
RFC 9470

OAuth 2.0 Step Up Authentication Challenge Protocol

Abstract

It is not uncommon for resource servers to require different authentication strengths or

recentness according to the characteristics of a request. This document introduces a mechanism

that resource servers can use to signal to a client that the authentication event associated with

the access token of the current request does not meet its authentication requirements and,

further, how to meet them. This document also codifies a mechanism for a client to request that

an authorization server achieve a specific authentication strength or recentness when processing

an authorization request.

Stream:

RFC:

Category:

Published:

ISSN:

Authors:

Internet Engineering Task Force (IETF)

9470

Standards Track

September 2023

2070-1721

 V. Bertocci

Auth0/Okta

B. Campbell

Ping Identity

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the

consensus of the IETF community. It has received public review and has been approved for

publication by the Internet Engineering Steering Group (IESG). Further information on Internet

Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback

on it may be obtained at .https://www.rfc-editor.org/info/rfc9470

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights

reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents () in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and restrictions

https://trustee.ietf.org/license-info

Bertocci & Campbell Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9470
https://www.rfc-editor.org/info/rfc9470
https://trustee.ietf.org/license-info

with respect to this document. Code Components extracted from this document must include

Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are

provided without warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Conventions and Terminology

2. Protocol Overview

3. Authentication Requirements Challenge

4. Authorization Request

5. Authorization Response

6. Authentication Information Conveyed via Access Token

6.1. JWT Access Tokens

6.2. OAuth 2.0 Token Introspection

7. Authorization Server Metadata

8. Deployment Considerations

9. Security Considerations

10. IANA Considerations

10.1. OAuth Extensions Error Registration

10.2. OAuth Token Introspection Response Registration

11. References

11.1. Normative References

11.2. Informative References

Acknowledgements

Authors' Addresses

2

3

3

5

7

8

8

9

9

10

10

11

11

11

12

12

12

12

13

14

1. Introduction

In simple API authorization scenarios, an authorization server will determine what

authentication technique to use to handle a given request on the basis of aspects such as the

scopes requested, the resource, the identity of the client, and other characteristics known at

RFC 9470 OAuth Auth Challenge September 2023

Bertocci & Campbell Standards Track Page 2

provisioning time. Although that approach is viable in many situations, it falls short in several

important circumstances. Consider, for instance, an eCommerce API requiring different

authentication strengths depending on whether the item being purchased exceeds a certain

threshold, dynamically estimated by the API itself using a logic that is opaque to the

authorization server. An API might also determine that a more recent user authentication is

required based on its own risk evaluation of the API request.

This document extends the collection of error codes defined by with a new value,

insufficient_user_authentication, which can be used by resource servers to signal to the

client that the authentication event associated with the access token presented with the request

does not meet the authentication requirements of the resource server. This document also

introduces acr_values and max_age parameters for the Bearer authentication scheme challenge

defined by . The resource server can use these parameters to explicitly communicate to

the client the required authentication strength or recentness.

The client can use that information to reach back to the authorization server with an

authorization request that specifies the authentication requirements indicated by the protected

resource. This is accomplished by including the acr_values or max_age authorization request

parameters as defined in .

Those extensions will make it possible to implement interoperable step up authentication with

minimal work from resource servers, clients, and authorization servers.

[RFC6750]

[RFC6750]

[OIDC]

1.1. Conventions and Terminology

The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in

all capitals, as shown here.

This specification uses the terms "access token", "authorization server", "authorization endpoint",

"authorization request", "client", "protected resource", and "resource server" defined by "The

OAuth 2.0 Authorization Framework" .

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD

NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[RFC6749]

2. Protocol Overview

The following is an end-to-end sequence of a typical step up authentication scenario

implemented according to this specification. The scenario assumes that, before the sequence

described below takes place, the client already obtained an access token for the protected

resource.

RFC 9470 OAuth Auth Challenge September 2023

Bertocci & Campbell Standards Track Page 3

The client requests a protected resource, presenting an access token.

The resource server determines that the circumstances in which the presented access token

was obtained offer insufficient authentication strength and/or recentness; hence, it denies

the request and returns a challenge describing (using a combination of acr_values and

max_age) what authentication requirements must be met for the resource server to

authorize a request.

The client directs the user agent to the authorization server with an authorization request

that includes the acr_values and/or max_age indicated by the resource server in the

previous step.

Whatever sequence required by the grant of choice plays out; this will include the necessary

steps to authenticate the user in accordance with the acr_values and/or max_age values of

the authorization request. Then, the authorization server returns a new access token to the

client. The new access token contains or references information about the authentication

event.

The client repeats the request from step 1, presenting the newly obtained access token.

The resource server finds that the user authentication performed during the acquisition of

the new access token complies with its requirements and returns the representation of the

requested protected resource.

Figure 1: Abstract Protocol Flow

+----------+ +--------------+
	-----------(1) request ------------------>	
	<---------(2) challenge ------------------	Resource
		Server
Client		
	-----------(5) request ------------------>	
	<-----(6) protected resource -------------	
	+--------------+	
	+-------+ +---------------+	
	->	
		User
		Agent
	<-	
	+-------+	
	<-------- (4) access token --------------	
+----------+ +---------------+

1.

2.

3.

4.

5.

6.

RFC 9470 OAuth Auth Challenge September 2023

Bertocci & Campbell Standards Track Page 4

The validation operations mentioned in steps 2 and 6 imply that the resource server has a way of

evaluating the authentication that occurred during the process by which the access token was

obtained. In the context of this document, the assessment by the resource server of the specific

authentication method used to obtain a token for the requested resource is called an

"authentication level". This document will describe how the resource server can perform this

assessment of an authentication level when the access token is a JSON Web Token (JWT)

 or is validated via introspection . Other methods of determining the

authentication level by which the access token was obtained are possible, per agreement by the

authorization server and the protected resource, but they are beyond the scope of this

specification. Given an authentication level of a token, the resource server determines whether it

meets the security criteria for the requested resource.

