
RFC 9441

Static Context Header Compression (SCHC)

Compound Acknowledgement (ACK)

Abstract

This document updates the Static Context Header Compression (SCHC) and fragmentation

protocol (RFC 8724) and the corresponding YANG module (RFC 9363). It defines a SCHC

Compound Acknowledgement (ACK) message format and procedure, which are intended to

reduce the number of response transmissions (i.e., SCHC ACKs) in the ACK-on-Error Mode, by

accumulating bitmaps of several windows in a single SCHC message (i.e., the SCHC Compound

ACK).

Both the message format and procedure are generic, so they can be used, for instance, by any of

the four Low-Power Wide Area Network (LPWAN) technologies defined in RFC 8376, which are

Sigfox, Long Range Wide Area Network (LoRaWAN), Narrowband Internet of Things (NB-IoT),

and IEEE 802.15.4w.

Stream:

RFC:

Updates:

Category:

Published:

ISSN:

Authors:

Internet Engineering Task Force (IETF)

9441

8724, 9363

Standards Track

July 2023

2070-1721

JC. Zúñiga

Cisco

C. Gomez

Universitat Politècnica de Catalunya

S. Aguilar

Universitat Politècnica de Catalunya

L. Toutain

IMT-Atlantique

S. Céspedes

Concordia University

D. Wistuba

NIC Labs, Universidad de Chile

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the

consensus of the IETF community. It has received public review and has been approved for

publication by the Internet Engineering Steering Group (IESG). Further information on Internet

Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback

on it may be obtained at .https://www.rfc-editor.org/info/rfc9441

Zúñiga, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9441
https://www.rfc-editor.org/rfc/rfc8724
https://www.rfc-editor.org/rfc/rfc9363
https://www.rfc-editor.org/info/rfc9441

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights

reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents () in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and restrictions

with respect to this document. Code Components extracted from this document must include

Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are

provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

RFC 9441 SCHC Compound ACK July 2023

Zúñiga, et al. Standards Track Page 2

https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

2. Terminology

3. SCHC Compound ACK

3.1. SCHC Compound ACK Message Format

3.2. SCHC Compound ACK Behavior

3.2.1. ACK-on-Error Mode (Replaces Section 8.4.3, RFC 8724)

4. SCHC Compound ACK Example

5. SCHC Compound ACK YANG Data Model

5.1. SCHC YANG Data Model Extension

5.2. SCHC YANG Tree Extension

6. SCHC Compound ACK Parameters

7. Security Considerations

8. IANA Considerations

8.1. URI Registration

8.2. YANG Module Name Registration

9. References

9.1. Normative References

9.2. Informative References

Acknowledgements

Authors' Addresses

1. Introduction

The Generic Framework for Static Context Header Compression (SCHC) and Fragmentation

specification describes two mechanisms: i) a protocol header compression scheme and

ii) a frame fragmentation and loss recovery functionality. Either can be used on top of radio

technologies, such as the four Low-Power Wide Area Networks (LPWANs) listed in ,

[RFC8724]

[RFC8376]

RFC 9441 SCHC Compound ACK July 2023

Zúñiga, et al. Standards Track Page 3

which are Sigfox, LoRaWAN, NB-IoT, and IEEE 802.15.4w. These LPWANs have similar

characteristics, such as star-oriented topologies, network architecture, and connected devices

with built-in applications.

SCHC offers a great level of flexibility to accommodate all these LPWAN technologies. Even

though there are a number of similarities between them, some differences exist with respect to

the transmission characteristics, payload sizes, etc. Hence, there are optimal parameters and

modes of operation that can be used when SCHC is used on top of a specific LPWAN technology.

In ACK-on-Error mode in , the SCHC Packet is fragmented into pieces called tiles, where

all tiles are the same size except for the last one, which can be smaller. Successive tiles are

grouped in windows of fixed size. A SCHC Fragment carries one or several contiguous tiles,

which may span multiple windows. When sending all tiles from all windows, the last tile is sent

in an All-1 SCHC Fragment. The SCHC receiver will send a SCHC ACK reporting on the reception

of exactly one window of tiles after receiving the All-1 SCHC Fragment. In case of SCHC Fragment

losses, a bitmap is added to the failure SCHC ACK, where each bit in the bitmap corresponds to a

tile in the window. If SCHC Fragment losses span multiple windows, the SCHC receiver will send

one failure SCHC ACK per window with losses.

This document updates the SCHC protocol for frame fragmentation and loss recovery. It defines a

SCHC Compound ACK format and procedure, which are intended to reduce the number of

response transmissions (i.e., SCHC ACKs) in the ACK-on-Error mode of SCHC. The SCHC

Compound ACK extends the failure SCHC ACK message format so that it can contain several

bitmaps, with each bitmap being identified by its corresponding window number. The SCHC

Compound ACK is backwards compatible with the SCHC ACK as defined in , and

introduces flexibility, as the receiver has the capability to respond to the All-0 SCHC Fragment,

providing more Downlink opportunities and therefore adjusting to the delay requirements of the

application.

[RFC8724]

[RFC8724]

2. Terminology

The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in

all capitals, as shown here.

It is assumed that the reader is familiar with the terms and mechanisms defined in

and .

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD

NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[RFC8376]

[RFC8724]

3. SCHC Compound ACK

The SCHC Compound ACK is a failure SCHC ACK message that can contain several bitmaps, with

each bitmap being identified by its corresponding window number. In , the failure

SCHC ACK message only contains one bitmap corresponding to one window. The SCHC

[RFC8724]

RFC 9441 SCHC Compound ACK July 2023

Zúñiga, et al. Standards Track Page 4

Compound ACK extends this format, allowing more windows to be acknowledged in a single ACK

and reducing the total number of failure SCHC ACK messages, especially when fragment losses

are present in intermediate windows.

The SCHC Compound ACK be used in fragmentation modes that use windows and that allow

reporting the bitmaps of multiple windows at the same time; otherwise, the SCHC Compound

ACK be used.

The SCHC Compound ACK:

provides feedback only for windows with fragment losses,

has a variable size that depends on the number of windows with fragment losses being

reported in the single SCHC Compound ACK,

includes the window number (i.e., W) of each bitmap,

might not cover all windows with fragment losses of a SCHC Packet, and

is distinguishable from the SCHC Receiver-Abort.

MAY

MUST NOT

•

•

•

•

•

3.1. SCHC Compound ACK Message Format

Figure 1 shows the success SCHC ACK format, i.e., when all fragments have been correctly

received (C=1), as defined in .

In case SCHC Fragment losses are found in any of the windows of the SCHC Packet, the SCHC

Compound ACK be used. The SCHC Compound ACK message format is shown in Figures 2

and 3.

[RFC8724]

Figure 1: SCHC Success ACK Message Format, as Defined in RFC 8724

 |--- SCHC ACK Header ---|
 | |--T-|--M--| 1 |
 +--------+----+-----+---+~~~~~~~~~~~~~~~~~~
 | RuleID |DTag| W |C=1| padding as needed
 +--------+----+-----+---+~~~~~~~~~~~~~~~~~~

MAY

Figure 2: SCHC Compound ACK Message Format. Losses are found in windows W = w1,...,wi, where

w1 < w2 <...< wi.

 |--- SCHC ACK Header --|- W=w1 -|...|---- W=wi -----|
 |--T-|---M--|-1-| |...|---M--| |---M--|
 +------+----+------+---+--------+...+------+--------+------+~~~~~+
 |RuleID|DTag| W=w1 |C=0| Bitmap |...| W=wi | Bitmap |00..00| pad |
 +------+----+------+---+--------+...+------+--------+------+~~~~~+
 next L2 Word boundary ->|<-- L2 Word ->|

RFC 9441 SCHC Compound ACK July 2023

Zúñiga, et al. Standards Track Page 5

The SCHC Compound ACK groups the window number (W) with its corresponding bitmap.

Window numbers do not need to be contiguous. However, the window numbers and their

corresponding bitmaps included in the SCHC Compound ACK message be ordered from the

lowest-numbered to the highest-numbered window. Hence, if the bitmap of window number

zero is present in the SCHC Compound ACK message, it always be the first one in order and

its window number be placed in the SCHC ACK Header.

If M or more padding bits would be needed after the last bitmap in the message to fill the last

layer two (L2) Word, M bits at 0 be appended after the last bitmap, and then padding is

applied as needed (see Figure 2). Since window number 0 (if present in the message) is placed as

w1, the M bits set to zero can't be confused with window number 0; therefore, they signal the end

of the SCHC Compound ACK message.

Figure 3 shows the case when the required padding bits are strictly less than M bits. In this case,

the L2 Maximum Transmission Unit (MTU) does not leave room for any extra window value, let

alone any bitmap, thereby signaling the end of the SCHC Compound ACK message.

The SCHC Compound ACK use the Compressed Bitmap format for intermediate

windows/bitmaps (i.e., bitmaps that are not the last one of the SCHC Compound ACK message);

therefore, intermediate bitmap fields be of size WINDOW_SIZE. Hence, the SCHC

Compound ACK use a Compressed Bitmap format only for the last bitmap in the message.

The optional usage of this Compressed Bitmap for the last bitmap be specified by the

technology-specific SCHC Profile.

The case where the last bitmap is effectively compressed corresponds to Figure 3, with the last

bitmap ending (by construction) on an L2 Word boundary, therefore resulting in no padding at

all.

Figure 4 illustrates a bitmap compression example of a SCHC Compound ACK, where the bitmap

of the last window (wi) indicates that the first tile has not been correctly received. Because the

compression algorithm resulted in effective compression, no padding is needed.

MUST

MUST

MUST

MUST

Figure 3: SCHC Compound ACK Message Format with Less than M Padding Bits. Losses are found in

windows W = w1,...,wi, where w1 < w2 <...< wi.

 |--- SCHC ACK Header --|- W=w1 -|...|---- W=wi -----|
 |--T-|---M--|-1-| |...|---M--| |---M--|
 +------+----+------+---+--------+...+------+--------+~~~+
 |RuleID|DTag| W=w1 |C=0| Bitmap |...| W=wi | Bitmap |pad|
 +------+----+------+---+--------+...+------+--------+~~~+
 next L2 Word boundary ->|

MUST NOT

MUST

MAY

MUST

RFC 9441 SCHC Compound ACK July 2023

Zúñiga, et al. Standards Track Page 6

Figure 5 illustrates another bitmap compression example of a SCHC Compound ACK, where the

bitmap of the last window (wi) indicates that the second and the fourth tiles have not been

correctly received. In this example, the compression algorithm does not result in effective

compression of the last bitmap. Besides, because more than M bits of padding would be needed

to fill the last L2 Word, M bits at 0 are appended to the message before padding is applied.

