RFC 9669,
Section 5

0x6a 0x0 any any *(u16 *)(dst + offset) = imm base32 RFC 9669,
Section 5

0x6b any any 0x00 *(u16 *)(dst + offset) = src base32 RFC 9669,
Section 5

0x6c any 0 0x00 dst = (u32)(dst << src) base32 RFC 9669,
Section 4.1

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 30

opcode src_reg off-
set

imm Description Groups Ref

0x6d any any 0x00 if dst s> src goto +offset base64 RFC 9669,
Section 4.3

0x6e any any 0x00 if (s32)dst s> (s32)src goto
+offset

base32 RFC 9669,
Section 4.3

0x6f any 0 0x00 dst <<= src base64 RFC 9669,
Section 4.1

0x71 any any 0x00 dst = *(u8 *)(src + offset) base32 RFC 9669,
Section 5

0x72 0x0 any any *(u8 *)(dst + offset) = imm base32 RFC 9669,
Section 5

0x73 any any 0x00 *(u8 *)(dst + offset) = src base32 RFC 9669,
Section 5

0x74 0x0 0 any dst = (u32)(dst >> imm) base32 RFC 9669,
Section 4.1

0x75 0x0 any any if dst s>= imm goto +offset base64 RFC 9669,
Section 4.3

0x76 0x0 any any if (s32)dst s>= (s32)imm goto
+offset

base32 RFC 9669,
Section 4.3

0x77 0x0 0 any dst >>= imm base64 RFC 9669,
Section 4.1

0x79 any any 0x00 dst = *(u64 *)(src + offset) base64 RFC 9669,
Section 5

0x7a 0x0 any any *(u64 *)(dst + offset) = imm base64 RFC 9669,
Section 5

0x7b any any 0x00 *(u64 *)(dst + offset) = src base64 RFC 9669,
Section 5

0x7c any 0 0x00 dst = (u32)(dst >> src) base32 RFC 9669,
Section 4.1

0x7d any any 0x00 if dst s>= src goto +offset base64 RFC 9669,
Section 4.3

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 31

opcode src_reg off-
set

imm Description Groups Ref

0x7e any any 0x00 if (s32)dst s>= (s32)src goto
+offset

base32 RFC 9669,
Section 4.3

0x7f any 0 0x00 dst >>= src base64 RFC 9669,
Section 4.1

0x84 0x0 0 0x00 dst = (u32)-dst base32 RFC 9669,
Section 4.1

0x85 0x0 0 any call helper function by static
ID

base32 RFC 9669,
Section 4.3.1

0x85 0x1 0 any call PC += imm base32 RFC 9669,
Section 4.3.2

0x85 0x2 0 any call helper function by BTF
ID

base32 RFC 9669,
Section 4.3.1

0x87 0x0 0 0x00 dst = -dst base64 RFC 9669,
Section 4.1

0x94 0x0 0 any dst = (u32)((imm != 0)?
((u32)dst % (u32)imm) : dst)

divmul32 RFC 9669,
Section 4.1

0x94 0x0 1 any dst = (u32)((imm != 0) ?
((s32)dst s% imm) : dst)

divmul32 RFC 9669,
Section 4.1

0x95 0x0 0 0x00 return base32 RFC 9669,
Section 4.3

0x97 0x0 0 any dst = (imm != 0) ? (dst %
(u32)imm) : dst

divmul64 RFC 9669,
Section 4.1

0x97 0x0 1 any dst = (imm != 0) ? (dst s%
imm) : dst

divmul64 RFC 9669,
Section 4.1

0x9c any 0 0x00 dst = (u32)((src != 0)?
((u32)dst % (u32)src) : dst)

divmul32 RFC 9669,
Section 4.1

0x9c any 1 0x00 dst = (u32)((src != 0)?
((s32)dst s% (s32)src) :dst)

divmul32 RFC 9669,
Section 4.1

0x9f any 0 0x00 dst = (src != 0) ? (dst % src) :
dst

divmul64 RFC 9669,
Section 4.1

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 32

opcode src_reg off-
set

imm Description Groups Ref

0x9f any 1 0x00 dst = (src != 0) ? (dst s% src)
: dst

divmul64 RFC 9669,
Section 4.1

0xa4 0x0 0 any dst = (u32)(dst ^ imm) base32 RFC 9669,
Section 4.1

0xa5 0x0 any any if dst < imm goto +offset base64 RFC 9669,
Section 4.3

0xa6 0x0 any any if (u32)dst < imm goto
+offset

base32 RFC 9669,
Section 4.3

0xa7 0x0 0 any dst ^= imm base64 RFC 9669,
Section 4.1

0xac any 0 0x00 dst = (u32)(dst ^ src) base32 RFC 9669,
Section 4.1

0xad any any 0x00 if dst < src goto +offset base64 RFC 9669,
Section 4.3

0xae any any 0x00 if (u32)dst < (u32)src goto
+offset

base32 RFC 9669,
Section 4.3

0xaf any 0 0x00 dst ^= src base64 RFC 9669,
Section 4.1

0xb4 0x0 0 any dst = (u32) imm base32 RFC 9669,
Section 4.1

0xb5 0x0 any any if dst <= imm goto +offset base64 RFC 9669,
Section 4.3

0xb6 0x0 any any if (u32)dst <= imm goto
+offset

base32 RFC 9669,
Section 4.3

0xb7 0x0 0 any dst = imm base64 RFC 9669,
Section 4.1

0xbc any 0 0x00 dst = (u32) src base32 RFC 9669,
Section 4.1

0xbc any 8 0x00 dst = (u32) (s32) (s8) src base32 RFC 9669,
Section 4.1

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 33

opcode src_reg off-
set

imm Description Groups Ref

0xbc any 16 0x00 dst = (u32) (s32) (s16) src base32 RFC 9669,
Section 4.1

0xbd any any 0x00 if dst <= src goto +offset base64 RFC 9669,
Section 4.3

0xbe any any 0x00 if (u32)dst <= (u32)src goto
+offset

base32 RFC 9669,
Section 4.3

0xbf any 0 0x00 dst = src base64 RFC 9669,
Section 4.1

0xbf any 8 0x00 dst = (s64) (s8) src base64 RFC 9669,
Section 4.1

0xbf any 16 0x00 dst = (s64) (s16) src base64 RFC 9669,
Section 4.1

0xbf any 32 0x00 dst = (s64) (s32) src base64 RFC 9669,
Section 4.1

0xc3 any any 0x00 lock *(u32 *)(dst + offset) +=
src

atomic32 RFC 9669,
Section 5.3

0xc3 any any 0x01 src =
atomic_fetch_add_32((u32 *)
(dst + offset), src)

atomic32 RFC 9669,
Section 5.3

0xc3 any any 0x40 lock *(u32 *)(dst + offset) |=
src

atomic32 RFC 9669,
Section 5.3

0xc3 any any 0x41 src =
atomic_fetch_or_32((u32 *)
(dst + offset), src)

atomic32 RFC 9669,
Section 5.3

0xc3 any any 0x50 lock *(u32 *)(dst + offset) &=
src

atomic32 RFC 9669,
Section 5.3

0xc3 any any 0x51 src =
atomic_fetch_and_32((u32 *)
(dst + offset), src)

atomic32 RFC 9669,
Section 5.3

0xc3 any any 0xa0 lock *(u32 *)(dst + offset) ^=
src

atomic32 RFC 9669,
Section 5.3

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 34

opcode src_reg off-
set

imm Description Groups Ref

0xc3 any any 0xa1 src =
atomic_fetch_xor_32((u32 *)
(dst + offset), src)

atomic32 RFC 9669,
Section 5.3

0xc3 any any 0xe1 src = xchg_32((u32 *)(dst +
offset), src)

atomic32 RFC 9669,
Section 5.3

0xc3 any any 0xf1 r0 = cmpxchg_32((u32 *)(dst
+ offset), r0, src)

