
RFC 8792
Handling Long Lines in Content of Internet-Drafts
and RFCs

Abstract
This document defines two strategies for handling long lines in width-bounded text content. One
strategy, called the "single backslash" strategy, is based on the historical use of a single backslash
('\') character to indicate where line-folding has occurred, with the continuation occurring with
the first character that is not a space character (' ') on the next line. The second strategy, called
the "double backslash" strategy, extends the first strategy by adding a second backslash character
to identify where the continuation begins and is thereby able to handle cases not supported by
the first strategy. Both strategies use a self-describing header enabling automated reconstitution
of the original content.

Stream: Internet Engineering Task Force (IETF)
RFC: 8792
Category: Informational
Published: June 2020
ISSN: 2070-1721
Authors:

 K. Watsen
Watsen Networks

E. Auerswald
Individual Contributor

A. Farrel
Old Dog Consulting

Q. Wu
Huawei Technologies

Status of This Memo
This document is not an Internet Standards Track specification; it is published for informational
purposes.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Not all documents approved by
the IESG are candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc8792

Copyright Notice
Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights
reserved.

Watsen, et al. Informational Page 1

https://www.rfc-editor.org/rfc/rfc8792
https://www.rfc-editor.org/info/rfc8792

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

2. Applicability Statement

3. Requirements Language

4. Goals

4.1. Automated Folding of Long Lines in Text Content

4.2. Automated Reconstitution of the Original Text Content

5. Limitations

5.1. Not Recommended for Graphical Artwork

5.2. Doesn't Work as Well as Format-Specific Options

6. Two Folding Strategies

6.1. Comparison

6.2. Recommendation

7. The Single Backslash Strategy ('\')

7.1. Folded Structure

7.1.1. Header

7.1.2. Body

7.2. Algorithm

7.2.1. Folding

7.2.2. Unfolding

8. The Double Backslash Strategy ('\\')

8.1. Folded Structure

8.1.1. Header

8.1.2. Body

RFC 8792 Handling Long Lines in Content June 2020

Watsen, et al. Informational Page 2

https://trustee.ietf.org/license-info

1. Introduction
 sets out the requirements for plain-text RFCs and states that each line of an RFC (and

hence of an Internet-Draft) must be limited to 72 characters followed by the character sequence
that denotes an end-of-line (EOL).

8.2. Algorithm

8.2.1. Folding

8.2.2. Unfolding

9. Examples

9.1. Example Showing Boundary Conditions

9.1.1. Using '\'

9.1.2. Using '\\'

9.2. Example Showing Multiple Wraps of a Single Line

9.2.1. Using '\'

9.2.2. Using '\\'

9.3. Example Showing "Smart" Folding

9.3.1. Using '\'

9.3.2. Using '\\'

9.4. Example Showing "Forced" Folding

9.4.1. Using '\'

9.4.2. Using '\\'

10. Security Considerations

11. IANA Considerations

12. References

12.1. Normative References

12.2. Informative References

Appendix A. Bash Shell Script: rfcfold

Acknowledgements

Authors' Addresses

[RFC7994]

RFC 8792 Handling Long Lines in Content June 2020

Watsen, et al. Informational Page 3

Internet-Drafts and RFCs often include example text or code fragments. Many times, the example
text or code exceeds the 72-character line-length limit. The 'xml2rfc' utility , at the time
of this document's publication, does not attempt to wrap the content of such inclusions, simply
issuing a warning whenever lines exceed 69 characters. Historically, there has been no
convention recommended by the RFC Editor in place for how to handle long lines in such
inclusions, other than advising authors to clearly indicate what manipulation has occurred.

This document defines two strategies for handling long lines in width-bounded text content. One
strategy, called the "single backslash" strategy, is based on the historical use of a single backslash
('\') character to indicate where line-folding has occurred, with the continuation occurring with
the first character that is not a space character (' ') on the next line. The second strategy, called
the "double backslash" strategy, extends the first strategy by adding a second backslash character
to identify where the continuation begins and is thereby able to handle cases not supported by
the first strategy. Both strategies use a self-describing header enabling automated reconstitution
of the original content.

The strategies defined in this document work on any text content but are primarily intended for
a structured sequence of lines, such as would be referenced by the <sourcecode> element defined
in , rather than for two-dimensional imagery, such as would be
referenced by the <artwork> element defined in .

Note that text files are represented as lines having their first character in column 1, and a line
length of N where the last character is in the Nth column and is immediately followed by an end-
of-line character sequence.

2. Applicability Statement
The formats and algorithms defined in this document may be used in any context, whether for
IETF documents or in other situations where structured folding is desired.

Within the IETF, this work primarily targets the xml2rfc v3 <sourcecode> element (
) and the xml2rfc v2 <artwork> element (), which, for lack of a

better option, is used in xml2rfc v2 for both source code and artwork. This work may also be
used for the xml2rfc v3 <artwork> element (), but as described in Section
5.1, it is generally not recommended.

[xml2rfc]

Section 2.48 of [RFC7991]
Section 2.5 of [RFC7991]

Section 2.48 of
[RFC7991] Section 2.5 of [RFC7749]

Section 2.5 of [RFC7991]

3. Requirements Language
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

RFC 8792 Handling Long Lines in Content June 2020

Watsen, et al. Informational Page 4

https://www.rfc-editor.org/rfc/rfc7991#section-2.48
https://www.rfc-editor.org/rfc/rfc7991#section-2.5
https://www.rfc-editor.org/rfc/rfc7991#section-2.48
https://www.rfc-editor.org/rfc/rfc7749#section-2.5
https://www.rfc-editor.org/rfc/rfc7991#section-2.5

4. Goals

4.1. Automated Folding of Long Lines in Text Content
Automated folding of long lines is needed in order to support documents that are dynamically
compiled to include content with potentially unconstrained line lengths. For instance, the build
process may wish to include content from other local files or content that is dynamically
generated by some external process. Both of these cases are discussed next.

Many documents need to include the content from local files (e.g., XML, JSON, ABNF, ASN.1). Prior
to including a file's content, the build process first validate these source files using
format-specific validators. In order for such tooling to be able to process the files, the files must
be in their original/natural state, which may entail them having some long lines. Thus, these
source files need to be folded before inclusion into the XML document, in order to satisfy
'xml2rfc' line-length limits.

Similarly, documents sometimes contain dynamically generated output, typically from an
external process operating on the same source files discussed in the previous paragraph. For
instance, such processes may translate the input format to another format, or they may render a
report on, or a view of, the input file. In some cases, the dynamically generated output may
contain lines exceeding the 'xml2rfc' line-length limits.

In both cases, folding is required and be automated to reduce effort and errors resulting
from manual processing.

4.2. Automated Reconstitution of the Original Text Content
Automated reconstitution of the exact original text content is needed to support validation of
text-based content extracted from documents.

For instance, YANG modules are already extracted from Internet-Drafts and validated
as part of the submission process. Additionally, the desire to validate instance examples (i.e.,
XML/JSON documents) contained within Internet-Drafts has been discussed

.

5. Limitations

SHOULD

SHOULD

[RFC7950]

[yang-doctors-
thread]

5.1. Not Recommended for Graphical Artwork
While the solution presented in this document works on any kind of text-based content, it is most
useful on content that represents source code (XML, JSON, etc.) or, more generally, on content
that has not been laid out in two dimensions (e.g., diagrams).

RFC 8792 Handling Long Lines in Content June 2020

Watsen, et al. Informational Page 5

5.2. Doesn't Work as Well as Format-Specific Options
The solution presented in this document works generically for all text-based content, as it only
views content as plain text. However, various formats sometimes have built-in mechanisms that
are better suited to prevent long lines.

For instance, both the 'pyang' and 'yanglint' utilities have the command-line
option "tree-line-length", which can be used to indicate a desired maximum line length when
generating YANG tree diagrams .

In another example, some source formats (e.g., YANG) allow any quoted string to be
broken up into substrings separated by a concatenation character (e.g., '+'), any of which can be
on a different line.

It is that authors do as much as possible within the selected format to avoid long
lines.

Fundamentally, the issue is whether the text content remains readable once folded. Text content
that is unpredictable is especially susceptible to looking bad when folded; falling into this
category are most Unified Modeling Language (UML) diagrams, YANG tree diagrams, and ASCII
art in general.

It is to use the solution presented in this document on graphical artwork.NOT RECOMMENDED

[pyang] [yanglint]

[RFC8340]

[RFC7950]

RECOMMENDED

6. Two Folding Strategies
This document defines two nearly identical strategies for folding text-based content.

The Single Backslash Strategy ('\'):
Uses a backslash ('\') character at the end of the line where folding occurs, and assumes
that the continuation begins at the first character that is not a space character (' ') on the
following line.

The Double Backslash Strategy ('\\'):
Uses a backslash ('\') character at the end of the line where folding occurs, and assumes
that the continuation begins after a second backslash ('\') character on the following line.

6.1. Comparison
The first strategy produces output that is more readable. However, (1) it is significantly more
likely to encounter unfoldable input (e.g., a long line containing only space characters), and
(2) for long lines that can be folded, automation implementations may encounter scenarios that,
without special care, will produce errors.

The second strategy produces output that is less readable, but it is unlikely to encounter
unfoldable input, there are no long lines that cannot be folded, and no special care is required
when folding a long line.

RFC 8792 Handling Long Lines in Content June 2020

Watsen, et al. Informational Page 6

6.2. Recommendation
It is that implementations first attempt to fold content using the single backslash
strategy and, only in the unlikely event that it cannot fold the input or the folding logic is unable
to cope with a contingency occurring on the desired folding column, then fall back to the double
backslash strategy.

RECOMMENDED

7. The Single Backslash Strategy ('\')

7.1. Folded Structure
Text content that has been folded as specified by this strategy adhere to the following
structure.

7.1.2. Body

The character encoding is the same as the encoding described in , except
that, per , tab characters are prohibited.

Lines that have a backslash ('\') occurring as the last character in a line are considered "folded".

Exceptionally long lines MAY be folded multiple times.

MUST

7.1.1. Header

The header is two lines long.

The first line is the following 36-character string; this string be surrounded by any number
of printable characters. This first line cannot itself be folded.

The second line is an empty line, containing only the end-of-line character sequence. This line
provides visual separation for readability.

MAY

NOTE: '\' line wrapping per RFC 8792

Section 2 of [RFC7994]
[RFC7991]

7.2. Algorithm
This section describes a process for folding and unfolding long lines when they are encountered
in text content.

The steps are complete, but implementations achieve the same result in other ways.

When a larger document contains multiple instances of text content that may need to be folded
or unfolded, another process must insert /extract the individual text content instances to/from the
larger document prior to utilizing the algorithms described in this section. For example, the 'xiax'
utility does this.