If a SCHC sender gets a SCHC Compound ACK with invalid window numbers, such as duplicate W

values or W values not sent yet, it discard the whole SCHC Compound ACK message.

Figure 4: SCHC Compound ACK Message Format with Compressed Bitmap and No Padding Added.

Losses are found in windows W = w1,...,wi, where w1 < w2 <...< wi.

 |--- SCHC ACK Header --|- W=w1 -|...|-------- W=wi -------|
 |--T-|---M--|-1-| |...|---M--|
 +------+----+------+---+--------+...+------+--------------+
 |RuleID|DTag| W=w1 |C=0| Bitmap |...| W=wi |0 1 1 1 1 1 1 |
 +------+----+------+---+--------+...+------+--------------+
 next L2 Word boundary ->|

 SCHC Compound ACK with Uncompressed Bitmap

 |--- SCHC ACK Header --|- W=w1 -|...|-- W=wi --|
 |--T-|---M--|-1-| |...|---M--|
 +------+----+------+---+--------+...+------+---+
 |RuleID|DTag| W=w1 |C=0| Bitmap |...| W=wi |0 1|
 +------+----+------+---+--------+...+------+---+
 next L2 Word boundary ->|

 Transmitted SCHC Compound ACK with Compressed Bitmap

Figure 5: SCHC Compound ACK Message Format with Compressed Bitmap and Padding Added to

Reach the L2 Boundary. Losses are found in windows W = w1,...,wi, where w1 < w2 <...<wi.

 |--- SCHC ACK Header --|-W=w1-|...|-------- W=wi -------|
 |--T-|---M--|-1-| |...|---M--|
 +------+----+------+---+------+...+------+--------------+
 |RuleID|DTag| W=w1 |C=0|Bitmap|...| W=wi |1 0 1 0 1 1 1 |
 +------+----+------+---+------+...+------+--------------+
 next L2 Word boundary ->|

 SCHC Compound ACK with Uncompressed Bitmap

 |--- SCHC ACK Header --|-W=w1-|...|-------- W=wi -------|
 |--T-|---M--|-1-| |...|---M--| |---M--|
 +------+----+------+---+------+...+------+--------------+------+~~~+
 |RuleID|DTag| W=w1 |C=0|Bitmap|...| W=wi |1 0 1 0 1 1 1 |00..00|pad|
 +------+----+------+---+------+...+------+--------------+------+~~~+
 next L2 Word boundary ->|<------ L2 Word ------>|

 Transmitted SCHC Compound ACK

MUST

RFC 9441 SCHC Compound ACK July 2023

Zúñiga, et al. Standards Track Page 7

Note that SCHC Compound ACKs are distinguishable from the Receiver-Abort

message in the same way that regular SCHC ACKs are distinguishable, since the

Receiver-Abort pattern never occurs in a legitimate SCHC Compound ACK

.[RFC8724]

3.2. SCHC Compound ACK Behavior

The SCHC ACK-on-Error behavior is described in . The present

document slightly modifies this behavior. In the baseline SCHC specification, a SCHC ACK reports

only one bitmap for the reception of exactly one window of tiles. The present SCHC Compound

ACK specification extends the SCHC ACK message format so that it can contain several bitmaps,

with each bitmap being identified by its corresponding window number.

As presented in , the SCHC ACK format can be considered a special SCHC Compound

ACK case in which it reports only the tiles of one window. Therefore, the SCHC Compound ACK is

backwards compatible with the SCHC ACK format presented in . The receiver can

assume that the sender does not support the SCHC Compound ACK if, although the SCHC

Compound ACK sent by the receiver reports losses in more than one window, the sender does not

resend any tiles from windows other than the first window reported in the SCHC Compound

ACK. In that case, the receiver can send SCHC Compound ACKs with only one window of tiles.

Also, some flexibility is introduced with respect to in that the receiver has the

capability to respond (or not) to the All-0 with a SCHC Compound ACK, depending on certain

parameters, like network conditions, sender buffer/cache size, and supported application delay.

Note that even though the protocol allows for such flexibility, the actual decision criteria is not

specified in this document. The application set expiration timer values according to when

the feedback is expected to be received, e.g., after the All-0 or after the All-1.

Section 3.2.1 (and its subsections) replaces the complete Section 8.4.3 (and its subsections) of

.

Section 8.4.3 of [RFC8724]

[RFC8724]

[RFC8724]

[RFC8724]

MUST

[RFC8724]

3.2.1. ACK-on-Error Mode (Replaces Section 8.4.3, RFC 8724)

The ACK-on-Error mode supports L2 technologies that have variable MTU and out-of-order

delivery. It requires an L2 that provides a feedback path from the reassembler to the fragmenter.

See Appendix F for a discussion on using ACK-on-Error mode on quasi-bidirectional links.

In ACK-on-Error mode, windows are used.

All tiles except the last one and the penultimate one be of equal size, hereafter called

"regular". The size of the last tile be smaller than or equal to the regular tile size. Regarding

the penultimate tile, a Profile pick one of the following two options:

The penultimate tile size be the regular tile size, or

the penultimate tile size be either the regular tile size or the regular tile size minus one

L2 Word.

MUST

MUST

MUST

• MUST

• MUST

RFC 9441 SCHC Compound ACK July 2023

Zúñiga, et al. Standards Track Page 8

https://www.rfc-editor.org/rfc/rfc8724#section-8.4.3
https://www.rfc-editor.org/rfc/rfc8724#section-8.4.3
https://www.rfc-editor.org/rfc/rfc8724#appendix-F

A SCHC Fragment message carries one or several contiguous tiles, which may span multiple

windows. A SCHC Compound ACK reports on the reception of one window of tiles or several

windows of tiles, each one identified by its window number.

See Figure 6 (see Figure 23 of RFC 8724) for an example.

The W field is wide enough that it unambiguously represents an absolute window number. The

fragment receiver sends SCHC Compound ACKs to the fragment sender about windows for which

tiles are missing. No SCHC Compound ACK is sent by the fragment receiver for windows that it

knows have been fully received.

The fragment sender retransmits SCHC Fragments for tiles that are reported missing. It can

advance to next windows even before it has ascertained that all tiles belonging to previous

windows have been correctly received, and it can still later retransmit SCHC Fragments with tiles

belonging to previous windows. Therefore, the sender and the receiver may operate in a

decoupled fashion. The fragmented SCHC Packet transmission concludes when:

integrity checking shows that the fragmented SCHC Packet has been correctly reassembled at

the receive end, and this information has been conveyed back to the sender,

too many retransmission attempts have been made, or

the receiver determines that the transmission of this fragmented SCHC Packet has been

inactive for too long.

Each Profile specify which RuleID value(s) corresponds to SCHC F/R messages operating in

this mode.

The W field be present in the SCHC F/R messages.

Each Profile, for each RuleID value, define:

the tile size (a tile does not need to be a duplicate of an L2 Word, but it be at least the

size of an L2 Word),

the value of M,

the value of N,

the value of WINDOW_SIZE, which be strictly less than 2N,

Figure 6: SCHC Packet Fragmented in Tiles, ACK-on-Error Mode (Figure 23 in RFC 8724)

 +---...-----------+
 | SCHC Packet |
 +---...-----------+

Tile# | 4 | 3 | 2 | 1 | 0 | 4 | 3 | 2 | 1 | 0 | 4 | | 0 | 4 |3|
Window# |-------- 0 --------|-------- 1 --------|- 2 ... 27 -|- 28-|

SCHC Fragment msg |-----------|

•

•

•

MUST

MUST

MUST

• MUST

•

•

• MUST

RFC 9441 SCHC Compound ACK July 2023

Zúñiga, et al. Standards Track Page 9

https://www.rfc-editor.org/rfc/rfc8724.html#figure-23

the size and algorithm for the RCS field,

the value of T,

the value of MAX_ACK_REQUESTS,

the expiration time of the Retransmission Timer,

the expiration time of the Inactivity Timer,

if the last tile is carried in a Regular SCHC Fragment or an All-1 SCHC Fragment (see Section

3.2.1.1 (Section 8.4.3.1 in),

if the penultimate tile be one L2 Word smaller than the regular tile size (in this case, the

regular tile size be at least twice the L2 Word size),

usage or not of the SCHC Compound ACK message, and

usage or not of the Compressed Bitmap format in the last window of the SCHC Compound

ACK message.

For each active pair of RuleID and DTag values, the sender maintain:

one Attempts counter and

one Retransmission Timer.

For each active pair of RuleID and DTag values, the receiver maintain:

one Attempts counter and

one Inactivity Timer.

•

•

•

•

•

•

[RFC8724]

• MAY

MUST

•

•

MUST

•

•

MUST

•

•

3.2.1.1. Sender Behavior (Replaces Section 8.4.3.1, RFC 8724)

At the beginning of the fragmentation of a new SCHC Packet:

the fragment sender select a RuleID and DTag value pair for this SCHC Packet. A Rule

 be selected if the values of M and WINDOW_SIZE for that Rule are such that the

SCHC Packet cannot be fragmented in (2M) * WINDOW_SIZE tiles or less.

the fragment sender initialize the Attempts counter to 0 for that RuleID and DTag value

pair.

A Regular SCHC Fragment message carries in its payload one or more tiles. If more than one tile

is carried in one Regular SCHC Fragment:

the selected tiles be contiguous in the original SCHC Packet, and

they be placed in the SCHC Fragment Payload adjacent to one another, in the order

they appear in the SCHC Packet, from the start of the SCHC Packet toward its end.

Tiles that are not the last one be sent in Regular SCHC Fragments as specified in Section

8.3.1.1. The FCN field contain the tile index of the first tile sent in that SCHC Fragment.

In a Regular SCHC Fragment message, the sender fill the W field with the window number

of the first tile sent in that SCHC Fragment.

• MUST

MUST NOT

• MUST

• MUST

• MUST

MUST

MUST

MUST

RFC 9441 SCHC Compound ACK July 2023

Zúñiga, et al. Standards Track Page 10

https://www.rfc-editor.org/rfc/rfc8724#section-8.4.3.1
https://www.rfc-editor.org/rfc/rfc8724#section-8.3.1.1

A Profile define if the last tile of a SCHC Packet is sent:

in a Regular SCHC Fragment, alone or as part of a multi-tiles Payload,

alone in an All-1 SCHC Fragment, or

with either one of the above two methods.

In an All-1 SCHC Fragment message, the sender fill the W field with the window number of

the last tile of the SCHC Packet.

The fragment sender send SCHC Fragments such that, all together, they contain all the tiles

of the fragmented SCHC Packet.

The fragment sender send at least one All-1 SCHC Fragment.

In doing the two items above, the sender ascertain that the receiver will not receive the

last tile through both a Regular SCHC Fragment and an All-1 SCHC Fragment.

The fragment sender listen for SCHC Compound ACK messages after having sent:

an All-1 SCHC Fragment or

a SCHC ACK REQ.