atomic32 RFC 9669,
Section 5.3

0xc4 0x0 0 any dst = (u32)(dst s>> imm) base32 RFC 9669,
Section 4.1

0xc5 0x0 any any if dst s< imm goto +offset base64 RFC 9669,
Section 4.3

0xc6 0x0 any any if (s32)dst s< (s32)imm goto
+offset

base32 RFC 9669,
Section 4.3

0xc7 0x0 0 any dst s>>= imm base64 RFC 9669,
Section 4.1

0xcc any 0 0x00 dst = (u32)(dst s>> src) base32 RFC 9669,
Section 4.1

0xcd any any 0x00 if dst s< src goto +offset base64 RFC 9669,
Section 4.3

0xce any any 0x00 if (s32)dst s< (s32)src goto
+offset

base32 RFC 9669,
Section 4.3

0xcf any 0 0x00 dst s>>= src base64 RFC 9669,
Section 4.1

0xd4 0x0 0 0x10 dst = htole16(dst) base32 RFC 9669,
Section 4.2

0xd4 0x0 0 0x20 dst = htole32(dst) base32 RFC 9669,
Section 4.2

0xd4 0x0 0 0x40 dst = htole64(dst) base64 RFC 9669,
Section 4.2

0xd5 0x0 any any if dst s<= imm goto +offset base64 RFC 9669,
Section 4.3

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 35

opcode src_reg off-
set

imm Description Groups Ref

0xd6 0x0 any any if (s32)dst s<= (s32)imm goto
+offset

base32 RFC 9669,
Section 4.3

0xd7 0x0 0 0x10 dst = bswap16(dst) base32 RFC 9669,
Section 4.2

0xd7 0x0 0 0x20 dst = bswap32(dst) base32 RFC 9669,
Section 4.2

0xd7 0x0 0 0x40 dst = bswap64(dst) base64 RFC 9669,
Section 4.2

0xdb any any 0x00 lock *(u64 *)(dst + offset) +=
src

atomic64 RFC 9669,
Section 5.3

0xdb any any 0x01 src =
atomic_fetch_add_64((u64 *)
(dst + offset), src)

atomic64 RFC 9669,
Section 5.3

0xdb any any 0x40 lock *(u64 *)(dst + offset) |=
src

atomic64 RFC 9669,
Section 5.3

0xdb any any 0x41 src =
atomic_fetch_or_64((u64 *)
(dst + offset), src)

atomic64 RFC 9669,
Section 5.3

0xdb any any 0x50 lock *(u64 *)(dst + offset) &=
src

atomic64 RFC 9669,
Section 5.3

0xdb any any 0x51 src =
atomic_fetch_and_64((u64 *)
(dst + offset), src)

atomic64 RFC 9669,
Section 5.3

0xdb any any 0xa0 lock *(u64 *)(dst + offset) ^=
src

atomic64 RFC 9669,
Section 5.3

0xdb any any 0xa1 src =
atomic_fetch_xor_64((u64 *)
(dst + offset), src)

atomic64 RFC 9669,
Section 5.3

0xdb any any 0xe1 src = xchg_64((u64 *)(dst +
offset), src)

atomic64 RFC 9669,
Section 5.3

0xdb any any 0xf1 r0 = cmpxchg_64((u64 *)(dst
+ offset), r0, src)

atomic64 RFC 9669,
Section 5.3

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 36

opcode src_reg off-
set

imm Description Groups Ref

0xdc 0x0 0 0x10 dst = htobe16(dst) base32 RFC 9669,
Section 4.2

0xdc 0x0 0 0x20 dst = htobe32(dst) base32 RFC 9669,
Section 4.2

0xdc 0x0 0 0x40 dst = htobe64(dst) base64 RFC 9669,
Section 4.2

0xdd any any 0x00 if dst s<= src goto +offset base64 RFC 9669,
Section 4.3

0xde any any 0x00 if (s32)dst s<= (s32)src goto
+offset

base32 RFC 9669,
Section 4.3

Table 18: Initial BPF Instruction Set Values

Acknowledgements
This document was generated from instruction-set.rst in the Linux kernel repository, to which a
number of other individuals have authored contributions over time, including ,

, , , , ,
, , , , , , and
, with review and suggestions by many others including , ,

, , , , , ,
, and .

Akhil Raj Alexei
Starovoitov Brendan Jackman Christoph Hellwig Daniel Borkmann Ilya Leoshkevich Jiong
Wang Jose E. Marchesi Kosuke Fujimoto Shahab Vahedi Tiezhu Yang Will Hawkins Zheng
Yejian Alan Jowett Andrii Nakryiko
David Vernet Jim Harris Quentin Monnet Song Liu Shung-Hsi Yu Stanislav Fomichev Watson
Ladd Yonghong Song

Author's Address
Dave Thaler ()editor

, Redmond WA 98052
United States of America

dave.thaler.ietf@gmail.comEmail:

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 37

mailto:dave.thaler.ietf@gmail.com

	RFC 9669
	BPF Instruction Set Architecture (ISA)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Documentation Conventions
	2.1. Types
	2.2. Functions
	2.3. Definitions
	2.4. Conformance Groups

	3. Instruction Encoding
	3.1. Basic Instruction Encoding
	3.2. Wide Instruction Encoding
	3.3. Instruction Classes

	4. Arithmetic and Jump Instructions
	4.1. Arithmetic Instructions
	4.2. Byte Swap Instructions
	4.3. Jump Instructions
	4.3.1. Helper Functions
	4.3.2. Program-Local Functions

	5. Load and Store Instructions
	5.1. Regular Load and Store Operations
	5.2. Sign-Extension Load Operations
	5.3. Atomic Operations
	5.4. 64-bit Immediate Instructions
	5.4.1. Maps
	5.4.2. Platform Variables

	5.5. Legacy BPF Packet Access Instructions

	6. Security Considerations
	7. IANA Considerations
	7.1. BPF Instruction Conformance Groups Registry
	7.1.1. BPF Instruction Conformance Groups Registration Template

	7.2. BPF Instruction Set Registry
	7.2.1. BPF Instruction Registration Template

	7.3. Adding Instructions
	7.4. Deprecating Instructions
	7.5. Change Control
	7.6. Expert Review Instructions

	8. References
	8.1. Normative References
	8.2. Informative References

	Appendix A. Initial BPF Instruction Set Values
	Acknowledgements
	Author's Address

 BPF Instruction Set Architecture (ISA)

 Redmond
 98052
 United States of America
 WA

 dave.thaler.ietf@gmail.com

 INT
 bdf
 eBPF
 virtual machine
 extensibility

 eBPF (which is no longer an acronym for anything), also commonly
 referred to as BPF, is a technology with origins in the Linux kernel
 that can run untrusted programs in a privileged context such as an
 operating system kernel. This document specifies the BPF instruction set
 architecture (ISA).

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Documentation Conventions

 . Types

 . Functions

 . Definitions

 . Conformance Groups

 . Instruction Encoding

 . Basic Instruction Encoding

 . Wide Instruction Encoding

 . Instruction Classes

 . Arithmetic and Jump Instructions

 . Arithmetic Instructions

 . Byte Swap Instructions

 . Jump Instructions

 . Helper Functions

 . Program-Local Functions

 . Load and Store Instructions

 . Regular Load and Store Operations

 . Sign-Extension Load Operations

 . Atomic Operations

 . 64-bit Immediate Instructions

 . Maps

 . Platform Variables

 . Legacy BPF Packet Access Instructions

 . Security Considerations

 . IANA Considerations

 . BPF Instruction Conformance Groups Registry

 . BPF Instruction Conformance Groups Registration Template

 . BPF Instruction Set Registry

 . BPF Instruction Registration Template

 . Adding Instructions

 . Deprecating Instructions

 . Change Control

 . Expert Review Instructions

 . References

 . Normative References

 . Informative References

 . Initial BPF Instruction Set Values

 Acknowledgements

 Author's Address

 Introduction

 eBPF, also commonly
 referred to as BPF, is a technology with origins in the Linux kernel
 that can run untrusted programs in a privileged context such as an
 operating system kernel. This document specifies the BPF instruction
 set architecture (ISA).

 As a historical note, BPF originally stood for Berkeley Packet Filter,
 but now that it can do so much more than packet filtering, the acronym
 no longer makes sense. BPF is now considered a standalone term that
 does not stand for anything. The original BPF is sometimes referred to
 as cBPF (classic BPF) to distinguish it from the now widely deployed
 eBPF (extended BPF).

 Documentation Conventions

 The key words " MUST", " MUST NOT",
 " REQUIRED", " SHALL", " SHALL NOT",
 " SHOULD", " SHOULD NOT",
 " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be
 interpreted as described in BCP 14 when, and only when, they appear in all capitals, as
 shown here.

 For brevity and consistency, this document refers to families
 of types using a shorthand syntax and refers to several expository,
 mnemonic functions when describing the semantics of instructions.
 The range of valid values for those types and the semantics of those
 functions are defined in the following subsections.

 Types

 This document refers to integer types with the notation SN to specify
 a type's signedness (S) and bit width (N), respectively.

 Meaning of Signedness Notation

 S
 Meaning

 u

 unsigned

 s

 signed

 Meaning of Bit-Width Notation

 N
 Bit Width

 8

 8 bits

 16

 16 bits

 32

 32 bits

 64

 64 bits

 128

 128 bits

 For example, u32 is a type whose valid values are all the 32-bit unsigned
 numbers and s16 is a type whose valid values are all the 16-bit signed
 numbers.

