Text merges in TEX and ETEX*

Mike Piff
November 13, 2010

Abstract

In this article the author explains how to do some standard and not
so standard word processor text merges in TEX documents, using no other
tools than TEX itself. A common application is to the mail merge or form
letter, where names and addresses are stored in a file, together with other
bits of information, and a standard letter with variable fields embedded in
it is customized for every name from this file. Another application is to the
pretty-printing of the contents of a database.

The macros described in textmerg.sty work equally in both plain TEX
and TEX. However, this has meant heavy use of \def where \newcommand
would have been preferable.

Contents

1 Introduction 2
2 A simple example 2
3 A few complications 4
4 A complicated example 5
5 Identification 8
6 Implementation of the simple case 8
7 Implementation of merged tables 11
8 The documentation driver file 14

*This article originally appeared in TUGboat Vol 13(4), 1992, p518-523.

1 Introduction

It is often said that although IATEX is good at typesetting mathematics, it is wholly
unsuitable for common word processor functions such as mail merges. The latter
are easy to achieve in most ordinary word processors, but in its raw state KTEX is
incapable of doing a mail merge, or, indeed, of generating the same block of text
over and over again but with different parameters in each block, those parameters
having been read from a subsidiary merge file. The latter file might possibly be
the output from a database or any other program.

This article aims to show the reader that such a repetitive task need not be
as difficult as it at first appears. In TEX, it is possible to hide many details of a
facility inside a subsidiary style file, so that the user is unaware of what fearful
processes are going on in the background. It is then possible to present the end-
user with an extremely simple interface, perhaps simpler and more powerful than
is available in other systems.

In earlier TUGboat articles [Bel87, Gar87, Lee86, McK87] it was shown how
a standard letter could be customized by adding names and addresses from a
separate file. I aim to show that it is possible to achieve far more than this with
a fairly compact but general set of macros.

2 A simple example

Suppose that we have a list of student names and examination grades, one per
student, and that we wish to send a letter to each student giving his/her exam
grade. We must decide first what bits of information must be prepared in our
subsidiary file, by looking at an example letter and finding out which items change
from letter to letter.

Suppose that one instance of our letter is the following, a ITEX example.

\begin{letter}{Miss Iusta Mo\\
34 Winchester Road\\
Sheffield\\

England}

\opening{Dear Miss Mo,}

This letter is to inform you

that you obtained grade A in

your recent examinations.

\closing{Yours faithfully,}
\end{letter}

We can see that we need to know the student’s title, forename(s), surname, address
and grade to compose such a letter.

One of the simplest ways of achieving this effect is to prepare a file with lines
of the form

\MyLetter{Mr}...{C}

\Merge
\Fields

for each student and then simply \input it into a ITEX file in which \MyLetter
has been defined as having five parameters. A problem with this approach is
that we may not be able to coax the student database into producing such a
file. Another problem is that we need something more subtle if there are fifty
parameters. For example, we might want to print out the contents of the student
database with one page per student, but it could be that there are fifty information
fields per student. Even worse, the number of pieces of information per student
might not be a constant number, because, say, we are printing out fields from a
related file in which marks on individual examination papers are held.
We shall tackle our simple example in a way that lends itself to more generality
later on, and in a form that most database programs should be capable of handling.
We thus prepare a subsidiary file results.dat with records of five fields in it.

Each student is represented by five lines of this file,

1 (xresults)

2 Miss

3 Iusta

4 Mo

5 34 Winchester Road\\Sheffield\\England

6 A

7 Mr

8 Arthur

9 Minit

10 43 Sheffield Road\\Winchester\\England

11 C

12 (/results)

and the student records appear one after another in this file. Thus both the field
and record separators are carriage returns.
TEX itself needs to know three bits of information:

1. the name of the subsidiary file,
2. the fields to read, and
3. the template of the letter.