MAY

[xiax]

RFC 8792 Handling Long Lines in Content June 2020

Watsen, et al. Informational Page 7

https://www.rfc-editor.org/rfc/rfc7994#section-2

7.2.1. Folding

Determine the desired maximum line length from input to the line-wrapping process, such as
from a command-line parameter. If no value is explicitly specified, the value "69" be
used.

Ensure that the desired maximum line length is not less than the minimum header, which is 36
characters. If the desired maximum line length is less than this minimum, exit (this text-based
content cannot be folded).

Scan the text content for horizontal tab characters. If any horizontal tab characters appear,
either resolve them to space characters or exit, forcing the input provider to convert them to
space characters themselves first.

Scan the text content to ensure that at least one line exceeds the desired maximum. If no line
exceeds the desired maximum, exit (this text content does not need to be folded).

Scan the text content to ensure that no existing lines already end with a backslash ('\') character,
as this could lead to an ambiguous result. If such a line is found, and its width is less than the
desired maximum, then it be flagged for "forced" folding (folding even though
unnecessary). If the folding implementation doesn't support forced foldings, it exit.

If this text content needs to, and can, be folded, insert the header described in Section 7.1.1,
ensuring that any additional printable characters surrounding the header do not result in a line
exceeding the desired maximum.

For each line in the text content, from top to bottom, if the line exceeds the desired maximum or
requires a forced folding, then fold the line by performing the following steps:

Determine where the fold will occur. This location be before or at the desired
maximum column and be chosen such that the character immediately after the
fold is a space (' ') character. For forced foldings, the location is between the '\' and the end-
of-line sequence. If no such location can be found, then exit (this text content cannot be
folded).
At the location where the fold is to occur, insert a backslash ('\') character followed by the
end-of-line character sequence.
On the following line, insert any number of space (' ') characters, provided that the resulting
line does not exceed the desired maximum.

The result of the previous operation is that the next line starts with an arbitrary number of space
(' ') characters, followed by the character that was previously occupying the position where the
fold occurred.

Continue in this manner until reaching the end of the text content. Note that this algorithm
naturally addresses the case where the remainder of a folded line is still longer than the desired
maximum and, hence, needs to be folded again, ad infinitum.

SHOULD

SHOULD
MUST

1. MUST
MUST NOT

2.

3.

RFC 8792 Handling Long Lines in Content June 2020

Watsen, et al. Informational Page 8

7.2.2. Unfolding

Scan the beginning of the text content for the header described in Section 7.1.1. If the header is
not present, exit (this text content does not need to be unfolded).

Remove the two-line header from the text content.

For each line in the text content, from top to bottom, if the line has a backslash ('\') character
immediately followed by the end-of-line character sequence, then the line can be unfolded.
Remove the backslash ('\') character, the end-of-line character sequence, and any leading space
(' ') characters, which will bring up the next line. Then continue to scan each line in the text
content starting with the current line (in case it was multiply folded).

Continue in this manner until reaching the end of the text content.

The process described in this section is illustrated by the "unfold_it_1()" function in Appendix A.

The process described in this section is illustrated by the "fold_it_1()" function in Appendix A.

8. The Double Backslash Strategy ('\\')

8.1. Folded Structure
Text content that has been folded as specified by this strategy adhere to the following
structure.

8.1.2. Body

The character encoding is the same as the encoding described in , except
that, per , tab characters are prohibited.

Lines that have a backslash ('\') occurring as the last character in a line immediately followed by
the end-of-line character sequence, when the subsequent line starts with a backslash ('\') as the
first character that is not a space character (' '), are considered "folded".

Exceptionally long lines MAY be folded multiple times.

MUST

8.1.1. Header

The header is two lines long.

The first line is the following 37-character string; this string be surrounded by any number
of printable characters. This first line cannot itself be folded.

The second line is an empty line, containing only the end-of-line character sequence. This line
provides visual separation for readability.

MAY

NOTE: '\\' line wrapping per RFC 8792

Section 2 of [RFC7994]
[RFC7991]

RFC 8792 Handling Long Lines in Content June 2020

Watsen, et al. Informational Page 9

https://www.rfc-editor.org/rfc/rfc7994#section-2

8.2. Algorithm
This section describes a process for folding and unfolding long lines when they are encountered
in text content.

The steps are complete, but implementations achieve the same result in other ways.

When a larger document contains multiple instances of text content that may need to be folded
or unfolded, another process must insert /extract the individual text content instances to/from the
larger document prior to utilizing the algorithms described in this section. For example, the 'xiax'
utility does this.

MAY

[xiax]

8.2.1. Folding

Determine the desired maximum line length from input to the line-wrapping process, such as
from a command-line parameter. If no value is explicitly specified, the value "69" be
used.

Ensure that the desired maximum line length is not less than the minimum header, which is 37
characters. If the desired maximum line length is less than this minimum, exit (this text-based
content cannot be folded).

Scan the text content for horizontal tab characters. If any horizontal tab characters appear,
either resolve them to space characters or exit, forcing the input provider to convert them to
space characters themselves first.

Scan the text content to see if any line exceeds the desired maximum. If no line exceeds the
desired maximum, exit (this text content does not need to be folded).

Scan the text content to ensure that no existing lines already end with a backslash ('\') character
while the subsequent line starts with a backslash ('\') character as the first character that is not a
space character (' '), as this could lead to an ambiguous result. If such a line is found and its width
is less than the desired maximum, then it be flagged for forced folding (folding even
though unnecessary). If the folding implementation doesn't support forced foldings, it exit.

If this text content needs to, and can, be folded, insert the header described in Section 8.1.1,
ensuring that any additional printable characters surrounding the header do not result in a line
exceeding the desired maximum.

For each line in the text content, from top to bottom, if the line exceeds the desired maximum or
requires a forced folding, then fold the line by performing the following steps:

Determine where the fold will occur. This location be before or at the desired
maximum column. For forced foldings, the location is between the '\' and the end-of-line
sequence on the first line.
At the location where the fold is to occur, insert a first backslash ('\') character followed by
the end-of-line character sequence.

SHOULD

SHOULD
MUST

1. MUST

2.

RFC 8792 Handling Long Lines in Content June 2020

Watsen, et al. Informational Page 10

8.2.2. Unfolding

Scan the beginning of the text content for the header described in Section 8.1.1. If the header is
not present, exit (this text content does not need to be unfolded).

Remove the two-line header from the text content.

For each line in the text content, from top to bottom, if the line has a backslash ('\') character
immediately followed by the end-of-line character sequence and if the next line has a backslash
('\') character as the first character that is not a space character (' '), then the lines can be
unfolded. Remove the first backslash ('\') character, the end-of-line character sequence, any
leading space (' ') characters, and the second backslash ('\') character, which will bring up the
next line. Then, continue to scan each line in the text content starting with the current line (in
case it was multiply folded).

Continue in this manner until reaching the end of the text content.

The process described in this section is illustrated by the "unfold_it_2()" function in Appendix A.

On the following line, insert any number of space (' ') characters, provided that the resulting
line does not exceed the desired maximum, followed by a second backslash ('\') character.

The result of the previous operation is that the next line starts with an arbitrary number of space
(' ') characters, followed by a backslash ('\') character, immediately followed by the character that
was previously occupying the position where the fold occurred.

Continue in this manner until reaching the end of the text content. Note that this algorithm
naturally addresses the case where the remainder of a folded line is still longer than the desired
maximum and, hence, needs to be folded again, ad infinitum.

The process described in this section is illustrated by the "fold_it_2()" function in Appendix A.

3.

9. Examples
The following self-documenting examples illustrate folded text-based content.

The source text content cannot be presented here, as it would again be folded. Alas, only the
results can be provided.

9.1. Example Showing Boundary Conditions
This example illustrates boundary conditions. The input contains seven lines, each line one
character longer than the previous line. Numbers are used for counting purposes. The default
desired maximum column value "69" is used.

RFC 8792 Handling Long Lines in Content June 2020

Watsen, et al. Informational Page 11

9.1.1. Using '\'

9.1.2. Using '\\'

9.2. Example Showing Multiple Wraps of a Single Line
This example illustrates what happens when a very long line needs to be folded multiple times.
The input contains one line containing 280 characters. Numbers are used for counting purposes.
The default desired maximum column value "69" is used.

9.2.1. Using '\'

========== NOTE: '\' line wrapping per RFC 8792 ===========

123456789012345678901234567890123456789012345678901234567890123456
1234567890123456789012345678901234567890123456789012345678901234567
12345678901234567890123456789012345678901234567890123456789012345678
123456789012345678901234567890123456789012345678901234567890123456789
12345678901234567890123456789012345678901234567890123456789012345678\
90
12345678901234567890123456789012345678901234567890123456789012345678\
901
12345678901234567890123456789012345678901234567890123456789012345678\
9012

========== NOTE: '\\' line wrapping per RFC 8792 ==========

123456789012345678901234567890123456789012345678901234567890123456
1234567890123456789012345678901234567890123456789012345678901234567
12345678901234567890123456789012345678901234567890123456789012345678
123456789012345678901234567890123456789012345678901234567890123456789
12345678901234567890123456789012345678901234567890123456789012345678\
\90
12345678901234567890123456789012345678901234567890123456789012345678\
\901
12345678901234567890123456789012345678901234567890123456789012345678\
\9012

========== NOTE: '\' line wrapping per RFC 8792 ===========

12345678901234567890123456789012345678901234567890123456789012345678\
90123456789012345678901234567890123456789012345678901234567890123456\
78901234567890123456789012345678901234567890123456789012345678901234\
56789012345678901234567890123456789012345678901234567890123456789012\
34567890

RFC 8792 Handling Long Lines in Content June 2020

Watsen, et al. Informational Page 12

9.2.2. Using '\\'

9.3. Example Showing "Smart" Folding
This example illustrates how readability can be improved via "smart" folding, whereby folding
occurs at format-specific locations and format-specific indentations are used.

The text content was manually folded, since the script in Appendix A does not implement smart
folding.

Note that the headers are surrounded by different printable characters than those shown in the
script-generated examples.

9.3.1. Using '\'

========== NOTE: '\\' line wrapping per RFC 8792 ==========

12345678901234567890123456789012345678901234567890123456789012345678\
\9012345678901234567890123456789012345678901234567890123456789012345\
\6789012345678901234567890123456789012345678901234567890123456789012\
\3456789012345678901234567890123456789012345678901234567890123456789\
\01234567890

[NOTE: '\' line wrapping per RFC 8792]

<yang-library
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-library"
 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores">

 <module-set>
 <name>config-modules</name>
 <module>
 <name>ietf-interfaces</name>
 <revision>2018-02-20</revision>
 <namespace>\
 urn:ietf:params:xml:ns:yang:ietf-interfaces\
 </namespace>
 </module>
 ...
 </module-set>
 ...
</yang-library>

RFC 8792 Handling Long Lines in Content June 2020

Watsen, et al. Informational Page 13

Below is the equivalent of the above, but it was folded using the script in Appendix A.