A Profile specify other times at which the fragment sender listen for SCHC Compound

ACK messages. For example, this could be after sending a complete window of tiles.

Each time a fragment sender sends an All-1 SCHC Fragment or a SCHC ACK REQ:

it increment the Attempts counter, and

it reset the Retransmission Timer.

On Retransmission Timer expiration:

if the Attempts counter is strictly less than MAX_ACK_REQUESTS, the fragment sender

send either the All-1 SCHC Fragment or a SCHC ACK REQ with the W field corresponding to

the last window,

otherwise, the fragment sender send a SCHC Sender-Abort, and it exit with an

error condition.

All message receptions being discussed in the rest of this section are to be understood as

"matching the RuleID and DTag pair being processed", even if not spelled out, for brevity.

On receiving a SCHC Compound ACK:

if one of the W fields in the SCHC Compound ACK corresponds to the last window of the

SCHC Packet:

if the C bit is set, the sender exit successfully.

MUST

•

•

•

MUST

MUST

MUST

MUST

MUST

•

•

MAY MUST

• MUST

• MUST

• MUST

• MUST MAY

•

◦ MAY

RFC 9441 SCHC Compound ACK July 2023

Zúñiga, et al. Standards Track Page 11

otherwise:

if the Profile mandates that the last tile be sent in an All-1 SCHC Fragment:

if the SCHC Compound ACK shows no missing tile at the receiver, the sender:

 send a SCHC Sender-Abort and

 exit with an error condition.

otherwise:

the fragment sender send SCHC Fragment messages containing all the tiles of

all the windows that are reported missing in the SCHC Compound ACK.

if the last of these SCHC Fragment messages is not an All-1 SCHC Fragment, then the

fragment sender either send, in addition, a SCHC ACK REQ with the W field

corresponding to the last window or repeat the All-1 SCHC Fragment to ask the

receiver to confirm that all tiles have been correctly received.

in doing the two items above, the sender ascertain that the receiver will not

receive the last tile through both a Regular SCHC Fragment and an All-1 SCHC

Fragment.

otherwise:

if the SCHC Compound ACK shows no missing tile at the receiver, the sender

send the All-1 SCHC Fragment

otherwise:

the fragment sender send SCHC Fragment messages containing all the tiles

that are reported missing in the SCHC Compound ACK.

the fragment sender then send either the All-1 SCHC Fragment or a SCHC ACK

REQ with the W field corresponding to the last window.

otherwise, the fragment sender:

 send SCHC Fragment messages containing the tiles that are reported missing in the

SCHC Compound ACK.

then, it send a SCHC ACK REQ with the W field corresponding to the last window.

See Figure 43 for one among several possible examples of a Finite State Machine implementing a

sender behavior obeying this specification.

◦

▪

▪

▪ MUST

▪ MAY

▪

▪ MUST

▪

MAY

▪ MUST

▪

▪ MUST

▪

▪ MUST

▪ MUST

•

◦ MUST

◦ MAY

3.2.1.2. Receiver Behavior (Replaces Section 8.4.3.2, RFC 8724)

On receiving a SCHC Fragment with a RuleID and DTag pair not being processed at that time:

the receiver check that the DTag value has not recently been used for that RuleID

value, thereby ensuring that the received SCHC Fragment is not a remnant of a prior

fragmented SCHC Packet transmission. The initial value of the Inactivity Timer is the

 lifetime for the DTag value at the receiver. If the SCHC Fragment is

determined to be such a remnant, the receiver silently ignore it and discard it.

• SHOULD

RECOMMENDED

MAY

RFC 9441 SCHC Compound ACK July 2023

Zúñiga, et al. Standards Track Page 12

https://www.rfc-editor.org/rfc/rfc8724.html#figure-43

the receiver start a process to assemble a new SCHC Packet with that RuleID and DTag

value pair. The receiver start an Inactivity Timer for that RuleID and DTag value pair.

It initialize an Attempts counter to 0 for that RuleID and DTag value pair. If the

receiver is under-resourced to do this, it respond to the sender with a SCHC Receiver-

Abort.

On reception of any SCHC F/R message for the RuleID and DTag pair being processed, the

receiver reset the Inactivity Timer pertaining to that RuleID and DTag pair.

All message receptions being discussed in the rest of this section are to be understood as

"matching the RuleID and DTag pair being processed", even if not spelled out, for brevity.

On receiving a SCHC Fragment message, the receiver determines what tiles were received, based

on the payload length and on the W and FCN fields of the SCHC Fragment.

if the FCN is All-1 and if a Payload is present, the full SCHC Fragment Payload be

assembled including the padding bits. This is because the size of the last tile is not known by

the receiver; therefore, padding bits are indistinguishable from the tile data bits, at this

stage. They will be removed by the SCHC C/D sublayer. If the size of the SCHC Fragment

Payload exceeds or equals the size of one regular tile plus the size of an L2 Word, this

 raise an error flag.

otherwise, tiles be assembled based on the a priori known tile size.

If allowed by the Profile, the end of the payload contain the last tile, which may be

shorter. Padding bits are indistinguishable from the tile data bits, at this stage.

The payload may contain the penultimate tile that, if allowed by the Profile, be exactly

one L2 Word shorter than the regular tile size.

Otherwise, padding bits be discarded. This is possible because:

the size of the tiles is known a priori,

tiles are larger than an L2 Word, and

padding bits are always strictly less than an L2 Word.

On receiving a SCHC All-0 SCHC Fragment:

if the receiver knows of any windows with missing tiles for the packet being reassembled

(and depending on certain parameters, like network conditions, sender buffer/cache size,

and supported application delay, among others), it return a SCHC Compound ACK for

the missing tiles, starting from the lowest-numbered window.

On receiving a SCHC ACK REQ or an All-1 SCHC Fragment:

if the receiver knows of any windows with missing tiles for the packet being reassembled, it

 return a SCHC Compound ACK for the missing tiles, starting from the lowest-numbered

window.

• MUST

MUST

MUST

MUST

MUST

• MUST

SHOULD

• MUST

◦ MAY

◦ MAY

◦ MUST

▪

▪

▪

•

MAY

•

MUST

RFC 9441 SCHC Compound ACK July 2023

Zúñiga, et al. Standards Track Page 13

otherwise:

if it has received at least one tile, it return a SCHC Compound ACK for the highest-

numbered window it currently has tiles for,

otherwise, it return a SCHC Compound ACK for window number 0.

A Profile specify other times and circumstances at which a receiver sends a SCHC

Compound ACK and which window the SCHC Compound ACK reports about in these

circumstances.

Upon sending a SCHC Compound ACK, the receiver increase the Attempts counter.

After receiving an All-1 SCHC Fragment, a receiver check the integrity of the reassembled

SCHC Packet at least every time it prepares to send a SCHC Compound ACK for the last window.

Upon receiving a SCHC Sender-Abort, the receiver exit with an error condition.

Upon expiration of the Inactivity Timer, the receiver send a SCHC Receiver-Abort, and it

 exit with an error condition.

On the Attempts counter exceeding MAX_ACK_REQUESTS, the receiver send a SCHC

Receiver-Abort, and it exit with an error condition.

Reassembly of the SCHC Packet concludes when:

a Sender-Abort has been received,

the Inactivity Timer has expired,

the Attempts counter has exceeded MAX_ACK_REQUESTS, or

at least an All-1 SCHC Fragment has been received and integrity checking of the reassembled

SCHC Packet is successful.

See Figure 44 for one among several possible examples of a Finite State Machine implementing a

receiver behavior obeying this specification. The example provided is meant to match the sender

Finite State Machine of Figure 43.

•

◦ MUST

◦ MUST

MAY

MUST

MUST

MAY

MUST

MAY

MUST

MAY

•

•

•

•

4. SCHC Compound ACK Example

Figure 7 shows an example transmission of a SCHC Packet in ACK-on-Error mode using the SCHC

Compound ACK. In the example, the SCHC Packet is fragmented in 14 tiles, with N=3,

WINDOW_SIZE=7, M=2, and two lost SCHC fragments. Only 1 SCHC Compound ACK is generated.

RFC 9441 SCHC Compound ACK July 2023

Zúñiga, et al. Standards Track Page 14

https://www.rfc-editor.org/rfc/rfc8724.html#figure-44
https://www.rfc-editor.org/rfc/rfc8724.html#figure-43

Figure 7: SCHC Compound ACK Message Sequence Example

 Sender Receiver
 |-----W=0, FCN=6 ----->|
 |-----W=0, FCN=5 ----->|
 |-----W=0, FCN=4 ----->|
 |-----W=0, FCN=3 ----->|
 |-----W=0, FCN=2 --X |
 |-----W=0, FCN=1 ----->|
 |-----W=0, FCN=0 ----->| Bitmap: 1111011
 (no ACK)
 |-----W=1, FCN=6 ----->|
 |-----W=1, FCN=5 ----->|
 |-----W=1, FCN=4 ----->|
 |-----W=1, FCN=3 ----->|
 |-----W=1, FCN=2 ----->|
 |-----W=1, FCN=1 --X |
 |-- W=1, FCN=7 + RCS ->| Integrity check: failure
 |<--- Compound ACK ----| [C=0, W=0 - Bitmap:1111011,
 |-----W=0, FCN=2 ----->| W=1 - Bitmap:1111101]
 |-----W=1, FCN=1 ----->| Integrity check: success
 |<--- ACK, W=1, C=1 ---| C=1
 (End)

Figure 8: SCHC Compound ACK Message Format Example: Losses are Found in Windows 00 and 01

 |--- SCHC ACK Header --|- W=00 --|----- W=01 -----|
 |--T-|---M--|-1-| |---M--| |---M--|
 +------+----+------+---+---------+------+---------+------+-----+
 |RuleID|DTag| W=00 |C=0| 1111011 | W=01 | 1111101 | 00 | pad |
 +------+----+------+---+---------+------+---------+------+-----+
 next L2 Word boundary ->|<-- L2 Word ->|

5. SCHC Compound ACK YANG Data Model

This document also extends the SCHC YANG data model defined in by including a new

leaf in the Ack-on-Error fragmentation mode to describe both the option to use the SCHC

Compound ACK, as well as its bitmap format.