We pass it this information in the following form

13 (xexamp)

14 \documentclass[12pt]{letter}

15 \usepackage{textmerg}

16 \begin{document}

17 \Fields{\Title\Forenames\Surname

18 \Address\Grade}

19 \Merge{results.dat}{/

20 \begin{letter}{\Title\ \Forenames\
21 \Surname\\\Address}

22 \opening{Dear \Title\ \Surname,}
23 This letter is to inform you

24 that you obtained grade \Grade\ in
25 your recent examinations.

\Fields

26 \closing{Yours faithfully,}

27 \end{letter}}

28 \end{document}

29 (/examp)

ITEX should open the subsidiary file and, for each set of five parameters, generate
a letter in the dvi file. When it reaches the end of the merge file, TEX should
terminate execution of the \Merge command and presumably finish the document.

3 A few complications

Looking at the above example in a bit more generality, we see that we are reading
records of n fields from the merge file and placing them into a TEX document
in such a way that they replace n preassigned control sequences. However, it
may happen that the merge file is prepared by humans, who might possibly have
inserted some extra blank lines into the file. Again, it could be that certain sorts
of fields might be blank, whereas others can never be blank. Perhaps it would be
better to build in some degree of error recovery.

We shall make the assumption that the first field in any record is definitely
a non-blank one and that we know beforehand whether each of the others might
conceivably be blank. We make a modification to our \Fields statement. It can
contain not only the field name control sequences but also the tokens + and -,
with the following interpretation. A + indicates that all following fields should be
re-read until a non-blank result is obtained. A - indicates that any following fields
could conceivably be blank, subject to the restriction that the very first field is
always non-blank.

Thus the command

\Fields{\a+\b\c-\d}

would indicate that only \d is allowed to be blank, because the + token has no
effect. In

\Fields{-\a\b+-\c+\d}

the initial - token enables blank reading of data tokens, but the very first data
token is not permitted to be blank anyway. Thus \a is read as a non-blank token
and \b as a possibly blank token. The sequence +- now switches non-blank reading
on and off again, so \c is read as possibly blank. Finally \d is non-blank.

Another complication we allow is that the \Fields command can appear sev-
eral times in our file. The interpretation is that the last occurrence of \Fields
before we encounter the \Merge command will indicate the fields to be read for
every record. Any occurrences of \Fields within the merged text indicate a new
list of fields to be read when that command is encountered. This lets us do some
conditional processing, such as’

\ifx\Title\Mrs

11t is assumed that \Mrs expands to Mrs.

\MultiRead

\Fields{\MaidenName}
\fi

and also gives us some flexibility about the field order later on.

It should also be stressed that the undefined control sequences appearing in
the template need not correspond exactly to the fields in the subsidiary file. An
example might be that the subsidiary file contains the text

Spriggs, Mr Abraham L

and one field read is \FullName. TEX would then have to pre-process this name
to generate its several components as used in the template. The command
\PreProcess could be included at the start of the template.

\def\parse#1, #2 #3\endparse{%
\def\Surname{#1}\def\Title{#2}}
\def\Forenames{#31}}

\def\PreProcess{\expandafter
\parse\FullName\endparse}

An alternative and simpler looking approach to reading fields from a file \fil
might be to define each such field as follows.

\def\Field#1{\def#1{\read\fil to#1#1}}
\Field\Name \Field\Address \Field\Mark

The first time \Name is encountered, it reads its own expansion from \fil and then
expands itself. Henceforth, it has acquired its new expansion. The disadvantage is
that \Name must appear in the text before any subsidiary field such as \Surname
can be used.

Finally we should consider the possibility that the second parameter of \Merge
might be too large to fit into memory. We can clearly handle this problem by
allowing the second parameter merely to consist of the text \input template, so
that the root file handles two subsidiary files, one containing the template and the
other containing the fields.