9.3.2. Using '\\'

========== NOTE: '\' line wrapping per RFC 8792 ===========

<yang-library
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-library"
 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores">

 <module-set>
 <name>config-modules</name>
 <module>
 <name>ietf-interfaces</name>
 <revision>2018-02-20</revision>
 <namespace>urn:ietf:params:xml:ns:yang:ietf-interfaces</namesp\
ace>
 </module>
 ...
 </module-set>
 ...
</yang-library>

[NOTE: '\\' line wrapping per RFC 8792]

<yang-library
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-library"
 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores">

 <module-set>
 <name>config-modules</name>
 <module>
 <name>ietf-interfaces</name>
 <revision>2018-02-20</revision>
 <namespace>\
 \urn:ietf:params:xml:ns:yang:ietf-interfaces\
 \</namespace>
 </module>
 ...
 </module-set>
 ...
</yang-library>

RFC 8792 Handling Long Lines in Content June 2020

Watsen, et al. Informational Page 14

Below is the equivalent of the above, but it was folded using the script in Appendix A.

9.4. Example Showing "Forced" Folding
This example illustrates how invalid sequences in lines that do not have to be folded can be
handled via forced folding, whereby the folding occurs even though unnecessary.

The samples below were manually folded, since the script in the appendix does not implement
forced folding.

Note that the headers are prefixed by a pound ('#') character, rather than surrounded by 'equals'
('=') characters as shown in the script-generated examples.

========== NOTE: '\\' line wrapping per RFC 8792 ==========

<yang-library
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-library"
 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores">

 <module-set>
 <name>config-modules</name>
 <module>
 <name>ietf-interfaces</name>
 <revision>2018-02-20</revision>
 <namespace>urn:ietf:params:xml:ns:yang:ietf-interfaces</namesp\
\ace>
 </module>
 ...
 </module-set>
 ...
</yang-library>

The following line exceeds a 68-char max and, thus, demands folding:
123456789012345678901234567890123456789012345678901234567890123456789

This line ends with a backslash \

This line ends with a backslash \
\ This line begins with a backslash

The following is an indented 3x3 block of backslashes:
 \\\
 \\\
 \\\

RFC 8792 Handling Long Lines in Content June 2020

Watsen, et al. Informational Page 15

9.4.1. Using '\'

9.4.2. Using '\\'

NOTE: '\' line wrapping per RFC 8792

The following line exceeds a 68-char max and, thus, demands folding:
1234567890123456789012345678901234567890123456789012345678901234567\
89

This line ends with a backslash \\

This line ends with a backslash \\

\ This line begins with a backslash

The following is an indented 3x3 block of backslashes:
 \\\\

 \\\\

 \\\

NOTE: '\\' line wrapping per RFC 8792

The following line exceeds a 68-char max and, thus, demands folding:
1234567890123456789012345678901234567890123456789012345678901234567\
\89

This line ends with a backslash \

This line ends with a backslash \\
\
\ This line begins with a backslash

The following is an indented 3x3 block of backslashes:
 \\\\
 \
 \\\\
 \
 \\\

10. Security Considerations
This document has no security considerations.

11. IANA Considerations
This document has no IANA actions.

RFC 8792 Handling Long Lines in Content June 2020

Watsen, et al. Informational Page 16

[RFC2119]

[RFC7991]

[RFC8174]

[bash]

[pyang]

[RFC7749]

[RFC7950]

[RFC7994]

[RFC8340]

[xiax]

[xml2rfc]

[yang-doctors-thread]

[yanglint]

12. References

12.1. Normative References

, , ,
, , March 1997,
.

, , ,
, December 2016, .

, ,
, , , May 2017,

.

12.2. Informative References

, .

, .

, , ,
, February 2016, .

, , ,
, August 2016, .

, , ,
, December 2016, .

, , , ,
, March 2018, .

, .

, .

, ,
, 18 April 2018,

.

, , February 2020,
.

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Hoffman, P. "The "xml2rfc" Version 3 Vocabulary" RFC 7991 DOI 10.17487/
RFC7991 <https://www.rfc-editor.org/info/rfc7991>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

"GNU Bash Manual" <https://www.gnu.org/software/bash/manual>

"pyang" <https://pypi.org/project/pyang/>

Reschke, J. "The "xml2rfc" Version 2 Vocabulary" RFC 7749 DOI 10.17487/
RFC7749 <https://www.rfc-editor.org/info/rfc7749>

Bjorklund, M., Ed. "The YANG 1.1 Data Modeling Language" RFC 7950 DOI
10.17487/RFC7950 <https://www.rfc-editor.org/info/rfc7950>

Flanagan, H. "Requirements for Plain-Text RFCs" RFC 7994 DOI 10.17487/
RFC7994 <https://www.rfc-editor.org/info/rfc7994>

Bjorklund, M. and L. Berger, Ed. "YANG Tree Diagrams" BCP 215 RFC 8340 DOI
10.17487/RFC8340 <https://www.rfc-editor.org/info/rfc8340>

"The 'xiax' Python Package" <https://pypi.org/project/xiax/>

"xml2rfc" <https://pypi.org/project/xml2rfc/>

Watsen, K. "[yang-doctors] automating yang doctor reviews" message
to the yang-doctors mailing list <https://mailarchive.ietf.org/arch/
msg/yang-doctors/DCfBqgfZPAD7afzeDFlQ1Xm2X3g>

"yanglint" commit 1b7d73d <https://github.com/CESNET/
libyang#yanglint>

RFC 8792 Handling Long Lines in Content June 2020

Watsen, et al. Informational Page 17

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc7991
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.gnu.org/software/bash/manual
https://pypi.org/project/pyang/
https://www.rfc-editor.org/info/rfc7749
https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc7994
https://www.rfc-editor.org/info/rfc8340
https://pypi.org/project/xiax/
https://pypi.org/project/xml2rfc/
https://mailarchive.ietf.org/arch/msg/yang-doctors/DCfBqgfZPAD7afzeDFlQ1Xm2X3g
https://mailarchive.ietf.org/arch/msg/yang-doctors/DCfBqgfZPAD7afzeDFlQ1Xm2X3g
https://github.com/CESNET/libyang#yanglint
https://github.com/CESNET/libyang#yanglint

Appendix A. Bash Shell Script: rfcfold
This non-normative appendix includes a Bash shell script that can both fold and unfold
text content using both the single and double backslash strategies described in Sections 7 and 8,
respectively. This shell script, called 'rfcfold', is maintained at

.

This script is intended to be applied to a single text content instance. If it is desired to fold or
unfold text content instances within a larger document (e.g., an Internet-Draft or RFC), then
another tool must be used to extract the content from the larger document before utilizing this
script.

For readability purposes, this script forces the minimum supported line length to be eight
characters longer than the raw header text defined in Sections 7.1.1 and 8.1.1 so as to ensure that
the header can be wrapped by a space (' ') character and three 'equals' ('=') characters on each
side of the raw header text.

When a tab character is detected in the input file, this script exits with the following error
message:

Error: infile contains a tab character, which is not allowed.

This script tests for the availability of GNU awk (gawk), in order to test for ASCII-based control
characters and non-ASCII characters in the input file (see below). Note that testing revealed flaws
in the default version of 'awk' on some platforms. As this script uses 'gawk' only to issue warning
messages, if 'gawk' is not found, this script issues the following debug message:

Debug: no GNU awk; skipping checks for special characters.

When 'gawk' is available (see above) and ASCII-based control characters are detected in the input
file, this script issues the following warning message:

Warning: infile contains ASCII control characters (unsupported).

When 'gawk' is available (see above) and non-ASCII characters are detected in the input file, this
script issues the following warning message:

Warning: infile contains non-ASCII characters (unsupported).

This script does not implement the whitespace-avoidance logic described in Section 7.2.1. In such
a case, the script will exit with the following error message:

Error: infile has a space character occurring on the folding column. This file cannot be folded
using the '\' strategy.

[bash]

<https://github.com/ietf-tools/
rfcfold>

RFC 8792 Handling Long Lines in Content June 2020

Watsen, et al. Informational Page 18

https://github.com/ietf-tools/rfcfold
https://github.com/ietf-tools/rfcfold

While this script can unfold input that contains forced foldings, it is unable to fold files that
would require forced foldings. Forced folding is described in Sections 7.2.1 and 8.2.1. When being
asked to fold a file that would require forced folding, the script will instead exit with one of the
following error messages:

For '\':

Error: infile has a line ending with a '\' character. This file cannot be folded using the '\'
strategy without there being false positives produced in the unfolding (i.e., this script does
not force-fold such lines, as described in RFC 8792).

For '\\':

Error: infile has a line ending with a '\' character followed by a '\' character as the first non-
space character on the next line. This script cannot fold this file using the '\\' strategy without
there being false positives produced in the unfolding (i.e., this script does not force-fold such
lines, as described in RFC 8792).

RFC 8792 Handling Long Lines in Content June 2020

Watsen, et al. Informational Page 19

Shell-level end-of-line backslash ('\') characters have been purposely added to the script so as to
ensure that the script is itself not folded in this document, thus simplifying the ability to copy/
paste the script for local use. As should be evident by the lack of the mandatory header described
in Section 7.1.1, these backslashes do not designate a folded line (e.g., as described in Section 7).

RFC 8792 Handling Long Lines in Content June 2020

Watsen, et al. Informational Page 20

<CODE BEGINS> file "rfcfold"

#!/bin/bash --posix

This script may need some adjustments to work on a given system.
For instance, the utility 'gsed' may need to be installed.
Also, please be advised that 'bash' (not 'sh') must be used.