The terms "authentication level" and "step up" are metaphors in this specification. These

metaphors do not suggest that there is an absolute hierarchy of authentication methods

expressed in interoperable fashion. The notion of a level emerges from the fact that the resource

server may only want to accept certain authentication methods. When presented with a token

derived from a particular authentication method (i.e., a given authentication level) that it does

not want to accept (i.e., below the threshold or level it will accept), the resource server seeks to

step up (i.e., renegotiate) from the current authentication level to one that it may accept. The

"step up" metaphor is intended to convey a shift from the original authentication level to one

that is acceptable to the resource server.

Although the case in which the new access token supersedes old tokens by virtue of a higher

authentication level is common, in line with the connotation of the term "step up authentication",

it is important to keep in mind that this might not necessarily hold true in the general case. For

example, for a particular request, a resource server might require a higher authentication level

and a shorter validity, resulting in a token suitable for one-off calls but leading to frequent

prompts: hence, offering a suboptimal user experience if the token is reused for routine

operations. In such a scenario, the client would be better served by keeping both the old tokens,

which are associated with a lower authentication level, and the new one: selecting the

appropriate token for each API call. This is not a new requirement for clients, as incremental

consent and least-privilege principles will require similar heuristics for managing access tokens

associated with different scopes and permission levels. This document does not recommend any

specific token-caching strategy: that choice will be dependent on the characteristics of every

particular scenario and remains application-dependent as in the core OAuth cases. Also recall

that OAuth 2.0 assumes access tokens are treated as opaque by clients. The token

format might be unreadable to the client or might change at any time to become unreadable. So,

during the course of any token-caching strategy, a client must not attempt to inspect the content

of the access token to determine the associated authentication information or other details (see

 for a more detailed discussion).

[RFC9068] [RFC7662]

[RFC6749]

Section 6 of [RFC9068]

3. Authentication Requirements Challenge

This specification introduces a new error code value for the challenge of the Bearer

authentication scheme's error parameter (from) and other OAuth authentication

schemes, such as those seen in , which use the same error parameter:

[RFC6750]

[RFC9449]

RFC 9470 OAuth Auth Challenge September 2023

Bertocci & Campbell Standards Track Page 5

https://rfc-editor.org/rfc/rfc9068#section-6

insufficient_user_authentication:

acr_values:

max_age:

The authentication event associated with the access

token presented with the request does not meet the authentication requirements of the

protected resource.

Note: the logic through which the resource server determines that the current request does not

meet the authentication requirements of the protected resource, and associated functionality

(such as expressing, deploying and publishing such requirements), is out of scope for this

document.

Furthermore, this specification defines the following WWW-Authenticate auth-param values for

those OAuth authentication schemes to convey the authentication requirements back to the

client.

A space-separated string listing the authentication context class reference values

in order of preference. The protected resource requires one of these values for the

authentication event associated with the access token. As defined in Section 1.2 of , the

authentication context conveys information about how authentication takes place (e.g., what

authentication method(s) or assurance level to meet).

This value indicates the allowable elapsed time in seconds since the last active

authentication event associated with the access token. An active authentication event entails a

user interacting with the authorization server in response to an authentication prompt. Note

that, while the auth-param value can be conveyed as a token or quoted-string (see

), it has to represent a non-negative integer.

Figure 2 is an example of a Bearer authentication scheme challenge with the WWW-Authenticate

header using:

the insufficient_user_authentication error code value to inform the client that the

access token presented is not sufficient to gain access to the protected resource, and

the acr_values parameter to let the client know that the expected authentication level

corresponds to the authentication context class reference identified by myACR.

Note that while this specification only defines usage of the above auth-params with the

insufficient_user_authentication error code, it does not preclude future specifications or

profiles from defining their usage with other error codes.

[OIDC]

Section

11.2 of [RFC9110]

•

•

Figure 2: Authentication Requirements Challenge Indicating acr_values

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Bearer error="insufficient_user_authentication",
 error_description="A different authentication level is required",
 acr_values="myACR"

RFC 9470 OAuth Auth Challenge September 2023

Bertocci & Campbell Standards Track Page 6

https://rfc-editor.org/rfc/rfc9110#section-11.2
https://rfc-editor.org/rfc/rfc9110#section-11.2

The example in Figure 3 shows a challenge informing the client that the last active

authentication event associated with the presented access token is too old and a more recent

authentication is needed.

The auth-params max_age and acr_values both occur in the same challenge if the resource

server needs to express requirements about both recency and authentication level. If the

resource server determines that the request is also lacking the scopes required by the requested

resource, it include the scope attribute with the value necessary to access the protected

resource, as described in .

Figure 3: Authentication Requirements Challenge Indicating max_age

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Bearer error="insufficient_user_authentication",
 error_description="More recent authentication is required",
 max_age="5"

MAY

MAY

Section 3.1 of [RFC6750]

4. Authorization Request

A client receiving a challenge from the resource server carrying the

insufficient_user_authentication error code parse the WWW-Authenticate header

for acr_values and max_age and use them, if present, in constructing an authorization request.

This request is then conveyed to the authorization server's authorization endpoint via the user

agent in order to obtain a new access token complying with the corresponding requirements.

The acr_values and max_age authorization request parameters are both parameters

defined in Section 3.1.2.1. of . This document does not introduce any changes in the

authorization server behavior defined in for processing those parameters; hence, any

authorization server implementing OpenID Connect will be able to participate in the flow

described here with little or no changes. See Section 5 for more details.

The example authorization request URI below, which might be used after receiving the challenge

in Figure 2, indicates to the authorization server that the client would like the authentication to

occur according to the authentication context class reference identified by myACR.

After the challenge in Figure 3, a client might direct the user agent to the following example

authorization request URI where the max_age parameter indicates to the authorization server

that the user-authentication event needs to have occurred no more than five seconds prior.