 Functions

 The following byte swap functions are direction agnostic. That is,
 the same function is used for conversion in either direction discussed
 below.

 be16: Takes an unsigned 16-bit number and converts it between
 host byte order and big-endian
 byte order .

 be32: Takes an unsigned 32-bit number and converts it between
 host byte order and big-endian byte order.

 be64: Takes an unsigned 64-bit number and converts it between
 host byte order and big-endian byte order.

 bswap16: Takes an unsigned 16-bit number in either big- or little-endian
 format and returns the equivalent number with the same bit width but
 opposite endianness.

 bswap32: Takes an unsigned 32-bit number in either big- or little-endian
 format and returns the equivalent number with the same bit width but
 opposite endianness.

 bswap64: Takes an unsigned 64-bit number in either big- or little-endian
 format and returns the equivalent number with the same bit width but
 opposite endianness.

 le16: Takes an unsigned 16-bit number and converts it between
 host byte order and little-endian byte order.

 le32: Takes an unsigned 32-bit number and converts it between
 host byte order and little-endian byte order.

 le64: Takes an unsigned 64-bit number and converts it between
 host byte order and little-endian byte order.

 Definitions

 Sign Extend:

 To sign extend an X-bit number, A, to a Y-bit
number, B, means to

 Copy all X bits from A to the lower X bits of B.

 Set the value of the remaining Y - X bits of B to the value of
 the most significant bit of A.

 Example

 Sign extend an 8-bit number A to a 16-bit number B on a big-endian platform:

A: 10000110
B: 11111111 10000110

 Conformance Groups

 An implementation does not need to support all instructions specified in this
 document (e.g., deprecated instructions). Instead, a number of conformance
 groups are specified. An implementation MUST support the base32 conformance
 group and MAY support additional conformance groups, where supporting a
 conformance group means it MUST support all instructions in that conformance
 group.

 The use of named conformance groups enables interoperability between a runtime
 that executes instructions, and tools such as compilers that generate
 instructions for the runtime. Thus, capability discovery in terms of
 conformance groups might be done manually by users or automatically by tools.

 Each conformance group has a short ASCII label (e.g., "base32") that
 corresponds to a set of instructions that are mandatory. That is, each
 instruction has one or more conformance groups of which it is a member.

 This document defines the following conformance groups:

 base32:
 includes all instructions defined in this
 specification unless otherwise noted.

 base64:
 includes base32, plus instructions explicitly noted
 as being in the base64 conformance group.

 atomic32:
 includes 32-bit atomic operation instructions (see).

 atomic64:
 includes atomic32, plus 64-bit atomic operation instructions.

 divmul32:
 includes 32-bit division, multiplication, and modulo instructions.

 divmul64:
 includes divmul32, plus 64-bit division, multiplication,
 and modulo instructions.

 packet:
 deprecated packet access instructions.

 Instruction Encoding

 BPF has two instruction encodings:

 the basic instruction encoding, which uses 64 bits to encode an instruction

 the wide instruction encoding, which appends a second 64 bits
 after the basic instruction for a total of 128 bits.

 Basic Instruction Encoding

 A basic instruction is encoded as follows:

+-+
| opcode | regs | offset |
+-+
| imm |
+-+

 opcode:

 operation to perform, encoded as follows:

+-+-+-+-+-+-+-+-+
|specific |class|
+-+-+-+-+-+-+-+-+

 specific:

 The format of these bits varies by instruction class

 class:

 the instruction class (see)

 regs:

 the source and destination register numbers, encoded as follows
 on a little-endian host:

+-+-+-+-+-+-+-+-+
|src_reg|dst_reg|
+-+-+-+-+-+-+-+-+

 and as follows on a big-endian host:

+-+-+-+-+-+-+-+-+
|dst_reg|src_reg|
+-+-+-+-+-+-+-+-+

 src_reg:

 the source register number (0-10), except where otherwise specified
 (64-bit immediate instructions (see) reuse this field for other purposes)

 dst_reg:

 the destination register number (0-10), unless otherwise specified
 (future instructions might reuse this field for other purposes)

 offset:

 signed integer offset used with pointer arithmetic, except where
 otherwise specified (some arithmetic instructions reuse this field
 for other purposes)

 imm:

 signed integer immediate value

 Note that the contents of multi-byte fields ('offset' and 'imm') are
 stored using big-endian byte ordering on big-endian hosts and
 little-endian byte ordering on little-endian hosts.

 For example:

opcode offset imm assembly
 src_reg dst_reg
07 0 1 00 00 44 33 22 11 r1 += 0x11223344 // little
 dst_reg src_reg
07 1 0 00 00 11 22 33 44 r1 += 0x11223344 // big

 Note that most instructions do not use all of the fields.
 Unused fields SHALL be cleared to zero.

 Wide Instruction Encoding

 Some instructions are defined to use the wide instruction encoding,
 which uses two 32-bit immediate values. The 64 bits following
 the basic instruction format contain a pseudo instruction
 with 'opcode', 'dst_reg', 'src_reg', and 'offset' all set to zero.

 This is depicted in the following figure:

+-+
| opcode | regs | offset |
+-+
| imm |
+-+
| reserved |
+-+
| next_imm |
+-+

 opcode:

 operation to perform, encoded as explained above

 regs:

 the source and destination register numbers (unless otherwise
 specified), encoded as explained above

 offset:

 signed integer offset used with pointer arithmetic, unless
 otherwise specified

 imm:

 signed integer immediate value

 reserved:

 unused, set to zero

 next_imm:

 second signed integer immediate value

 Instruction Classes

 The three least significant bits of the 'opcode' field store the instruction class:

 Instruction Class

 class
 Value
 Description
 Reference

 LD

 0x0

 non-standard load operations

 LDX

 0x1

 load into register operations

 ST

 0x2

 store from immediate operations

 STX

 0x3

 store from register operations

 ALU

 0x4

 32-bit arithmetic operations

 JMP

 0x5

 64-bit jump operations

 JMP32

 0x6

 32-bit jump operations

 ALU64

 0x7

 64-bit arithmetic operations

 Arithmetic and Jump Instructions

 For arithmetic and jump instructions (ALU, ALU64, JMP, and
 JMP32), the 8-bit 'opcode' field is divided into three parts:

+-+-+-+-+-+-+-+-+
| code |s|class|
+-+-+-+-+-+-+-+-+

 code:

 the operation code, whose meaning varies by instruction class

 s (source):

 the source operand location, which unless otherwise specified is one of:

 Source Operand Location

 source
 Value
 Description

 K

 0

 use 32-bit 'imm' value as source operand

 X

 1

 use 'src_reg' register value as source operand

 class:

 the instruction class (see)

 Arithmetic Instructions

 ALU uses 32-bit wide operands while ALU64 uses 64-bit wide operands for
 otherwise identical operations. ALU64 instructions belong to the
 base64 conformance group unless noted otherwise.
 The 'code' field encodes the operation as below, where 'src' refers to the
 source operand and 'dst' refers to the value of the destination
 register.

 Arithmetic Instructions

 Name
 code
 offset
 Description

 ADD

 0x0

 0

 dst += src

 SUB

 0x1

 0

 dst -= src

 MUL

 0x2

 0

 dst *= src

 DIV

 0x3

 0

 dst = (src != 0) ? (dst / src) : 0

 SDIV

 0x3

 1

 dst = (src != 0) ? (dst s/ src) : 0

 OR

 0x4

 0

 dst |= src

 AND

 0x5

 0

 dst &= src

 LSH

 0x6

 0

 dst <<= (src & mask)

 RSH

 0x7

 0

 dst >>= (src & mask)

 NEG

 0x8

 0

 dst = -dst

 MOD

 0x9

 0

 dst = (src != 0) ? (dst % src) : dst

 SMOD

 0x9

 1

 dst = (src != 0) ? (dst s% src) : dst

 XOR

 0xa

 0

 dst ^= src

 MOV

 0xb

 0

 dst = src

 MOVSX

 0xb

 8/16/32

 dst = (s8,s16,s32)src

 ARSH

 0xc

 0

 sign extending () dst >>= (src & mask)

 END

 0xd

 0

 byte swap operations (see)

 Underflow and overflow are allowed during arithmetic operations, meaning
 the 64-bit or 32-bit value will wrap. If BPF program execution would
 result in division by zero, the destination register is instead set to zero.
 If execution would result in modulo by zero, for ALU64 the value of
 the destination register is unchanged whereas for ALU the upper
 32 bits of the destination register are zeroed.

 {ADD, X, ALU}, where 'code' = ADD, 'source' = X, and 'class' = ALU, means:

 dst = (u32) ((u32) dst + (u32) src)

 where '(u32)' indicates that the upper 32 bits are zeroed.

 {ADD, X, ALU64} means:

 dst = dst + src

 {XOR, K, ALU} means:

 dst = (u32) dst ^ (u32) imm

 {XOR, K, ALU64} means:

 dst = dst ^ imm

 Note that most arithmetic instructions have 'offset' set to 0. Only three instructions
 (SDIV, SMOD, MOVSX) have a non-zero 'offset'.