4 A complicated example

We will next look at an example in which the template contains a table of inde-
terminate length, albeit fixed width. So far our macros work in either plain TEX
or in TEX, but the way in which these two packages handle tables is slightly
different. However, the only difference that need concern us is that INTEX uses \\
where plain TEX uses \cr.

The example given here is in ETEX, but our style will work equally well in
plain TEX. In our student letter we wish to insert a table of course codes and
marks. Since each student did a different number of courses, we need some way
of recognizing the end of the course list in the merge file. The default will be to
insert a blank line at the end of such a sub-list. Thus, the following text appears
before the close of the letter template.

\MarkEnd

\Process

Here are your marks on individual papers.
\begin{center}
\begin{tabular}{|1lr|}\hline
Code&Mark\\\hline
\MultiRead{2}\\\hline
\end{tabular}
\end{center}

The merge file now has the following structure.

Title
Grade
Code
Mark
Code
Mark

(blank)

Title

In other applications some of the fields in the table might possibly be blank.
We then let the user change the (blank) line marking the end of a list to some
other string of his own choosing.

\MarkEnd{**x*}

There might be multiple tables in the same template, with their data intermin-
gled in the merge file with main fields. The generalized \Fields command allows
us to order the merge file however we want. Thus we could have main fields, then
a table, followed by more main fields, and so on.

A final complication is that the fields appearing in a table are essentially anony-
mous. By this I mean that they are transferred into the table as they are, with-
out any pre-processing possible through appearing in the template as control se-
quences. If we wish what appears in the table to be different from what appears
in the file, a mechanism is needed to tell TEX that a certain column has to be
treated in a certain way. The command

\Process{n}{\foo}

will replace every field (f) read into column n by \foo{(f)}. It is even possible
to do some numerical calculations by this method.
Here is a KTEX example to illustrate the table processing features of
textmerg.sty.
30 (xexample)
31 \documentclass[12pt]{article}
32 \usepackage{textmerg}
33 \MarkEnd{***}

34 \Process{2}{\Advance}
35 \def\Advance#1{#1\addtocounter{page}{#1}}
36 \Fields{+\Name\Verb}
37 \begin{document}
38 \Merge{silly.dat}{%
39 Dear \Name, \par
40 Here is a table to \Verb\ at:
41 \Fields{\Widthl}%
42 \begin{tabular}{*{\Width}c}
43 \MultiRead\Width
44 \end{tabular}. \par
45 \Fields{\Adj}%
46 That was \Adj!
47 \clearpage}
48 \end{document}
49 (/example)
The effect of this file is not apparent until we see silly.dat. It is listed here.
50 (xsilly)
51 Mike
52 look
53 3
54 1
55 2
56 3
57 11
58 12
59 13
60 ***
61 good
62 Shelagh
63 gaze
64 2
65 21
66 22
67 23
68 24
69 ***
70 horrid
71 (/silly)
The same can be done in plain TEX.
72 (xplainexample)
73 \input textmerg
74 \MarkEnd{**x}
75 \Process{2}{\Advance}
76 \def\Advance#1{#1\global\advance\countOby#1}
77 \Fields{+\Name\Verb}
78 \Merge{silly.dat}{%
79 Dear \Name, \par
80 Here is a table to \Verb\ at:

\glet

\MergeFile
\InputFile

81 \Fields{\Width}%

82 \vbox{\halign{\hfil{} ## {}\hfil&&\hfil{} ## {}\hfillcr
83 \MultiRead\Width\cr

84 }}.\par

85 \Fields{\Adj}%

86 That was \Adj!

87 \vfillleject}

88 \end

89

90 (/plainexample)

5 Identification

This package can only be used with IXTEX 2¢, so an appropriate message is dis-
played when another format is used?.