SHOULD

OPTIONAL

[OIDC]

[OIDC]

Figure 4: Authorization Request Indicating acr_values

https://as.example.net/authorize?client_id=s6BhdRkqt3
&response_type=code&scope=purchase&acr_values=myACR

RFC 9470 OAuth Auth Challenge September 2023

Bertocci & Campbell Standards Track Page 7

https://rfc-editor.org/rfc/rfc6750#section-3.1

Figure 5: Authorization Request Indicating max_age

https://as.example.net/authorize?client_id=s6BhdRkqt3
&response_type=code&scope=purchase&max_age=5

5. Authorization Response

Section 5.5.1.1 of establishes that an authorization server receiving a request containing

the acr_values parameter attempt to authenticate the user in a manner that satisfies the

requested authentication context class reference and include the corresponding value in the acr

claim in the resulting ID Token. The same section also establishes that, in case the desired

authentication level cannot be met, the authorization server include a value reflecting

the authentication level of the current session (if any) in the acr claim. Furthermore, Section

3.1.2.1 states that if a request includes the max_age parameter, the authorization server

 include the auth_time claim in the issued ID Token. An authorization server complying

with this specification will react to the presence of the acr_values and max_age parameters by

including acr and auth_time in the access token (see Section 6 for details). Although

leaves the authorization server free to decide how to handle the inclusion of acr in the ID Token

when requested via acr_values, when it comes to access tokens in this specification, the

authorization server consider the requested acr value as necessary for successfully

fulfilling the request. That is, the requested acr value is included in the access token if the

authentication operation successfully met its requirements; otherwise, the authorization request

fails and returns an unmet_authentication_requirements error as defined in . The

recommended behavior will help prevent clients getting stuck in a loop where the authorization

server keeps returning tokens that the resource server already identified as not meeting its

requirements.

[OIDC]

MAY

SHOULD

[OIDC]

MUST

[OIDC]

SHOULD

[OIDCUAR]

6. Authentication Information Conveyed via Access Token

To evaluate whether an access token meets the protected resource's requirements, the resource

server needs a way of accessing information about the authentication event by which that access

token was obtained. This specification provides guidance on how to convey that information in

conjunction with two common access-token-validation methods:

the one described in , where the access token is encoded in JWT format and

verified via a set of validation rules, and

the one described in , where the token is validated and decoded by sending it to an

introspection endpoint.

Authorization servers and resource servers elect to use other encoding and validation

methods; however, those are out of scope for this document.

• [RFC9068]

• [RFC7662]

MAY

RFC 9470 OAuth Auth Challenge September 2023

Bertocci & Campbell Standards Track Page 8

6.1. JWT Access Tokens

When access tokens are represented as JSON Web Tokens (JWTs) , the auth_time and

acr claims (per) are used to convey the time and context of the user-

authentication event that the authentication server performed during the course of obtaining the

access token. It is useful to bear in mind that the values of those two parameters are established

at user-authentication time and will not change in the event of access token renewals. See the

aforementioned for details. The following is a conceptual example

showing the decoded content of such a JWT access token.

[RFC7519]

Section 2.2.1 of [RFC9068]

Section 2.2.1 of [RFC9068]

Figure 6: Decoded JWT Access Token

Header:

{"typ":"at+JWT","alg":"ES256","kid":"LTacESbw"}

Claims:

{
 "iss": "https://as.example.net",
 "sub": "someone@example.net",
 "aud": "https://rs.example.com",
 "exp": 1646343000,
 "iat": 1646340200,
 "jti" : "e1j3V_bKic8-LAEB_lccD0G",
 "client_id": "s6BhdRkqt3",
 "scope": "purchase",
 "auth_time": 1646340198,
 "acr": "myACR"
}

acr:

auth_time:

6.2. OAuth 2.0 Token Introspection

"OAuth 2.0 Token Introspection" defines a method for a protected resource to query an

authorization server about the active state of an access token as well as to determine

metainformation about the token. The following two top-level introspection response members

are defined to convey information about the user-authentication event that the authentication

server performed during the course of obtaining the access token.

String specifying an authentication context class reference value that identifies the

authentication context class that was satisfied by the user-authentication event performed.

Time when the user authentication occurred. A JSON numeric value representing

the number of seconds from 1970-01-01T00:00:00Z UTC until the date/time of the

authentication event.

The following example shows an introspection response with information about the user-

authentication event by which the access token was obtained.

[RFC7662]

RFC 9470 OAuth Auth Challenge September 2023

Bertocci & Campbell Standards Track Page 9

https://rfc-editor.org/rfc/rfc9068#section-2.2.1
https://rfc-editor.org/rfc/rfc9068#section-2.2.1

Figure 7: Introspection Response

HTTP/1.1 200 OK
Content-Type: application/json

{
 "active": true,
 "client_id": "s6BhdRkqt3",
 "scope": "purchase",
 "sub": "someone@example.net",
 "aud": "https://rs.example.com",
 "iss": "https://as.example.net",
 "exp": 1639528912,
 "iat": 1618354090,
 "auth_time": 1646340198,
 "acr": "myACR"
}

7. Authorization Server Metadata

Authorization servers can advertise their support of this specification by including in their

metadata document, as defined in , the value acr_values_supported, as defined in

Section 3 of . The presence of acr_values_supported in the authorization server

metadata document signals that the authorization server will understand and honor the

acr_values and max_age parameters in incoming authorization requests.

[RFC8414]

[OIDCDISC]

8. Deployment Considerations

This specification facilitates the communication of requirements from a resource server to a

client, which, in turn, can enable a smooth step up authentication experience. However, it is

important to realize that the user experience achievable in every specific deployment is a

function of the policies each resource server and authorization server pair establishes. Imposing

constraints on those policies is out of scope for this specification; hence, it is perfectly possible for

resource servers and authorization servers to impose requirements that are impossible for users

to comply with or that lead to an undesirable user-experience outcome. The authentication

prompts presented by the authorization server as a result of the method of propagating

authentication requirements described here might require the user to perform some specific

actions such as using multiple devices, having access to devices complying with specific security

requirements, and so on. Those extra requirements, that are more concerned with how to

comply with a particular requirement rather than indicating the identifier of the requirement

itself, are out of scope for this specification.

RFC 9470 OAuth Auth Challenge September 2023

Bertocci & Campbell Standards Track Page 10

9. Security Considerations

This specification adds to previously defined OAuth mechanisms. Their respective security

considerations apply:

OAuth 2.0 ,

JWT access tokens ,

Bearer WWW-Authenticate ,

token introspection , and

authorization server metadata .