 Division, multiplication, and modulo operations for ALU are part
 of the "divmul32" conformance group, and division, multiplication, and
 modulo operations for ALU64 are part of the "divmul64" conformance
 group.
 The division and modulo operations support both unsigned and signed flavors.

 For unsigned operations (DIV and MOD), for ALU,
 'imm' is interpreted as a 32-bit unsigned value. For ALU64,
 'imm' is first sign extended () from 32 to 64 bits, and then
 interpreted as a 64-bit unsigned value.

 For signed operations (SDIV and SMOD), for ALU,
 'imm' is interpreted as a 32-bit signed value. For ALU64, 'imm'
 is first sign extended () from 32 to 64 bits, and then
 interpreted as a 64-bit signed value.

 Note that there are varying definitions of the signed modulo operation
 when the dividend or divisor are negative, where implementations often
 vary by language such that Python, Ruby, etc. differ from C, Go, Java,
 etc. This specification requires that signed modulo MUST use truncated division
 (where -13 % 3 == -1) as implemented in C, Go, etc.:

 a % n = a - n * trunc(a / n)

 The MOVSX instruction does a move operation with sign extension.
 {MOVSX, X, ALU} sign extends () 8-bit and 16-bit operands into
 32-bit operands, and zeroes the remaining upper 32 bits.
 {MOVSX, X, ALU64} sign extends () 8-bit, 16-bit, and 32-bit
 operands into 64-bit operands. Unlike other arithmetic instructions,
 MOVSX is only defined for register source operands (X).

 {MOV, K, ALU64} means:

 dst = (s64)imm

 {MOV, X, ALU} means:

 dst = (u32)src

 {MOVSX, X, ALU} with 'offset' 8 means:

 dst = (u32)(s32)(s8)src

 The NEG instruction is only defined when the source bit is clear
 (K).

 Shift operations use a mask of 0x3F (63) for 64-bit operations and 0x1F (31)
 for 32-bit operations.

 Byte Swap Instructions

 The byte swap instructions use instruction classes of ALU and ALU64
 and a 4-bit 'code' field of END.

 The byte swap instructions operate on the destination register
 only and do not use a separate source register or immediate value.

 For ALU, the 1-bit source operand field in the opcode is used to
 select what byte order the operation converts from or to. For
 ALU64, the 1-bit source operand field in the opcode is reserved
 and MUST be set to 0.

 Byte Swap Instructions

 class
 source
 Value
 Description

 ALU

 LE

 0

 convert between host byte order and little endian

 ALU

 BE

 1

 convert between host byte order and big endian

 ALU64

 Reserved

 0

 do byte swap unconditionally

 The 'imm' field encodes the width of the swap operations. The following widths
 are supported: 16, 32, and 64. Width 64 operations belong to the base64
 conformance group and other swap operations belong to the base32
 conformance group.

 Examples:

 {END, LE, ALU} with 'imm' = 16/32/64 means:

 dst = le16(dst)
 dst = le32(dst)
 dst = le64(dst)

 {END, BE, ALU} with 'imm' = 16/32/64 means:

 dst = be16(dst)
 dst = be32(dst)
 dst = be64(dst)

 {END, TO, ALU64} with 'imm' = 16/32/64 means:

 dst = bswap16(dst)
 dst = bswap32(dst)
 dst = bswap64(dst)

 Jump Instructions

 JMP32 uses 32-bit wide operands and indicates the base32 conformance
 group; JMP uses 64-bit wide operands for otherwise identical
 operations and indicates the base64 conformance group unless
 otherwise specified.
 The 'code' field encodes the operation as below:

 Jump Instructions

 code
 Value
 src_reg
 Description
 Notes

 JA

 0x0

 0x0

 PC += offset

 {JA, K, JMP} only

 JA

 0x0

 0x0

 PC += imm

 {JA, K, JMP32} only

 JEQ

 0x1

 any

 PC += offset if dst == src

 JGT

 0x2

 any

 PC += offset if dst > src

 unsigned

 JGE

 0x3

 any

 PC += offset if dst >= src

 unsigned

 JSET

 0x4

 any

 PC += offset if dst & src

 JNE

 0x5

 any

 PC += offset if dst != src

 JSGT

 0x6

 any

 PC += offset if dst > src

 signed

 JSGE

 0x7

 any

 PC += offset if dst >= src

 signed

 CALL

 0x8

 0x0

 call helper function by static ID

 {CALL, K, JMP} only, see

 CALL

 0x8

 0x1

 call PC += imm

 {CALL, K, JMP} only, see

 CALL

 0x8

 0x2

 call helper function by BTF ID

 {CALL, K, JMP} only, see

 EXIT

 0x9

 0x0

 return

 {CALL, K, JMP} only

 JLT

 0xa

 any

 PC += offset if dst < src

 unsigned

 JLE

 0xb

 any

 PC += offset if dst <= src

 unsigned

 JSLT

 0xc

 any

 PC += offset if dst < src

 signed

 JSLE

 0xd

 any

 PC += offset if dst <= src

 signed

 where 'PC' denotes the program counter, and the offset to increment by
 is in units of 64-bit instructions relative to the instruction following
 the jump instruction. Thus 'PC += 1' skips execution of the next
 instruction if it's a basic instruction or results in undefined behavior
 if the next instruction is a 128-bit wide instruction.

 Example:

 {JSGE, X, JMP32} means:

 if (s32)dst s>= (s32)src goto +offset

 where 's>=' indicates a signed '>=' comparison.

 {JLE, K, JMP} means:

 if dst <= (u64)(s64)imm goto +offset

 {JA, K, JMP32} means:

 gotol +imm

 where 'imm' means the branch offset comes from the 'imm' field.

 Note that there are two flavors of JA instructions. The
 JMP class permits a 16-bit jump offset specified by the 'offset'
 field, whereas the JMP32 class permits a 32-bit jump offset
 specified by the 'imm' field. A conditional jump greater than 16 bits may be
 converted to a conditional jump less than 16 bits plus a 32-bit unconditional
 jump.

 All CALL and JA instructions belong to the
 base32 conformance group.

 Helper Functions

 Helper functions are a concept whereby BPF programs can call into a
 set of function calls exposed by the underlying platform.

 Historically, each helper function was identified by a static ID
 encoded in the 'imm' field. Further documentation of helper functions
 is outside the scope of this document and standardization is left for
 future work, but use is widely deployed and more information can be
 found in platform-specific documentation (e.g., Linux kernel documentation).

 Platforms that support the BPF Type Format (BTF) support identifying
 a helper function by a BTF ID encoded in the 'imm' field, where the BTF ID
 identifies the helper name and type. Further documentation of BTF
 is outside the scope of this document and standardization is left for
 future work, but use is widely deployed and more information can be
 found in platform-specific documentation (e.g., Linux kernel documentation).

 Program-Local Functions

 Program-local functions are functions exposed by the same BPF program as the
 caller, and are referenced by offset from the instruction following the call
 instruction, similar to JA. The offset is encoded in the 'imm' field of
 the call instruction. An EXIT within the program-local function will
 return to the caller.

 Load and Store Instructions

 For load and store instructions (LD, LDX, ST, and STX), the
 8-bit 'opcode' field is divided as follows:

+-+-+-+-+-+-+-+-+
|mode |sz |class|
+-+-+-+-+-+-+-+-+

 mode:

 The mode modifier is one of:

 Mode Modifier

 mode
 Value
 Description
 Reference

 IMM

 0

 64-bit immediate instructions

 ABS

 1

 legacy BPF packet access (absolute)

 IND

 2

 legacy BPF packet access (indirect)

 MEM

 3

 regular load and store operations

 MEMSX

 4

 sign-extension load operations

 ATOMIC

 6

 atomic operations

 sz (size):

 The size modifier is one of:

 Size Modifier

 size
 Value
 Description

 W

 0

 word (4 bytes)

 H

 1

 half word (2 bytes)

 B

 2

 byte

 DW

 3

 double word (8 bytes)

 Instructions using DW belong to the base64 conformance group.

 class:

 The instruction class (see)

 Regular Load and Store Operations

 The MEM mode modifier is used to encode regular load and store
 instructions that transfer data between a register and memory.

 {MEM, <size>, STX} means:

 *(size *) (dst + offset) = src

 {MEM, <size>, ST} means:

 *(size *) (dst + offset) = imm

 {MEM, <size>, LDX} means:

 dst = *(unsigned size *) (src + offset)

 Where '<size>' is one of: B, H, W, or DW, and
 'unsigned size' is one of: u8, u16, u32, or u64.

 Sign-Extension Load Operations

 The MEMSX mode modifier is used to encode sign-extension load instructions ()
 that transfer data between a register and memory.