91 (xtextmerg)
92 \NeedsTeXFormat{LaTeX2e}[1994/01/01]

Announce the package name and its version:
93 \ProvidesPackage{textmerg}[\filedate]
And display it on the terminal (and the log file):

94 \typeout{Package ‘textmerg’ <\filedate>.}
95 \typeout{\Copyright}
96 (/textmerg)

The plain TEX version will simply \input this package file. Thus we need to
know that it will understand everything in the file.
97 (xplain)

98 \def\NeedsTeXFormat#1 [#2]{}

99 \def\ProvidesPackage#1 [#2]{}

100 \def\typeout#1{\immediate\writeO{#1}}
101 \input textmerg.sty

102 (/plain)

6 Implementation of the simple case

For convenience we define a frequently used combination here.

103 (xtextmerg)
104 \def\glet{\global\let}

The subsidiary merge file is defined next. A macro is then defined that attempts to
open it for reading. If that is unsuccessful, the file is closed and an error message
is issued.

105 \newread\MergeFile
106 \def\InputFile#1{Y

2However, some code is inserted to allow its use with plain TEX

\GetInput

\SeeIfEof
\LookAgain

\ifNonBlank
\AllowBlank
\DontAllowBlank

\ReadIn
\MissingField

107 \openin\MergeFile=#1

108 \ifeof\MergeFile

109 \errmessage{Empty merge filel}
110 \closein\MergeFile

111 \long\def\MakeTemplate##1{}%
112 \def\Template{}}%

113 \else\GetInput\fi}

The command \MakeTemplate will be used later to generate the body of the form
into which fields are inserted. We redefine it if the file is empty so that it produces
no text.

Because the conditional \ifeof does not return true until after an unsuccessful
read operation, a mechanism of looking ahead is used which is similar to that
found in Pascal.

114 \def\GetInput{{\endlinechar=-1
115 \global\read\MergeFile to\InputBuffer}}

We set up a mechanism for deciding whether or not we have exhausted the merge
file. It forces \ifeof to return true by skipping over blank lines.

116 \def\SeeIfEof{/

117 \let\NextLook\relax

118 \ifeof\MergeFile

119 \else

120 \ifx\InputBuffer\empty
121 \LookAgain

122 \fi

123 \fi

124 \NextLook}
125 \def\LookAgain{\GetInput
126 \let\NextLook\SeeIfEof}

We can now prepare to read actual fields from the merge file. A conditional is
used to indicate whether or not the field we are about to read is allowed to be
blank. We also set up a mechanism for changing its value.

127 \newif\ifNonBlank \NonBlankfalse

128 \def\AllowBlank{\global\NonBlankfalse}

129 \def\DontAllowBlank{\global\NonBlanktrue}

Fields are actually read by means of the following command. Its only parameter
is the name of the control sequence into which the field is read.

130 \def\ReadIn#1{/,

131 \ifNonBlank\SeeIfEof\fi

132 \ifeof\MergeFile

133 \gdef#1{?7}\MissingField
134 \else

135 \glet#1\InputBuffer

136 \GetInput

137 \fi}

\GlobalFields
\Fields

\ParseFields
\EndParseFields

\ReadFields

\Merge
\MakeTemplate

138 \def\MissingField{/
139 \message{Missing field in file}}

The \Fields command places its parameter into a token register called \GlobalFields.
This command will be redefined by the \Merge command.

140 \newtoks\GlobalFields
141 \def\Fields#1{\GlobalFields{#1}}

When a field token list is read, each individual token within it must be either read
as a field or interpreted as a blank/nonblank switch. The next token is then read
by tail recursion. It is assumed that the final token in the list is \EndParseFields.
This must be defined to expand to something unlikely to be read as a value of one
of the fields, and so we \let it to \ParseFields.