This document be used to position OAuth as an authentication protocol. For the

purposes of this specification, the way in which a user authenticated with the authorization

server to obtain an access token is salient information, as a resource server might decide

whether to grant access on the basis of how that authentication operation was performed.

Nonetheless, this specification does not attempt to define the mechanics by which authentication

takes place, relying on a separate authentication layer to take care of the details. In line with

other specifications of the OAuth family, this document assumes the existence of a session

without going into the details of how it is established or maintained, what protocols are used to

implement that layer (e.g., OpenID Connect), and so forth. Depending on the policies adopted by

the resource server, the acr_values parameter introduced in Section 3 might unintentionally

disclose information about the authenticated user, the resource itself, the authorization server,

and any other context-specific data that an attacker might use to gain knowledge about their

target. For example, a resource server requesting an acr value corresponding to a high level of

assurance for some users but not others might identify possible high-privilege users to target

with spearhead phishing attacks. Implementers should use care in determining what to disclose

in the challenge and in what circumstances. The logic examining the incoming access token to

determine whether or not a challenge should be returned can be executed either before or after

the conventional token-validation logic, be it based on JWT validation, introspection, or any

other method. The resource server return a challenge without verifying the client presented

a valid token. However, this approach will leak the required properties of an authorization token

to an actor who has not proven they can obtain a token for this resource server.

As this specification provides a mechanism for the resource server to trigger user interaction, it's

important for the authorization server and clients to consider that a malicious resource server

might abuse that feature.

• [RFC6749]

• [RFC9068]

• [RFC6750]

• [RFC7662]

• [RFC8414]

MUST NOT

MAY

10. IANA Considerations

10.1. OAuth Extensions Error Registration

This specification registers the following error value in the "OAuth Extensions Error Registry"

 established by .[IANA.OAuth.Params] [RFC6749]

RFC 9470 OAuth Auth Challenge September 2023

Bertocci & Campbell Standards Track Page 11

[RFC2119]

[RFC6749]

[RFC6750]

[RFC8174]

11. References

11.1. Normative References

, , ,

, , March 1997,

.

, , ,

, October 2012, .

 and ,

, , , October 2012,

.

, ,

, , , May 2017,

.

11.2. Informative References

Name:

Usage Location:

Protocol Extension:

Change controller:

Specification document(s):

insufficient_user_authentication

resource access error response

OAuth 2.0 Step Up Authentication Challenge Protocol

IETF

Section 3 of RFC 9470

Name:

Description:

Change Controller:

Specification Document(s):

Name:

Description:

Change Controller:

Specification Document(s):

10.2. OAuth Token Introspection Response Registration

This specification registers the following values in the "OAuth Token Introspection Response"

registry established by .

Authentication Context Class Reference:

acr

Authentication Context Class Reference

IETF

Section 6.2 of RFC 9470

Authentication Time:

auth_time

Time when the user authentication occurred

IETF

Section 6.2 of RFC 9470

[IANA.OAuth.Params] [RFC7662]

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14

RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/

rfc2119>

Hardt, D., Ed. "The OAuth 2.0 Authorization Framework" RFC 6749 DOI

10.17487/RFC6749 <https://www.rfc-editor.org/info/rfc6749>

Jones, M. D. Hardt "The OAuth 2.0 Authorization Framework: Bearer Token

Usage" RFC 6750 DOI 10.17487/RFC6750 <https://www.rfc-

editor.org/info/rfc6750>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP

14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/

rfc8174>

RFC 9470 OAuth Auth Challenge September 2023

Bertocci & Campbell Standards Track Page 12

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174

[IANA.OAuth.Params]

[OIDC]

[OIDCDISC]

[OIDCUAR]

[RFC7519]

[RFC7662]

[RFC8414]

[RFC9068]

[RFC9110]

[RFC9449]

, ,

.

, , , , and ,

, 8 November 2014,

.

, , , and ,

, 8 November 2014,

.

,

, 8 May 2019,

.

, , and , , ,

, May 2015, .

, , , ,

October 2015, .

, , and ,

, , , June 2018,

.

, ,

, , October 2021,

.

, , and , ,

, , , June 2022,

.

, , , , , and ,

, , ,

September 2023, .

IANA "OAuth Parameters" <https://www.iana.org/assignments/oauth-

parameters>

Sakimura, N. Bradley, J. Jones, M. de Medeiros, B. C. Mortimore "OpenID

Connect Core 1.0 incorporating errata set 1" <https://

openid.net/specs/openid-connect-core-1_0.html>

Sakimura, N. Bradley, J. Jones, M. E. Jay "OpenID Connect Discovery 1.0

incorporating errata set 1" <https://openid.net/specs/openid-

connect-discovery-1_0.html>

Lodderstedt, T. "OpenID Connect Core Error Code

unmet_authentication_requirements" <https://openid.net/specs/

openid-connect-unmet-authentication-requirements-1_0.html>

Jones, M. Bradley, J. N. Sakimura "JSON Web Token (JWT)" RFC 7519 DOI

10.17487/RFC7519 <https://www.rfc-editor.org/info/rfc7519>

Richer, J., Ed. "OAuth 2.0 Token Introspection" RFC 7662 DOI 10.17487/RFC7662

<https://www.rfc-editor.org/info/rfc7662>

Jones, M. Sakimura, N. J. Bradley "OAuth 2.0 Authorization Server

Metadata" RFC 8414 DOI 10.17487/RFC8414 <https://www.rfc-

editor.org/info/rfc8414>

Bertocci, V. "JSON Web Token (JWT) Profile for OAuth 2.0 Access Tokens" RFC

9068 DOI 10.17487/RFC9068 <https://www.rfc-editor.org/info/

rfc9068>

Fielding, R., Ed. Nottingham, M., Ed. J. Reschke, Ed. "HTTP Semantics" STD

97 RFC 9110 DOI 10.17487/RFC9110 <https://www.rfc-editor.org/info/

rfc9110>

Fett, D. Campbell, B. Bradley, J. Lodderstedt, T. Jones, M. D. Waite "OAuth

2.0 Demonstrating Proof of Possession (DPoP)" RFC 9449 DOI 10.17487/RFC9449

<https://www.rfc-editor.org/info/rfc9449>

Acknowledgements

I wanted to thank the Academy, the viewers at home, the shampoo manufacturers, etc.