Copyright (c) 2020 IETF Trust, Kent Watsen, and Erik Auerswald.
All rights reserved.
#
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
#
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
#
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials
provided with the distribution.
#
* Neither the name of Internet Society, IETF or IETF Trust, nor
the names of specific contributors, may be used to endorse or
promote products derived from this software without specific
prior written permission.
#
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

print_usage() {
 printf "\n"
 printf "Folds or unfolds the input text file according to"
 printf " RFC 8792.\n"
 printf "\n"
 printf "Usage: rfcfold [-h] [-d] [-q] [-s <strategy>] [-c <col>]"
 printf " [-r] -i <infile> -o <outfile>\n"
 printf "\n"
 printf " -s: strategy to use, '1' or '2' (default: try 1,"
 printf " else 2)\n"
 printf " -c: column to fold on (default: 69)\n"
 printf " -r: reverses the operation\n"
 printf " -i: the input filename\n"
 printf " -o: the output filename\n"
 printf " -d: show debug messages (unless -q is given)\n"
 printf " -q: quiet (suppress error and debug messages)\n"

RFC 8792 Handling Long Lines in Content June 2020

Watsen, et al. Informational Page 21

 printf " -h: show this message\n"
 printf "\n"
 printf "Exit status code: 1 on error, 0 on success, 255 on no-op."
 printf "\n\n"
}

global vars, do not edit
strategy=0 # auto
debug=0
quiet=0
reversed=0
infile=""
outfile=""
maxcol=69 # default, may be overridden by param
col_gvn=0 # maxcol overridden?
hdr_txt_1="NOTE: '\\' line wrapping per RFC 8792"
hdr_txt_2="NOTE: '\\\\' line wrapping per RFC 8792"
equal_chars="==="
space_chars=" "
temp_dir=""
prog_name='rfcfold'

functions for diagnostic messages
prog_msg() {
 if [["$quiet" -eq 0]]; then
 format_string="${prog_name}: $1: %s\n"
 shift
 printf -- "$format_string" "$*" >&2
 fi
}

err() {
 prog_msg 'Error' "$@"
}

warn() {
 prog_msg 'Warning' "$@"
}

dbg() {
 if [["$debug" -eq 1]]; then
 prog_msg 'Debug' "$@"
 fi
}

determine name of [g]sed binary
type gsed > /dev/null 2>&1 && SED=gsed || SED=sed

warn if a non-GNU sed utility is used
"$SED" --version < /dev/null 2> /dev/null | grep -q GNU || \
warn 'not using GNU `sed` (likely cause if an error occurs).'

cleanup() {
 rm -rf "$temp_dir"
}
trap 'cleanup' EXIT

fold_it_1() {

RFC 8792 Handling Long Lines in Content June 2020

Watsen, et al. Informational Page 22

 # ensure input file doesn't contain the fold-sequence already
 if [[-n "$("$SED" -n '/\\$/p' "$infile")"]]; then
 err "infile '$infile' has a line ending with a '\\' character."\
 "This script cannot fold this file using the '\\' strategy"\
 "without there being false positives produced in the"\
 "unfolding."
 return 1
 fi

 # where to fold
 foldcol=$(expr "$maxcol" - 1) # for the inserted '\' char

 # ensure input file doesn't contain whitespace on the fold column
 grep -q "^\(.\{$foldcol\}\)\{1,\} " "$infile"
 if [[$? -eq 0]]; then
 err "infile '$infile' has a space character occurring on the"\
 "folding column. This file cannot be folded using the"\
 "'\\' strategy."
 return 1
 fi

 # center header text
 length=$(expr ${#hdr_txt_1} + 2)
 left_sp=$(expr \("$maxcol" - "$length" \) / 2)
 right_sp=$(expr "$maxcol" - "$length" - "$left_sp")
 header=$(printf "%.*s %s %.*s" "$left_sp" "$equal_chars"\
 "$hdr_txt_1" "$right_sp" "$equal_chars")

 # generate outfile
 echo "$header" > "$outfile"
 echo "" >> "$outfile"
 "$SED" 's/\(.\{'"$foldcol"'\}\)\(..\)/\1\\\n\2/;t M;b;:M;P;D;'\
 < "$infile" >> "$outfile" 2> /dev/null
 if [[$? -ne 0]]; then
 return 1
 fi
 return 0
}

fold_it_2() {
 # where to fold
 foldcol=$(expr "$maxcol" - 1) # for the inserted '\' char

 # ensure input file doesn't contain the fold-sequence already
 if [[-n "$("$SED" -n '/\\$/{N;s/\\\n[]*\\/&/p;D}' "$infile")"]]
 then
 err "infile '$infile' has a line ending with a '\\' character"\
 "followed by a '\\' character as the first non-space"\
 "character on the next line. This script cannot fold"\
 "this file using the '\\\\' strategy without there being"\
 "false positives produced in the unfolding."
 return 1
 fi

 # center header text
 length=$(expr ${#hdr_txt_2} + 2)
 left_sp=$(expr \("$maxcol" - "$length" \) / 2)
 right_sp=$(expr "$maxcol" - "$length" - "$left_sp")

RFC 8792 Handling Long Lines in Content June 2020

Watsen, et al. Informational Page 23

 header=$(printf "%.*s %s %.*s" "$left_sp" "$equal_chars"\
 "$hdr_txt_2" "$right_sp" "$equal_chars")

 # generate outfile
 echo "$header" > "$outfile"
 echo "" >> "$outfile"
 "$SED" 's/\(.\{'"$foldcol"'\}\)\(..\)/\1\\\n\\\2/;t M;b;:M;P;D;'\
 < "$infile" >> "$outfile" 2> /dev/null
 if [[$? -ne 0]]; then
 return 1
 fi
 return 0
}

fold_it() {
 # ensure input file doesn't contain a tab
 grep -q $'\t' "$infile"
 if [[$? -eq 0]]; then
 err "infile '$infile' contains a tab character, which is not"\
 "allowed."
 return 1
 fi

 # folding of input containing ASCII control or non-ASCII characters
 # may result in a wrong folding column and is not supported
 if type gawk > /dev/null 2>&1; then
 env LC_ALL=C gawk '/[\000-\014\016-\037\177]/{exit 1}' "$infile"\
 || warn "infile '$infile' contains ASCII control characters"\
 "(unsupported)."
 env LC_ALL=C gawk '/[^\000-\177]/{exit 1}' "$infile"\
 || warn "infile '$infile' contains non-ASCII characters"\
 "(unsupported)."
 else
 dbg "no GNU awk; skipping checks for special characters."
 fi

 # check if file needs folding
 testcol=$(expr "$maxcol" + 1)
 grep -q ".\{$testcol\}" "$infile"
 if [[$? -ne 0]]; then
 dbg "nothing to do; copying infile to outfile."
 cp "$infile" "$outfile"
 return 255
 fi

 if [["$strategy" -eq 1]]; then
 fold_it_1
 return $?
 fi
 if [["$strategy" -eq 2]]; then
 fold_it_2
 return $?
 fi
 quiet_sav="$quiet"
 quiet=1
 fold_it_1
 result=$?
 quiet="$quiet_sav"

RFC 8792 Handling Long Lines in Content June 2020

Watsen, et al. Informational Page 24

 if [["$result" -ne 0]]; then
 dbg "Folding strategy '1' didn't succeed; trying strategy '2'..."
 fold_it_2
 return $?
 fi
 return 0
}

unfold_it_1() {
 temp_dir=$(mktemp -d)

 # output all but the first two lines (the header) to wip file
 awk "NR>2" "$infile" > "$temp_dir/wip"

 # unfold wip file
 "$SED" '{H;$!d};x;s/^\n//;s/\\\n *//g' "$temp_dir/wip" > "$outfile"

 return 0
}

unfold_it_2() {
 temp_dir=$(mktemp -d)

 # output all but the first two lines (the header) to wip file
 awk "NR>2" "$infile" > "$temp_dir/wip"

 # unfold wip file
 "$SED" '{H;$!d};x;s/^\n//;s/\\\n *\\//g' "$temp_dir/wip"\
 > "$outfile"

 return 0
}

unfold_it() {
 # check if file needs unfolding
 line=$(head -n 1 "$infile")
 line2=$("$SED" -n '2p' "$infile")
 result=$(echo "$line" | fgrep "$hdr_txt_1")
 if [[$? -eq 0]]; then
 if [[-n "$line2"]]; then
 err "the second line in '$infile' is not empty."
 return 1
 fi
 unfold_it_1
 return $?
 fi
 result=$(echo "$line" | fgrep "$hdr_txt_2")
 if [[$? -eq 0]]; then
 if [[-n "$line2"]]; then
 err "the second line in '$infile' is not empty."
 return 1
 fi
 unfold_it_2
 return $?
 fi
 dbg "nothing to do; copying infile to outfile."
 cp "$infile" "$outfile"
 return 255

RFC 8792 Handling Long Lines in Content June 2020

Watsen, et al. Informational Page 25

}

process_input() {
 while [["$1" != ""]]; do
 if [["$1" == "-h"]] || [["$1" == "--help"]]; then
 print_usage
 exit 0
 elif [["$1" == "-d"]]; then
 debug=1
 elif [["$1" == "-q"]]; then
 quiet=1
 elif [["$1" == "-s"]]; then
 if [["$#" -eq "1"]]; then
 err "option '-s' needs an argument (use -h for help)."
 exit 1
 fi
 strategy="$2"
 shift
 elif [["$1" == "-c"]]; then
 if [["$#" -eq "1"]]; then
 err "option '-c' needs an argument (use -h for help)."
 exit 1
 fi
 col_gvn=1
 maxcol="$2"
 shift
 elif [["$1" == "-r"]]; then
 reversed=1
 elif [["$1" == "-i"]]; then
 if [["$#" -eq "1"]]; then
 err "option '-i' needs an argument (use -h for help)."
 exit 1
 fi
 infile="$2"
 shift
 elif [["$1" == "-o"]]; then
 if [["$#" -eq "1"]]; then
 err "option '-o' needs an argument (use -h for help)."
 exit 1
 fi
 outfile="$2"
 shift
 else
 warn "ignoring unknown option '$1'."
 fi
 shift
 done

 if [[-z "$infile"]]; then
 err "infile parameter missing (use -h for help)."
 exit 1
 fi

 if [[-z "$outfile"]]; then
 err "outfile parameter missing (use -h for help)."
 exit 1
 fi

RFC 8792 Handling Long Lines in Content June 2020

Watsen, et al. Informational Page 26

Acknowledgements
The authors thank the RFC Editor for confirming that there was previously no set convention, at
the time of this document's publication, for handling long lines in source code inclusions, thus
instigating this work.

 if [[! -f "$infile"]]; then
 err "specified file '$infile' does not exist."
 exit 1
 fi

 if [["$col_gvn" -eq 1]] && [["$reversed" -eq 1]]; then
 warn "'-c' option ignored when unfolding (option '-r')."
 fi

 if [["$strategy" -eq 0]] || [["$strategy" -eq 2]]; then
 min_supported=$(expr ${#hdr_txt_2} + 8)
 else
 min_supported=$(expr ${#hdr_txt_1} + 8)
 fi
 if [["$maxcol" -lt "$min_supported"]]; then
 err "the folding column cannot be less than $min_supported."
 exit 1
 fi