142 \def\ParseFields#1{/,
143 \ifx#1\EndParseFields

144 \let\NextParse\relax

145 \else

146 \let\NextParse\ParseFields
147 \ifx#1+\DontAllowBlank

148 \else

149 \ifx#1-\AllowBlank

150 \else\ReadIn#1

151 \fi

152 \fi

153 \fi\NextParse}
154 \let\EndParseFields\ParseFields

We apply this command to our token register after expanding it.
155 \def\ReadFields#1{\expandafter\ParseFields

156 \the#1\EndParseFields

157 \AllowBlank}

At long last we are ready to define the \Merge command itself. The first parameter
is the filename of the subsidiary file and the second is the template or form into
which fields are inserted. Since a \Fields command within the \Merge text is
meant to act immediately on the token list that follows it, we redefine it to operate
in a different way.

158 \long\def\Merge#1#2{\begingroup,

159 \InputFile{#1}Y

160 \def\Fields##1{/,

161 \ParseFields##1\EndParseFields}/,

162 \MakeTemplate{#2}\Iterate}

163 \long\def\MakeTemplate#1{\def\Template{#1}}

The grouping keeps any changes to the definition of \MakeTemplate local to this
merge. Thus several consecutive merges can be handled within one document.
The \endgroup is supplied by the macro \Iterate when the merge file has been
exhausted.

10

\Iteratecounter
\Iterate

\MultiCount
\MaxCount
\ifStart0OfList

\MultiRead

\Emptyctr
\MakeEmpty

\Iterate must read the fields which were declared before it was entered, substitute
them into its template and repeat itself using tail recursion if the end of the merge
file has not been encountered.

164 \countdef\Iteratecounter=2

165 \Iteratecounter=0

166 \def\Iterate{’,

167 \global\advance\Iteratecounter byl
168 \ReadFields\GlobalFields

169 \Template

170 \SeeIfEof

171 \ifeof\MergeFile

172 \def\NextIteration{’

173 \endgroup\closein\MergeFilel}J,
174 \else

175 \let\NextIteration\Iterate

176 \fi

177 \NextIteration}

The point of the use of counter 2 in the above is that it is accessible to the print
driver for page selection. Anyone who has started printing 150 letters, all with
page number 1, only to run out of paper half way, will appreciate the use of this
artifice!

7 Implementation of merged tables

We set up two counters, one for the column we are reading and the other for the
total number of columns in the table. We also need a conditional to mark the start
of the table, so that we terminate each row correctly with \\ or \cr, or nothing
at all at the beginning of the first row.

178 \newcount\MultiCount \newcount\MaxCount
179 \newif\ifStart0fList

The parameter to \MultiRead is the number of columns to read at a time. This
command passes control to \NextRead after initializing certain parameters.

180 \def\MultiRead#1{%
181 \ifnum#1>0

182 \SelectCR

183 \MakeEmpty{#11}/,

184 \global\StartOfListtrue
185 \glet\NextRead\MRead
186 \AllowBlank

187 \global\MaxCount=#1

188 \NextRead

189 \fi}

The command \MakeEmpty is required by the pre-processing of each field. The
idea is that the command \csname prnn\endcsname, which we will loosely call

11

\Process

\MarkEnd

\NextLine
\NextField

\AppendNextField

\EndLine
\FinishLine

\prnn, is executed on each field in column nn. However, most of these commands
will be undefined, and so we equate each of those that has not been defined to
\empty.

190 \newcount\Emptyctr

191 \def\MakeEmpty#1{\Emptyctr=0

192 \loop

193 \advance\Emptyctr byl

194 \expandafter\ifx\csname

195 pr\the\Emptyctr\endcsname\relax
196 \expandafter\glet\csname

197 pr\the\Emptyctr\endcsname\empty
198 \fi

199 \ifnum\Emptyctr<#l

200 \repeat}

Note that, because of the way we are accessing it via \csname, the first time \prnn
is encountered it equates to \relax.

The command \Process#1#2 defines \pr#1 to mean #2.

201 \def\Process#1#2{},
202 \expandafter\def\csname
203 pr#i\endcsname##1{#2{##1}}}

We need to know how the last row is to be recognized. The default is an empty
line in the merge file.