[RFC9363]

5.1. SCHC YANG Data Model Extension

RFC 9441 SCHC Compound ACK July 2023

Zúñiga, et al. Standards Track Page 15

<CODE BEGINS> file "ietf-schc-compound-ack@2023-07-26.yang"

module ietf-schc-compound-ack {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-schc-compound-ack";
 prefix schc-compound-ack;

 import ietf-schc {
 prefix schc;
 }

 organization
 "IETF IPv6 over Low Power Wide-Area Networks (lpwan)
 Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/lpwan/about/>
 WG List: <mailto:lp-wan@ietf.org>
 Editor: Laurent Toutain
 <mailto:laurent.toutain@imt-atlantique.fr>
 Editor: Juan Carlos Zuniga
 <mailto:j.c.zuniga@ieee.org>
 Editor: Sergio Aguilar
 <mailto:sergio.aguilar.romero@upc.edu>";
 description
 "Copyright (c) 2023 IETF Trust and the persons identified as
 authors of the code. All rights reserved.
 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Revised BSD License set
 forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).
 This version of this YANG module is part of RFC 9363
 (https://www.rfc-editor.org/info/rfc9363); see the RFC itself
 for full legal notices.

 Generic data model for the Static Context Header Compression
 Rule for SCHC, based on RFCs 8724 and 8824. Including
 compression, no-compression, and fragmentation Rules.";

 revision 2023-07-26 {
 description
 "Initial version for RFC 9441.";
 reference
 "RFC 9441 Static Context Header Compression (SCHC) Compound
 Acknowledgement (ACK)";
 }

 identity bitmap-format-base-type {
 description
 "Define how the bitmap is formed in ACK messages.";
 }

 identity bitmap-RFC8724 {
 base bitmap-format-base-type;
 description
 "Bitmap by default as defined in RFC 8724.";

RFC 9441 SCHC Compound ACK July 2023

Zúñiga, et al. Standards Track Page 16

Figure 9: SCHC YANG Data Model - Compound ACK Extension

 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation";
 }

 identity bitmap-compound-ack {
 base bitmap-format-base-type;
 description
 "Compound ACK allows several bitmaps in an ACK message.";
 }

 typedef bitmap-format-type {
 type identityref {
 base bitmap-format-base-type;
 }
 description
 "Type of bitmap used in Rules.";
 }

 augment "/schc:schc/schc:rule/schc:nature/"
 + "schc:fragmentation/schc:mode/schc:ack-on-error" {
 leaf bitmap-format {
 when "derived-from-or-self(../schc:fragmentation-mode,
 'schc:fragmentation-mode-ack-on-error')";
 type schc-compound-ack:bitmap-format-type;
 default "schc-compound-ack:bitmap-RFC8724";
 description
 "How the bitmaps are included in the SCHC ACK message.";
 }
 leaf last-bitmap-compression {
 when "derived-from-or-self(../schc:fragmentation-mode,
 'schc:fragmentation-mode-ack-on-error')";
 type boolean;
 default "true";
 description
 "When true, the ultimate bitmap in the SCHC ACK message
 can be compressed. Default behavior from RFC 8724.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation";
 }
 description
 "Augment the SCHC Rules to manage Compound ACK.";
 }
}

<CODE ENDS>

5.2. SCHC YANG Tree Extension

RFC 9441 SCHC Compound ACK July 2023

Zúñiga, et al. Standards Track Page 17

Figure 10: Tree Diagram - Compound ACK Extension

module: ietf-schc-compound-ack
 augment /schc:schc/schc:rule/schc:nature/schc:fragmentation/
 schc:mode/schc:ack-on-error:
 +--rw bitmap-format? schc-compound-ack:bitmap-format-type
 +--rw last-bitmap-compression? boolean

6. SCHC Compound ACK Parameters

This section lists the parameters related to the SCHC Compound ACK usage that need to be

defined in the Profile. This list be appended to the list of SCHC parameters under "Decision

to use SCHC fragmentation mechanism or not. If yes, the document must describe:" as defined in

Appendix D of .

whether the SCHC Compound ACK message is used or not, and

whether the compressed bitmap format in the last window of the SCHC Compound ACK

message is used or not.

MUST

[RFC8724]

•

•

7. Security Considerations

This document specifies a message format extension for SCHC. Hence, the same security

considerations defined in and apply.

The YANG module specified in this document defines a schema for data that is designed to be

accessed via network management protocols such as NETCONF or RESTCONF

. The lowest NETCONF layer is the secure transport layer, and the mandatory-to-

implement secure transport is Secure Shell (SSH) . The lowest RESTCONF layer is

HTTPS, and the mandatory-to-implement secure transport is TLS .

The Network Configuration Access Control Model (NACM) provides the means to

restrict access for particular NETCONF or RESTCONF users to a preconfigured subset of all

available NETCONF or RESTCONF protocol operations and content.

There are a number of data nodes defined in this YANG module that are writable/creatable/

deletable (i.e., config true, which is the default). These data nodes may be considered sensitive or

vulnerable in some network environments. Write operations (e.g., edit-config) to these data

nodes without proper protection can have a negative effect on network operations. These are the

subtrees and data nodes and their sensitivity/vulnerability:

/schc:schc/schc:rule/schc:nature/schc:fragmentation/schc:mode/schc:ack-on-error:

All the data nodes may be modified. The Rule contains sensitive information, such as the

SCHC F/R mode configuration and usage and SCHC Compound ACK configuration. An attacker

may try to modify other devices' Rules by changing the F/R mode or the usage of the SCHC

[RFC8724] [RFC9363]

[RFC6241]

[RFC8040]

[RFC6242]

[RFC8446]

[RFC8341]

RFC 9441 SCHC Compound ACK July 2023

Zúñiga, et al. Standards Track Page 18

https://www.rfc-editor.org/rfc/rfc8724#appendix-D

[RFC2119]

9. References

9.1. Normative References

Compound ACK and may block communication or create extra ACKs. Therefore, a device must

be allowed to modify only its own Rules on the remote SCHC instance. The identity of the

requester must be validated. This can be done through certificates or access lists.

Some of the readable data nodes in this YANG module may be considered sensitive or vulnerable

in some network environments. It is thus important to control read access (e.g., via get, get-

config, or notification) to these data nodes. These are the subtrees and data nodes and their

sensitivity/vulnerability:

/schc:schc/schc:rule/schc:nature/schc:fragmentation/schc:mode/schc:ack-on-error:

By reading this module, an attacker may learn the F/R mode used by the device, how the

device manages the bitmap creation, the buffer sizes, and when the device will request an

ACK.

8. IANA Considerations

This document registers one URI and one YANG data model.

URI:

Registrant Contact:

XML:

8.1. URI Registration

IANA registered the following URI in the "IETF XML Registry" :

urn:ietf:params:xml:ns:yang:ietf-schc-compound-ack

The IESG.

N/A; the requested URI is an XML namespace.

[RFC3688]

name:

namespace:

prefix:

reference:

8.2. YANG Module Name Registration

IANA has registered the following YANG data model in the "YANG Module Names" registry

.

ietf-schc-compound-ack

urn:ietf:params:xml:ns:yang:ietf-schc-compound-ack

schc-compound-ack

RFC 9441

[RFC6020]

RFC 9441 SCHC Compound ACK July 2023

Zúñiga, et al. Standards Track Page 19

[RFC3688]

[RFC6020]

[RFC6241]

[RFC6242]

[RFC8040]

[RFC8174]

[RFC8341]

[RFC8446]

[RFC8724]

[RFC9363]

[RFC8376]

, , ,

, , March 1997,

.

, , , , ,

January 2004, .

,

, , , October

2010, .

, , , and ,

, , ,

June 2011, .

, ,

, , June 2011,

.

, , and , , ,

, January 2017, .

, ,

, , , May 2017,

.

 and , ,

, , , March 2018,

.

, , ,

, August 2018, .

, , , , and ,

,

, , April 2020,

.

 and ,

, , , March 2023,

.

9.2. Informative References

, , ,

, May 2018, .

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14

RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/

rfc2119>

Mealling, M. "The IETF XML Registry" BCP 81 RFC 3688 DOI 10.17487/RFC3688

<https://www.rfc-editor.org/info/rfc3688>

Bjorklund, M., Ed. "YANG - A Data Modeling Language for the Network

Configuration Protocol (NETCONF)" RFC 6020 DOI 10.17487/RFC6020

<https://www.rfc-editor.org/info/rfc6020>

Enns, R., Ed. Bjorklund, M., Ed. Schoenwaelder, J., Ed. A. Bierman, Ed.

"Network Configuration Protocol (NETCONF)" RFC 6241 DOI 10.17487/RFC6241

<https://www.rfc-editor.org/info/rfc6241>

Wasserman, M. "Using the NETCONF Protocol over Secure Shell (SSH)" RFC

6242 DOI 10.17487/RFC6242 <https://www.rfc-editor.org/info/

rfc6242>

Bierman, A. Bjorklund, M. K. Watsen "RESTCONF Protocol" RFC 8040 DOI

10.17487/RFC8040 <https://www.rfc-editor.org/info/rfc8040>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP

14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/

rfc8174>

Bierman, A. M. Bjorklund "Network Configuration Access Control Model"

STD 91 RFC 8341 DOI 10.17487/RFC8341 <https://www.rfc-

editor.org/info/rfc8341>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446

DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

Minaburo, A. Toutain, L. Gomez, C. Barthel, D. JC. Zuniga "SCHC: Generic

Framework for Static Context Header Compression and Fragmentation" RFC

8724 DOI 10.17487/RFC8724 <https://www.rfc-editor.org/info/

rfc8724>

Minaburo, A. L. Toutain "A YANG Data Model for Static Context Header

Compression (SCHC)" RFC 9363 DOI 10.17487/RFC9363 <https://

www.rfc-editor.org/info/rfc9363>

Farrell, S., Ed. "Low-Power Wide Area Network (LPWAN) Overview" RFC 8376

DOI 10.17487/RFC8376 <https://www.rfc-editor.org/info/rfc8376>

RFC 9441 SCHC Compound ACK July 2023

Zúñiga, et al. Standards Track Page 20

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc6242
https://www.rfc-editor.org/info/rfc6242
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8724
https://www.rfc-editor.org/info/rfc8724
https://www.rfc-editor.org/info/rfc9363
https://www.rfc-editor.org/info/rfc9363
https://www.rfc-editor.org/info/rfc8376

Acknowledgements

 has been funded in part by the Spanish Government through the TEC2016-79988-P

grant and the PID2019-106808RA-I00 grant (funded by MCIN / AEI / 10.13039/501100011033) and

by Secretaria d'Universitats i Recerca del Departament d'Empresa i Coneixement de la

Generalitat de Catalunya through 2017 grant SGR 376 and 2021 grant SGR 00330.

 has been funded by the ERDF and the Spanish Government through project

TEC2016-79988-P and project PID2019-106808RA-I00, AEI/FEDER, EU (funded by MCIN / AEI /

10.13039/501100011033).

 has been funded in part by the ANID Chile Project FONDECYT Regular 1201893

and Basal Project FB0008.

 has been funded by the ANID Chile Project FONDECYT Regular 1201893.

The authors would like to thank , , , ,

, and for their very useful comments, reviews, and

implementation design considerations.