 {MEMSX, <size>, LDX} means:

 dst = *(signed size *) (src + offset)

 Where '<size>' is one of: B, H, or W, and
 'signed size' is one of: s8, s16, or s32.

 Atomic Operations

 Atomic operations operate on memory and cannot be
 interrupted or corrupted by other access to the same memory region
 by other BPF programs or means outside of this specification.

 All atomic operations supported by BPF are encoded as store operations
 that use the ATOMIC mode modifier as follows:

 {ATOMIC, W, STX} for 32-bit operations, which are
 part of the "atomic32" conformance group.

 {ATOMIC, DW, STX} for 64-bit operations, which are
 part of the "atomic64" conformance group.

 8-bit and 16-bit wide atomic operations are not supported.

 The 'imm' field is used to encode the actual atomic operation.
 Simple atomic operations use a subset of the values defined to encode
 arithmetic operations in the 'imm' field to encode the atomic operation:

 Simple Atomic Operations

 imm
 Value
 Description

 ADD

 0x00

 atomic add

 OR

 0x40

 atomic or

 AND

 0x50

 atomic and

 XOR

 0xa0

 atomic xor

 {ATOMIC, W, STX} with 'imm' = ADD means:

 *(u32 *)(dst + offset) += src

 {ATOMIC, DW, STX} with 'imm' = ADD means:

 *(u64 *)(dst + offset) += src

 In addition to the simple atomic operations, there is also a modifier and
 two complex atomic operations:

 Complex Atomic Operations and a Modifier

 imm
 Value
 Description

 FETCH

 0x01

 modifier: return old value

 XCHG

 0xe0 | FETCH

 atomic exchange

 CMPXCHG

 0xf0 | FETCH

 atomic compare and exchange

 The FETCH modifier is optional for simple atomic operations and
 is always set for the complex atomic operations. If the FETCH flag
 is set, then the operation also overwrites src with the value that
 was in memory before it was modified.

 The XCHG operation atomically exchanges src with the value
 addressed by dst + offset.

 The CMPXCHG operation atomically compares the value addressed by
 dst + offset with R0. If they match, the value addressed by
 dst + offset is replaced with src. In either case, the
 value that was at dst + offset before the operation is zero-extended
 and loaded back to R0.

 64-bit Immediate Instructions

 Instructions with the IMM 'mode' modifier use the wide instruction
 encoding defined in , and use the 'src_reg' field of the
 basic instruction to hold an opcode subtype.

 The following table defines a set of {IMM, DW, LD} instructions
 with opcode subtypes in the 'src_reg' field, using new terms such as "map"
 defined further below:

 64-bit Immediate Instructions

 src_reg
 Pseudocode
 imm Type
 dst Type

 0x0

 dst = (next_imm << 32) | imm

 integer

 integer

 0x1

 dst = map_by_fd(imm)

 map fd

 map

 0x2

 dst = map_val(map_by_fd(imm)) + next_imm

 map fd

 data address

 0x3

 dst = var_addr(imm)

 variable id

 data address

 0x4

 dst = code_addr(imm)

 integer

 code address

 0x5

 dst = map_by_idx(imm)

 map index

 map

 0x6

 dst = map_val(map_by_idx(imm)) + next_imm

 map index

 data address

 where

 map_by_fd(imm) means to convert a 32-bit file descriptor into an address of a map (see)

 map_by_idx(imm) means to convert a 32-bit index into an address of a map

 map_val(map) gets the address of the first value in a given map

 var_addr(imm) gets the address of a platform variable (see) with a given id

 code_addr(imm) gets the address of the instruction at a specified relative offset in number of (64-bit) instructions

 the 'imm type' can be used by disassemblers for display

 the 'dst type' can be used for verification and just-in-time compilation purposes

 Maps

 Maps are shared memory regions accessible by BPF programs on some platforms.
 A map can have various semantics as defined in a separate document, and may or
 may not have a single contiguous memory region, but the 'map_val(map)' is
 currently only defined for maps that do have a single contiguous memory region.

 Each map can have a file descriptor (fd) if supported by the platform, where
 'map_by_fd(imm)' means to get the map with the specified file descriptor. Each
 BPF program can also be defined to use a set of maps associated with the
 program at load time, and 'map_by_idx(imm)' means to get the map with the given
 index in the set associated with the BPF program containing the instruction.

 Platform Variables

 Platform variables are memory regions, identified by integer ids, exposed by
 the runtime, and accessible by BPF programs on some platforms. The
 'var_addr(imm)' operation means to get the address of the memory region
 identified by the given id.

 Legacy BPF Packet Access Instructions

 BPF previously introduced special instructions for access to packet data that were
 carried over from classic BPF. These instructions used an instruction
 class of LD, a size modifier of W, H, or B, and a
 mode modifier of ABS or IND. The 'dst_reg' and 'offset' fields were
 set to zero, and 'src_reg' was set to zero for ABS. However, these
 instructions are deprecated and SHOULD no longer be used. All legacy packet
 access instructions belong to the "packet" conformance group.

 Security Considerations

 BPF programs could use BPF instructions to do malicious things with memory, CPU, networking,
 or other system resources. This is not fundamentally different from any other type of
 software that may run on a device. Execution environments should be carefully designed
 to only run BPF programs that are trusted and verified, and sandboxing and privilege level
 separation are key strategies for limiting security and abuse impact. For example, BPF
 verifiers are well-known and widely deployed and are responsible for ensuring that BPF programs
 will terminate within a reasonable time, only interact with memory in safe ways, adhere to
 platform-specified API contracts, and don't use instructions with undefined behavior.
 This level of verification can often provide a stronger level
 of security assurance than for other software and operating system code.
 While the details are out of scope of this document,
 Linux and PREVAIL
 provide many details. Future IETF work will document verifier expectations
 and building blocks for allowing safe execution of untrusted BPF programs.

 Executing programs using the BPF instruction set also requires either an interpreter or a compiler
 to translate them to built-in hardware processor instructions. In general, interpreters are considered a
 source of insecurity (e.g., gadgets susceptible to side-channel attacks due to speculative execution)
 whenever one is used in the same memory address space as data with confidentiality
 concerns. As such, use of a compiler is recommended instead. Compilers should be audited
 carefully for vulnerabilities to ensure that compilation of a trusted and verified BPF program
 to built-in processor instructions does not introduce vulnerabilities.

 Exposing functionality via BPF extends the interface between the component executing the BPF program and the
 component submitting it. Careful consideration of what functionality is exposed and how
 that impacts the security properties desired is required.

 IANA Considerations

 This document defines two registries.

 BPF Instruction Conformance Groups Registry

 This document defines an IANA registry for BPF instruction conformance groups, as follows:

 Name of the registry: BPF Instruction Conformance Groups

 Name of the registry group: BPF Instructions

 Required information for registrations: See the BPF Instruction Conformance Groups Registration Template ()

 Syntax of registry entries: Each entry has the following fields: name, description, includes, excludes,
 status, change controller, and reference. See for more details.

 Registration policy (see for details):

 Permanent: Standards Action or IESG Approval

 Provisional: Specification Required

 Historical: Specification Required

 Contact: BPF Working Group
 Change Controller: IETF

 Initial entries in this registry are as follows:

 Initial Conformance Groups

 Name
 Description
 Includes
 Excludes
 Status
 Reference

 atomic32

32-bit atomic instructions

 -

 -

 Permanent

RFC 9669,

 atomic64

64-bit atomic instructions

 atomic32

 -

 Permanent

RFC 9669,

 base32

32-bit base instructions

 -

 -

 Permanent

 RFC 9669

 base64

64-bit base instructions

 base32

 -

 Permanent

 RFC 9669

 divmul32

32-bit division and modulo

 -

 -

 Permanent

RFC 9669,

 divmul64

64-bit division and modulo

 divmul32

 -

 Permanent

RFC 9669,

 packet

Legacy packet instructions

 -

 -

 Historical

RFC 9669,

 BPF Instruction Conformance Groups Registration Template

 This template describes the fields that must be supplied in a registration request:

 Name:

 Alphanumeric label indicating the name of the conformance group.

 Description:

 Brief description of the conformance group.

 Includes:

 Any other conformance groups that are included by this group.

 Excludes:

 Any other conformance groups that are excluded by this group.

 Status:

 This reflects the status requested and must be one of 'Permanent',
 'Provisional', or 'Historical'.

 Contact:

 Person (including contact information) to contact for further information.

 Change Controller:

 Organization or person (often the author of the defining specification), including contact information,
 authorized to change this.

 Reference:

A reference to the defining specification. Include full
 citations for all referenced documents. Registration requests for
 'Provisional' registration can be included in an Internet-Draft;
 when the documents are approved for publication as an RFC, the
 registration will be updated to 'Permanent'.