This specification was developed within the OAuth Working Group under the chairpersonship of

 and with and serving as

Security Area Directors. Additionally, the following individuals contributed ideas, feedback,

corrections, and wording that helped shape this specification: , ,

, , , , and .

Rifaat Shekh-Yusef Hannes Tschofenig Paul Wouters Roman Danyliw

Caleb Baker Ivan Kanakarakis

Pieter Kasselman Aaron Parecki Denis Pinkas Dima Postnikov Filip Skokan

RFC 9470 OAuth Auth Challenge September 2023

Bertocci & Campbell Standards Track Page 13

https://www.iana.org/assignments/oauth-parameters
https://www.iana.org/assignments/oauth-parameters
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-discovery-1_0.html
https://openid.net/specs/openid-connect-discovery-1_0.html
https://openid.net/specs/openid-connect-unmet-authentication-requirements-1_0.html
https://openid.net/specs/openid-connect-unmet-authentication-requirements-1_0.html
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7662
https://www.rfc-editor.org/info/rfc8414
https://www.rfc-editor.org/info/rfc8414
https://www.rfc-editor.org/info/rfc9068
https://www.rfc-editor.org/info/rfc9068
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9449

Some early discussion of the motivations and concepts that precipitated the initial draft version

of this document occurred at the 2021 OAuth Security Workshop. The authors thank the

organizers of the workshop (, , and) for hosting an event

that is conducive to collaboration and community input.

Guido Schmitz Steinar Noem Daniel Fett

Authors' Addresses

Vittorio Bertocci

Auth0/Okta

 vittorio@auth0.com Email:

Brian Campbell

Ping Identity

 bcampbell@pingidentity.com Email:

RFC 9470 OAuth Auth Challenge September 2023

Bertocci & Campbell Standards Track Page 14

mailto:vittorio@auth0.com
mailto:bcampbell@pingidentity.com

	RFC 9470
	OAuth 2.0 Step Up Authentication Challenge Protocol
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Conventions and Terminology

	2. Protocol Overview
	3. Authentication Requirements Challenge
	4. Authorization Request
	5. Authorization Response
	6. Authentication Information Conveyed via Access Token
	6.1. JWT Access Tokens
	6.2. OAuth 2.0 Token Introspection

	7. Authorization Server Metadata
	8. Deployment Considerations
	9. Security Considerations
	10. IANA Considerations
	10.1. OAuth Extensions Error Registration
	10.2. OAuth Token Introspection Response Registration

	11. References
	11.1. Normative References
	11.2. Informative References

	Acknowledgements
	Authors' Addresses

 OAuth 2.0 Step Up Authentication Challenge Protocol

 Auth0/Okta

 vittorio@auth0.com

 Ping Identity

 bcampbell@pingidentity.com

 sec
 oauth
 security
 oauth2
 openid connect
 oauth
 step up

 It is not uncommon for resource servers to require different authentication strengths or recentness according to the characteristics of a request. This document introduces a mechanism that resource servers can use to signal to a client that the authentication event associated with the access token of the current request does not meet its authentication requirements and, further, how to meet them.
This document also codifies a mechanism for a client to request that an authorization server achieve a specific authentication strength or recentness when processing an authorization request.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Conventions and Terminology

 . Protocol Overview

 . Authentication Requirements Challenge

 . Authorization Request

 . Authorization Response

 . Authentication Information Conveyed via Access Token

 . JWT Access Tokens

 . OAuth 2.0 Token Introspection

 . Authorization Server Metadata

 . Deployment Considerations

 . Security Considerations

 . IANA Considerations

 . OAuth Extensions Error Registration

 . OAuth Token Introspection Response Registration

 . References

 . Normative References

 . Informative References

 Acknowledgements

 Authors' Addresses

 Introduction
 In simple API authorization scenarios, an authorization server will determine what authentication technique to use to handle a given request on the basis of aspects such as the scopes requested, the resource, the identity of the client, and other characteristics known at provisioning time.
Although that approach is viable in many situations, it falls short in several important circumstances. Consider, for instance, an eCommerce API requiring different authentication strengths depending on whether the item being purchased exceeds a certain threshold, dynamically estimated by the API itself using a logic that is opaque to the authorization server.
An API might also determine that a more recent user authentication is required based on its own risk evaluation of the API request.
 This document extends the collection of error codes defined by with a new value, insufficient_user_authentication, which can be used by resource servers to signal to the client that the authentication event associated with the access token presented with the request does not meet the authentication requirements of the resource server.
This document also introduces acr_values and max_age parameters for the Bearer authentication scheme challenge defined by . The resource server can use these parameters to explicitly communicate to the client the required authentication strength or recentness.
 The client can use that information to reach back to the authorization server with an authorization request that specifies the authentication requirements indicated by the protected resource. This is accomplished by including the acr_values or max_age authorization request parameters as defined in .
 Those extensions will make it possible to implement interoperable step up authentication with minimal work from resource servers, clients, and authorization servers.

 Conventions and Terminology

 The key words " MUST", " MUST NOT",
 " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT",
 " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are
 to be interpreted as described in BCP 14
 when, and only when, they appear in all capitals,
 as shown here.

 This specification uses the terms "access token", "authorization server", "authorization endpoint", "authorization request", "client", "protected resource", and "resource server" defined by " " .

 Protocol Overview
 The following is an end-to-end sequence of a typical step up authentication scenario implemented according to this specification.
The scenario assumes that, before the sequence described below takes place, the client already obtained an access token for the protected resource.