Carles Gomez

Sergio Aguilar

Sandra Cespedes

Diego Wistuba

Rafael Vidal Julien Boite Renaud Marty Antonis Platis

Dominique Barthel Pascal Thubert

Authors' Addresses

Juan Carlos Zúñiga

Cisco

 Montreal QC

Canada

 juzuniga@cisco.com Email:

Carles Gomez

Universitat Politècnica de Catalunya

C/Esteve Terradas, 7

08860 Castelldefels

Spain

 carles.gomez@upc.edu Email:

Sergio Aguilar

Universitat Politècnica de Catalunya

C/Esteve Terradas, 7

08860 Castelldefels

Spain

 sergio.aguilar.romero@upc.edu Email:

RFC 9441 SCHC Compound ACK July 2023

Zúñiga, et al. Standards Track Page 21

mailto:juzuniga@cisco.com
mailto:carles.gomez@upc.edu
mailto:sergio.aguilar.romero@upc.edu

Laurent Toutain

IMT-Atlantique

2 rue de la Chataigneraie

CS 17607

35576 Cesson-Sevigne Cedex

France

 Laurent.Toutain@imt-atlantique.fr Email:

Sandra Céspedes

Concordia University

1455 De Maisonneuve Blvd. W.

 Montreal QC, H3G 1M8

Canada

 sandra.cespedes@concordia.ca Email:

Diego Wistuba

NIC Labs, Universidad de Chile

Av. Almte. Blanco Encalada 1975

Santiago

Chile

 research@witu.cl Email:

RFC 9441 SCHC Compound ACK July 2023

Zúñiga, et al. Standards Track Page 22

mailto:Laurent.Toutain@imt-atlantique.fr
mailto:sandra.cespedes@concordia.ca
mailto:research@witu.cl

	RFC 9441
	Static Context Header Compression (SCHC) Compound Acknowledgement (ACK)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. SCHC Compound ACK
	3.1. SCHC Compound ACK Message Format
	3.2. SCHC Compound ACK Behavior
	3.2.1. ACK-on-Error Mode (Replaces Section 8.4.3, RFC 8724)
	3.2.1.1. Sender Behavior (Replaces Section 8.4.3.1, RFC 8724)
	3.2.1.2. Receiver Behavior (Replaces Section 8.4.3.2, RFC 8724)

	4. SCHC Compound ACK Example
	5. SCHC Compound ACK YANG Data Model
	5.1. SCHC YANG Data Model Extension
	5.2. SCHC YANG Tree Extension

	6. SCHC Compound ACK Parameters
	7. Security Considerations
	8. IANA Considerations
	8.1. URI Registration
	8.2. YANG Module Name Registration

	9. References
	9.1. Normative References
	9.2. Informative References

	Acknowledgements
	Authors' Addresses

 Static Context Header Compression (SCHC) Compound Acknowledgement (ACK)

 Cisco

 Montreal
 QC
 Canada

 juzuniga@cisco.com

 Universitat Politècnica de Catalunya

 C/Esteve Terradas, 7
 08860 Castelldefels
 Spain

 carles.gomez@upc.edu

 Universitat Politècnica de Catalunya

 C/Esteve Terradas, 7
 08860 Castelldefels
 Spain

 sergio.aguilar.romero@upc.edu

 IMT-Atlantique

 2 rue de la Chataigneraie
 CS 17607
 35576 Cesson-Sevigne Cedex
 France

 Laurent.Toutain@imt-atlantique.fr

 Concordia University

 1455 De Maisonneuve Blvd. W.
 Montreal QC, H3G 1M8
 Canada

 sandra.cespedes@concordia.ca

 NIC Labs, Universidad de Chile

 Av. Almte. Blanco Encalada 1975
 Santiago
 Chile

 research@witu.cl

 lpwan
 SCHC
 LPWAN
 IoT
 Fragmentation
 Reliable Delivery
 Link Layer Protocols
 Cross-Layer Protocols
 Adaptation Layer
 Acknowledgment
 Sigfox
 LoRaWAN
 NB-IoT
 Compound ACK

 This document updates the Static Context Header Compression (SCHC) and fragmentation protocol (RFC 8724) and the corresponding YANG module (RFC 9363). It defines a SCHC Compound Acknowledgement (ACK) message
format and procedure, which are intended to reduce the number of response transmissions (i.e., SCHC ACKs) in the ACK-on-Error Mode, by accumulating bitmaps of several windows in a single SCHC message
(i.e., the SCHC Compound ACK).
 Both the message format and procedure are generic, so they can be used, for instance, by any of the four Low-Power Wide Area Network (LPWAN) technologies defined in RFC 8376, which are Sigfox, Long Range Wide Area Network (LoRaWAN), Narrowband Internet of Things (NB-IoT), and IEEE 802.15.4w.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Terminology

 . SCHC Compound ACK

 . SCHC Compound ACK Message Format

 . SCHC Compound ACK Behavior

 . ACK-on-Error Mode (Replaces Section 8.4.3, RFC 8724)

 . SCHC Compound ACK Example

 . SCHC Compound ACK YANG Data Model

 . SCHC YANG Data Model Extension

 . SCHC YANG Tree Extension

 . SCHC Compound ACK Parameters

 . Security Considerations

 . IANA Considerations

 . URI Registration

 . YANG Module Name Registration

 . References

 . Normative References

 . Informative References

 Acknowledgements

 Authors' Addresses

 Introduction
 The Generic Framework for Static Context Header Compression (SCHC) and Fragmentation specification describes two mechanisms:
i) a protocol header compression scheme and ii) a frame fragmentation and loss recovery functionality. Either can be used on top of radio technologies, such as the four Low-Power Wide Area Networks (LPWANs) listed in , which are Sigfox, LoRaWAN, NB-IoT, and IEEE 802.15.4w. These LPWANs have similar characteristics, such as star-oriented topologies, network architecture, and
connected devices with built-in applications.

 SCHC offers a great level of flexibility to accommodate all these LPWAN technologies. Even though there are a number of similarities between
them, some differences exist with respect to the transmission characteristics, payload sizes, etc. Hence, there are optimal parameters and modes of operation
that can be used when SCHC is used on top of a specific LPWAN technology.

 In ACK-on-Error mode in , the SCHC Packet is fragmented into pieces called tiles, where all tiles are the same size except for the last one, which can be smaller. Successive tiles are grouped in windows of fixed size.
 A SCHC Fragment carries one or several contiguous tiles, which may span multiple windows. When sending all tiles from all windows, the last tile is sent in an All-1 SCHC Fragment. The SCHC receiver will send a SCHC ACK reporting on the reception of exactly one window of tiles after receiving the All-1 SCHC Fragment. In case of SCHC Fragment losses, a bitmap is added to the failure SCHC ACK, where each bit in the bitmap corresponds to a tile in the window. If SCHC Fragment losses span multiple windows, the SCHC receiver will send one failure SCHC ACK per window with losses.

 This document updates the SCHC protocol for frame fragmentation and loss recovery. It defines a SCHC Compound ACK format and procedure, which
are intended to reduce the number of response transmissions (i.e., SCHC ACKs) in the ACK-on-Error mode of SCHC. The SCHC Compound ACK extends the failure SCHC ACK message
format so that it can contain several bitmaps, with each bitmap being identified by its corresponding window number.
The SCHC Compound ACK is backwards compatible with the SCHC ACK as defined in , and introduces flexibility, as the receiver has the capability to respond to the All-0 SCHC Fragment, providing more Downlink opportunities and therefore adjusting to the delay requirements of the application.

 Terminology

 The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be interpreted as
 described in BCP 14
 when, and only when, they appear in all capitals, as shown here.

 It is assumed that the reader is familiar with the terms and mechanisms defined in and .

 SCHC Compound ACK
 The SCHC Compound ACK is a failure SCHC ACK message that can contain several bitmaps, with each bitmap being identified by its
corresponding window number.
 In , the failure SCHC ACK message only contains one bitmap corresponding to one window.
 The SCHC Compound ACK extends this format, allowing more windows to be acknowledged in a single ACK and reducing the total number of failure SCHC ACK messages, especially when fragment losses are present in intermediate windows.

 The SCHC Compound ACK MAY be used in fragmentation modes that use windows and that allow
reporting the bitmaps of multiple windows at the same time; otherwise, the SCHC Compound ACK MUST NOT be used.

 The SCHC Compound ACK:

 provides feedback only for windows with fragment losses,
 has a variable size that depends on the number of windows with fragment losses being reported in the single SCHC Compound ACK,
 includes the window number (i.e., W) of each bitmap,
 might not cover all windows with fragment losses of a SCHC Packet, and
 is distinguishable from the SCHC Receiver-Abort.

 SCHC Compound ACK Message Format
 shows the success SCHC ACK format, i.e., when all fragments have been correctly received (C=1), as defined in .

 SCHC Success ACK Message Format, as Defined in RFC 8724

 |--- SCHC ACK Header ---|
 | |--T-|--M--| 1 |
 +--------+----+-----+---+~~~~~~~~~~~~~~~~~~
 | RuleID |DTag| W |C=1| padding as needed
 +--------+----+-----+---+~~~~~~~~~~~~~~~~~~	

 In case SCHC Fragment losses are found in any of the windows of the SCHC Packet, the SCHC Compound ACK MAY be used.
The SCHC Compound ACK message format is shown in Figures and .

 SCHC Compound ACK Message Format. Losses are found in windows W = w1,...,wi, where w1 < w2 <...< wi.

 |--- SCHC ACK Header --|- W=w1 -|...|---- W=wi -----|
 |--T-|---M--|-1-| |...|---M--| |---M--|
 +------+----+------+---+--------+...+------+--------+------+~~~~~+
 |RuleID|DTag| W=w1 |C=0| Bitmap |...| W=wi | Bitmap |00..00| pad |
 +------+----+------+---+--------+...+------+--------+------+~~~~~+
 next L2 Word boundary ->|<-- L2 Word ->|

 The SCHC Compound ACK groups the window number (W) with its corresponding bitmap.
Window numbers do not need to be contiguous. However, the window numbers and their corresponding bitmaps included in the SCHC Compound ACK message MUST be ordered from the lowest-numbered to the highest-numbered window.
Hence, if the bitmap of window number zero is present in the SCHC Compound ACK message, it MUST always be the first one in order and its window number MUST be placed in the SCHC ACK Header.
 If M or more padding bits would be needed after the last bitmap in the message to fill the last layer two (L2) Word, M bits at 0 MUST be appended after the last bitmap, and then padding is applied as needed (see).
Since window number 0 (if present in the message) is placed as w1, the M bits set to zero can't be confused with window number 0;
therefore, they signal the end of the SCHC Compound ACK message.

 shows the case when the required padding bits are strictly less than M bits.
 In this case, the L2 Maximum Transmission Unit (MTU) does not leave room for any extra window value, let alone any bitmap,
	thereby signaling the end of the SCHC Compound ACK message.