204 \def\MarkEnd#1{\gdef\EndMarker{#11}}
205 \MarkEnd{}

We collect each row in a token register. The full row is assembled in \NextLine
before being passed back to TEX. Each field is read in \TempField and then placed
temporarily into \NextField.

206 \newtoks\NextLine \newtoks\NextField

It is not necessary to do things this way; \edef can be used instead, but that
approach might expand tokens prematurely.

After the next field has been read, it is appended to \NextLine.

207 \def \AppendNextField{},

208 \global\advance\MultiCount1

209 \NextField=\expandafter{\TempField}%
210 \edef\Append{\NextLine=

211 {\the\NextLine&\csname
212 pr\the\MultiCount\endcsname
213 {\the\NextField}}}%

214 \Append}

We need to insert the correct end marker after each row of the table. The token
\cr must be disguised a little before it is acceptable in a IXTEX document.

12

\StopProcessing

\MRead

\ConstructNextRow

215 \def\SelectCR{\glet\EndLine\\}},

216 (/textmerg)

217 (plain)\def\SelectCR{\gdef\EndLine{\cr}}%
218 (xtextmerg)

219 \def\FinishLine{}

220 \ifStartOfList

221 \global\StartOfListfalse

222 \else\EndLine\fi}

This makes the assumption that if \array is defined then we must be in ETEX.

We need a command to finish off a table. This should reset \NextRead to
\AllowBlank to terminate the tail recursion, and also do some error recovery
in case the file ends prematurely in the middle of a row.

223 \def\StopProcessing{%

224 \global\MultiCount\MaxCount

225 \glet\NextRead\AllowBlank}

The command \MRead prepares to read a row of a table. It reads a field from the
merge file and checks to see whether the table has been exhausted.

226 \def\MRead{’

227 \global\MultiCount=1

228 \ReadIn\TempField

229 \ifx\TempField\EndMarker

230 \StopProcessing

231 \else

232 \FinishLine

233 \NextField=\expandafter{\TempField}/,
234 \edef\StartLine{\NextLine={\csname
235 pri\endcsname{\the\NextField}}}%
236 \StartLine

237 \ConstructNextRow

238 \fi

239 \NextRead}

Command \ConstructNextRow does most of the work of assembling a row of the
table. It assembles \MaxCount fields at a time into \NextLine unless an error is
encountered.

240 \def\ConstructNextRow{’
241 \ifnum\MultiCount<\MaxCount

242 \loop

243 \ReadIn\TempField

244 \ifx\TempField\EndMarker
245 \glet\TempField\empty
246 \StopProcessing

247 \MissingField

248 \else

249 \ifeof\MergeFile

250 \glet\TempField\empty

13

251 \StopProcessing

252 \MissingField

253 \fi

254 \fi

255 \AppendNextField

256 \ifnum\MultiCount<\MaxCount
257 \repeat

258 \fi

259 \the\NextLine}
260 (/textmerg)

8 The documentation driver file

This is the driver file that produces this documentation. We use the document
class provided by the IATEX 2¢ distribution for producing the documentation.
261 (xdriver)

262 \documentclass{ltxdoc}

263 \RecordChanges

264 \begin{document}

265 \DocInput{textmerg.dtx}

266 \PrintIndex

267 \PrintChanges

268 \end{document}

269 (/driver)

References

[Bel87] Edwin V. Bell, II. AutoLetter: A TEX form letter procedure. TUG-
Boat, 8(1):54, April 1987.

[Gar87] John S. Garavelli. Form letter macros. TUGBoat, 8(1):53, April 1987.
[Lee86) John Lee. Form letters. TUGBoat, 7(3):187, October 1986.
[McK87] Graeme McKinstry. Form letters. TUGBoat, 8(1):60, April 1987.

Change History

2.01 2.01a
General: rfl0@Qcam.ac.uk — relax-
General: First version for LaTeX2e 1 ation of licence terms 1

14