 Abstract Protocol Flow

+----------+ +--------------+
	-----------(1) request ------------------>	
	<---------(2) challenge ------------------	Resource
		Server
Client		
	-----------(5) request ------------------>	
	<-----(6) protected resource -------------	
	+--------------+	
	+-------+ +---------------+	
	->	
		User
		Agent
	<-	
	+-------+	
	<-------- (4) access token --------------	
+----------+ +---------------+

 The client requests a protected resource, presenting an access token.
 The resource server determines that the circumstances in which the presented access token was obtained offer insufficient authentication strength and/or recentness; hence, it denies the request and returns a challenge describing (using a combination of acr_values and max_age) what authentication requirements must be met for the resource server to authorize a request.
 The client directs the user agent to the authorization server with an authorization request that includes the acr_values and/or max_age indicated by the resource server in the previous step.
 Whatever sequence required by the grant of choice plays out; this will include the necessary steps to authenticate the user in accordance with the acr_values and/or max_age values of the authorization request. Then, the authorization server returns a new access token to the client. The new access token contains or references information about the authentication event.
 The client repeats the request from step 1, presenting the newly obtained access token.
 The resource server finds that the user authentication performed during the acquisition of the new access token complies with its requirements and returns the representation of the requested protected resource.

 The validation operations mentioned in steps 2 and 6 imply that the resource server has a way of evaluating the authentication that occurred during the process by which the access token was obtained. In the context of this document, the assessment by the resource server of the specific authentication method used to obtain a token for the requested resource is called an "authentication level". This document will describe how the resource server can perform this assessment of an authentication level when the access token is a JSON Web Token (JWT) or is validated via introspection . Other methods of determining the authentication level by which the access token was obtained are possible, per agreement by the authorization server and the protected resource, but they are beyond the scope of this specification. Given an authentication level of a token, the resource server determines whether it meets the security criteria for the requested resource.
 The terms "authentication level" and "step up" are metaphors in this specification. These metaphors do not suggest that there is an absolute hierarchy of authentication methods expressed in interoperable fashion. The notion of a level emerges from the fact that the resource server may only want to accept certain authentication methods. When presented with a token derived from a particular authentication method (i.e., a given authentication level) that it does not want to accept (i.e., below the threshold or level it will accept), the resource server seeks to step up (i.e., renegotiate) from the current authentication level to one that it may accept. The "step up" metaphor is intended to convey a shift from the original authentication level to one that is acceptable to the resource server.
 Although the case in which the new access token supersedes old tokens by
virtue of a higher authentication level is common, in line with the connotation
of the term "step up authentication", it is important to keep in mind
that this might not necessarily hold true in the general case. For example, for a particular request, a
resource server might require a higher authentication
level and a shorter validity, resulting in a token suitable for one-off calls
but leading to frequent prompts: hence, offering a suboptimal user experience if the token is reused
for routine operations. In such a scenario, the client would be better served
by keeping both the old tokens, which are associated with a lower authentication level,
and the new one: selecting the appropriate token for each API call. This is
not a new requirement for clients, as incremental consent and least-privilege
principles will require similar heuristics for managing access tokens
associated with different scopes and permission levels. This document does not
recommend any specific token-caching strategy: that choice will be dependent on
the characteristics of every particular scenario and remains
application-dependent as in the core OAuth cases. Also recall that OAuth 2.0
 assumes access tokens are treated as opaque by
clients. The token format might be unreadable to the client or might change at
any time to become unreadable. So, during the course of any token-caching
strategy, a client must not attempt to inspect the content of the access token
to determine the associated authentication information or other details (see
 for a more detailed
discussion).

 Authentication Requirements Challenge
 This specification introduces a new error code value for the challenge of the Bearer authentication scheme's error parameter (from) and other OAuth authentication schemes, such as those seen in , which use the same error parameter:

 insufficient_user_authentication:
 The authentication event associated with the access token presented with the request does not meet the authentication requirements of the protected resource.

 Note: the logic through which the resource server determines that the current request does not meet the authentication requirements of the protected resource, and associated functionality (such as expressing, deploying and publishing such requirements), is out of scope for this document.
 Furthermore, this specification defines the following WWW-Authenticate auth-param values for those OAuth authentication schemes to convey the authentication requirements back to the client.

 acr_values:
 A space-separated string listing the authentication context class reference values in order of preference. The protected resource requires one of these values for the authentication event associated with the access token. As defined in Section 1.2 of , the authentication context conveys information about how authentication takes place (e.g., what authentication method(s) or assurance level to meet).
 max_age:
 This value indicates the allowable elapsed time in seconds since the last active authentication event associated with the access token. An active authentication event entails a user interacting with the authorization server in response to an authentication prompt. Note that, while the auth-param value can be conveyed as a token or quoted-string (see), it has to represent a non-negative integer.

 is an example of a Bearer authentication scheme challenge with the WWW-Authenticate header using:

 the insufficient_user_authentication error code value to inform the client that the access token presented is not sufficient to gain access to the protected resource, and
 the acr_values parameter to let the client know that the expected authentication level corresponds to the authentication context class reference identified by myACR.

 Note that while this specification only defines usage of the above auth-params with the insufficient_user_authentication error code, it does not preclude future specifications or profiles from defining their usage with other error codes.

 Authentication Requirements Challenge Indicating acr_values
 HTTP/1.1 401 Unauthorized
WWW-Authenticate: Bearer error="insufficient_user_authentication",
 error_description="A different authentication level is required",
 acr_values="myACR"

 The example in shows a challenge informing the client that the last active authentication event associated with the presented access token is too old and a more recent authentication is needed.

 Authentication Requirements Challenge Indicating max_age
 HTTP/1.1 401 Unauthorized
WWW-Authenticate: Bearer error="insufficient_user_authentication",
 error_description="More recent authentication is required",
 max_age="5"

 The auth-params max_age and acr_values MAY both occur in the same challenge if the resource server needs to express requirements about both recency and authentication level.
If the resource server determines that the request is also lacking the scopes required by the requested resource, it MAY include the scope attribute with the value necessary to access the protected resource, as described in .