 SCHC Compound ACK Message Format with Less than M Padding Bits. Losses are found in windows W = w1,...,wi, where w1 < w2 <...< wi.

 |--- SCHC ACK Header --|- W=w1 -|...|---- W=wi -----|
 |--T-|---M--|-1-| |...|---M--| |---M--|
 +------+----+------+---+--------+...+------+--------+~~~+
 |RuleID|DTag| W=w1 |C=0| Bitmap |...| W=wi | Bitmap |pad|
 +------+----+------+---+--------+...+------+--------+~~~+
 next L2 Word boundary ->|

 The SCHC Compound ACK MUST NOT use the Compressed Bitmap format for intermediate windows/bitmaps (i.e., bitmaps that are not the last one of the SCHC Compound ACK message); therefore, intermediate bitmap fields MUST be of size WINDOW_SIZE.
Hence, the SCHC Compound ACK MAY use a Compressed Bitmap format only for the last bitmap in the message.
The optional usage of this Compressed Bitmap for the last bitmap MUST be specified by the technology-specific SCHC Profile.
 The case where the last bitmap is effectively compressed corresponds to ,
 with the last bitmap ending (by construction) on an L2 Word boundary, therefore resulting in no padding at all.
 illustrates a bitmap compression example of a SCHC Compound ACK,
 where the bitmap of the last window (wi) indicates that the first tile has not been correctly
 received.
 Because the compression algorithm resulted in effective compression, no padding is needed.

 SCHC Compound ACK Message Format with Compressed Bitmap and No Padding Added. Losses are found in windows W = w1,...,wi, where w1 < w2 <...< wi.

 |--- SCHC ACK Header --|- W=w1 -|...|-------- W=wi -------|
 |--T-|---M--|-1-| |...|---M--|
 +------+----+------+---+--------+...+------+--------------+
 |RuleID|DTag| W=w1 |C=0| Bitmap |...| W=wi |0 1 1 1 1 1 1 |
 +------+----+------+---+--------+...+------+--------------+
 next L2 Word boundary ->|

 SCHC Compound ACK with Uncompressed Bitmap

 |--- SCHC ACK Header --|- W=w1 -|...|-- W=wi --|
 |--T-|---M--|-1-| |...|---M--|
 +------+----+------+---+--------+...+------+---+
 |RuleID|DTag| W=w1 |C=0| Bitmap |...| W=wi |0 1|
 +------+----+------+---+--------+...+------+---+
 next L2 Word boundary ->|

 Transmitted SCHC Compound ACK with Compressed Bitmap

 illustrates another bitmap compression example of a SCHC Compound ACK,
 where the bitmap of the last window (wi) indicates that the second and the fourth tiles have not been correctly
 received.
 In this example, the compression algorithm does not result in effective compression of the last bitmap.
 Besides, because more than M bits of padding would be needed to fill the last L2 Word, M bits at 0 are appended to the message before padding is applied.

 SCHC Compound ACK Message Format with Compressed Bitmap and Padding Added to Reach the L2 Boundary. Losses are found in windows W = w1,...,wi, where w1 < w2 <...<wi.

 |--- SCHC ACK Header --|-W=w1-|...|-------- W=wi -------|
 |--T-|---M--|-1-| |...|---M--|
 +------+----+------+---+------+...+------+--------------+
 |RuleID|DTag| W=w1 |C=0|Bitmap|...| W=wi |1 0 1 0 1 1 1 |
 +------+----+------+---+------+...+------+--------------+
 next L2 Word boundary ->|

 SCHC Compound ACK with Uncompressed Bitmap

 |--- SCHC ACK Header --|-W=w1-|...|-------- W=wi -------|
 |--T-|---M--|-1-| |...|---M--| |---M--|
 +------+----+------+---+------+...+------+--------------+------+~~~+
 |RuleID|DTag| W=w1 |C=0|Bitmap|...| W=wi |1 0 1 0 1 1 1 |00..00|pad|
 +------+----+------+---+------+...+------+--------------+------+~~~+
 next L2 Word boundary ->|<------ L2 Word ------>|

 Transmitted SCHC Compound ACK

 If a SCHC sender gets a SCHC Compound ACK with invalid window numbers, such as duplicate W values or W values not sent yet, it MUST discard the whole
	SCHC Compound ACK message.

 Note that SCHC Compound ACKs are distinguishable from the Receiver-Abort message in the same way that regular SCHC ACKs are distinguishable, since the Receiver-Abort pattern never occurs in a legitimate SCHC Compound ACK .

 SCHC Compound ACK Behavior
 The SCHC ACK-on-Error behavior is described in . The present document slightly modifies this behavior. In the baseline SCHC specification, a SCHC ACK reports only one bitmap for the reception of exactly one window of tiles. The present SCHC
Compound ACK specification extends the SCHC ACK message format so that it can contain several bitmaps, with each bitmap being identified by its corresponding
window number.
 As presented in , the SCHC ACK format can be considered a special SCHC Compound ACK case in which it reports only the tiles of one window. Therefore, the SCHC Compound ACK is backwards compatible with the SCHC ACK format presented in .
The receiver can assume that the sender does not support the SCHC Compound ACK if, although the SCHC Compound ACK sent by the receiver reports losses in more than one window, the sender does not resend any tiles from windows other than the first window reported in the SCHC Compound ACK. In that case, the receiver can send SCHC Compound ACKs with only one window of tiles.
 Also, some flexibility is introduced with respect to in that the receiver has the capability to respond (or not) to the All-0 with a SCHC Compound ACK, depending on certain parameters, like network conditions, sender buffer/cache size, and supported application delay. Note that even though the protocol allows for such flexibility, the
actual decision criteria is not specified in this document. The application MUST set expiration timer values according to when the feedback is expected to be received, e.g., after the All-0 or after the All-1.
 (and its subsections) replaces the complete Section (and its subsections) of .

 ACK-on-Error Mode (Replaces Section 8.4.3, RFC 8724)
 The ACK-on-Error mode supports L2 technologies that have variable MTU and out-of-order delivery.
It requires an L2 that provides a feedback path from the reassembler to the fragmenter.
See Appendix for a discussion on using ACK-on-Error mode on quasi-bidirectional links.
 In ACK-on-Error mode, windows are used.
 All tiles except the last one and the penultimate one MUST be of equal size, hereafter called "regular".
The size of the last tile MUST be smaller than or equal to the regular tile size.
Regarding the penultimate tile, a Profile MUST pick one of the following two options:

 The penultimate tile size MUST be the regular tile size, or
 the penultimate tile size MUST be either the regular tile size or the regular tile size minus one L2 Word.

 A SCHC Fragment message carries one or several contiguous tiles, which may span multiple windows.
 A SCHC Compound ACK reports on the reception of one window of tiles or several windows of tiles, each one identified by its window number.

 See (see Figure 23 of RFC 8724) for an example.

 SCHC Packet Fragmented in Tiles, ACK-on-Error Mode (Figure 23 in RFC 8724)

 +---...-----------+
 | SCHC Packet |
 +---...-----------+

Tile# | 4 | 3 | 2 | 1 | 0 | 4 | 3 | 2 | 1 | 0 | 4 | | 0 | 4 |3|
Window# |-------- 0 --------|-------- 1 --------|- 2 ... 27 -|- 28-|

SCHC Fragment msg |-----------|

 The W field is wide enough that it unambiguously represents an absolute window number.
The fragment receiver sends SCHC Compound ACKs to the fragment sender about windows for which tiles are missing.
No SCHC Compound ACK is sent by the fragment receiver for windows that it knows have been fully received.
 The fragment sender retransmits SCHC Fragments for tiles that are reported missing.
It can advance to next windows even before it has ascertained that all tiles belonging to previous windows have been correctly received,
and it can still later retransmit SCHC Fragments with tiles belonging to previous windows.
Therefore, the sender and the receiver may operate in a decoupled fashion.
The fragmented SCHC Packet transmission concludes when:

 integrity checking shows that the fragmented SCHC Packet has been correctly reassembled at the receive end,
and this information has been conveyed back to the sender,
 too many retransmission attempts have been made, or
 the receiver determines that the transmission of this fragmented SCHC Packet has been inactive for too long.

 Each Profile MUST specify which RuleID value(s) corresponds to SCHC F/R messages operating in this mode.
 The W field MUST be present in the SCHC F/R messages.
 Each Profile, for each RuleID value, MUST define:

 the tile size (a tile does not need to be a duplicate of an L2 Word, but it MUST be at least the size of an L2 Word),
 the value of M,
 the value of N,
 the value of WINDOW_SIZE, which MUST be strictly less than 2 N,
 the size and algorithm for the RCS field,
 the value of T,
 the value of MAX_ACK_REQUESTS,
 the expiration time of the Retransmission Timer,
 the expiration time of the Inactivity Timer,
 if the last tile is carried in a Regular SCHC Fragment or an All-1 SCHC Fragment (see (Section in),
 if the penultimate tile MAY be one L2 Word smaller than the regular tile size (in this case, the regular tile size MUST be at least twice the L2 Word size),
 usage or not of the SCHC Compound ACK message, and
 usage or not of the Compressed Bitmap format in the last window of the SCHC Compound ACK message.

 For each active pair of RuleID and DTag values, the sender MUST maintain:

 one Attempts counter and
 one Retransmission Timer.

 For each active pair of RuleID and DTag values, the receiver MUST maintain:

 one Attempts counter and
 one Inactivity Timer.

 Sender Behavior (Replaces Section 8.4.3.1, RFC 8724)
 At the beginning of the fragmentation of a new SCHC Packet:

 the fragment sender MUST select a RuleID and DTag value pair for this SCHC Packet.
A Rule MUST NOT be selected if the values of M and WINDOW_SIZE for that Rule are such that the SCHC Packet cannot be fragmented in (2 M) * WINDOW_SIZE tiles or less.
 the fragment sender MUST initialize the Attempts counter to 0 for that RuleID and DTag value pair.

 A Regular SCHC Fragment message carries in its payload one or more tiles.
If more than one tile is carried in one Regular SCHC Fragment:

 the selected tiles MUST be contiguous in the original SCHC Packet, and
 they MUST be placed in the SCHC Fragment Payload adjacent to one another, in the order they appear in the SCHC Packet, from the start of the SCHC Packet toward its end.

 Tiles that are not the last one MUST be sent in Regular SCHC Fragments as specified in Section .
The FCN field MUST contain the tile index of the first tile sent in that SCHC Fragment.
 In a Regular SCHC Fragment message, the sender MUST fill the W field with the window number of the first tile sent in that SCHC Fragment.
 A Profile MUST define if the last tile of a SCHC Packet is sent:

 in a Regular SCHC Fragment, alone or as part of a multi-tiles Payload,
 alone in an All-1 SCHC Fragment, or
 with either one of the above two methods.