 BPF Instruction Set Registry

 This document defines an IANA registry for BPF instructions, as follows:

 Name of the registry: BPF Instruction Set

 Name of the registry group: BPF Instructions

 Required information for registrations: See the BPF Instruction Registration Template ()

 Syntax of registry entries: Each entry has the following fields: opcode, src, offset, imm, description,
 groups, change controller, and reference. See for more details.

 Registration policy: New instructions require a new entry in the conformance group
 registry and the same registration policies apply.

 Contact: BPF Working Group
 Change Controller: IETF

 Initial registrations: See . Instructions other than those listed
 as deprecated are Permanent. Any listed as deprecated are Historical.

 BPF Instruction Registration Template

 This template describes the fields that must be supplied in a registration request:

 Opcode:

 A 1-byte value in hex format indicating the value of the opcode field.

 Src_reg:

 Either a numeric value indicating the value of the src_reg field, or "any".

 Offset:

 Either a numeric value indicating the value of the offset field, or "any".

 Imm:

 Either a value indicating the value of the imm field, or "any".

 Description:

 Description of what the instruction does, typically in pseudocode.

 Groups:

 A list of one or more comma-separated conformance groups to which the instruction belongs.

 Contact:

 Person (including contact information) to contact for further information.

 Change Controller:

 Organization or person (often the author), including contact information,
 authorized to change this.

 Reference:

 A reference to the defining specification. Include full
 citations for all referenced documents. Registration requests for
 'Provisional' registration can be included in an Internet-Draft;
 when the documents are approved for publication as an RFC, the
 registration will be updated to 'Permanent'.

 Adding Instructions

 A specification may add additional instructions to the BPF Instruction Set registry.
 Once a conformance group is registered with a set of instructions,
 no further instructions can be added to that conformance group. A specification
 should instead create a new conformance group that includes the original conformance group,
 plus any newly added instructions. Inclusion of the original conformance group is done
 via the "includes" column of the BPF Instruction Conformance Groups registry, and inclusion
 of newly added instructions is done via the "groups" column of the BPF Instruction Set registry.

 For example, consider an existing hypothetical group called "example" with two instructions in it.
 One might add two more instructions by first adding an "examplev2" group to the
 BPF Instruction Conformance Groups registry as follows:

 Conformance Group Example for Addition

 Name
 Description
 Includes
 Excludes
 Status

 example

 Original example instructions

 -

 -

 Permanent

 examplev2

 Newer set of example instructions

 example

 -

 Permanent

 And then adding the new instructions into the BPF Instruction Set registry as follows:

 Instruction Addition Example

 opcode
 ...
 Description
 Groups

 aaa

 ...

 Original example instruction 1

 example

 bbb

 ...

 Original example instruction 2

 example

 ccc

 ...

 Added example instruction 3

 examplev2

 ddd

 ...

 Added example instruction 4

 examplev2

 Supporting the "examplev2" group thus requires supporting all four example instructions.

 Deprecating Instructions

 Deprecating instructions that are part of an existing conformance group can be done by defining a
 new conformance group for the newly deprecated instructions, and defining a new conformance group
 that supersedes the existing conformance group containing the instructions, where the new conformance
 group includes the existing one and excludes the deprecated instruction group.

 For example, if deprecating an instruction in an existing hypothetical group called "example", two new groups
 ("legacyexample" and "examplev2") might be registered in the BPF Instruction Conformance Groups
 registry as follows:

 Conformance Group Example for Deprecation

 Name
 Description
 Includes
 Excludes
 Status

 example

 Original example instructions

 -

 -

 Permanent

 legacyexample

 Legacy example instructions

 -

 -

 Historical

 examplev2

 Example instructions

 example

 legacyexample

 Permanent

 The BPF Instruction Set registry entries for the deprecated instructions would then be updated
 to add "legacyexample" to the set of groups for those instructions, as follows:

 Instruction Deprecation Example

 opcode
 ...
 Description
 Groups

 aaa

 ...

 Good original instruction 1

 example

 bbb

 ...

 Good original instruction 2

 example

 ccc

 ...

 Bad original instruction 3

 example, legacyexample

 ddd

 ...

 Bad original instruction 4

 example, legacyexample

 Finally, updated implementations that dropped support for the deprecated instructions
 would then be able to claim conformance to "examplev2" rather than "example".

 Change Control

 Registrations can be updated in a registry by the same mechanism as
 required for an initial registration. In cases where the original
 definition of an entry is contained in an IESG-approved document,
 in which case the IETF would be the change controller,
 update of the specification also requires IESG approval.

 'Provisional' registrations can be updated by the change controller
 designated in the existing registration. In addition, the
 IESG can reassign responsibility for a 'Provisional' registration
 or can request specific changes to an entry.
 This will enable changes to be made to entries where the original
 registrant is out of contact or unwilling or unable to make changes.

 Transition from 'Provisional' to 'Permanent' status can be requested
 and approved in the same manner as a new 'Permanent' registration.
 Transition from 'Permanent' to 'Historical' status requires IESG
 approval. Transition from 'Provisional' to 'Historical' can be
 requested by anyone authorized to update the 'Provisional'
 registration.

 Expert Review Instructions

 The IANA registries established by this document are informed by written
 specifications, which themselves are facilitated and approved by
 an Expert Review process (see).

 Designated experts are expected to consult with the active
 BPF working group (e.g., via email to the working group's mailing list)
 if it exists, as well as other interested parties (e.g., via email to
 one or more active mailing list(s) for relevant BPF communities and
 platforms). The designated expert is expected to verify that the encoding
 and semantics for any new instructions are properly documented in a
 public-facing specification. In the event of future RFC documents for ISA
 extensions, experts may permit early assignment before the RFC document
 is available, as long as a specification that satisfies the above
 requirements exists.

 References

 Normative References

 ON HOLY WARS AND A PLEA FOR PEACE

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Guidelines for Writing an IANA Considerations Section in RFCs

 Many protocols make use of points of extensibility that use constants to identify various protocol parameters. To ensure that the values in these fields do not have conflicting uses and to promote interoperability, their allocations are often coordinated by a central record keeper. For IETF protocols, that role is filled by the Internet Assigned Numbers Authority (IANA).
 To make assignments in a given registry prudently, guidance describing the conditions under which new values should be assigned, as well as when and how modifications to existing values can be made, is needed. This document defines a framework for the documentation of these guidelines by specification authors, in order to assure that the provided guidance for the IANA Considerations is clear and addresses the various issues that are likely in the operation of a registry.
 This is the third edition of this document; it obsoletes RFC 5226.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 Informative References

 eBPF verifier

 Simple and Precise Static Analysis of Untrusted Linux Kernel Extensions

 Initial BPF Instruction Set Values

 Initial values for the BPF Instruction Set registry are given below.
 The descriptions in this table are informative. In case of any discrepancy, the reference
 is authoritative.

 Initial BPF Instruction Set Values

 opcode
 src_reg
 off-set
 imm
 Description
 Groups
 Ref

 0x00

 0x0

 0

 any

(additional immediate value)

 base64

RFC 9669,

 0x04

 0x0

 0

 any

dst = (u32)((u32)dst + (u32)imm)

 base32

RFC 9669,

 0x05

 0x0

 any

 0x00

 goto +offset

 base32

RFC 9669,

 0x06

 0x0

 0

 any

 goto +imm

 base32

RFC 9669,

 0x07

 0x0

 0

 any

 dst += imm

 base64

RFC 9669,

 0x0c

 any

 0

 0x00

dst = (u32)((u32)dst + (u32)src)

 base32

RFC 9669,

 0x0f

 any

 0

 0x00

 dst += src

 base64

RFC 9669,

 0x14

 0x0

 0

 any

dst = (u32)((u32)dst - (u32)imm)

 base32

RFC 9669,

 0x15

 0x0

 any

 any

 if dst == imm goto +offset

 base64

RFC 9669,

 0x16

 0x0

 any

 any

if (u32)dst == imm goto +offset

 base32

RFC 9669,

 0x17

 0x0

 0

 any

 dst -= imm

 base64

RFC 9669,

 0x18

 0x0

 0

 any

dst = (next_imm << 32) | imm

 base64

RFC 9669,

 0x18

 0x1

 0

 any

 dst = map_by_fd(imm)

 base64

RFC 9669,

 0x18

 0x2

 0

 any

dst = map_val(map_by_fd(imm)) + next_imm

 base64

RFC 9669,

 0x18

 0x3

 0

 any

 dst = var_addr(imm)

 base64

RFC 9669,

 0x18

 0x4

 0

 any

 dst = code_addr(imm)

 base64

RFC 9669,

 0x18

 0x5

 0

 any

 dst = map_by_idx(imm)

 base64

RFC 9669,

 0x18

 0x6

 0

 any

dst = map_val(map_by_idx(imm)) + next_imm

 base64

RFC 9669,

 0x1c

 any

 0

 0x00

dst = (u32)((u32)dst - (u32)src)