 # this is only because the code otherwise runs out of equal_chars
 max_supported=$(expr ${#equal_chars} + 1 + ${#hdr_txt_1} + 1\
 + ${#equal_chars})
 if [["$maxcol" -gt "$max_supported"]]; then
 err "the folding column cannot be more than $max_supported."
 exit 1
 fi
}

main() {
 if [["$#" -eq "0"]]; then
 print_usage
 exit 1
 fi

 process_input "$@"

 if [["$reversed" -eq 0]]; then
 fold_it
 code=$?
 else
 unfold_it
 code=$?
 fi
 exit "$code"
}

main "$@"
<CODE ENDS>

RFC 8792 Handling Long Lines in Content June 2020

Watsen, et al. Informational Page 27

The authors thank the following folks for their various contributions while producing this
document (sorted by first name): , , , ,

, , , , and .
Ben Kaduk Benoit Claise Gianmarco Bruno Italo Busi Joel

Jaeggli Jonathan Hansford Lou Berger Martin Bjorklund Rob Wilton

Authors' Addresses
Kent Watsen
Watsen Networks

 kent+ietf@watsen.net Email:

Erik Auerswald
Individual Contributor

 auerswal@unix-ag.uni-kl.de Email:

Adrian Farrel
Old Dog Consulting

 adrian@olddog.co.uk Email:

Qin Wu
Huawei Technologies

 bill.wu@huawei.com Email:

RFC 8792 Handling Long Lines in Content June 2020

Watsen, et al. Informational Page 28

mailto:kent+ietf@watsen.net
mailto:auerswal@unix-ag.uni-kl.de
mailto:adrian@olddog.co.uk
mailto:bill.wu@huawei.com

	RFC 8792
	Handling Long Lines in Content of Internet-Drafts and RFCs
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Applicability Statement
	3. Requirements Language
	4. Goals
	4.1. Automated Folding of Long Lines in Text Content
	4.2. Automated Reconstitution of the Original Text Content

	5. Limitations
	5.1. Not Recommended for Graphical Artwork
	5.2. Doesn't Work as Well as Format-Specific Options

	6. Two Folding Strategies
	6.1. Comparison
	6.2. Recommendation

	7. The Single Backslash Strategy ('\')
	7.1. Folded Structure
	7.1.1. Header
	7.1.2. Body

	7.2. Algorithm
	7.2.1. Folding
	7.2.2. Unfolding

	8. The Double Backslash Strategy ('\\')
	8.1. Folded Structure
	8.1.1. Header
	8.1.2. Body

	8.2. Algorithm
	8.2.1. Folding
	8.2.2. Unfolding

	9. Examples
	9.1. Example Showing Boundary Conditions
	9.1.1. Using '\'
	9.1.2. Using '\\'

	9.2. Example Showing Multiple Wraps of a Single Line
	9.2.1. Using '\'
	9.2.2. Using '\\'

	9.3. Example Showing "Smart" Folding
	9.3.1. Using '\'
	9.3.2. Using '\\'

	9.4. Example Showing "Forced" Folding
	9.4.1. Using '\'
	9.4.2. Using '\\'

	10. Security Considerations
	11. IANA Considerations
	12. References
	12.1. Normative References
	12.2. Informative References

	Appendix A. Bash Shell Script: rfcfold
	Acknowledgements
	Authors' Addresses

 Handling Long Lines in Content of Internet-Drafts and RFCs

 Watsen Networks

 kent+ietf@watsen.net

 Individual Contributor

 auerswal@unix-ag.uni-kl.de

 Old Dog Consulting

 adrian@olddog.co.uk

 Huawei Technologies

 bill.wu@huawei.com

 sourcecode
 artwork

 This document defines two strategies for handling long lines in width-bounded
 text content. One strategy, called the "single backslash" strategy, is based on the historical use of a single backslash
 ('\') character to indicate where line-folding has occurred, with the continuation
 occurring with the first character that is not a space character (' ') on the next line. The second
 strategy, called the "double backslash" strategy, extends the first strategy by adding a second backslash character to
 identify where the continuation begins and is thereby able to handle cases not
 supported by the first strategy. Both strategies use a self-describing header
 enabling automated reconstitution of the original content.

 Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are candidates for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Simplified BSD License.

 Table of Contents

 . Introduction

 . Applicability Statement

 . Requirements Language

 . Goals

 . Automated Folding of Long Lines in Text Content

 . Automated Reconstitution of the Original Text Content

 . Limitations

 . Not Recommended for Graphical Artwork

 . Doesn't Work as Well as Format-Specific Options

 . Two Folding Strategies

 . Comparison

 . Recommendation

 . The Single Backslash Strategy ('\')

 . Folded Structure

 . Header

 . Body

 . Algorithm

 . Folding

 . Unfolding

 . The Double Backslash Strategy ('\\')

 . Folded Structure

 . Header

 . Body

 . Algorithm

 . Folding

 . Unfolding

 . Examples

 . Example Showing Boundary Conditions

 . Using '\'

 . Using '\\'

 . Example Showing Multiple Wraps of a Single Line

 . Using '\'

 . Using '\\'

 . Example Showing "Smart" Folding

 . Using '\'

 . Using '\\'

 . Example Showing "Forced" Folding

 . Using '\'

 . Using '\\'

 . Security Considerations

 . IANA Considerations

 . References

 . Normative References

 . Informative References

 . Bash Shell Script: rfcfold

 Acknowledgements

 Authors' Addresses

 Introduction
 sets out the requirements for
 plain-text RFCs and states that each line of an RFC (and hence of
 an Internet-Draft) must be limited to 72 characters followed by
 the character sequence that denotes an end-of-line (EOL).
 Internet-Drafts and RFCs often include example text or code
 fragments. Many times, the example text or code exceeds the 72-character line-length limit. The 'xml2rfc' utility , at the time of this document's publication, does not
 attempt to wrap the content of such inclusions, simply issuing
 a warning whenever lines exceed 69 characters. Historically,
 there has been no convention recommended by the RFC Editor in place
 for how to handle long lines in such inclusions, other than advising
 authors to clearly indicate what manipulation has occurred.
 This document defines two strategies for handling long lines in width-bounded
 text content. One strategy, called the "single backslash" strategy, is based on the historical use of a single backslash
 ('\') character to indicate where line-folding has occurred, with the continuation
 occurring with the first character that is not a space character (' ') on the next line. The second
 strategy, called the "double backslash" strategy, extends the first strategy by adding a second backslash character to
 identify where the continuation begins and is thereby able to handle cases not
 supported by the first strategy. Both strategies use a self-describing header
 enabling automated reconstitution of the original content.
 The strategies defined in this document work on any text content but are
 primarily intended for a structured sequence of lines, such as would be
 referenced by the <sourcecode> element defined in , rather than for two-dimensional imagery, such
 as would be referenced by the <artwork> element defined in .
 Note that text files are represented as lines having their first
 character in column 1, and a line length of N where the last
 character is in the Nth column and is immediately followed by an
 end-of-line character sequence.

 Applicability Statement
 The formats and algorithms defined in this document may be used
 in any context, whether for IETF documents or in other situations
 where structured folding is desired.
 Within the IETF, this work primarily targets the xml2rfc v3
 <sourcecode> element ()
 and the xml2rfc v2 <artwork> element (), which, for
 lack of a better option, is used in xml2rfc v2 for both source code and artwork. This work may
 also be used for the xml2rfc v3 <artwork> element
 (), but as described in
 , it is generally not recommended.

 Requirements Language
 The key words " MUST", " MUST NOT",
 " REQUIRED", " SHALL",
 " SHALL NOT", " SHOULD",
 " SHOULD NOT",
 " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document
 are to be interpreted as described in BCP 14
 when, and only
 when, they appear in all capitals, as shown here.

 Goals

 Automated Folding of Long Lines in Text Content
 Automated folding of long lines is needed in order to support
 documents that are dynamically compiled to include content with
 potentially unconstrained line lengths. For instance, the
 build process may wish to include content from other local
 files or content that is dynamically generated by some external process.
 Both of these cases are discussed next.
 Many documents need to include the content from local files (e.g.,
 XML, JSON, ABNF, ASN.1). Prior to including a file's content,
 the build process SHOULD first validate these source files
 using format-specific validators. In order for such tooling
 to be able to process the files, the files must be in their
 original/natural state, which may entail them having some long
 lines. Thus, these source files need to be folded before
 inclusion into the XML document, in order to satisfy 'xml2rfc'
 line-length limits.
 Similarly, documents sometimes contain dynamically generated
 output, typically from an external process operating on the
 same source files discussed in the previous paragraph. For
 instance, such processes may translate the input format to
 another format, or they may render a report on, or a view of, the input
 file. In some cases, the dynamically generated output may
 contain lines exceeding the 'xml2rfc' line-length limits.
 In both cases, folding is required and SHOULD be automated
 to reduce effort and errors resulting from manual processing.

 Automated Reconstitution of the Original Text Content
 Automated reconstitution of the exact original text content is needed to
 support validation of text-based content extracted from documents.
 For instance, YANG modules are already
 extracted from Internet-Drafts and validated as part of the
 submission process. Additionally, the desire to validate
 instance examples (i.e., XML/JSON documents) contained within
 Internet-Drafts has been discussed .

 Limitations

 Not Recommended for Graphical Artwork
 While the solution presented in this document works on any
 kind of text-based content, it is most useful on content that
 represents source code (XML, JSON, etc.) or, more generally, on
 content that has not been laid out in two dimensions (e.g., diagrams).
 Fundamentally, the issue is whether the text content remains readable
 once folded. Text content that is unpredictable is especially susceptible
 to looking bad when folded; falling into this category are most
 Unified Modeling Language (UML) diagrams, YANG tree diagrams, and ASCII art in general.
 It is NOT RECOMMENDED to use the solution presented in
 this document on graphical artwork.

 Doesn't Work as Well as Format-Specific Options
 The solution presented in this document works generically
 for all text-based content, as it only views content as plain
 text. However, various formats sometimes have built-in mechanisms
 that are better suited to prevent long lines.
 For instance, both the 'pyang' and 'yanglint' utilities
 have the command-line option "tree-line-length", which can
 be used to indicate a desired maximum line length when
 generating YANG tree diagrams .

 In another example, some source formats (e.g., YANG
) allow any quoted string to be
 broken up into substrings separated by a concatenation
 character (e.g., '+'), any of which can be on a different
 line.
 It is RECOMMENDED that authors do as much as possible
 within the selected format to avoid long lines.

 Two Folding Strategies
 This document defines two nearly identical strategies for folding
 text-based content.