 In an All-1 SCHC Fragment message, the sender MUST fill the W field with the window number of the last tile of the SCHC Packet.
 The fragment sender MUST send SCHC Fragments such that, all together, they contain all the tiles of the fragmented SCHC Packet.
 The fragment sender MUST send at least one All-1 SCHC Fragment.
 In doing the two items above, the sender MUST ascertain that the receiver will not receive the last tile through both a Regular SCHC Fragment and an All-1 SCHC Fragment.
 The fragment sender MUST listen for SCHC Compound ACK messages after having sent:

 an All-1 SCHC Fragment or
 a SCHC ACK REQ.

 A Profile MAY specify other times at which the fragment sender MUST listen for SCHC Compound ACK messages.
For example, this could be after sending a complete window of tiles.
 Each time a fragment sender sends an All-1 SCHC Fragment or a SCHC ACK REQ:

 it MUST increment the Attempts counter, and
 it MUST reset the Retransmission Timer.

 On Retransmission Timer expiration:

 if the Attempts counter is strictly less than MAX_ACK_REQUESTS,
the fragment sender MUST send
either the All-1 SCHC Fragment or
a SCHC ACK REQ with the W field corresponding to the last window,
 otherwise, the fragment sender MUST send a SCHC Sender-Abort, and
it MAY exit with an error condition.

 All message receptions being discussed in the rest of this section are to be understood as
"matching the RuleID and DTag pair being processed", even if not spelled out, for brevity.
 On receiving a SCHC Compound ACK:

 if one of the W fields in the SCHC Compound ACK corresponds to the last window of the SCHC Packet:

 if the C bit is set, the sender MAY exit successfully.

 otherwise:

 if the Profile mandates that the last tile be sent in an All-1 SCHC Fragment:

 if the SCHC Compound ACK shows no missing tile at the receiver, the sender:

 MUST send a SCHC Sender-Abort and

 MAY exit with an error condition.

 otherwise:

 the fragment sender MUST send SCHC Fragment messages containing all the tiles of all the windows that are reported missing in the SCHC Compound ACK.
 if the last of these SCHC Fragment messages is not an All-1 SCHC Fragment, then the fragment sender MAY either send, in addition, a SCHC ACK REQ with the W field corresponding to the last window or repeat the All-1 SCHC Fragment to ask the receiver to confirm that all tiles have been correctly received.

 in doing the two items above, the sender MUST ascertain that the receiver will not receive the last tile through both a Regular SCHC Fragment and an All-1 SCHC Fragment.

 otherwise:

 if the SCHC Compound ACK shows no missing tile at the receiver, the sender
 MUST send the All-1 SCHC Fragment

 otherwise:

 the fragment sender MUST send SCHC Fragment messages containing all the tiles that are reported missing in the SCHC Compound ACK.
 the fragment sender MUST then send
either the All-1 SCHC Fragment or
a SCHC ACK REQ with the W field corresponding to the last window.

 otherwise, the fragment sender:

 MUST send SCHC Fragment messages containing the tiles that are reported missing in the SCHC Compound ACK.
 then, it MAY send a SCHC ACK REQ with the W field corresponding to the last window.

 See Figure 43 for one among several possible examples of a Finite State Machine implementing a sender behavior obeying this specification.

 Receiver Behavior (Replaces Section 8.4.3.2, RFC 8724)
 On receiving a SCHC Fragment with a RuleID and DTag pair not being processed at that time:

 the receiver SHOULD check that the DTag value has not recently been used for that RuleID value,
thereby ensuring that the received SCHC Fragment is not a remnant of a prior fragmented SCHC Packet transmission.
The initial value of the Inactivity Timer is the RECOMMENDED lifetime for the DTag value at the receiver.
If the SCHC Fragment is determined to be such a remnant, the receiver MAY silently ignore it and discard it.
 the receiver MUST start a process to assemble a new SCHC Packet with that RuleID and DTag value pair.
The receiver MUST start an Inactivity Timer for that RuleID and DTag value pair.
It MUST initialize an Attempts counter to 0 for that RuleID and DTag value pair.
If the receiver is under-resourced to do this, it MUST respond to the sender with a SCHC Receiver-Abort.

 On reception of any SCHC F/R message for the RuleID and DTag pair being processed, the receiver MUST reset the Inactivity Timer pertaining to that RuleID and DTag pair.
 All message receptions being discussed in the rest of this section are to be understood as
"matching the RuleID and DTag pair being processed", even if not spelled out, for brevity.
 On receiving a SCHC Fragment message,
the receiver determines what tiles were received, based on the payload length and on the W and FCN fields of the SCHC Fragment.

 if the FCN is All-1 and if a Payload is present, the full SCHC Fragment Payload MUST be assembled including the padding bits.
This is because the size of the last tile is not known by the receiver;
therefore, padding bits are indistinguishable from the tile data bits, at this stage.
They will be removed by the SCHC C/D sublayer.
If the size of the SCHC Fragment Payload exceeds or equals
the size of one regular tile plus the size of an L2 Word, this SHOULD raise an error flag.

 otherwise, tiles MUST be assembled based on the a priori known tile size.

 If allowed by the Profile, the end of the payload MAY contain the last tile, which may be shorter. Padding bits are indistinguishable from the tile data bits, at this stage.
 The payload may contain the penultimate tile that, if allowed by the Profile, MAY be exactly one L2 Word shorter than the regular tile size.

 Otherwise, padding bits MUST be discarded.
This is possible because:

 the size of the tiles is known a priori,
 tiles are larger than an L2 Word, and
 padding bits are always strictly less than an L2 Word.

 On receiving a SCHC All-0 SCHC Fragment:

 if the receiver knows of any windows with missing tiles for the packet being reassembled (and depending on certain parameters, like network conditions, sender buffer/cache size, and supported application delay, among others), it MAY return a SCHC Compound ACK for the missing tiles, starting from the lowest-numbered window.

 On receiving a SCHC ACK REQ or an All-1 SCHC Fragment:

 if the receiver knows of any windows with missing tiles for the packet being reassembled, it
 MUST return a SCHC Compound ACK for the missing tiles, starting from the lowest-numbered window.

 otherwise:

 if it has received at least one tile, it MUST return a SCHC Compound ACK for the highest-numbered window it currently has tiles for,
 otherwise, it MUST return a SCHC Compound ACK for window number 0.

 A Profile MAY specify other times and circumstances at which
a receiver sends a SCHC Compound ACK
and which window the SCHC Compound ACK reports about in these circumstances.
 Upon sending a SCHC Compound ACK, the receiver MUST increase the Attempts counter.
 After receiving an All-1 SCHC Fragment,
a receiver MUST check the integrity of the reassembled SCHC Packet at least every time
it prepares to send a SCHC Compound ACK for the last window.
 Upon receiving a SCHC Sender-Abort,
the receiver MAY exit with an error condition.
 Upon expiration of the Inactivity Timer,
the receiver MUST send a SCHC Receiver-Abort,
and it MAY exit with an error condition.
 On the Attempts counter exceeding MAX_ACK_REQUESTS,
the receiver MUST send a SCHC Receiver-Abort,
and it MAY exit with an error condition.
 Reassembly of the SCHC Packet concludes when:

 a Sender-Abort has been received,
 the Inactivity Timer has expired,
 the Attempts counter has exceeded MAX_ACK_REQUESTS, or
 at least an All-1 SCHC Fragment has been received and integrity checking of the reassembled SCHC Packet is successful.

 See Figure 44 for one among several possible examples of a Finite State Machine implementing a receiver behavior obeying this specification. The example provided is meant to match the sender Finite State Machine of Figure 43.

 SCHC Compound ACK Example
 shows an example transmission of a SCHC Packet in ACK-on-Error mode using the SCHC Compound ACK.
In the example, the SCHC Packet is fragmented in 14 tiles, with N=3, WINDOW_SIZE=7, M=2, and two lost SCHC fragments.
Only 1 SCHC Compound ACK is generated.

 SCHC Compound ACK Message Sequence Example

 Sender Receiver
 |-----W=0, FCN=6 ----->|
 |-----W=0, FCN=5 ----->|
 |-----W=0, FCN=4 ----->|
 |-----W=0, FCN=3 ----->|
 |-----W=0, FCN=2 --X |
 |-----W=0, FCN=1 ----->|
 |-----W=0, FCN=0 ----->| Bitmap: 1111011
 (no ACK)
 |-----W=1, FCN=6 ----->|
 |-----W=1, FCN=5 ----->|
 |-----W=1, FCN=4 ----->|
 |-----W=1, FCN=3 ----->|
 |-----W=1, FCN=2 ----->|
 |-----W=1, FCN=1 --X |
 |-- W=1, FCN=7 + RCS ->| Integrity check: failure
 |<--- Compound ACK ----| [C=0, W=0 - Bitmap:1111011,
 |-----W=0, FCN=2 ----->| W=1 - Bitmap:1111101]
 |-----W=1, FCN=1 ----->| Integrity check: success
 |<--- ACK, W=1, C=1 ---| C=1
 (End)

 SCHC Compound ACK Message Format Example: Losses are Found in Windows 00 and 01

 |--- SCHC ACK Header --|- W=00 --|----- W=01 -----|
 |--T-|---M--|-1-| |---M--| |---M--|
 +------+----+------+---+---------+------+---------+------+-----+
 |RuleID|DTag| W=00 |C=0| 1111011 | W=01 | 1111101 | 00 | pad |
 +------+----+------+---+---------+------+---------+------+-----+
 next L2 Word boundary ->|<-- L2 Word ->|

 SCHC Compound ACK YANG Data Model
 This document also extends the SCHC YANG data model defined in by including
a new leaf in the Ack-on-Error fragmentation mode to describe both the option to use the SCHC Compound ACK, as well as its bitmap format.

 SCHC YANG Data Model Extension

 SCHC YANG Data Model - Compound ACK Extension

module ietf-schc-compound-ack {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-schc-compound-ack";
 prefix schc-compound-ack;

 import ietf-schc {
 prefix schc;
 }

 organization
 "IETF IPv6 over Low Power Wide-Area Networks (lpwan)
 Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/lpwan/about/>
 WG List: <mailto:lp-wan@ietf.org>
 Editor: Laurent Toutain
 <mailto:laurent.toutain@imt-atlantique.fr>
 Editor: Juan Carlos Zuniga
 <mailto:j.c.zuniga@ieee.org>
 Editor: Sergio Aguilar
 <mailto:sergio.aguilar.romero@upc.edu>";
 description
 "Copyright (c) 2023 IETF Trust and the persons identified as
 authors of the code. All rights reserved.
 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Revised BSD License set
 forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).
 This version of this YANG module is part of RFC 9363
 (https://www.rfc-editor.org/info/rfc9363); see the RFC itself
 for full legal notices.