 Authorization Request
 A client receiving a challenge from the resource server carrying the insufficient_user_authentication error code SHOULD parse the WWW-Authenticate header for acr_values and max_age and use them, if present, in constructing an authorization request. This request is then conveyed to the authorization server's authorization endpoint via the user agent in order to obtain a new access token complying with the corresponding requirements.
The acr_values and max_age authorization request parameters are both OPTIONAL parameters defined in Section 3.1.2.1. of . This document does not introduce any changes in the authorization server behavior defined in for processing those parameters; hence, any authorization server implementing OpenID Connect will be able to participate in the flow described here with little or no changes. See for more details.
 The example authorization request URI below, which might be used after receiving the challenge in , indicates to the authorization server that the client would like the authentication to occur according to the authentication context class reference identified by myACR.

 Authorization Request Indicating acr_values

 https://as.example.net/authorize?client_id=s6BhdRkqt3
&response_type=code&scope=purchase&acr_values=myACR

 After the challenge in , a client might direct the user agent to the following example authorization request URI where the max_age parameter indicates to the authorization server that the user-authentication event needs to have occurred no more than five seconds prior.

 Authorization Request Indicating max_age

 https://as.example.net/authorize?client_id=s6BhdRkqt3
&response_type=code&scope=purchase&max_age=5

 Authorization Response
 Section 5.5.1.1 of establishes that an authorization server receiving a request containing the acr_values parameter MAY attempt to authenticate the user in a manner that satisfies the requested authentication context class reference and include the corresponding value in the acr claim in the resulting ID Token. The same section also establishes that, in case the desired authentication level cannot be met, the authorization server SHOULD include a value reflecting the authentication level of the current session (if any) in the acr claim. Furthermore, Section 3.1.2.1 states that if a request includes the max_age parameter, the authorization server MUST include the auth_time claim in the issued ID Token.
An authorization server complying with this specification will react to the presence of the acr_values and max_age parameters by including acr and auth_time in the access token (see for details).
Although leaves the authorization server free to decide how to handle the inclusion of acr in the ID Token when requested via acr_values, when it comes to access tokens in this specification, the authorization server SHOULD consider the requested acr value as necessary for successfully fulfilling the request. That is, the requested acr value is included in the access token if the authentication operation successfully met its requirements; otherwise,
the authorization request fails and returns an unmet_authentication_requirements error as defined in . The recommended behavior will help prevent clients getting stuck in a loop where the authorization server keeps returning tokens that the resource server already identified as not meeting its requirements.

 Authentication Information Conveyed via Access Token
 To evaluate whether an access token meets the protected resource's requirements, the resource server needs a way of accessing information about the authentication event by which that access token was obtained. This specification provides guidance on how to convey that information in conjunction with two common access-token-validation methods:

 the one described in , where the access token is encoded in JWT format and verified via a set of validation rules, and
 the one described in , where the token is validated and decoded by sending it to an introspection endpoint.

 Authorization servers and resource servers MAY elect to use other encoding and validation methods; however, those are out of scope for this document.

 JWT Access Tokens
 When access tokens are represented as JSON Web Tokens (JWTs) , the auth_time and acr claims (per) are used to convey the time and context of the user-authentication event that the authentication server performed during the course of obtaining the access token. It is useful to bear in mind that the values of those two parameters are established at user-authentication time and will not change in the event of access token renewals. See the aforementioned for details. The following is a conceptual example showing the decoded content of such a JWT access token.

 Decoded JWT Access Token
 Header:

{"typ":"at+JWT","alg":"ES256","kid":"LTacESbw"}

Claims:

{
 "iss": "https://as.example.net",
 "sub": "someone@example.net",
 "aud": "https://rs.example.com",
 "exp": 1646343000,
 "iat": 1646340200,
 "jti" : "e1j3V_bKic8-LAEB_lccD0G",
 "client_id": "s6BhdRkqt3",
 "scope": "purchase",
 "auth_time": 1646340198,
 "acr": "myACR"
}

 OAuth 2.0 Token Introspection
 " " defines a method for a protected resource to query an authorization server about the active state of an access token as well as to determine metainformation about the token.
The following two top-level introspection response members are defined to convey information about the user-authentication event that the authentication server performed during the course of obtaining the access token.

 acr:
 String specifying an authentication context class reference value that identifies the authentication context class that was satisfied by the user-authentication event performed.
 auth_time:
 Time when the user authentication occurred. A JSON numeric value representing the number of seconds from 1970-01-01T00:00:00Z UTC until the date/time of the authentication event.

 The following example shows an introspection response with information about the user-authentication event by which the access token was obtained.

 Introspection Response
 HTTP/1.1 200 OK
Content-Type: application/json

{
 "active": true,
 "client_id": "s6BhdRkqt3",
 "scope": "purchase",
 "sub": "someone@example.net",
 "aud": "https://rs.example.com",
 "iss": "https://as.example.net",
 "exp": 1639528912,
 "iat": 1618354090,
 "auth_time": 1646340198,
 "acr": "myACR"
}

 Authorization Server Metadata
 Authorization servers can advertise their support of this specification by including in their metadata document, as defined in , the value acr_values_supported, as defined in Section 3 of . The presence of acr_values_supported in the authorization server metadata document signals that the authorization server will understand and honor the acr_values and max_age parameters in incoming authorization requests.

 Deployment Considerations
 This specification facilitates the communication of requirements from a resource server to a client, which, in turn, can enable a smooth step up authentication experience. However, it is important to realize that the user experience achievable in every specific deployment is a function of the policies each resource server and authorization server pair establishes. Imposing constraints on those policies is out of scope for this specification; hence, it is perfectly possible for resource servers and authorization servers to impose requirements that are impossible for users to comply with or that lead to an undesirable user-experience outcome.
The authentication prompts presented by the authorization server as a result of the method of propagating authentication requirements described here might require the user to perform some specific actions such as using multiple devices, having access to devices complying with specific security requirements, and so on. Those extra requirements, that are more concerned with how to comply with a particular requirement rather than indicating the identifier of the requirement itself, are out of scope for this specification.

 Security Considerations
 This specification adds to previously defined OAuth mechanisms. Their respective security considerations apply:

 OAuth 2.0 ,
 JWT access tokens ,
 Bearer WWW-Authenticate ,
 token introspection , and
 authorization server metadata .