 The Single Backslash Strategy ('\'):
 Uses a backslash
 ('\') character at the end of the line where folding occurs,
 and assumes that the continuation begins at the first character that is not
 a space character (' ') on the following line.
 The Double Backslash Strategy ('\\'):
 Uses a backslash
 ('\') character at the end of the line where folding occurs,
 and assumes that the continuation begins after a second backslash ('\')
 character on the following line.

 Comparison
 The first strategy produces output that is more readable. However, (1) it is
 significantly more likely to encounter unfoldable input (e.g.,
 a long line containing only space characters), and (2) for long lines
 that can be folded, automation implementations may encounter
 scenarios that, without special care, will produce errors.
 The second strategy produces output that is less readable, but it is
 unlikely to encounter unfoldable input, there are no long lines
 that cannot be folded, and no special care is required when
 folding a long line.

 Recommendation
 It is RECOMMENDED that implementations first attempt to fold
 content using the single backslash strategy and, only in the
 unlikely event that it cannot fold the input or the folding
 logic is unable to cope with a contingency occurring on the
 desired folding column, then fall back to the double backslash
 strategy.

 The Single Backslash Strategy ('\')

 Folded Structure
 Text content that has been folded as specified by this strategy
 MUST adhere to the following structure.

 Header
 The header is two lines long.
 The first line is the following 36-character string; this string
 MAY be surrounded by any number of printable characters.
 This first line cannot itself be folded.

NOTE: '\' line wrapping per RFC 8792
 The second line is an empty line, containing only the end-of-line
 character sequence. This line provides visual separation for
 readability.

 Body
 The character encoding is the same as the encoding described in , except that, per ,
 tab characters are prohibited.
 Lines that have a backslash ('\') occurring as the last character in
 a line are considered "folded".
 Exceptionally long lines MAY be folded multiple times.

 Algorithm
 This section describes a process for folding and unfolding long
 lines when they are encountered in text content.
 The steps are complete, but implementations MAY achieve the same
 result in other ways.
 When a larger document contains multiple instances of text content
 that may need to be folded or unfolded, another process must
 insert⁠/extract the individual text content instances to/from the
 larger document prior to utilizing the algorithms described in this
 section. For example, the 'xiax' utility does this.

 Folding
 Determine the desired maximum line length from input to the
 line-wrapping process, such as from a command-line
 parameter. If no value is explicitly specified, the value "69"
 SHOULD be used.
 Ensure that the desired maximum line length is not less than
 the minimum header, which is 36 characters. If the desired
 maximum line length is less than this minimum, exit (this text-based
 content cannot be folded).
 Scan the text content for horizontal tab characters. If any
 horizontal tab characters appear, either resolve them to space
 characters or exit, forcing the input provider to convert them
 to space characters themselves first.
 Scan the text content to ensure that at least one line exceeds the
 desired maximum. If no line exceeds the desired maximum, exit
 (this text content does not
 need to be folded).
 Scan the text content to ensure that no existing lines already end with a
 backslash ('\') character, as this could lead to an ambiguous result.
 If such a line is found, and its width is less than the desired maximum,
 then it SHOULD be flagged for "forced" folding (folding even though
 unnecessary). If the folding implementation doesn't support forced
 foldings, it MUST exit.
 If this text content needs to, and can, be folded, insert the header
 described in , ensuring that any additional
 printable characters surrounding the header do not result in a
 line exceeding the desired maximum.
 For each line in the text content, from top to bottom, if the line
 exceeds the desired maximum or requires a forced folding, then fold
 the line by performing the following steps:

 Determine where the fold will occur. This location MUST be before
 or at the desired maximum column and MUST NOT be chosen such that
 the character immediately after the fold is a space (' ') character.
 For forced foldings, the location is between the '\' and the end-of-line sequence. If no such location can be found, then exit (this
 text content cannot be folded).
 At the location where the fold is to occur, insert a backslash
 ('\') character followed by the end-of-line character sequence.
 On the following line, insert any number of space (' ') characters,
 provided that the resulting line does not
exceed the desired maximum.

 The result of the previous operation is that the next line starts
 with an arbitrary number of space (' ') characters, followed by the
 character that was previously occupying the position where the fold
 occurred.
 Continue in this manner until reaching the end of the text content. Note
 that this algorithm naturally addresses the case where the remainder
 of a folded line is still longer than the desired maximum and, hence,
 needs to be folded again, ad infinitum.
 The process described in this section is illustrated by the "fold_it_1()"
 function in .

 Unfolding
 Scan the beginning of the text content for the header described in
 . If the header is not present, exit
 (this text content does not need to be unfolded).
 Remove the two-line header from the text content.
 For each line in the text content, from top to bottom, if the line has
 a backslash ('\') character immediately followed by the end-of-line
 character sequence, then the line can be unfolded.
 Remove the backslash ('\') character, the end-of-line character
 sequence, and any leading space (' ') characters, which will bring up
 the next line. Then continue to scan each line in the text content
 starting with the current line (in case it was multiply folded).
 Continue in this manner until reaching the end of the text content.
 The process described in this section is illustrated by the "unfold_it_1()"
 function in .

 The Double Backslash Strategy ('\\')

 Folded Structure
 Text content that has been folded as specified by this strategy
 MUST adhere to the following structure.

 Header
 The header is two lines long.
 The first line is the following 37-character string; this string
 MAY be surrounded by any number of printable characters.
 This first line cannot itself be folded.

NOTE: '\\' line wrapping per RFC 8792
 The second line is an empty line, containing only the end-of-line
 character sequence. This line provides visual separation for
 readability.

 Body
 The character encoding is the same as the encoding described in , except that, per ,
 tab characters are prohibited.
 Lines that have a backslash ('\') occurring as the last character in
 a line immediately followed by the end-of-line character sequence, when
 the subsequent line starts with a backslash ('\') as the first
 character that is not a space character (' '), are considered "folded".
 Exceptionally long lines MAY be folded multiple times.

 Algorithm
 This section describes a process for folding and unfolding long
 lines when they are encountered in text content.
 The steps are complete, but implementations MAY achieve the same
 result in other ways.
 When a larger document contains multiple instances of text content
 that may need to be folded or unfolded, another process must
 insert⁠/extract the individual text content instances to/from the
 larger document prior to utilizing the algorithms described in this
 section. For example, the 'xiax' utility does this.

 Folding
 Determine the desired maximum line length from input to the
 line-wrapping process, such as from a command-line
 parameter. If no value is explicitly specified, the value "69"
 SHOULD be used.
 Ensure that the desired maximum line length is not less than
 the minimum header, which is 37 characters. If the desired
 maximum line length is less than this minimum, exit (this text-based
 content cannot be folded).
 Scan the text content for horizontal tab characters. If any
 horizontal tab characters appear, either resolve them to space
 characters or exit, forcing the input provider to convert them
 to space characters themselves first.
 Scan the text content to see if any line exceeds the desired maximum.
 If no line exceeds the desired maximum, exit (this text content does not
 need to be folded).
 Scan the text content to ensure that no existing lines already end with a
 backslash ('\') character while the subsequent line starts with a
 backslash ('\') character as the first character that is not a
 space character (' '),
 as this could lead to an ambiguous result. If such a line is found
 and its width is less than the desired maximum, then it SHOULD be
 flagged for forced folding (folding even though unnecessary). If
 the folding implementation doesn't support forced foldings, it MUST
 exit.
 If this text content needs to, and can, be folded, insert the header
 described in , ensuring that any additional
 printable characters surrounding the header do not result in a
 line exceeding the desired maximum.
 For each line in the text content, from top to bottom, if the line
 exceeds the desired maximum or requires a forced folding, then
 fold the line by performing the following steps:

 Determine where the fold will occur. This location MUST be before
 or at the desired maximum column. For forced foldings, the location
 is between the '\' and the end-of-line sequence on the first line.
 At the location where the fold is to occur, insert a first
 backslash ('\') character followed by the end-of-line character
 sequence.
 On the following line, insert any number of space (' ') characters,
 provided that the resulting line does not
exceed the desired maximum,
 followed by a second backslash ('\') character.

 The result of the previous operation is that the next line starts
 with an arbitrary number of space (' ') characters, followed by a
 backslash ('\') character, immediately followed by the character that
 was previously occupying the position where the fold occurred.
 Continue in this manner until reaching the end of the text content. Note
 that this algorithm naturally addresses the case where the remainder
 of a folded line is still longer than the desired maximum and, hence,
 needs to be folded again, ad infinitum.
 The process described in this section is illustrated by the "fold_it_2()"
 function in .

 Unfolding
 Scan the beginning of the text content for the header described in
 . If the header is not present, exit
 (this text content does not need to be unfolded).
 Remove the two-line header from the text content.
 For each line in the text content, from top to bottom, if the line has
 a backslash ('\') character immediately followed by the end-of-line
 character sequence and if the next line has a backslash ('\') character
 as the first character that is not a space character (' '), then the lines can be unfolded.
 Remove the first backslash ('\') character, the end-of-line character
 sequence, any leading space (' ') characters, and the second backslash
 ('\') character, which will bring up the next line. Then, continue to
 scan each line in the text content starting with the current line (in case
 it was multiply folded).
 Continue in this manner until reaching the end of the text content.
 The process described in this section is illustrated by the "unfold_it_2()"
 function in .

 Examples
 The following self-documenting examples illustrate folded
 text-based content.
 The source text content cannot be presented here, as it would
 again be folded. Alas, only the results can be provided.

 Example Showing Boundary Conditions
 This example illustrates boundary conditions. The input contains
 seven lines, each line one character longer than the previous line.
 Numbers are used for counting purposes. The default desired maximum column
 value "69" is used.

 Using '\'

========== NOTE: '\' line wrapping per RFC 8792 ===========

123456789012345678901234567890123456789012345678901234567890123456
1234567890123456789012345678901234567890123456789012345678901234567
12345678901234567890123456789012345678901234567890123456789012345678
123456789012345678901234567890123456789012345678901234567890123456789
12345678901234567890123456789012345678901234567890123456789012345678\
90
12345678901234567890123456789012345678901234567890123456789012345678\
901
12345678901234567890123456789012345678901234567890123456789012345678\
9012

 Using '\\'

========== NOTE: '\\' line wrapping per RFC 8792 ==========

123456789012345678901234567890123456789012345678901234567890123456
1234567890123456789012345678901234567890123456789012345678901234567
12345678901234567890123456789012345678901234567890123456789012345678
123456789012345678901234567890123456789012345678901234567890123456789
12345678901234567890123456789012345678901234567890123456789012345678\
\90
12345678901234567890123456789012345678901234567890123456789012345678\
\901
12345678901234567890123456789012345678901234567890123456789012345678\
\9012

 Example Showing Multiple Wraps of a Single Line
 This example illustrates what happens when a very long line needs to
 be folded multiple times. The input contains one line containing
 280 characters. Numbers are used for counting purposes. The default
 desired maximum column value "69" is used.