 Generic data model for the Static Context Header Compression
 Rule for SCHC, based on RFCs 8724 and 8824. Including
 compression, no-compression, and fragmentation Rules.";

 revision 2023-07-26 {
 description
 "Initial version for RFC 9441.";
 reference
 "RFC 9441 Static Context Header Compression (SCHC) Compound
 Acknowledgement (ACK)";
 }

 identity bitmap-format-base-type {
 description
 "Define how the bitmap is formed in ACK messages.";
 }

 identity bitmap-RFC8724 {
 base bitmap-format-base-type;
 description
 "Bitmap by default as defined in RFC 8724.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation";
 }

 identity bitmap-compound-ack {
 base bitmap-format-base-type;
 description
 "Compound ACK allows several bitmaps in an ACK message.";
 }

 typedef bitmap-format-type {
 type identityref {
 base bitmap-format-base-type;
 }
 description
 "Type of bitmap used in Rules.";
 }

 augment "/schc:schc/schc:rule/schc:nature/"
 + "schc:fragmentation/schc:mode/schc:ack-on-error" {
 leaf bitmap-format {
 when "derived-from-or-self(../schc:fragmentation-mode,
 'schc:fragmentation-mode-ack-on-error')";
 type schc-compound-ack:bitmap-format-type;
 default "schc-compound-ack:bitmap-RFC8724";
 description
 "How the bitmaps are included in the SCHC ACK message.";
 }
 leaf last-bitmap-compression {
 when "derived-from-or-self(../schc:fragmentation-mode,
 'schc:fragmentation-mode-ack-on-error')";
 type boolean;
 default "true";
 description
 "When true, the ultimate bitmap in the SCHC ACK message
 can be compressed. Default behavior from RFC 8724.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation";
 }
 description
 "Augment the SCHC Rules to manage Compound ACK.";
 }
}

 SCHC YANG Tree Extension

 Tree Diagram - Compound ACK Extension

module: ietf-schc-compound-ack
 augment /schc:schc/schc:rule/schc:nature/schc:fragmentation/
 schc:mode/schc:ack-on-error:
 +--rw bitmap-format? schc-compound-ack:bitmap-format-type
 +--rw last-bitmap-compression? boolean

 SCHC Compound ACK Parameters
 This section lists the parameters related to the SCHC Compound ACK usage that need to be defined in the Profile.
 This list MUST be appended to the list of SCHC parameters under "Decision to use SCHC fragmentation mechanism or not. If yes, the document must describe:" as defined in Appendix of .

 whether the SCHC Compound ACK message is used or not, and
 whether the compressed bitmap format in the last window of the SCHC Compound ACK message is used or not.

 Security Considerations
 This document specifies a message format extension for SCHC.
 Hence, the same security considerations defined in
 and apply.
 The YANG module specified in this document defines a schema for data that is designed to be accessed via network management protocols such as NETCONF or RESTCONF . The lowest NETCONF layer is the secure transport layer, and the mandatory-to-implement secure transport is Secure Shell (SSH) . The lowest RESTCONF layer is HTTPS, and the mandatory-to-implement secure transport is TLS .
 The Network Configuration Access Control Model (NACM) provides the means to restrict access for particular NETCONF or RESTCONF users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content.
 There are a number of data nodes defined in this YANG module that are
 writable/creatable/deletable (i.e., config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g., edit-config)
 to these data nodes without proper protection can have a negative
 effect on network operations. These are the subtrees and data nodes
 and their sensitivity/vulnerability:

 /schc:schc/schc:rule/schc:nature/schc:fragmentation/schc:mode/schc:ack-on-error:
 All the data nodes may be modified. The Rule contains sensitive information, such
 as the SCHC F/R mode configuration and usage and SCHC Compound ACK configuration.
 An attacker may try to modify other devices' Rules by changing the F/R mode or the
 usage of the SCHC Compound ACK and may block communication or create extra ACKs.
 Therefore, a device must be allowed to modify only
 its own Rules on the remote SCHC instance. The identity of the
 requester must be validated. This can be done through
 certificates or access lists.

 Some of the readable data nodes in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control read access (e.g., via get, get-config, or
 notification) to these data nodes. These are the subtrees and data
 nodes and their sensitivity/vulnerability:

 /schc:schc/schc:rule/schc:nature/schc:fragmentation/schc:mode/schc:ack-on-error:
 By reading this module, an attacker may learn the F/R mode used by the device,
 how the device manages the bitmap creation, the buffer sizes, and when the device will request an ACK.

 IANA Considerations
 This document registers one URI and one YANG data model.

 URI Registration

 IANA registered the following URI in the "IETF XML Registry"
 :

 URI:
 urn:ietf:params:xml:ns:yang:ietf-schc-compound-ack
 Registrant Contact:
 The IESG.
 XML:
 N/A; the requested URI is an XML namespace.

 YANG Module Name Registration
 IANA has registered the following YANG data model in the "YANG Module
 Names" registry .

 name:
 ietf-schc-compound-ack
 namespace:
 urn:ietf:params:xml:ns:yang:ietf-schc-compound-ack
 prefix:
 schc-compound-ack
 reference:
 RFC 9441

 References

 Normative References

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 The IETF XML Registry

 This document describes an IANA maintained registry for IETF standards which use Extensible Markup Language (XML) related items such as Namespaces, Document Type Declarations (DTDs), Schemas, and Resource Description Framework (RDF) Schemas.

 YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)

 YANG is a data modeling language used to model configuration and state data manipulated by the Network Configuration Protocol (NETCONF), NETCONF remote procedure calls, and NETCONF notifications. [STANDARDS-TRACK]

 Network Configuration Protocol (NETCONF)

 The Network Configuration Protocol (NETCONF) defined in this document provides mechanisms to install, manipulate, and delete the configuration of network devices. It uses an Extensible Markup Language (XML)-based data encoding for the configuration data as well as the protocol messages. The NETCONF protocol operations are realized as remote procedure calls (RPCs). This document obsoletes RFC 4741. [STANDARDS-TRACK]

 Using the NETCONF Protocol over Secure Shell (SSH)

 This document describes a method for invoking and running the Network Configuration Protocol (NETCONF) within a Secure Shell (SSH) session as an SSH subsystem. This document obsoletes RFC 4742. [STANDARDS-TRACK]

 RESTCONF Protocol

 This document describes an HTTP-based protocol that provides a programmatic interface for accessing data defined in YANG, using the datastore concepts defined in the Network Configuration Protocol (NETCONF).

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 Network Configuration Access Control Model

 The standardization of network configuration interfaces for use with the Network Configuration Protocol (NETCONF) or the RESTCONF protocol requires a structured and secure operating environment that promotes human usability and multi-vendor interoperability. There is a need for standard mechanisms to restrict NETCONF or RESTCONF protocol access for particular users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content. This document defines such an access control model.
 This document obsoletes RFC 6536.

 The Transport Layer Security (TLS) Protocol Version 1.3

 This document specifies version 1.3 of the Transport Layer Security (TLS) protocol. TLS allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.
 This document updates RFCs 5705 and 6066, and obsoletes RFCs 5077, 5246, and 6961. This document also specifies new requirements for TLS 1.2 implementations.

 SCHC: Generic Framework for Static Context Header Compression and Fragmentation

 This document defines the Static Context Header Compression and fragmentation (SCHC) framework, which provides both a header compression mechanism and an optional fragmentation mechanism. SCHC has been designed with Low-Power Wide Area Networks (LPWANs) in mind.
 SCHC compression is based on a common static context stored both in the LPWAN device and in the network infrastructure side. This document defines a generic header compression mechanism and its application to compress IPv6/UDP headers.
 This document also specifies an optional fragmentation and reassembly mechanism. It can be used to support the IPv6 MTU requirement over the LPWAN technologies. Fragmentation is needed for IPv6 datagrams that, after SCHC compression or when such compression was not possible, still exceed the Layer 2 maximum payload size.
 The SCHC header compression and fragmentation mechanisms are independent of the specific LPWAN technology over which they are used. This document defines generic functionalities and offers flexibility with regard to parameter settings and mechanism choices. This document standardizes the exchange over the LPWAN between two SCHC entities. Settings and choices specific to a technology or a product are expected to be grouped into profiles, which are specified in other documents. Data models for the context and profiles are out of scope.

 A YANG Data Model for Static Context Header Compression (SCHC)

 This document describes a YANG data model for the Static Context Header Compression (SCHC) compression and fragmentation Rules.
 This document formalizes the description of the Rules for better interoperability between SCHC instances either to exchange a set of Rules or to modify the parameters of some Rules.

 Informative References

 Low-Power Wide Area Network (LPWAN) Overview

 Low-Power Wide Area Networks (LPWANs) are wireless technologies with characteristics such as large coverage areas, low bandwidth, possibly very small packet and application-layer data sizes, and long battery life operation. This memo is an informational overview of the set of LPWAN technologies being considered in the IETF and of the gaps that exist between the needs of those technologies and the goal of running IP in LPWANs.

 Acknowledgements
 has been funded in part by the Spanish Government
 through the TEC2016-79988-P grant and the PID2019-106808RA-I00 grant
 (funded by MCIN / AEI / 10.13039/501100011033) and by Secretaria
 d'Universitats i Recerca del Departament d'Empresa i Coneixement de
 la Generalitat de Catalunya through 2017 grant SGR 376 and 2021 grant SGR 00330.
 has been funded by the ERDF and the Spanish Government through project TEC2016-79988-P and project PID2019-106808RA-I00,
AEI/FEDER, EU (funded by MCIN / AEI / 10.13039/501100011033).
 has been funded in part by the ANID Chile Project FONDECYT Regular 1201893 and Basal Project FB0008.
 has been funded by the ANID Chile Project FONDECYT Regular 1201893.
 The authors would like to thank , , , , , and for their
very useful comments, reviews, and implementation design considerations.

 Authors' Addresses

 Cisco

 Montreal
 QC
 Canada

 juzuniga@cisco.com

 Universitat Politècnica de Catalunya

 C/Esteve Terradas, 7
 08860 Castelldefels
 Spain

 carles.gomez@upc.edu

 Universitat Politècnica de Catalunya

 C/Esteve Terradas, 7
 08860 Castelldefels
 Spain

 sergio.aguilar.romero@upc.edu

 IMT-Atlantique

 2 rue de la Chataigneraie
 CS 17607
 35576 Cesson-Sevigne Cedex
 France

 Laurent.Toutain@imt-atlantique.fr

 Concordia University

 1455 De Maisonneuve Blvd. W.
 Montreal QC, H3G 1M8
 Canada

 sandra.cespedes@concordia.ca

 NIC Labs, Universidad de Chile

 Av. Almte. Blanco Encalada 1975
 Santiago
 Chile

 research@witu.cl