 base32

RFC 9669,

 0x1d

 any

 any

 0x00

 if dst == src goto +offset

 base64

RFC 9669,

 0x1e

 any

 any

 0x00

if (u32)dst == (u32)src goto +offset

 base32

RFC 9669,

 0x1f

 any

 0

 0x00

 dst -= src

 base64

RFC 9669,

 0x20

 0x0

 0

 any

(deprecated, implementation-specific)

 packet

RFC 9669,

 0x24

 0x0

 0

 any

 dst = (u32)(dst * imm)

 divmul32

RFC 9669,

 0x25

 0x0

 any

 any

 if dst > imm goto +offset

 base64

RFC 9669,

 0x26

 0x0

 any

 any

if (u32)dst > imm goto +offset

 base32

RFC 9669,

 0x27

 0x0

 0

 any

 dst *= imm

 divmul64

RFC 9669,

 0x28

 0x0

 0

 any

(deprecated, implementation-specific)

 packet

RFC 9669,

 0x2c

 any

 0

 0x00

 dst = (u32)(dst * src)

 divmul32

RFC 9669,

 0x2d

 any

 any

 0x00

 if dst > src goto +offset

 base64

RFC 9669,

 0x2e

 any

 any

 0x00

if (u32)dst > (u32)src goto +offset

 base32

RFC 9669,

 0x2f

 any

 0

 0x00

 dst *= src

 divmul64

RFC 9669,

 0x30

 0x0

 0

 any

(deprecated, implementation-specific)

 packet

RFC 9669,

 0x34

 0x0

 0

 any

dst = (u32)((imm != 0) ? ((u32)dst / (u32)imm) : 0)

 divmul32

RFC 9669,

 0x34

 0x0

 1

 any

dst = (u32)((imm != 0) ? ((s32)dst s/ imm) : 0)

 divmul32

RFC 9669,

 0x35

 0x0

 any

 any

 if dst >= imm goto +offset

 base64

RFC 9669,

 0x36

 0x0

 any

 any

if (u32)dst >= imm goto +offset

 base32

RFC 9669,

 0x37

 0x0

 0

 any

dst = (imm != 0) ? (dst / (u32)imm) : 0

 divmul64

RFC 9669,

 0x37

 0x0

 1

 any

dst = (imm != 0) ? (dst s/ imm) : 0

 divmul64

RFC 9669,

 0x3c

 any

 0

 0x00

dst = (u32)((src != 0) ? ((u32)dst / (u32)src) : 0)

 divmul32

RFC 9669,

 0x3c

 any

 1

 0x00

dst = (u32)((src != 0) ? ((s32)dst s/(s32)src) : 0)

 divmul32

RFC 9669,

 0x3d

 any

 any

 0x00

 if dst >= src goto +offset

 base64

RFC 9669,

 0x3e

 any

 any

 0x00

if (u32)dst >= (u32)src goto +offset

 base32

RFC 9669,

 0x3f

 any

 0

 0x00

dst = (src != 0) ? (dst / src) : 0

 divmul64

RFC 9669,

 0x3f

 any

 1

 0x00

dst = (src != 0) ? (dst s/ src) : 0

 divmul64

RFC 9669,

 0x40

 any

 0

 any

(deprecated, implementation-specific)

 packet

RFC 9669,

 0x44

 0x0

 0

 any

 dst = (u32)(dst | imm)

 base32

RFC 9669,

 0x45

 0x0

 any

 any

 if dst & imm goto +offset

 base64

RFC 9669,

 0x46

 0x0

 any

 any

if (u32)dst & imm goto +offset

 base32

RFC 9669,

 0x47

 0x0

 0

 any

 dst |= imm

 base64

RFC 9669,

 0x48

 any

 0

 any

(deprecated, implementation-specific)

 packet

RFC 9669,

 0x4c

 any

 0

 0x00

 dst = (u32)(dst | src)

 base32

RFC 9669,

 0x4d

 any

 any

 0x00

 if dst & src goto +offset

 base64

RFC 9669,

 0x4e

 any

 any

 0x00

if (u32)dst & (u32)src goto +offset

 base32

RFC 9669,

 0x4f

 any

 0

 0x00

 dst |= src

 base64

RFC 9669,

 0x50

 any

 0

 any

(deprecated, implementation-specific)

 packet

RFC 9669,

 0x54

 0x0

 0

 any

 dst = (u32)(dst & imm)

 base32

RFC 9669,

 0x55

 0x0

 any

 any

 if dst != imm goto +offset

 base64

RFC 9669,

 0x56

 0x0

 any

 any

if (u32)dst != imm goto +offset

 base32

RFC 9669,

 0x57

 0x0

 0

 any

 dst &= imm

 base64

RFC 9669,

 0x5c

 any

 0

 0x00

 dst = (u32)(dst & src)

 base32

RFC 9669,

 0x5d

 any

 any

 0x00

 if dst != src goto +offset

 base64

RFC 9669,

 0x5e

 any

 any

 0x00

if (u32)dst != (u32)src goto +offset

 base32

RFC 9669,

 0x5f

 any

 0

 0x00

 dst &= src

 base64

RFC 9669,

 0x61

 any

 any

 0x00

dst = *(u32 *)(src + offset)

 base32

RFC 9669,

 0x62

 0x0

 any

 any

*(u32 *)(dst + offset) = imm

 base32

RFC 9669,

 0x63

 any

 any

 0x00

*(u32 *)(dst + offset) = src

 base32

RFC 9669,

 0x64

 0x0

 0

 any

 dst = (u32)(dst << imm)

 base32

RFC 9669,

 0x65

 0x0

 any

 any

 if dst s> imm goto +offset

 base64

RFC 9669,

 0x66

 0x0

 any

 any

if (s32)dst s> (s32)imm goto +offset

 base32

RFC 9669,

 0x67

 0x0

 0

 any

 dst <<= imm

 base64

RFC 9669,

 0x69

 any

 any

 0x00

dst = *(u16 *)(src + offset)

 base32

RFC 9669,

 0x6a

 0x0

 any

 any

*(u16 *)(dst + offset) = imm

 base32

RFC 9669,

 0x6b

 any

 any

 0x00

*(u16 *)(dst + offset) = src

 base32

RFC 9669,

 0x6c

 any

 0

 0x00

 dst = (u32)(dst << src)

 base32

RFC 9669,

 0x6d

 any

 any

 0x00

 if dst s> src goto +offset

 base64

RFC 9669,

 0x6e

 any

 any

 0x00

if (s32)dst s> (s32)src goto +offset

 base32

RFC 9669,

 0x6f

 any

 0

 0x00

 dst <<= src

 base64

RFC 9669,

 0x71

 any

 any

 0x00

dst = *(u8 *)(src + offset)

 base32

RFC 9669,

 0x72

 0x0

 any

 any

*(u8 *)(dst + offset) = imm

 base32

RFC 9669,

 0x73

 any

 any

 0x00

*(u8 *)(dst + offset) = src

 base32

RFC 9669,

 0x74

 0x0

 0

 any

 dst = (u32)(dst >> imm)

 base32

RFC 9669,

 0x75

 0x0

 any

 any

if dst s>= imm goto +offset

 base64

RFC 9669,

 0x76

 0x0

 any

 any

if (s32)dst s>= (s32)imm goto +offset

 base32

RFC 9669,

 0x77

 0x0

 0

 any

 dst >>= imm

 base64

RFC 9669,

 0x79

 any

 any

 0x00

dst = *(u64 *)(src + offset)

 base64

RFC 9669,

 0x7a

 0x0

 any

 any

*(u64 *)(dst + offset) = imm

 base64

RFC 9669,

 0x7b

 any

 any

 0x00

*(u64 *)(dst + offset) = src

 base64

RFC 9669,

 0x7c

 any

 0

 0x00

 dst = (u32)(dst >> src)

 base32

RFC 9669,

 0x7d

 any

 any

 0x00

if dst s>= src goto +offset

 base64

RFC 9669,

 0x7e

 any

 any

 0x00

if (s32)dst s>= (s32)src goto +offset

 base32

RFC 9669,

 0x7f

 any

 0

 0x00

 dst >>= src

 base64

RFC 9669,

 0x84

 0x0

 0

 0x00

 dst = (u32)-dst

 base32

RFC 9669,

 0x85

 0x0

 0

 any

call helper function by static ID

 base32

RFC 9669,

 0x85

 0x1

 0

 any

 call PC += imm

 base32

RFC 9669,

 0x85

 0x2

 0

 any

call helper function by BTF ID

 base32

RFC 9669,

 0x87

 0x0

 0

 0x00

 dst = -dst

 base64

RFC 9669,

 0x94

 0x0

 0

 any

dst = (u32)((imm != 0)?((u32)dst % (u32)imm) : dst)