 This document MUST NOT be used to position OAuth as an authentication protocol. For the purposes of this specification, the way in which a user authenticated with the authorization server to obtain an access token is salient information, as a resource server might decide whether to grant access on the basis of how that authentication operation was performed. Nonetheless, this specification does not attempt to define the mechanics by which authentication takes place, relying on a separate authentication layer to take care of the details. In line with other specifications of the OAuth family, this document assumes the existence of a session without going into the details of how it is established or maintained, what protocols are used to implement that layer (e.g., OpenID Connect), and so forth.
Depending on the policies adopted by the resource server, the acr_values parameter introduced in might unintentionally disclose information about the authenticated user, the resource itself, the authorization server, and any other context-specific data that an attacker might use to gain knowledge about their target.
For example, a resource server requesting an acr value corresponding to a high level of assurance for some users but not others might identify possible high-privilege users to target with spearhead phishing attacks.
Implementers should use care in determining what to disclose in the challenge and in what circumstances.
The logic examining the incoming access token to determine whether or not a challenge should be returned can be executed either before or after the conventional token-validation logic, be it based on JWT validation, introspection, or any other method. The resource server MAY return a challenge without verifying the client presented a valid token. However, this approach will leak the required properties of an authorization token to an actor who has not proven they can obtain a token for this resource server.
 As this specification provides a mechanism for the resource server to trigger user interaction, it's important for the authorization server and clients to consider that a malicious resource server might abuse that feature.

 IANA Considerations

 OAuth Extensions Error Registration
 This specification registers the following error value in the "OAuth Extensions Error Registry" established by .

 Name:

 insufficient_user_authentication
 Usage Location:
 resource access error response
 Protocol Extension:
 OAuth 2.0 Step Up Authentication Challenge Protocol
 Change controller:
 IETF
 Specification document(s):

 of RFC 9470

 OAuth Token Introspection Response Registration
 This specification registers the following values in the "OAuth Token Introspection Response" registry established by .
 Authentication Context Class Reference:

 Name:

 acr
 Description:
 Authentication Context Class Reference
 Change Controller:
 IETF
 Specification Document(s):

 of RFC 9470

 Authentication Time:

 Name:

 auth_time
 Description:
 Time when the user authentication occurred
 Change Controller:
 IETF
 Specification Document(s):

 of RFC 9470

 References

 Normative References

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 The OAuth 2.0 Authorization Framework

 The OAuth 2.0 authorization framework enables a third-party application to obtain limited access to an HTTP service, either on behalf of a resource owner by orchestrating an approval interaction between the resource owner and the HTTP service, or by allowing the third-party application to obtain access on its own behalf. This specification replaces and obsoletes the OAuth 1.0 protocol described in RFC 5849. [STANDARDS-TRACK]

 The OAuth 2.0 Authorization Framework: Bearer Token Usage

 This specification describes how to use bearer tokens in HTTP requests to access OAuth 2.0 protected resources. Any party in possession of a bearer token (a "bearer") can use it to get access to the associated resources (without demonstrating possession of a cryptographic key). To prevent misuse, bearer tokens need to be protected from disclosure in storage and in transport. [STANDARDS-TRACK]

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 Informative References

 OAuth Parameters

 IANA

 OpenID Connect Core 1.0 incorporating errata set 1

 NRI

 Ping Identity

 Microsoft

 Google

 Salesforce

 OpenID Connect Discovery 1.0 incorporating errata set 1

 NRI

 Ping Identity

 Microsoft

 Illumila

 OpenID Connect Core Error Code unmet_authentication_requirements

 YES

 JSON Web Token (JWT)

 JSON Web Token (JWT) is a compact, URL-safe means of representing claims to be transferred between two parties. The claims in a JWT are encoded as a JSON object that is used as the payload of a JSON Web Signature (JWS) structure or as the plaintext of a JSON Web Encryption (JWE) structure, enabling the claims to be digitally signed or integrity protected with a Message Authentication Code (MAC) and/or encrypted.

 OAuth 2.0 Token Introspection

 This specification defines a method for a protected resource to query an OAuth 2.0 authorization server to determine the active state of an OAuth 2.0 token and to determine meta-information about this token. OAuth 2.0 deployments can use this method to convey information about the authorization context of the token from the authorization server to the protected resource.

 OAuth 2.0 Authorization Server Metadata

 This specification defines a metadata format that an OAuth 2.0 client can use to obtain the information needed to interact with an OAuth 2.0 authorization server, including its endpoint locations and authorization server capabilities.

 JSON Web Token (JWT) Profile for OAuth 2.0 Access Tokens

 This specification defines a profile for issuing OAuth 2.0 access tokens in JSON Web Token (JWT) format. Authorization servers and resource servers from different vendors can leverage this profile to issue and consume access tokens in an interoperable manner.

 HTTP Semantics

 The Hypertext Transfer Protocol (HTTP) is a stateless application-level protocol for distributed, collaborative, hypertext information systems. This document describes the overall architecture of HTTP, establishes common terminology, and defines aspects of the protocol that are shared by all versions. In this definition are core protocol elements, extensibility mechanisms, and the "http" and "https" Uniform Resource Identifier (URI) schemes.
 This document updates RFC 3864 and obsoletes RFCs 2818, 7231, 7232, 7233, 7235, 7538, 7615, 7694, and portions of 7230.

 OAuth 2.0 Demonstrating Proof of Possession (DPoP)

 Acknowledgements
 I wanted to thank the Academy, the viewers at home, the shampoo manufacturers, etc.
 This specification was developed within the OAuth Working Group under the
chairpersonship of and with and
 serving as Security Area
Directors. Additionally, the following individuals contributed ideas,
feedback, corrections, and wording that helped shape this specification:
 , ,
 , ,
 , , and
 .
 Some early discussion of the motivations and concepts that precipitated the
initial draft version of this document occurred at the 2021 OAuth Security
Workshop. The authors thank the organizers of the workshop (, , and) for hosting an event that is conducive to
collaboration and community input.

 Authors' Addresses

 Auth0/Okta

 vittorio@auth0.com

 Ping Identity

 bcampbell@pingidentity.com