 Using '\'

========== NOTE: '\' line wrapping per RFC 8792 ===========

12345678901234567890123456789012345678901234567890123456789012345678\
90123456789012345678901234567890123456789012345678901234567890123456\
78901234567890123456789012345678901234567890123456789012345678901234\
56789012345678901234567890123456789012345678901234567890123456789012\
34567890

 Using '\\'

========== NOTE: '\\' line wrapping per RFC 8792 ==========

12345678901234567890123456789012345678901234567890123456789012345678\
\9012345678901234567890123456789012345678901234567890123456789012345\
\6789012345678901234567890123456789012345678901234567890123456789012\
\3456789012345678901234567890123456789012345678901234567890123456789\
\01234567890

 Example Showing "Smart" Folding
 This example illustrates how readability can be improved via "smart"
 folding, whereby folding occurs at format-specific locations and
 format-specific indentations are used.
 The text content was manually folded, since the script in
 does not implement smart folding.
 Note that the headers are surrounded by different printable characters
 than those shown in the script-generated examples.

 Using '\'

[NOTE: '\' line wrapping per RFC 8792]

<yang-library
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-library"
 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores">

 <module-set>
 <name>config-modules</name>
 <module>
 <name>ietf-interfaces</name>
 <revision>2018-02-20</revision>
 <namespace>\
 urn:ietf:params:xml:ns:yang:ietf-interfaces\
 </namespace>
 </module>
 ...
 </module-set>
 ...
</yang-library>
 Below is the equivalent of the above, but it was folded using the
 script in .

========== NOTE: '\' line wrapping per RFC 8792 ===========

<yang-library
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-library"
 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores">

 <module-set>
 <name>config-modules</name>
 <module>
 <name>ietf-interfaces</name>
 <revision>2018-02-20</revision>
 <namespace>urn:ietf:params:xml:ns:yang:ietf-interfaces</namesp\
ace>
 </module>
 ...
 </module-set>
 ...
</yang-library>

 Using '\\'

[NOTE: '\\' line wrapping per RFC 8792]

<yang-library
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-library"
 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores">

 <module-set>
 <name>config-modules</name>
 <module>
 <name>ietf-interfaces</name>
 <revision>2018-02-20</revision>
 <namespace>\
 \urn:ietf:params:xml:ns:yang:ietf-interfaces\
 \</namespace>
 </module>
 ...
 </module-set>
 ...
</yang-library>
 Below is the equivalent of the above, but it was folded using the
 script in .

========== NOTE: '\\' line wrapping per RFC 8792 ==========

<yang-library
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-library"
 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores">

 <module-set>
 <name>config-modules</name>
 <module>
 <name>ietf-interfaces</name>
 <revision>2018-02-20</revision>
 <namespace>urn:ietf:params:xml:ns:yang:ietf-interfaces</namesp\
\ace>
 </module>
 ...
 </module-set>
 ...
</yang-library>

 Example Showing "Forced" Folding
 This example illustrates how invalid sequences in lines that do not
 have to be folded can be handled via forced folding, whereby the folding
 occurs even though unnecessary.

The following line exceeds a 68-char max and, thus, demands folding:
123456789012345678901234567890123456789012345678901234567890123456789

This line ends with a backslash \

This line ends with a backslash \
\ This line begins with a backslash

The following is an indented 3x3 block of backslashes:
 \\\
 \\\
 \\\
 The samples below were manually folded, since the script in the appendix
 does not implement forced folding.
 Note that the headers are prefixed by a pound ('#') character, rather
 than surrounded by 'equals' ('=') characters as shown in the script-generated
 examples.

 Using '\'

NOTE: '\' line wrapping per RFC 8792

The following line exceeds a 68-char max and, thus, demands folding:
1234567890123456789012345678901234567890123456789012345678901234567\
89

This line ends with a backslash \\

This line ends with a backslash \\

\ This line begins with a backslash

The following is an indented 3x3 block of backslashes:
 \\\\

 \\\\

 \\\

 Using '\\'

NOTE: '\\' line wrapping per RFC 8792

The following line exceeds a 68-char max and, thus, demands folding:
1234567890123456789012345678901234567890123456789012345678901234567\
\89

This line ends with a backslash \

This line ends with a backslash \\
\
\ This line begins with a backslash

The following is an indented 3x3 block of backslashes:
 \\\\
 \
 \\\\
 \
 \\\

 Security Considerations
 This document has no security considerations.

 IANA Considerations
 This document has no IANA actions.

 References

 Normative References

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 The "xml2rfc" Version 3 Vocabulary

 This document defines the "xml2rfc" version 3 vocabulary: an XML-based language used for writing RFCs and Internet-Drafts. It is heavily derived from the version 2 vocabulary that is also under discussion. This document obsoletes the v2 grammar described in RFC 7749.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 Informative References

 GNU Bash Manual

 pyang

 The "xml2rfc" Version 2 Vocabulary

 This document defines the "xml2rfc" version 2 vocabulary: an XML-based language used for writing RFCs and Internet-Drafts.
 Version 2 represents the state of the vocabulary (as implemented by several tools and as used by the RFC Editor) around 2014.
 This document obsoletes RFC 2629.

 The YANG 1.1 Data Modeling Language

 YANG is a data modeling language used to model configuration data, state data, Remote Procedure Calls, and notifications for network management protocols. This document describes the syntax and semantics of version 1.1 of the YANG language. YANG version 1.1 is a maintenance release of the YANG language, addressing ambiguities and defects in the original specification. There are a small number of backward incompatibilities from YANG version 1. This document also specifies the YANG mappings to the Network Configuration Protocol (NETCONF).

 Requirements for Plain-Text RFCs

 In 2013, after a great deal of community discussion, the decision was made to shift from the plain-text, ASCII-only canonical format for RFCs to XML as the canonical format with more human-readable formats rendered from that XML. The high-level requirements that informed this change were defined in RFC 6949, "RFC Series Format Requirements and Future Development". Plain text remains an important format for many in the IETF community, and it will be one of the publication formats rendered from the XML. This document outlines the rendering requirements for the plain-text RFC publication format. These requirements do not apply to plain-text RFCs published before the format transition.

 YANG Tree Diagrams

 This document captures the current syntax used in YANG module tree diagrams. The purpose of this document is to provide a single location for this definition. This syntax may be updated from time to time based on the evolution of the YANG language.

 The 'xiax' Python Package

 xml2rfc

 [yang-doctors] automating yang doctor reviews

 message to the yang-doctors mailing list

 yanglint

 Bash Shell Script: rfcfold
 This non-normative appendix includes a Bash shell script
 that can both fold and unfold text content using both the
 single and double backslash strategies described in Sections and ,
 respectively. This shell script, called 'rfcfold', is maintained at
 .
 This script is intended to be applied to a single text content
 instance. If it is desired to fold or unfold text content instances
 within a larger document (e.g., an Internet-Draft or RFC), then
 another tool must be used to extract the content from the larger
 document before utilizing this script.
 For readability purposes, this script forces the minimum
 supported line length to be eight characters longer than the
 raw header text defined in Sections and
 so as to ensure that the header
 can be wrapped by a space (' ') character and three 'equals' ('=')
 characters on each side of the raw header text.

 When a tab character is detected in the input file, this script
 exits with the following error message:

 Error: infile contains a tab character, which is not allowed.

 This script tests for the availability of GNU awk (gawk), in
 order to test for ASCII-based control characters and non-ASCII
 characters in the input file (see below). Note that testing
 revealed flaws in the default version of 'awk' on some platforms.
 As this script uses 'gawk' only to issue warning messages,
 if 'gawk' is not found, this script issues the following debug
 message:

 Debug: no GNU awk; skipping checks for special characters.

 When 'gawk' is available (see above) and ASCII-based control
 characters are detected in the input file, this script issues
 the following warning message:

 Warning: infile contains ASCII control characters (unsupported).

 When 'gawk' is available (see above) and non-ASCII characters
 are detected in the input file, this script issues the following warning
 message:

 Warning: infile contains non-ASCII characters (unsupported).

 This script does not implement the whitespace-avoidance logic
 described in . In
 such a case,
 the script will exit with the following error message:

 Error: infile has a space character occurring on the
 folding column. This file cannot be folded using the
 '\' strategy.

 While this script can unfold input that contains forced foldings,
 it is unable to fold files that would require forced foldings. Forced
 folding is described in Sections and
 . When being asked to fold a file
 that would require forced folding, the script will instead exit
 with one of the following error messages:
 For '\':

 Error: infile has a line ending with a '\' character.
 This file cannot be folded using the '\' strategy without
 there being false positives produced in the unfolding
 (i.e., this script does not force-fold such lines, as
 described in RFC 8792).

 For '\\':

 Error: infile has a line ending with a '\' character
 followed by a '\' character as the first non-space
 character on the next line. This script cannot fold
 this file using the '\\' strategy without there being
 false positives produced in the unfolding (i.e., this
 script does not force-fold such lines, as described
 in RFC 8792).

 Shell-level end-of-line backslash ('\') characters have been
 purposely added to the script so as to ensure that the script is
 itself not folded in this document, thus simplifying the ability to
 copy/paste the script for local use. As should be evident by the
 lack of the mandatory header described in ,
 these backslashes do not designate a folded line (e.g., as described
 in).

#!/bin/bash --posix

This script may need some adjustments to work on a given system.
For instance, the utility 'gsed' may need to be installed.
Also, please be advised that 'bash' (not 'sh') must be used.