 divmul32

RFC 9669,

 0x94

 0x0

 1

 any

dst = (u32)((imm != 0) ? ((s32)dst s% imm) : dst)

 divmul32

RFC 9669,

 0x95

 0x0

 0

 0x00

 return

 base32

RFC 9669,

 0x97

 0x0

 0

 any

dst = (imm != 0) ? (dst % (u32)imm) : dst

 divmul64

RFC 9669,

 0x97

 0x0

 1

 any

dst = (imm != 0) ? (dst s% imm) : dst

 divmul64

RFC 9669,

 0x9c

 any

 0

 0x00

dst = (u32)((src != 0)?((u32)dst % (u32)src) : dst)

 divmul32

RFC 9669,

 0x9c

 any

 1

 0x00

dst = (u32)((src != 0)?((s32)dst s% (s32)src) :dst)

 divmul32

RFC 9669,

 0x9f

 any

 0

 0x00

dst = (src != 0) ? (dst % src) : dst

 divmul64

RFC 9669,

 0x9f

 any

 1

 0x00

dst = (src != 0) ? (dst s% src) : dst

 divmul64

RFC 9669,

 0xa4

 0x0

 0

 any

 dst = (u32)(dst ^ imm)

 base32

RFC 9669,

 0xa5

 0x0

 any

 any

 if dst < imm goto +offset

 base64

RFC 9669,

 0xa6

 0x0

 any

 any

if (u32)dst < imm goto +offset

 base32

RFC 9669,

 0xa7

 0x0

 0

 any

 dst ^= imm

 base64

RFC 9669,

 0xac

 any

 0

 0x00

 dst = (u32)(dst ^ src)

 base32

RFC 9669,

 0xad

 any

 any

 0x00

 if dst < src goto +offset

 base64

RFC 9669,

 0xae

 any

 any

 0x00

if (u32)dst < (u32)src goto +offset

 base32

RFC 9669,

 0xaf

 any

 0

 0x00

 dst ^= src

 base64

RFC 9669,

 0xb4

 0x0

 0

 any

 dst = (u32) imm

 base32

RFC 9669,

 0xb5

 0x0

 any

 any

 if dst <= imm goto +offset

 base64

RFC 9669,

 0xb6

 0x0

 any

 any

if (u32)dst <= imm goto +offset

 base32

RFC 9669,

 0xb7

 0x0

 0

 any

 dst = imm

 base64

RFC 9669,

 0xbc

 any

 0

 0x00

 dst = (u32) src

 base32

RFC 9669,

 0xbc

 any

 8

 0x00

 dst = (u32) (s32) (s8) src

 base32

RFC 9669,

 0xbc

 any

 16

 0x00

dst = (u32) (s32) (s16) src

 base32

RFC 9669,

 0xbd

 any

 any

 0x00

 if dst <= src goto +offset

 base64

RFC 9669,

 0xbe

 any

 any

 0x00

if (u32)dst <= (u32)src goto +offset

 base32

RFC 9669,

 0xbf

 any

 0

 0x00

 dst = src

 base64

RFC 9669,

 0xbf

 any

 8

 0x00

 dst = (s64) (s8) src

 base64

RFC 9669,

 0xbf

 any

 16

 0x00

 dst = (s64) (s16) src

 base64

RFC 9669,

 0xbf

 any

 32

 0x00

 dst = (s64) (s32) src

 base64

RFC 9669,

 0xc3

 any

 any

 0x00

lock *(u32 *)(dst + offset) += src

 atomic32

RFC 9669,

 0xc3

 any

 any

 0x01

src = atomic_fetch_add_32((u32 *)(dst + offset), src)

 atomic32

RFC 9669,

 0xc3

 any

 any

 0x40

lock *(u32 *)(dst + offset) |= src

 atomic32

RFC 9669,

 0xc3

 any

 any

 0x41

src = atomic_fetch_or_32((u32 *)(dst + offset), src)

 atomic32

RFC 9669,

 0xc3

 any

 any

 0x50

lock *(u32 *)(dst + offset) &= src

 atomic32

RFC 9669,

 0xc3

 any

 any

 0x51

src = atomic_fetch_and_32((u32 *)(dst + offset), src)

 atomic32

RFC 9669,

 0xc3

 any

 any

 0xa0

lock *(u32 *)(dst + offset) ^= src

 atomic32

RFC 9669,

 0xc3

 any

 any

 0xa1

src = atomic_fetch_xor_32((u32 *)(dst + offset), src)

 atomic32

RFC 9669,

 0xc3

 any

 any

 0xe1

src = xchg_32((u32 *)(dst + offset), src)

 atomic32

RFC 9669,

 0xc3

 any

 any

 0xf1

r0 = cmpxchg_32((u32 *)(dst + offset), r0, src)

 atomic32

RFC 9669,

 0xc4

 0x0

 0

 any

 dst = (u32)(dst s>> imm)

 base32

RFC 9669,

 0xc5

 0x0

 any

 any

 if dst s< imm goto +offset

 base64

RFC 9669,

 0xc6

 0x0

 any

 any

if (s32)dst s< (s32)imm goto +offset

 base32

RFC 9669,

 0xc7

 0x0

 0

 any

 dst s>>= imm

 base64

RFC 9669,

 0xcc

 any

 0

 0x00

 dst = (u32)(dst s>> src)

 base32

RFC 9669,

 0xcd

 any

 any

 0x00

 if dst s< src goto +offset

 base64

RFC 9669,

 0xce

 any

 any

 0x00

if (s32)dst s< (s32)src goto +offset

 base32

RFC 9669,

 0xcf

 any

 0

 0x00

 dst s>>= src

 base64

RFC 9669,

 0xd4

 0x0

 0

 0x10

 dst = htole16(dst)

 base32

RFC 9669,

 0xd4

 0x0

 0

 0x20

 dst = htole32(dst)

 base32

RFC 9669,

 0xd4

 0x0

 0

 0x40

 dst = htole64(dst)

 base64

RFC 9669,

 0xd5

 0x0

 any

 any

if dst s<= imm goto +offset

 base64

RFC 9669,

 0xd6

 0x0

 any

 any

if (s32)dst s<= (s32)imm goto +offset

 base32

RFC 9669,

 0xd7

 0x0

 0

 0x10

 dst = bswap16(dst)

 base32

RFC 9669,

 0xd7

 0x0

 0

 0x20

 dst = bswap32(dst)

 base32

RFC 9669,

 0xd7

 0x0

 0

 0x40

 dst = bswap64(dst)

 base64

RFC 9669,

 0xdb

 any

 any

 0x00

lock *(u64 *)(dst + offset) += src

 atomic64

RFC 9669,

 0xdb

 any

 any

 0x01

src = atomic_fetch_add_64((u64 *)(dst + offset), src)

 atomic64

RFC 9669,

 0xdb

 any

 any

 0x40

lock *(u64 *)(dst + offset) |= src

 atomic64

RFC 9669,

 0xdb

 any

 any

 0x41

src = atomic_fetch_or_64((u64 *)(dst + offset), src)

 atomic64

RFC 9669,

 0xdb

 any

 any

 0x50

lock *(u64 *)(dst + offset) &= src

 atomic64

RFC 9669,

 0xdb

 any

 any

 0x51

src = atomic_fetch_and_64((u64 *)(dst + offset), src)

 atomic64

RFC 9669,

 0xdb

 any

 any

 0xa0

lock *(u64 *)(dst + offset) ^= src

 atomic64

RFC 9669,

 0xdb

 any

 any

 0xa1

src = atomic_fetch_xor_64((u64 *)(dst + offset), src)

 atomic64

RFC 9669,

 0xdb

 any

 any

 0xe1

src = xchg_64((u64 *)(dst + offset), src)

 atomic64

RFC 9669,

 0xdb

 any

 any

 0xf1

r0 = cmpxchg_64((u64 *)(dst + offset), r0, src)

 atomic64

RFC 9669,

 0xdc

 0x0

 0

 0x10

 dst = htobe16(dst)

 base32

RFC 9669,

 0xdc

 0x0

 0

 0x20

 dst = htobe32(dst)

 base32

RFC 9669,

 0xdc

 0x0

 0

 0x40

 dst = htobe64(dst)

 base64

RFC 9669,

 0xdd

 any

 any

 0x00

if dst s<= src goto +offset

 base64

RFC 9669,

 0xde

 any

 any

 0x00

if (s32)dst s<= (s32)src goto +offset

 base32

RFC 9669,

 Acknowledgements

 This document was generated from instruction-set.rst in the Linux
 kernel repository, to which a number of other individuals have authored contributions
 over time, including , , , , ,
 , , , ,
 , , , and , with review and suggestions by many others including
 , , , ,
 , , , , , and .

 Author's Address

 Redmond
 98052
 United States of America
 WA

 dave.thaler.ietf@gmail.com