Copyright (c) 2020 IETF Trust, Kent Watsen, and Erik Auerswald.
All rights reserved.
#
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
#
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
#
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials
provided with the distribution.
#
* Neither the name of Internet Society, IETF or IETF Trust, nor
the names of specific contributors, may be used to endorse or
promote products derived from this software without specific
prior written permission.
#
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

print_usage() {
 printf "\n"
 printf "Folds or unfolds the input text file according to"
 printf " RFC 8792.\n"
 printf "\n"
 printf "Usage: rfcfold [-h] [-d] [-q] [-s <strategy>] [-c <col>]"
 printf " [-r] -i <infile> -o <outfile>\n"
 printf "\n"
 printf " -s: strategy to use, '1' or '2' (default: try 1,"
 printf " else 2)\n"
 printf " -c: column to fold on (default: 69)\n"
 printf " -r: reverses the operation\n"
 printf " -i: the input filename\n"
 printf " -o: the output filename\n"
 printf " -d: show debug messages (unless -q is given)\n"
 printf " -q: quiet (suppress error and debug messages)\n"
 printf " -h: show this message\n"
 printf "\n"
 printf "Exit status code: 1 on error, 0 on success, 255 on no-op."
 printf "\n\n"
}

global vars, do not edit
strategy=0 # auto
debug=0
quiet=0
reversed=0
infile=""
outfile=""
maxcol=69 # default, may be overridden by param
col_gvn=0 # maxcol overridden?
hdr_txt_1="NOTE: '\\' line wrapping per RFC 8792"
hdr_txt_2="NOTE: '\\\\' line wrapping per RFC 8792"
equal_chars="==="
space_chars=" "
temp_dir=""
prog_name='rfcfold'

functions for diagnostic messages
prog_msg() {
 if [["$quiet" -eq 0]]; then
 format_string="${prog_name}: $1: %s\n"
 shift
 printf -- "$format_string" "$*" >&2
 fi
}

err() {
 prog_msg 'Error' "$@"
}

warn() {
 prog_msg 'Warning' "$@"
}

dbg() {
 if [["$debug" -eq 1]]; then
 prog_msg 'Debug' "$@"
 fi
}

determine name of [g]sed binary
type gsed > /dev/null 2>&1 && SED=gsed || SED=sed

warn if a non-GNU sed utility is used
"$SED" --version < /dev/null 2> /dev/null | grep -q GNU || \
warn 'not using GNU `sed` (likely cause if an error occurs).'

cleanup() {
 rm -rf "$temp_dir"
}
trap 'cleanup' EXIT

fold_it_1() {
 # ensure input file doesn't contain the fold-sequence already
 if [[-n "$("$SED" -n '/\\$/p' "$infile")"]]; then
 err "infile '$infile' has a line ending with a '\\' character."\
 "This script cannot fold this file using the '\\' strategy"\
 "without there being false positives produced in the"\
 "unfolding."
 return 1
 fi

 # where to fold
 foldcol=$(expr "$maxcol" - 1) # for the inserted '\' char

 # ensure input file doesn't contain whitespace on the fold column
 grep -q "^\(.\{$foldcol\}\)\{1,\} " "$infile"
 if [[$? -eq 0]]; then
 err "infile '$infile' has a space character occurring on the"\
 "folding column. This file cannot be folded using the"\
 "'\\' strategy."
 return 1
 fi

 # center header text
 length=$(expr ${#hdr_txt_1} + 2)
 left_sp=$(expr \("$maxcol" - "$length" \) / 2)
 right_sp=$(expr "$maxcol" - "$length" - "$left_sp")
 header=$(printf "%.*s %s %.*s" "$left_sp" "$equal_chars"\
 "$hdr_txt_1" "$right_sp" "$equal_chars")

 # generate outfile
 echo "$header" > "$outfile"
 echo "" >> "$outfile"
 "$SED" 's/\(.\{'"$foldcol"'\}\)\(..\)/\1\\\n\2/;t M;b;:M;P;D;'\
 < "$infile" >> "$outfile" 2> /dev/null
 if [[$? -ne 0]]; then
 return 1
 fi
 return 0
}

fold_it_2() {
 # where to fold
 foldcol=$(expr "$maxcol" - 1) # for the inserted '\' char

 # ensure input file doesn't contain the fold-sequence already
 if [[-n "$("$SED" -n '/\\$/{N;s/\\\n[]*\\/&/p;D}' "$infile")"]]
 then
 err "infile '$infile' has a line ending with a '\\' character"\
 "followed by a '\\' character as the first non-space"\
 "character on the next line. This script cannot fold"\
 "this file using the '\\\\' strategy without there being"\
 "false positives produced in the unfolding."
 return 1
 fi

 # center header text
 length=$(expr ${#hdr_txt_2} + 2)
 left_sp=$(expr \("$maxcol" - "$length" \) / 2)
 right_sp=$(expr "$maxcol" - "$length" - "$left_sp")
 header=$(printf "%.*s %s %.*s" "$left_sp" "$equal_chars"\
 "$hdr_txt_2" "$right_sp" "$equal_chars")

 # generate outfile
 echo "$header" > "$outfile"
 echo "" >> "$outfile"
 "$SED" 's/\(.\{'"$foldcol"'\}\)\(..\)/\1\\\n\\\2/;t M;b;:M;P;D;'\
 < "$infile" >> "$outfile" 2> /dev/null
 if [[$? -ne 0]]; then
 return 1
 fi
 return 0
}

fold_it() {
 # ensure input file doesn't contain a tab
 grep -q $'\t' "$infile"
 if [[$? -eq 0]]; then
 err "infile '$infile' contains a tab character, which is not"\
 "allowed."
 return 1
 fi

 # folding of input containing ASCII control or non-ASCII characters
 # may result in a wrong folding column and is not supported
 if type gawk > /dev/null 2>&1; then
 env LC_ALL=C gawk '/[\000-\014\016-\037\177]/{exit 1}' "$infile"\
 || warn "infile '$infile' contains ASCII control characters"\
 "(unsupported)."
 env LC_ALL=C gawk '/[^\000-\177]/{exit 1}' "$infile"\
 || warn "infile '$infile' contains non-ASCII characters"\
 "(unsupported)."
 else
 dbg "no GNU awk; skipping checks for special characters."
 fi

 # check if file needs folding
 testcol=$(expr "$maxcol" + 1)
 grep -q ".\{$testcol\}" "$infile"
 if [[$? -ne 0]]; then
 dbg "nothing to do; copying infile to outfile."
 cp "$infile" "$outfile"
 return 255
 fi

 if [["$strategy" -eq 1]]; then
 fold_it_1
 return $?
 fi
 if [["$strategy" -eq 2]]; then
 fold_it_2
 return $?
 fi
 quiet_sav="$quiet"
 quiet=1
 fold_it_1
 result=$?
 quiet="$quiet_sav"
 if [["$result" -ne 0]]; then
 dbg "Folding strategy '1' didn't succeed; trying strategy '2'..."
 fold_it_2
 return $?
 fi
 return 0
}

unfold_it_1() {
 temp_dir=$(mktemp -d)

 # output all but the first two lines (the header) to wip file
 awk "NR>2" "$infile" > "$temp_dir/wip"

 # unfold wip file
 "$SED" '{H;$!d};x;s/^\n//;s/\\\n *//g' "$temp_dir/wip" > "$outfile"

 return 0
}

unfold_it_2() {
 temp_dir=$(mktemp -d)

 # output all but the first two lines (the header) to wip file
 awk "NR>2" "$infile" > "$temp_dir/wip"

 # unfold wip file
 "$SED" '{H;$!d};x;s/^\n//;s/\\\n *\\//g' "$temp_dir/wip"\
 > "$outfile"

 return 0
}

unfold_it() {
 # check if file needs unfolding
 line=$(head -n 1 "$infile")
 line2=$("$SED" -n '2p' "$infile")
 result=$(echo "$line" | fgrep "$hdr_txt_1")
 if [[$? -eq 0]]; then
 if [[-n "$line2"]]; then
 err "the second line in '$infile' is not empty."
 return 1
 fi
 unfold_it_1
 return $?
 fi
 result=$(echo "$line" | fgrep "$hdr_txt_2")
 if [[$? -eq 0]]; then
 if [[-n "$line2"]]; then
 err "the second line in '$infile' is not empty."
 return 1
 fi
 unfold_it_2
 return $?
 fi
 dbg "nothing to do; copying infile to outfile."
 cp "$infile" "$outfile"
 return 255
}

process_input() {
 while [["$1" != ""]]; do
 if [["$1" == "-h"]] || [["$1" == "--help"]]; then
 print_usage
 exit 0
 elif [["$1" == "-d"]]; then
 debug=1
 elif [["$1" == "-q"]]; then
 quiet=1
 elif [["$1" == "-s"]]; then
 if [["$#" -eq "1"]]; then
 err "option '-s' needs an argument (use -h for help)."
 exit 1
 fi
 strategy="$2"
 shift
 elif [["$1" == "-c"]]; then
 if [["$#" -eq "1"]]; then
 err "option '-c' needs an argument (use -h for help)."
 exit 1
 fi
 col_gvn=1
 maxcol="$2"
 shift
 elif [["$1" == "-r"]]; then
 reversed=1
 elif [["$1" == "-i"]]; then
 if [["$#" -eq "1"]]; then
 err "option '-i' needs an argument (use -h for help)."
 exit 1
 fi
 infile="$2"
 shift
 elif [["$1" == "-o"]]; then
 if [["$#" -eq "1"]]; then
 err "option '-o' needs an argument (use -h for help)."
 exit 1
 fi
 outfile="$2"
 shift
 else
 warn "ignoring unknown option '$1'."
 fi
 shift
 done

 if [[-z "$infile"]]; then
 err "infile parameter missing (use -h for help)."
 exit 1
 fi

 if [[-z "$outfile"]]; then
 err "outfile parameter missing (use -h for help)."
 exit 1
 fi

 if [[! -f "$infile"]]; then
 err "specified file '$infile' does not exist."
 exit 1
 fi

 if [["$col_gvn" -eq 1]] && [["$reversed" -eq 1]]; then
 warn "'-c' option ignored when unfolding (option '-r')."
 fi

 if [["$strategy" -eq 0]] || [["$strategy" -eq 2]]; then
 min_supported=$(expr ${#hdr_txt_2} + 8)
 else
 min_supported=$(expr ${#hdr_txt_1} + 8)
 fi
 if [["$maxcol" -lt "$min_supported"]]; then
 err "the folding column cannot be less than $min_supported."
 exit 1
 fi

 # this is only because the code otherwise runs out of equal_chars
 max_supported=$(expr ${#equal_chars} + 1 + ${#hdr_txt_1} + 1\
 + ${#equal_chars})
 if [["$maxcol" -gt "$max_supported"]]; then
 err "the folding column cannot be more than $max_supported."
 exit 1
 fi
}

main() {
 if [["$#" -eq "0"]]; then
 print_usage
 exit 1
 fi

 process_input "$@"

 if [["$reversed" -eq 0]]; then
 fold_it
 code=$?
 else
 unfold_it
 code=$?
 fi
 exit "$code"
}

main "$@"

 Acknowledgements
 The authors thank the RFC Editor for confirming that there was
 previously no set convention, at the time of this document's publication,
 for handling long lines in source code inclusions, thus instigating this
 work.
 The authors thank the following folks for their various
 contributions while producing this document (sorted by first name):
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 and .

 Authors' Addresses

 Watsen Networks

 kent+ietf@watsen.net

 Individual Contributor

 auerswal@unix-ag.uni-kl.de

 Old Dog Consulting

 adrian@olddog.co.uk

 Huawei Technologies

 bill.wu@huawei.com

